JP3741024B2 - Solid electrolyte material - Google Patents

Solid electrolyte material Download PDF

Info

Publication number
JP3741024B2
JP3741024B2 JP2001327447A JP2001327447A JP3741024B2 JP 3741024 B2 JP3741024 B2 JP 3741024B2 JP 2001327447 A JP2001327447 A JP 2001327447A JP 2001327447 A JP2001327447 A JP 2001327447A JP 3741024 B2 JP3741024 B2 JP 3741024B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte material
ion exchange
side chain
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001327447A
Other languages
Japanese (ja)
Other versions
JP2003132908A (en
Inventor
拓未 谷口
政弘 陸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001327447A priority Critical patent/JP3741024B2/en
Publication of JP2003132908A publication Critical patent/JP2003132908A/en
Application granted granted Critical
Publication of JP3741024B2 publication Critical patent/JP3741024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質材料に関する。
【0002】
【従来の技術】
固体高分子電解質型の燃料電池は、両面に白金触媒層を持つ固体電解質膜をガス拡散電極であるアノードとカソードとで挟み込んで膜電極接合体とし、その膜電極接合体をガス不透過の導電性セパレータで挟み込み、アノードとカソードとを電気的に接続した状態で、アノードとセパレータとの間に燃料ガスを供給すると共にカソードとセパレータとの間に水素ガスを供給することにより、両電極間に起電力を発生させる。このとき、白金触媒層において過酸化物や過酸化物ラジカルが生成するため、固体電解質膜はこれらに対する耐性つまり耐酸化性が要求される。このため、固体電解質膜としては、デュポン社製のナフィオンに代表されるパーフルオロカーボンスルホン酸ポリマーが用いられることが多いが、このようなフッ素系樹脂は高価なことから、安価で安定性の高い材料の開発が進められている。例えば、特表平10−503788号公報には、スルホン化されたスチレン−(エチレン−ブチレン)トリブロック共重合体が開示されている。このトリブロック共重合体のうち、ポリ(エチレン−ブチレン)成分が強度を担う支持部であり、スルホン化されたスチレン成分がイオン伝導部である。
【0003】
【発明が解決しようとする課題】
ところで、燃料電池を高性能化するためには固体電解質膜を低抵抗化することが望ましい。このような低抵抗化を達成するための手段としては固体電解質膜のイオン交換容量を増大させることが考えられるが、イオン交換容量を増大させると逆に膜強度が低下してしまうという問題が生じる。例えば、前記公報に開示されているような支持部とイオン伝導部とを分離させたブロック共重合体において、イオン伝導部を増やしてイオン交換容量を上げると、支持部におけるイオン伝導部の導入部位が増加するため、元の支持部が有していた結晶性が低下して強度が下がり、結果としてイオン交換容量と膜強度とを両立させることができない。
【0004】
本発明は上記課題に鑑みてなされたものであり、イオン交換容量と膜強度を両方とも高くすることが可能な固体電解質材料を提供することを目的とする。
【0005】
【課題を解決するための手段、発明の実施の形態およびその効果】
本発明の固体電解質材料は、上述の目的を達成するために以下の手段を採った。すなわち、本発明は、主鎖における1つの側鎖に対して、複数のイオン交換基が導入されてなる固体電解質材料であって、前記主鎖が、窒素含有ヘテロ環を主骨格とするポリマーであり、前記側鎖が、窒素含有ヘテロ環の窒素原子に結合していることを特徴とする。本発明の固体電解質材料では、主鎖における1つの側鎖導入部位に対して、複数のイオン交換基が導入される。したがって、側鎖導入部位を増やすことなくイオン交換容量を増大させることが可能となり、主鎖の強度を低下させることなくイオン交換容量を高めることができる。つまり、イオン交換容量と膜強度を両方とも高くすることができる。
【0006】
本発明の固体電解質材料における主鎖は、炭化水素部を有する高分子化合物であってもよく、このような高分子化合物としては、例えばポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ポリアクリル樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、直鎖型フェノール−ホルムアルデヒド樹脂、架橋型フェノール−ホルムアルデヒド樹脂、直鎖型ポリスチレン樹脂、架橋型ポリスチレン樹脂、直鎖型ポリ(トルフルオロスチレン)樹脂、架橋型(トリフルオロスチレン)樹脂、ポリ(2,3−ジフェニル−1,4−フェニレンオキシド)樹脂、ポリ(アリルエーテルケトン)樹脂、ポリ(アリレンエーテルスルホン)樹脂、ポリ(アリレンエーテルスルホン)樹脂、ポリ(フェニルキノサンリン)樹脂、ポリ(ベンジルシラン)樹脂、ポリスチレン樹脂などが挙げられる。ポリスチレン樹脂としては、スチレンモノマーとアクリロニトリル、アクリル酸エステル、ブタジエン等のモノマーの1種又は2種以上とを共重合した樹脂や、ポリスチレン−グラフト−エチレンテトラフルオロエチレン樹脂、ポリスチレン−グラフト−ポリフッ化ビニリデン樹脂、ポリスチレン−グラフト−テトラフルオロエチレン樹脂などが挙げられる。
【0007】
