JP3740937B2 - Capacitor overvoltage suppression circuit - Google Patents

Capacitor overvoltage suppression circuit Download PDF

Info

Publication number
JP3740937B2
JP3740937B2 JP2000082396A JP2000082396A JP3740937B2 JP 3740937 B2 JP3740937 B2 JP 3740937B2 JP 2000082396 A JP2000082396 A JP 2000082396A JP 2000082396 A JP2000082396 A JP 2000082396A JP 3740937 B2 JP3740937 B2 JP 3740937B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
switch
capacitor
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000082396A
Other languages
Japanese (ja)
Other versions
JP2001268933A (en
Inventor
栄喜 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2000082396A priority Critical patent/JP3740937B2/en
Publication of JP2001268933A publication Critical patent/JP2001268933A/en
Application granted granted Critical
Publication of JP3740937B2 publication Critical patent/JP3740937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、抵抗と開閉器の直列接続でなる放電回路によりコンデンサの過電圧を抑制する際に、前記開閉器の異常を検出できるコンデンサの過電圧抑制回路に関する。
【0002】
【従来の技術】
図3は整流器とインバータと、これら両者を結合している直流中間回路に接続した平滑コンデンサとでなる電力変換装置の従来例を示した接続図である。この図3において、交流電源1からの単相交流電力はダイオードのブリッジ接続でなる整流器2により直流電力に変換されて直流中間回路へ出力するが、この直流中間回路に接続されている平滑コンデンサ3はこの直流電力の脈動分を除去する。平滑された直流電力は、トランジスタとダイオードでなるVVVFインバータ4により所望の電圧と周波数の交流電力に変換する。誘導電動機5はVVVFインバータ4が出力する可変電圧・可変周波数の交流電力により、負荷6を所望の回転速度で駆動する。
【0003】
負荷6が例えば荷役機械の場合は、貨物を上昇させるときはVVVFインバータ4の出力電力により誘導電動機5を回転させるのであるが、貨物を下降させる場合は貨物の質量が誘導電動機5を回転させるので、誘導電動機5は誘導発電機となって交流電力を発生し、これをVVVFインバータ4が直流電力に変換して直流中間回路へ送り込んで、直流中間回路に接続している平滑コンデンサ3を充電する。充電により平滑コンデンサ3の電圧が過大になれば、該平滑コンデンサ3ばかりではなく、直流中間回路に接続している各機器,特に半導体素子を破壊する恐れがある。
【0004】
そこで放電抵抗11と回路開閉器としての放電トランジスタ12との直列回路を平滑コンデンサ3に並列に接続すると共に、平滑コンデンサ3にはその端子電圧を検出するためのコンデンサ電圧検出器14を接続し、コンデンサ電圧が過大になったことを検出すれば、コンデンサ電圧検出器14が開閉器駆動器としてのベース駆動回路13へ動作信号を送って、放電トランジスタ12をオンにする。これにより平滑コンデンサ3に蓄積された電荷は放電抵抗11で消費されて平滑コンデンサ3の電圧を低下させる。コンデンサ電圧が別途に定めた下限値まで低下すれば、コンデンサ電圧検出器14はベース駆動回路13を介して放電トランジスタ12へオフ信号を与えて放電を停止させる。
【0005】
【発明が解決しようとする課題】
ところで、放電抵抗11と放電トランジスタ12の直列接続でなる放電回路が正常に動作しないような故障,例えばコンデンサ電圧検出器14が過電圧を検出してベース駆動回路13へオン指令を発令しても、ベース駆動回路13が不動作であるような異常を生じると、前述した荷役機械が貨物を下降させる運転の際に発生する電力が平滑コンデンサ3を過剰に充電することになっても放電回路が動作しないから、平滑コンデンサ3の電圧が異常に上昇して当該平滑コンデンサ3や直流中間回路に接続している機器を破損させる。そこで、放電回路の動作が正常であるか否かを検出できるようにすることが必要になってくる。
【0006】
図4はコンデンサに並列に接続した放電回路が正常に動作するか否かを検出する第1従来例を示した回路図であるが、回路図が複雑になるのを避けるために、直流中間回路部分のみを図示している。また、平滑コンデンサ3,放電抵抗11,回路開閉器としての放電トランジスタ12,開閉器駆動器としてのベース駆動回路13およびコンデンサ電圧検出器14の名称・用途・機能は、図3で既述の電力変換装置の従来例回路と同じであるから、これらの説明は省略する。この図4ては、分圧抵抗15と直流電圧検出器16との直列回路を放電トランジスタ12に並列に接続し、放電トランジスタ12のコレクタ・エミッタ間電圧の有無を直流電圧検出器16で検出し、この検出結果をベース駆動回路13へ与えることにより、放電回路の異常をベース駆動回路13で判別する構成である。