あるいは、本発明の固体電解質材料における主鎖は、窒素含有のヘテロ環を有する高分子化合物であってもよく、このような高分子化合物としては、例えば、窒素含有五員環であるピロール、ピラゾール、イミダゾール、トリアゾール、チアゾール、イソチアゾール、オキサゾール、イソオキサゾール等を有する高分子化合物や、窒素含有六員環であるピリジン、ピリミジン、ピラジン、ピリダジン、トリアジン、チアゾリン、オキサゾリン等を有する高分子化合物や、これら五員環または六員環と縮環したヘテロ環であるインドール、ベンズピラゾール、ベンズイミダゾール、ベンズ(イソ)チアゾール、ベンズ(イソ)オキサゾール、キノリン、キノキザリン等を有する高分子化合物が挙げられる。このうち、イミダゾール環を有する高分子化合物として、例えば、ポリベンズイミダゾール、ポリベンズビスイミダゾールなどを挙げることができる。通常、ポリベンズイミダゾールは、芳香族二塩基酸および芳香族テトラミンから製造することができ、例えば、ポリ−2,2’−(m−フェニレン)−5,5’−ビベンズイミダゾール、ポリ−2,2’−(ピリジレン−3”,5”)−5,5’−ビベンズイミダゾール、ポリ−2,2’−(フリーレン−2”,5”)−5,5’−ビベンズイミダゾール、ポリ−2,2’−(ナフチレン−1”,6”)−5,5’−ビベンズイミダゾール、ポリ−2,2’−(ビフェニレン−4”,4”)−5,5’−ビベンズイミダゾール、ポリ−2,2’−アミレン−5,5’−ビベンズイミダゾール、ポリ−2,2’−オクタメチレン−5,5’−ビベンズイミダゾール、ポリ−2,6’−(m−フェニレン)−ジイミダゾールベンゼン、ポリ−2’,2’−(m−フェニレン)−5,5’−ジ(ベンズイミダゾール)エーテル、ポリ−2’,2’−(m−フェニレン)−5,5’−ジ(ベンズイミダゾール)スルフィド、ポリ−2’,2’−(m−フェニレン)−5,5’−ジ(ベンズイミダゾール)スルホン、ポリ−2’,2’−(m−フェニレン)−5,5’−ジ(ベンズイミダゾール)メタン、ポリ−2’,2”−(m−フェニレン)−5,5”−ジ(ベンズイミダゾール)−プロパン−2,2、および、ポリ−2,2’−(m−フェニレン)−5,5”−ジ(ベンズイミダゾール)−エチレン−1,2などが挙げられる。このうち、ポリ−2,2’−(m−フェニレン)−5,5’−ビベンズイミダゾールが好ましい。また、ポリベンズビスイミダゾールの例としては、ポリ−2,6’−(m−フェニレン)ベンズビスイミダゾール、ポリ−2,6’−(ピリジレン−2”、6”)ベンズビスイミダゾール、ポリ−2,6’−(ピリジレン−3”、5”)ベンズビスイミダゾール、ポリ−2,6’−(ナフチレン−1”、6”)ベンズビスイミダゾール、ポリ−2,6’−(ナフチレン−2”、7”)ベンズビスイミダゾールなどを挙げることができる。このうち、ポリ−2,6’−(m−フェニレン)ベンズビスイミダゾールが好ましい。
【0008】
本発明の固体電解質材料におけるイオン交換基は、イオン交換可能な基であれば特に限定されないが、例えばスルホン酸基、ホスホン酸基、リン酸基、ボロン酸基、およびカルボン酸基からなる群より選ばれた少なくとも一つとしてもよく、このうちスルホン酸基、ホスホン酸基、リン酸基が好ましく、スルホン酸基が特に好ましい。イオン交換基の導入量は、固体電解質材料1gあたり0.1〜10.0mmolであることが好ましく、0.5〜3.0mmolであることが更に好ましい。イオン交換基の導入量が高い方が一般にプロトン伝導性が高くなるが、イオン交換基の導入量が高すぎると全体の結晶性が低下するために吸水量が過大となり強度低下につながるため、前記数値範囲が好ましい。
【0009】
本発明の固体電解質材料における側鎖は、複数のイオン交換基を備えた構造であれば特に限定されないが、例えば、複数のイオン交換基で置換されたベンゼンなどの芳香環を含む構造であってもよいし、途中で複数に分岐しており各分岐の末端または途中にイオン交換基を有する構造であってもよい。このうち、後者の構造が好ましく、主鎖に直接または間接的に結合している原子を分岐点として複数に分岐しており各分岐の末端にイオン交換基を有する構造が特に好ましい。ここで、各分岐としては、一部に環構造を有していてもよい炭化水素鎖、エーテル鎖、スルフィド鎖などが挙げられる。また、主鎖に直接または間接的に結合している原子としては、3つ以上の結合手を備えた原子であればよく、例えば、炭素、窒素、リン、ケイ素などが挙げられる。また、前記原子が主鎖に間接的に結合されている場合としては、例えば、ベンゼンなどの芳香環を含む連結鎖を介して結合されている場合や、分岐していてもよい炭化水素系、エーテル系、スルフィド系などの連結鎖を介して結合されている場合などが挙げられるが、このうち炭素数が1〜10の炭化水素系連結鎖を介して結合されていることが好ましい。
【0010】
本発明の固体電解質材料は、主鎖が、窒素含有ヘテロ環を主骨格とするポリマーであり、側鎖が、窒素含有ヘテロ環の窒素原子に結合していてもよい。窒素含有ヘテロ環を主骨格とするポリマーとしては、前出の窒素含有五員環や窒素含有六員環を有する高分子化合物や、これら五員環または六員環と縮環したヘテロ環を有する高分子化合物などが挙げられる。この固体電解質材料は、例えば、側鎖をなす化合物のうち主鎖との結合部位に脱離基を導入しておき、主鎖をなすポリマーの窒素含有ヘテロ環の窒素原子を側鎖の結合部位に反応させ脱離基を脱離させることにより合成できる。
【0011】
本発明の固体電解質材料は、複数のイオン交換基を備えた側鎖を持つ不飽和炭化水素を用いて重合反応を行うことにより合成してもよい。この場合、主鎖は、不飽和炭化水素骨格を繰り返し単位内に有する重合体となり、側鎖は、その繰り返し単位から延びだした構造となる。
【0012】
本発明の固体電解質材料は、燃料電池の電解質膜として利用することができる。本発明の固体電解質材料を燃料電池の電解質膜として利用した場合、主鎖の強度を低下させることなくイオン交換容量を高めることができることから、電解質膜の変形が少なく燃料電池の設計や組み立てが容易となり、しかもプロトン伝導度が高くなるため燃料電池の性能が向上する。
【0013】
【実施例】
[実施例1]
3−クロロプロピルアミン塩酸塩を水酸化ナトリウム水溶液に溶解し、上層を分離することにより脱塩酸した。その後、硫酸マグネシウムを添加することにより乾燥し、濾過後、エバポレータで不純物を除去することにより3−クロロプロピルアミンを得た。この3−クロロプロピルアミン1.5g(1.6×10-2mol)をジメチルアセトアミド(以下、DMAcと略す)10gに溶解し、80℃に加熱した状態で水素化リチウム0.3g(3.8×10-2mol)を添加し、2時間後にブタンスルトン6.3g(4.6×10-2mol)を滴下し、24時間攪拌して反応させて側鎖前駆体(図1参照)を得た。
【0014】
一方、ポリ−2,2’−(m−フェニレン)−5,5’−ビベンズイミダゾール(クラリアント・ジャパン(株)の商品名セラゾール、以下、PBIと略す)2.0g(6.5×10-3mol)をDMAc38gに溶解し、これに水素化リチウム0.5g(6.5×10-2mol)を入れ、85℃で3時間攪拌して主鎖前駆体(図2参照)の溶液を得た。この溶液に1.3×10-2molの側鎖前駆体を添加し、24時間攪拌してリチウム塩(図3参照)を得た。反応溶液をアセトン中に投じてリチウム塩を再沈澱し、濾過、減圧乾燥した後、水を用いて透析して精製した。得られた精製物をDMSOに溶解し、イオン交換樹脂を用いてスルホン酸基のプロトン化を行うことにより、最終生成物(図3参照)を得た。この最終生成物の3重量%DMSO溶液を調製し、この溶液をポリテトラフルオロエチレンのシート上に流延し、60℃で7日間乾燥して製膜し、電解質膜を得た。なお、図3では、繰り返し単位中の2つのベンゾイミダゾールの窒素原子に側鎖が結合した場合を例示したが、実際にはベンゾイミダゾールの窒素原子のすべてに側鎖が結合する必要はない。
【0015】
[比較例1]
PBI2.0g(6.5×10-3mol)をDMAc38gに溶解し、これに水素化リチウム0.5g(6.5×10-2mol)を入れ、85℃で3時間攪拌して実施例1と同様の主鎖前駆体(図2参照)の溶液を得た。この溶液にブタンスルトン6.2g(4.6×10-2mol)を滴下し、24時間攪拌してリチウム塩(図4参照)を得た。反応溶液をアセトン中に投じてリチウム塩を再沈澱し、濾過、減圧乾燥した後、水を用いて透析して精製した。得られた精製物をDMSOに溶解し、イオン交換樹脂を用いてスルホン酸基のプロトン化を行うことにより、最終生成物(図4参照)を得た。この最終生成物の3重量%DMSO溶液を調製し、この溶液をポリテトラフルオロエチレンのシート上に流延し、60℃で7日間乾燥して製膜し、電解質膜を得た。なお、図4では、繰り返し単位中の2つのベンゾイミダゾールの窒素原子に側鎖が結合した場合を例示したが、実際にはベンゾイミダゾールの窒素原子のすべてに側鎖が結合する必要はない。
【0016】
[プロトン伝導度の吸水量依存性試験]
実施例1および比較例1の各最終生成物につき、元素分析によりイオン交換容量つまりスルホン酸基の導入量を調べた。そして、ほぼ同等のイオン交換容量(ここでは0.9mmol/g)を持つ実施例1および比較例1の電解質膜の吸水量に対するプロトン伝導度を調べた。プロトン伝導度は、交流二端子法(10kHz)により求めた。すなわち、電解質膜(厚さ20〜50μm)を幅1cmの短冊に切り取って水に浸漬し、1対の白金電極をその電極面が短冊の面と垂直になるように短冊を挟み込み、その状態で両電極間に10kHzの交流を流したときの抵抗値を測定し、その抵抗値からプロトン伝導度を算出した。結果を図5に示す。
【0017】
図5から、実施例1の電解質膜は、比較例1の電解質膜と比較すると、同じ吸水量でもより高いプロトン伝導性を有すること、同じプロトン伝導度でも少ない吸水量であり吸水による膜強度の低下が抑制されることがわかる。このメカニズムは明らかではないが、次のように考察される。すなわち、実施例1の電解質膜は比較例1の電解質膜とイオン交換容量がほぼ同じではあるものの、実施例1の側鎖は2つのスルホン酸基を有するのに対して比較例1の側鎖は1つのスルホン酸基を有することから、側鎖導入部位の数は実施例1は比較例1のほぼ半分となり、その結果、プロトン伝導度が同等であっても膜全体の結晶性が向上して吸水量が抑制されるため膜強度が高くなり、また、同時に吸水された水がスルホン酸基周りに集中するために、より少ない水で同等以上のプロトン伝導性を示したと考えられる。
【0018】
以上、本発明の実施例について説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】実施例1の側鎖前駆体を得るための合成方法を示す説明図である。
【図2】実施例1の主鎖前駆体を得るための合成方法を示す説明図である。
【図3】実施例1の最終生成物を得るための合成方法を示す説明図である。
【図4】比較例1の最終生成物を得るための合成方法を示す説明図である。
【図5】実施例1と比較例1について吸水量とプロトン伝導度との関係を表したグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid electrolyte material.
[0002]
[Prior art]
A solid polymer electrolyte type fuel cell is a membrane electrode assembly in which a solid electrolyte membrane having a platinum catalyst layer on both sides is sandwiched between an anode and a cathode, which are gas diffusion electrodes, and the membrane electrode assembly is a gas-impermeable conductive material. In the state where the anode and the cathode are electrically connected, the fuel gas is supplied between the anode and the separator and the hydrogen gas is supplied between the cathode and the separator. Generate electromotive force. At this time, since peroxides and peroxide radicals are generated in the platinum catalyst layer, the solid electrolyte membrane is required to have resistance to these, that is, oxidation resistance. Therefore, as the solid electrolyte membrane, a perfluorocarbon sulfonic acid polymer represented by Nafion manufactured by DuPont is often used. However, since such a fluororesin is expensive, it is an inexpensive and highly stable material. Development is underway. For example, JP-T-10-503788 discloses a sulfonated styrene- (ethylene-butylene) triblock copolymer. Among the triblock copolymers, the poly (ethylene-butylene) component is a support portion that bears strength, and the sulfonated styrene component is an ion conduction portion.
[0003]
[Problems to be solved by the invention]