【0007】
図5はコンデンサに並列に接続した放電回路が正常に動作するか否かを検出する第2従来例を示した回路図であるが、回路図が複雑になるのを避けるために、直流中間回路部分のみを図示している。また、平滑コンデンサ3,放電抵抗11,回路開閉器としての放電トランジスタ12,開閉器駆動器としてのベース駆動回路13およびコンデンサ電圧検出器14の名称・用途・機能は、図3で既述の電力変換装置の従来例回路と同じであるから、これらの説明は省略する。この図5では、放電回路に直流変流器17を挿入し、放電トランジスタ12に流れるコレクタ電流の有無を直流変流器17で検出し、この検出結果をベース駆動回路13へ与えることにより、放電回路の異常をベース駆動回路13で判別する構成である。
【0008】
しかしながら、これら図4の第1従来例回路や図5の第2従来例回路は、直流電圧検出器16あるいは直流変流器17が別途に必要である。これらの機器は高価であるし、装置の部品点数が増えるなどの欠点を有する。
そこでこの発明の目的は、コンデンサの放電回路に異常を生じたことを高価な直流電圧検出器や直流変流器を使用せずに、簡単に検出できるようにすることにある。
【0009】
【課題を解決するための手段】
前記の目的を達成するために、この発明のコンデンサの過電圧抑制回路は、
放電抵抗と回路開閉器との直列回路をコンデンサに並列に接続し、このコンデンサ電圧が第1設定電圧を上回れば前記回路開閉器駆動用の開閉器駆動器へ閉路信号を与え、前記コンデンサ電圧が前記第1設定電圧よりも低い第2設定電圧を下回れば前記開閉器駆動器へ開路信号を与える従来の回路に、
前記回路開閉器の両端電圧の有無を検出する開閉器電圧検出器と、この開閉器両端電圧の有無と前記開閉器駆動器への開閉信号とを入力して、前記回路開閉器の動作が正常か否かを判定する論理回路と、を備えるものとする。
【0010】
前記開閉器電圧検出器は、前記開閉器の両端に抵抗を接続した構成とする。
前記論理回路は、前記開閉器駆動器へ閉路信号が与えられているときに開閉器両端電圧が有りならば異常で開閉器両端電圧が無しならば正常と判定し、前記開閉器駆動器へ開路信号が与えられているときに開閉器両端電圧が有りならば正常で開閉器両端電圧が無しならば異常と判定する。
【0011】
【発明の実施の形態】
図1は本発明の第1実施例を表した回路図である。この図1において、放電抵抗11と回路開閉器としての放電トランジスタ12とを直列に接続して形成された放電回路と,平滑コンデンサ3およびコンデンサ電圧検出器14が直流中間回路の正極側と負極側との間に接続されるのは、図4の第1従来例回路と図5の第2従来例の場合と同じである。
【0012】
本発明では分圧抵抗22と分圧抵抗23との直列回路が放電トランジスタ12のコレクタとエミッタとの間に接続されており、分圧抵抗23の両端を論理回路21に接続する。すなわち放電トランジスタ12がオンのときは分圧抵抗23の両端に現れる零電圧が論理回路21へ入力し、放電トランジスタ12がオフのときは放電抵抗11と分圧抵抗22と分圧抵抗23とにより分圧された直流中間回路電圧が論理回路21へ入力する。一方、前述した第1設定電圧を上回ったことをコンデンサ電圧検出器14が検出したときに発令されるオン指令,あるいは第2設定電圧を下回ったことを検出したときに発令されるオフ指令も論理回路21へ入力する。
【0013】
論理回路21を含んでいるベース駆動回路20は、前述のオン指令またはオフ指令に対応して放電トランジスタ12をターンオンあるいはターンオフさせるのであるが、放電トランジスタ12がこの指令通りに動作しているか否かを論理回路21がチェックしており、指令通りの動作がなされていない場合は異常を警報する。
【0014】
図2は本発明の第2実施例を表したフローチャートである。このフローチャートにおいて、コンデンサ電圧検出器14で検出する平滑コンデンサ3の電圧から放電トランジスタ12へオン指令またはオフ指令のいずれを出力するかを決め(処理31)、その指令がオンであるかオフであるかを判断する(判断41)。一方、分圧抵抗23から放電トランジスタ12の両端電圧を検出し(処理32)、その電圧の有無を判断する(判断42)。判断41の2つの結果と判断42の2つの結果から4つの組み合わせが得られる。
【0015】
すなわちオン指令が発令されて放電トランジスタ12の両端電圧が零(オン状態を示す)の場合はAND素子51→OR素子61→処理33の経路で正常と判定する。またオフ指令が発令されて放電トランジスタ12の両端電圧が有り(オフ状態を示す)の場合はAND素子52→OR素子61→処理33の経路でこれも正常と判定する。しかし、オン指令が発令されて放電トランジスタ12の両端電圧が有り(オフ状態を示す)の場合はAND素子53→OR素子62→処理34の経路で異常と判定され、警報が発令(処理35)される。またオフ指令が発令されて放電トランジスタ12の両端電圧が零(オン状態を示す)の場合はAND素子54→OR素子62→処理34の経路でこれも異常と判定され、警報が発令(処理35)される。
【0016】
【発明の効果】