By the way, in order to improve the performance of the fuel cell, it is desirable to reduce the resistance of the solid electrolyte membrane. As a means for achieving such low resistance, it is conceivable to increase the ion exchange capacity of the solid electrolyte membrane. However, if the ion exchange capacity is increased, there is a problem that the membrane strength is decreased. . For example, in the block copolymer in which the support portion and the ion conduction portion are separated as disclosed in the above publication, when the ion exchange capacity is increased by increasing the ion conduction portion, the introduction site of the ion conduction portion in the support portion Therefore, the crystallinity of the original support portion is lowered and the strength is lowered. As a result, it is impossible to achieve both ion exchange capacity and membrane strength.
[0004]
The present invention has been made in view of the above problems, and an object thereof is to provide a solid electrolyte material capable of increasing both ion exchange capacity and membrane strength.
[0005]
Means for Solving the Problems, Embodiments of the Invention, and Effects thereof
The solid electrolyte material of the present invention employs the following means in order to achieve the above-described object. That is, the present invention is a solid electrolyte material in which a plurality of ion exchange groups are introduced into one side chain in the main chain, wherein the main chain is a polymer having a nitrogen-containing heterocycle as a main skeleton. And the side chain is bonded to a nitrogen atom of a nitrogen-containing heterocycle . In the solid electrolyte material of the present invention, a plurality of ion exchange groups are introduced into one side chain introduction site in the main chain. Accordingly, the ion exchange capacity can be increased without increasing the side chain introduction site, and the ion exchange capacity can be increased without reducing the strength of the main chain. That is, both the ion exchange capacity and the membrane strength can be increased.
[0006]
The main chain in the solid electrolyte material of the present invention may be a polymer compound having a hydrocarbon portion. Examples of such a polymer compound include polyethylene resin, polypropylene resin, polyester resin, polyacrylic resin, and polyether. Sulfone resin, polyether ether ketone resin, linear phenol-formaldehyde resin, crosslinked phenol-formaldehyde resin, linear polystyrene resin, crosslinked polystyrene resin, linear poly (trifluorostyrene) resin, crosslinked type (tri Fluorostyrene) resin, poly (2,3-diphenyl-1,4-phenylene oxide) resin, poly (allyl ether ketone) resin, poly (arylene ether sulfone) resin, poly (arylene ether sulfone) resin, poly ( Phenylquinosan phosphorus) resin, poly Benzyl silane) resins, and polystyrene resins. Examples of polystyrene resins include resins obtained by copolymerizing styrene monomers and one or more monomers such as acrylonitrile, acrylic acid ester, and butadiene, polystyrene-graft-ethylenetetrafluoroethylene resins, polystyrene-graft-polyvinylidene fluoride. Examples thereof include resins and polystyrene-graft-tetrafluoroethylene resins.