コンデンサ電圧が過大になると各種の不具合を生じることは明白であるから、過電圧を防ぐために放電抵抗と回路開閉器との直列接続でなる放電回路を当該コンデンサに並列に接続し、必要に応じてこの放電回路を作動させるのであるが、放電回路に異常があって適切な動作が得られない場合に備えて、従来は直流電圧検出器あるいは直流変流器を設置していた。しかしこれらは高価であるし回路も複雑になる欠点を有する。これに対して本発明では、放電回路を形成する回路開閉器のオン・オフ動作を分圧抵抗の電圧の有無で検出し、放電回路のオン・オフ動作指令が確実に実行されているか否かを論理回路により検出する。このときのオン・オフ状態の検出は抵抗のみであり、論理回路も簡単な構成であることから、放電回路の異常の有無を簡単に且つ確実に検出できる効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例を表した回路図
【図2】本発明の第2実施例を表したフローチャート
【図3】整流器とインバータと、これら両者を結合している直流中間回路に接続した平滑コンデンサとでなる電力変換装置の従来例を示した接続図
【図4】コンデンサに並列に接続した放電回路が正常に動作するか否かを検出する第1従来例を示した回路図
【図5】コンデンサに並列に接続した放電回路が正常に動作するか否かを検出する第2従来例を示した回路図
【符号の説明】
1 交流電源
2 整流器
3 平滑コンデンサ
4 VVVFインバータ
5 誘導電動機
6 負荷
11 放電抵抗
12 回路開閉器としての放電トランジスタ
13,20 開閉器駆動器としてのベース駆動回路
14 コンデンサ電圧検出器
15,22,23 分圧抵抗
16 直流電圧検出器
17 直流変流器
21 論理回路
31〜35 処理
41,42 判断
51〜54 AND素子
61,62 OR素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a capacitor overvoltage suppression circuit capable of detecting an abnormality of the switch when the capacitor overvoltage is suppressed by a discharge circuit composed of a resistor and a switch connected in series.
[0002]
[Prior art]
FIG. 3 is a connection diagram showing a conventional example of a power conversion apparatus including a rectifier, an inverter, and a smoothing capacitor connected to a DC intermediate circuit that couples both. In FIG. 3, the single-phase AC power from the AC power source 1 is converted into DC power by a rectifier 2 having a diode bridge connection and output to a DC intermediate circuit. The smoothing capacitor 3 connected to the DC intermediate circuit. Removes the pulsation of this DC power. The smoothed DC power is converted into AC power having a desired voltage and frequency by the VVVF inverter 4 composed of a transistor and a diode. The induction motor 5 drives the load 6 at a desired rotational speed by the variable voltage / variable frequency AC power output from the VVVF inverter 4.
[0003]
When the load 6 is a cargo handling machine, for example, when the cargo is raised, the induction motor 5 is rotated by the output power of the VVVF inverter 4, but when the cargo is lowered, the mass of the cargo rotates the induction motor 5. The induction motor 5 serves as an induction generator and generates AC power. The VVVF inverter 4 converts the DC power into DC power and sends it to the DC intermediate circuit to charge the smoothing capacitor 3 connected to the DC intermediate circuit. . If the voltage of the smoothing capacitor 3 becomes excessive due to charging, not only the smoothing capacitor 3 but also each device connected to the DC intermediate circuit, in particular, the semiconductor element may be destroyed.