[0007]
Alternatively, the main chain in the solid electrolyte material of the present invention may be a polymer compound having a nitrogen-containing heterocycle. Examples of such a polymer compound include pyrrole and pyrazole which are nitrogen-containing five-membered rings. , Imidazole, triazole, thiazole, isothiazole, oxazole, isoxazole and the like, a polymer compound having nitrogen-containing six-membered pyridine, pyrimidine, pyrazine, pyridazine, triazine, thiazoline, oxazoline, Examples thereof include high molecular compounds having indole, benzpyrazole, benzimidazole, benz (iso) thiazole, benz (iso) oxazole, quinoline, quinoxaline and the like which are heterocyclic rings condensed with these five-membered or six-membered rings. Among these, examples of the polymer compound having an imidazole ring include polybenzimidazole and polybenzbisimidazole. In general, polybenzimidazoles can be prepared from aromatic dibasic acids and aromatic tetramines such as poly-2,2 ′-(m-phenylene) -5,5′-bibenzimidazole, poly-2. , 2 ′-(pyridylene-3 ″, 5 ″)-5,5′-bibenzimidazole, poly-2,2 ′-(freelen-2 ″, 5 ″)-5,5′-bibenzimidazole, poly -2,2 '-(naphthylene-1 ", 6")-5,5'-bibenzimidazole, poly-2,2'-(biphenylene-4 ", 4")-5,5'-bibenzimidazole , Poly-2,2'-amylene-5,5'-bibenzimidazole, poly-2,2'-octamethylene-5,5'-bibenzimidazole, poly-2,6 '-(m-phenylene) -Diimidazolebenzene, poly-2 ', 2'-(m-phenyle ) -5,5'-di (benzimidazole) ether, poly-2 ', 2'-(m-phenylene) -5,5'-di (benzimidazole) sulfide, poly-2 ', 2'-(m -Phenylene) -5,5'-di (benzimidazole) sulfone, poly-2 ', 2'-(m-phenylene) -5,5'-di (benzimidazole) methane, poly-2 ', 2 "- (M-phenylene) -5,5 "-di (benzimidazole) -propane-2,2 and poly-2,2 '-(m-phenylene) -5,5" -di (benzimidazole) -ethylene Among them, poly-2,2 ′-(m-phenylene) -5,5′-bibenzimidazole is preferable, and examples of polybenzbisimidazole include poly-2. , 6 '-(m-phenylene) benzbisimidazo , Poly-2,6 ′-(pyridylene-2 ″, 6 ″) benzbisimidazole, poly-2,6 ′-(pyridylene-3 ″, 5 ″) benzbisimidazole, poly-2,6′- (Naphthylene-1 ″, 6 ″) benzbisimidazole, poly-2,6 ′-(naphthylene-2 ″, 7 ″) benzbisimidazole and the like. Among these, poly-2,6 ′-( m-Phenylene) benzbisimidazole is preferred.
[0008]
The ion exchange group in the solid electrolyte material of the present invention is not particularly limited as long as it is an ion exchangeable group. For example, from the group consisting of a sulfonic acid group, a phosphonic acid group, a phosphoric acid group, a boronic acid group, and a carboxylic acid group. At least one selected may be used, and among them, a sulfonic acid group, a phosphonic acid group, and a phosphoric acid group are preferable, and a sulfonic acid group is particularly preferable. The amount of ion exchange groups introduced is preferably 0.1 to 10.0 mmol, more preferably 0.5 to 3.0 mmol, per 1 g of the solid electrolyte material. The higher the amount of ion exchange groups introduced, the higher the proton conductivity generally, but if the amount of ion exchange groups introduced is too high, the overall crystallinity will decrease, leading to excessive water absorption and reduced strength. A numerical range is preferred.
[0009]
The side chain in the solid electrolyte material of the present invention is not particularly limited as long as it has a structure having a plurality of ion exchange groups. For example, the side chain has a structure containing an aromatic ring such as benzene substituted with a plurality of ion exchange groups. Alternatively, it may be a structure having a plurality of branches on the way and having an ion exchange group at the end or on the way of each branch. Among these, the latter structure is preferable, and a structure in which an atom directly or indirectly bonded to the main chain is branched into a plurality of branch points and an ion exchange group is present at the end of each branch is particularly preferable. Here, examples of each branch include a hydrocarbon chain, an ether chain, and a sulfide chain, which may have a ring structure in part. Further, the atoms directly or indirectly bonded to the main chain may be atoms having three or more bonds, and examples thereof include carbon, nitrogen, phosphorus, silicon and the like. Moreover, as the case where the atom is indirectly bonded to the main chain, for example, when bonded through a linking chain containing an aromatic ring such as benzene, a hydrocarbon system that may be branched, The case where it couple | bonds through the connection chain | strands, such as an ether type and a sulfide type, etc. is mentioned, However, It is preferable that it is couple | bonded through the C1-C10 hydrocarbon connection chain | linkage among these.
[0010]
In the solid electrolyte material of the present invention, the main chain is a polymer having a nitrogen-containing heterocycle as a main skeleton, and the side chain may be bonded to a nitrogen atom of the nitrogen-containing heterocycle. As a polymer having a nitrogen-containing heterocycle as a main skeleton, the polymer compound having the above-mentioned nitrogen-containing five-membered ring or nitrogen-containing six-membered ring, or a heterocycle condensed with these five-membered ring or six-membered ring is included. Examples thereof include polymer compounds. In this solid electrolyte material, for example, a leaving group is introduced into a binding site with a main chain among compounds forming a side chain, and the nitrogen atom of the nitrogen-containing heterocycle of the polymer forming the main chain is bonded to the side chain binding site. It can synthesize | combine by making it react and remove | eliminate a leaving group.
[0011]
The solid electrolyte material of the present invention may be synthesized by conducting a polymerization reaction using an unsaturated hydrocarbon having a side chain having a plurality of ion exchange groups. In this case, the main chain is a polymer having an unsaturated hydrocarbon skeleton in the repeating unit, and the side chain has a structure extending from the repeating unit.
[0012]
The solid electrolyte material of the present invention can be used as an electrolyte membrane of a fuel cell. When the solid electrolyte material of the present invention is used as an electrolyte membrane of a fuel cell, the ion exchange capacity can be increased without reducing the strength of the main chain, so that the electrolyte membrane is less deformed and the fuel cell can be easily designed and assembled. In addition, since the proton conductivity is increased, the performance of the fuel cell is improved.
[0013]
【Example】
[Example 1]
3-Chloropropylamine hydrochloride was dissolved in an aqueous sodium hydroxide solution, and the upper layer was separated to remove hydrochloric acid. Then, it dried by adding magnesium sulfate, and filtered, and then 3-chloropropylamine was obtained by removing impurities with an evaporator. 1.5 g (1.6 × 10 −2 mol) of 3-chloropropylamine was dissolved in 10 g of dimethylacetamide (hereinafter abbreviated as DMAc), and 0.3 g (3. 8 × 10 −2 mol) was added, and 6.3 g (4.6 × 10 −2 mol) of butane sultone was added dropwise after 2 hours, and the mixture was stirred for 24 hours to react to give a side chain precursor (see FIG. 1). Obtained.
[0014]
On the other hand, poly-2,2 ′-(m-phenylene) -5,5′-bibenzimidazole (trade name Cerazole of Clariant Japan Co., Ltd., hereinafter abbreviated as PBI) 2.0 g (6.5 × 10 -3 mol) is dissolved in 38 g of DMAc, 0.5 g (6.5 × 10 -2 mol) of lithium hydride is added thereto, and the mixture is stirred at 85 ° C. for 3 hours to obtain a solution of the main chain precursor (see FIG. 2). Got. To this solution, 1.3 × 10 −2 mol of a side chain precursor was added and stirred for 24 hours to obtain a lithium salt (see FIG. 3). The reaction solution was poured into acetone to reprecipitate the lithium salt, filtered, dried under reduced pressure, and then purified by dialysis using water. The obtained purified product was dissolved in DMSO, and a sulfonic acid group was protonated using an ion exchange resin to obtain a final product (see FIG. 3). A 3 wt% DMSO solution of this final product was prepared, and this solution was cast on a polytetrafluoroethylene sheet, dried at 60 ° C. for 7 days to form a membrane, and an electrolyte membrane was obtained. In addition, although the case where the side chain couple | bonded with the nitrogen atom of two benzimidazoles in a repeating unit was illustrated in FIG. 3, in fact, it is not necessary for a side chain to couple | bond with all the nitrogen atoms of benzimidazole.
[0015]
[Comparative Example 1]
PBI 2.0 g (6.5 × 10 −3 mol) was dissolved in DMAc 38 g, and lithium hydride 0.5 g (6.5 × 10 −2 mol) was added thereto, followed by stirring at 85 ° C. for 3 hours. A solution of the same main chain precursor (see FIG. 2) as 1 was obtained. To this solution, 6.2 g (4.6 × 10 −2 mol) of butane sultone was added dropwise and stirred for 24 hours to obtain a lithium salt (see FIG. 4). The reaction solution was poured into acetone to reprecipitate the lithium salt, filtered, dried under reduced pressure, and then purified by dialysis using water. The obtained purified product was dissolved in DMSO, and a sulfonic acid group was protonated using an ion exchange resin to obtain a final product (see FIG. 4). A 3 wt% DMSO solution of this final product was prepared, and this solution was cast on a polytetrafluoroethylene sheet, dried at 60 ° C. for 7 days to form a membrane, and an electrolyte membrane was obtained. In addition, although the case where the side chain couple | bonded with the nitrogen atom of two benzimidazoles in a repeating unit was illustrated in FIG. 4, in fact, it is not necessary for a side chain to couple | bond with all the nitrogen atoms of benzimidazole.