[0004]
Therefore, a series circuit of a discharge resistor 11 and a discharge transistor 12 as a circuit switch is connected in parallel to the smoothing capacitor 3, and a capacitor voltage detector 14 for detecting the terminal voltage is connected to the smoothing capacitor 3, When it is detected that the capacitor voltage has become excessive, the capacitor voltage detector 14 sends an operation signal to the base drive circuit 13 as a switch driver to turn on the discharge transistor 12. As a result, the electric charge accumulated in the smoothing capacitor 3 is consumed by the discharge resistor 11 to reduce the voltage of the smoothing capacitor 3. When the capacitor voltage falls to a separately defined lower limit value, the capacitor voltage detector 14 gives an off signal to the discharge transistor 12 via the base drive circuit 13 to stop the discharge.
[0005]
[Problems to be solved by the invention]
By the way, even if the discharge circuit consisting of the discharge resistor 11 and the discharge transistor 12 connected in series does not operate normally, for example, even if the capacitor voltage detector 14 detects an overvoltage and issues an ON command to the base drive circuit 13, When an abnormality occurs such that the base drive circuit 13 is inoperative, the discharge circuit operates even when the power generated when the cargo handling machine lowers the cargo causes the smoothing capacitor 3 to be excessively charged. Therefore, the voltage of the smoothing capacitor 3 rises abnormally and damages the device connected to the smoothing capacitor 3 and the DC intermediate circuit. Therefore, it becomes necessary to detect whether or not the operation of the discharge circuit is normal.
[0006]
FIG. 4 is a circuit diagram showing a first conventional example for detecting whether or not a discharge circuit connected in parallel with a capacitor operates normally. In order to avoid the circuit diagram becoming complicated, a DC intermediate circuit is shown. Only the part is shown. The names, applications, and functions of the smoothing capacitor 3, the discharge resistor 11, the discharge transistor 12 as a circuit switch, the base drive circuit 13 as a switch driver, and the capacitor voltage detector 14 are the same as those described in FIG. Since this is the same as the conventional circuit of the converter, the description thereof is omitted. In FIG. 4, a series circuit of a voltage dividing resistor 15 and a DC voltage detector 16 is connected in parallel to the discharge transistor 12, and the presence or absence of the collector-emitter voltage of the discharge transistor 12 is detected by the DC voltage detector 16. By providing this detection result to the base drive circuit 13, the base drive circuit 13 discriminates an abnormality in the discharge circuit.
[0007]
FIG. 5 is a circuit diagram showing a second conventional example for detecting whether or not the discharge circuit connected in parallel with the capacitor operates normally. In order to avoid the circuit diagram becoming complicated, a DC intermediate circuit is shown. Only the part is shown. The names, applications, and functions of the smoothing capacitor 3, the discharge resistor 11, the discharge transistor 12 as a circuit switch, the base drive circuit 13 as a switch driver, and the capacitor voltage detector 14 are the same as those described in FIG. Since this is the same as the conventional circuit of the converter, the description thereof is omitted. In FIG. 5, a DC current transformer 17 is inserted into the discharge circuit, the presence or absence of collector current flowing through the discharge transistor 12 is detected by the DC current transformer 17, and the detection result is given to the base drive circuit 13. In this configuration, circuit abnormality is discriminated by the base drive circuit 13.
[0008]
However, the first conventional circuit shown in FIG. 4 and the second conventional circuit shown in FIG. 5 require a DC voltage detector 16 or a DC current transformer 17 separately. These devices are expensive and have drawbacks such as an increase in the number of parts of the device.
Accordingly, an object of the present invention is to make it possible to easily detect that an abnormality has occurred in a discharge circuit of a capacitor without using an expensive DC voltage detector or DC current transformer.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, an overvoltage suppression circuit for a capacitor according to the present invention comprises:
A series circuit of a discharge resistor and a circuit switch is connected in parallel to a capacitor. When the capacitor voltage exceeds a first set voltage, a closing signal is given to the switch driver for driving the circuit switch, and the capacitor voltage is In a conventional circuit that gives an open circuit signal to the switch driver if it falls below a second set voltage lower than the first set voltage,
A switch voltage detector that detects the presence / absence of a voltage across the circuit switch, and the presence / absence of a voltage across the switch and a switch signal to the switch driver are input to operate the circuit switch normally. A logic circuit for determining whether or not.
[0010]
The switch voltage detector has a configuration in which resistors are connected to both ends of the switch.
The logic circuit determines that if there is a voltage across the switch when a closing signal is given to the switch driver, it is abnormal if there is a voltage across the switch, and is normal if there is no voltage across the switch, and opens the circuit to the switch driver. When there is a voltage across the switch when a signal is applied, it is determined to be normal, and when there is no voltage across the switch, it is determined to be abnormal.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. In FIG. 1, a discharge circuit formed by connecting a discharge resistor 11 and a discharge transistor 12 as a circuit switch in series, a smoothing capacitor 3 and a capacitor voltage detector 14 are connected to a positive side and a negative side of a DC intermediate circuit. Are connected in the same manner as the first conventional circuit of FIG. 4 and the second conventional example of FIG.
[0012]
In the present invention, a series circuit of the voltage dividing resistor 22 and the voltage dividing resistor 23 is connected between the collector and the emitter of the discharge transistor 12, and both ends of the voltage dividing resistor 23 are connected to the logic circuit 21. That is, when the discharge transistor 12 is on, a zero voltage appearing at both ends of the voltage dividing resistor 23 is input to the logic circuit 21, and when the discharge transistor 12 is off, the discharge resistor 11, the voltage dividing resistor 22, and the voltage dividing resistor 23 The divided DC intermediate circuit voltage is input to the logic circuit 21. On the other hand, an ON command issued when the capacitor voltage detector 14 detects that the first set voltage has been exceeded, or an OFF command issued when it has been detected that the voltage has fallen below the second set voltage is also logical. Input to the circuit 21.
[0013]
The base drive circuit 20 including the logic circuit 21 turns on or off the discharge transistor 12 in response to the above-described on command or off command. Whether or not the discharge transistor 12 is operating according to this command. Is checked, and if the operation is not performed as instructed, an abnormality is alarmed.
[0014]
FIG. 2 is a flowchart showing a second embodiment of the present invention. In this flowchart, it is determined whether to output an ON command or an OFF command to the discharge transistor 12 from the voltage of the smoothing capacitor 3 detected by the capacitor voltage detector 14 (process 31), and the command is ON or OFF. Is determined (determination 41). On the other hand, the voltage across the discharge transistor 12 is detected from the voltage dividing resistor 23 (process 32), and the presence or absence of the voltage is determined (determination 42). Four combinations are obtained from the two results of decision 41 and the two results of decision 42.
[0015]
That is, when the ON command is issued and the voltage across the discharge transistor 12 is zero (indicating the ON state), it is determined that the path is normal through the AND element 51 → OR element 61 → processing 33. When an off command is issued and the voltage across the discharge transistor 12 is present (indicating an off state), it is determined that this is also normal through the path of the AND element 52 → OR element 61 → processing 33. However, when the ON command is issued and the voltage across the discharge transistor 12 is present (indicating the OFF state), it is determined that there is an abnormality in the path of the AND element 53 → OR element 62 → process 34, and an alarm is issued (process 35). Is done. When an off command is issued and the voltage across the discharge transistor 12 is zero (indicating an on state), this is also determined to be abnormal in the path of the AND element 54 → OR element 62 → process 34, and an alarm is issued (process 35). )
[0016]
【The invention's effect】
Since it is clear that various problems will occur if the capacitor voltage becomes excessive, in order to prevent overvoltage, a discharge circuit consisting of a series connection of a discharge resistor and a circuit switch is connected in parallel to the capacitor, and if necessary, this Although the discharge circuit is operated, a DC voltage detector or a DC current transformer has conventionally been installed in case the discharge circuit is abnormal and an appropriate operation cannot be obtained. However, they have the disadvantages of being expensive and complicating the circuit. On the other hand, in the present invention, the on / off operation of the circuit switch forming the discharge circuit is detected based on the presence / absence of the voltage of the voltage dividing resistor, and whether the on / off operation command for the discharge circuit is reliably executed. Is detected by a logic circuit. At this time, the on / off state is detected only by the resistor and the logic circuit has a simple configuration, so that an effect of easily and surely detecting the presence or absence of abnormality in the discharge circuit can be obtained.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. FIG. 2 is a flowchart showing a second embodiment of the present invention. FIG. 3 is a rectifier, an inverter, and a DC intermediate circuit in which both are coupled. FIG. 4 is a circuit diagram showing a first conventional example for detecting whether or not a discharge circuit connected in parallel with a capacitor operates normally. FIG. 5 is a circuit diagram showing a second conventional example for detecting whether or not a discharge circuit connected in parallel with a capacitor operates normally.
DESCRIPTION OF SYMBOLS 1 AC power source 2 Rectifier 3 Smoothing capacitor 4 VVVF inverter 5 Induction motor 6 Load 11 Discharge resistor 12 Discharge transistor 13 as circuit switch, 20 Base drive circuit as switch driver 14 Capacitor voltage detector 15, 22, 23 minutes Voltage resistor 16 DC voltage detector 17 DC current transformer 21 Logic circuits 31 to 35 Processing 41 and 42 Determination 51 to 54 AND elements 61 and 62 OR element

Claims (2)

放電抵