[0016]
[Test of proton conductivity on water absorption]
For each final product of Example 1 and Comparative Example 1, the ion exchange capacity, that is, the amount of sulfonic acid groups introduced was examined by elemental analysis. The proton conductivity with respect to the water absorption of the electrolyte membranes of Example 1 and Comparative Example 1 having substantially the same ion exchange capacity (here 0.9 mmol / g) was examined. Proton conductivity was determined by the AC two-terminal method (10 kHz). That is, an electrolyte membrane (thickness 20 to 50 μm) is cut into a strip having a width of 1 cm and immersed in water, and a pair of platinum electrodes are sandwiched so that the electrode surface is perpendicular to the strip surface. The resistance value was measured when an alternating current of 10 kHz was passed between both electrodes, and the proton conductivity was calculated from the resistance value. The results are shown in FIG.
[0017]
From FIG. 5, the electrolyte membrane of Example 1 has higher proton conductivity even at the same water absorption amount than the electrolyte membrane of Comparative Example 1, and has a smaller water absorption amount even at the same proton conductivity, and the membrane strength due to water absorption. It turns out that a fall is suppressed. Although this mechanism is not clear, it is considered as follows. That is, although the electrolyte membrane of Example 1 has substantially the same ion exchange capacity as the electrolyte membrane of Comparative Example 1, the side chain of Example 1 has two sulfonic acid groups, whereas the side chain of Comparative Example 1 Has one sulfonic acid group, the number of side chain introduction sites in Example 1 is almost half that in Comparative Example 1. As a result, the crystallinity of the entire membrane is improved even if the proton conductivity is the same. Therefore, it is considered that the proton conductivity is equal to or higher than that with less water because the absorbed water is suppressed and the membrane strength is increased, and at the same time, the absorbed water is concentrated around the sulfonic acid group.
[0018]
As mentioned above, although the Example of this invention was described, this invention is not limited to such an Example at all, Of course, in the range which does not deviate from the summary of this invention, it can implement with a various form. .
[Brief description of the drawings]
1 is an explanatory diagram showing a synthesis method for obtaining a side chain precursor of Example 1. FIG.
2 is an explanatory diagram showing a synthesis method for obtaining the main chain precursor of Example 1. FIG.
3 is an explanatory diagram showing a synthesis method for obtaining the final product of Example 1. FIG.
4 is an explanatory diagram showing a synthesis method for obtaining the final product of Comparative Example 1. FIG.
5 is a graph showing the relationship between water absorption and proton conductivity for Example 1 and Comparative Example 1. FIG.

Claims (8)

主鎖における1つの側鎖に対して、複数のイオン交換基が導入されてなる固体電解質材料であって、
前記主鎖は、窒素含有ヘテロ環を主骨格とするポリマーであり、前記側鎖は、前記窒素含有ヘテロ環の窒素原子に結合している、
固体電解質材料。
A solid electrolyte material in which a plurality of ion exchange groups are introduced to one side chain in the main chain,
The main chain is a polymer having a nitrogen-containing heterocycle as a main skeleton, and the side chain is bonded to a nitrogen atom of the nitrogen-containing heterocycle.
Solid electrolyte material.
前記イオン交換基は、スルホン酸基、ホスホン酸基、リン酸基、ボロン酸基およびカルボン酸基からなる群より選ばれた少なくとも一つである
請求項1記載の固体電解質材料。
The solid electrolyte material according to claim 1, wherein the ion exchange group is at least one selected from the group consisting of a sulfonic acid group, a phosphonic acid group, a phosphoric acid group, a boronic acid group, and a carboxylic acid group.
前記側鎖は、途中で複数に分岐しており、各分岐の末端又は途中にイオン交換基を有している
請求項1または2記載の固体電解質材料。
The solid electrolyte material according to claim 1, wherein the side chain is branched into a plurality of parts on the way, and has an ion exchange group at a terminal or a part of each branch.
前記側鎖は、前記主鎖に直接または間接的に結合している原子を分岐点として複数に分岐しており、各分岐の末端にイオン交換基を有している
請求項1〜3のいずれかに記載の固体電解質材料。
4. The side chain is branched into a plurality of branching points that are directly or indirectly bonded to the main chain, and has an ion exchange group at the end of each branch. A solid electrolyte material according to any of the above.
前記側鎖は、前記主鎖に直接または間接的に結合している窒素原子、炭素原子またはリン原子を分岐点として複数に分岐しており、各分岐の末端にイオン交換基を有している
請求項1〜4のいずれかに記載の固体電解質材料。
The side chain is branched into a plurality of branching points such as a nitrogen atom, a carbon atom or a phosphorus atom directly or indirectly bonded to the main chain, and has an ion exchange group at the end of each branch The solid electrolyte material according to claim 1.
前記側鎖は、前記主鎖に炭素数1〜10の炭化水素を介して結合している原子を分岐点として複数に分岐しており、各分岐の末端にイオン交換基を有している
請求項1〜5のいずれかに記載の固体電解質材料。
The side chain is branched into a plurality of branching points that are atoms bonded to the main chain via a hydrocarbon having 1 to 10 carbon atoms, and has an ion exchange group at the end of each branch. Item 6. The solid electrolyte material according to any one of Items 1 to 5.
1つの側鎖に対して複数のイオン交換基が導入された不飽和炭化水素を用いて重合反応を行うことにより得られた
請求項1〜6のいずれかに記載の固体電解質材料。
It was obtained by conducting a polymerization reaction using an unsaturated hydrocarbon having a plurality of ion exchange groups introduced to one side chain.
The solid electrolyte material according to claim 1 .
燃料電池の電解質膜に利用される請求項1〜7のいずれかに記載の固体電解質材料。The solid electrolyte material according to claim 1 , which is used for an electrolyte membrane of a fuel cell .
JP2001327447A 2001-10-25 2001-10-25 Solid electrolyte material Expired - Fee Related JP3741024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001327447A JP3741024B2 (en) 2001-10-25 2001-10-25 Solid electrolyte material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327447A JP3741024B2 (en) 2001-10-25 2001-10-25 Solid electrolyte material

Publications (2)

Publication Number Publication Date
JP2003132908A JP2003132908A (en) 2003-05-09
JP3741024B2 true JP3741024B2 (en) 2006-02-01

Family

ID=19143673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327447A Expired - Fee Related JP3741024B2 (en) 2001-10-25 2001-10-25 Solid electrolyte material

Country Status (1)

Country Link
JP (1) JP3741024B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3896105B2 (en) 2003-08-28 2007-03-22 株式会社東芝 ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL
JP4109623B2 (en) 2003-12-25 2008-07-02 本田技研工業株式会社 Proton conductor and method for producing the same
JP4993910B2 (en) * 2004-02-06 2012-08-08 旭化成株式会社 Fuel cell electrolyte and method for producing the same
JP4388072B2 (en) 2004-09-09 2009-12-24 旭化成イーマテリアルズ株式会社 Solid polymer electrolyte membrane and method for producing the same
JP4749080B2 (en) * 2005-08-05 2011-08-17 旭化成株式会社 Electrolyte solution for fuel cell
EP2071655A4 (en) 2006-09-29 2013-03-06 Fujifilm Corp Membrane electrode assembly and method for producing the same
JP5094295B2 (en) 2007-09-10 2012-12-12 富士フイルム株式会社 Membrane electrode assembly and fuel cell
JP2009070631A (en) 2007-09-11 2009-04-02 Fujifilm Corp Electrolyte membrane, membrane electrode assembly, and fuel cell using membrane electrode assembly
JP2009269960A (en) * 2008-05-01 2009-11-19 Tokyo Institute Of Technology Polymer having salt structure and method for producing the same
JP5757001B2 (en) * 2011-11-09 2015-07-29 国立大学法人 東京大学 Heat resistant polymer electrolyte membrane and method for producing the same

Also Published As

Publication number Publication date
JP2003132908A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
JP4651820B2 (en) Crosslinked polymer membrane and method for producing fuel cell
Li et al. Enhanced proton conductivity of sulfonated poly (arylene ether ketone sulfone) for fuel cells by grafting triazole groups onto polymer chains
JP5706101B2 (en) POLYAZOLE LINKAGE, PROCESS FOR PRODUCING THE SAME, ELECTRODE FOR ELECTROLYTE FOR FUEL CELL INCLUDING THE SAME, METHOD FOR PRODUCING THE SAME, AND FUEL CELL INCLUDING THE SAME
JP4754214B2 (en) POLYPHENYLENE TYPE POLYMER, METHOD FOR PREPARING THE SAME, MEMBRANE, AND FUEL CELL DEVICE INCLUDING THE MEMBRANE
Firouz Tadavani et al. Synergistic behavior of phosphonated and sulfonated groups on proton conductivity and their performance for high-temperature proton exchange membrane fuel cells (PEMFCs)
CA2485564A1 (en) Polymer electrolyte membrane, method for the production thereof, and application thereof in fuel cells
JP2003535940A (en) Polymer composition
WO2007032541A1 (en) Polymer electrolyte, polymer electrolyte membrane using same, membrane-electrode assembly and fuel cell
JP2005525682A (en) Graft polymer electrolyte membrane, its production method and its application to fuel cells
EP2738194A1 (en) Aromatic copolymer having proton conductive group and application thereof
JP5698289B2 (en) Method for conditioning a membrane electrode assembly for a fuel cell
Cai et al. Proton exchange membranes containing densely alkyl sulfide sulfonated side chains for vanadium redox flow battery
JP3741024B2 (en) Solid electrolyte material
US8349994B2 (en) Electrode electrolyte for polymer-type fuel cell, and use thereof
Hu et al. Cross‐linked polymer electrolyte membrane based on a highly branched sulfonated polyimide with improved electrochemical properties for fuel cell applications
Wang et al. VRFBs based on benzotriazole grafted polybenzimidazole/polymeric ionic liquid with high ion selectivity
JP2009021234A (en) Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell
Fu et al. Sulfonated poly (arylene ether) s with high content of phosphine oxide moieties for proton exchange membranes
JP2009021233A (en) Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell
JP4554568B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP2003346815A (en) Membrane electrode joint body and method for manufacturing the same
JP2003178772A (en) Solid electrolyte material
CN101300708A (en) Improved membrane-electrode assemblies and long-life fuel cells
JP4323739B2 (en) Method for producing solid electrolyte material
JP5350974B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees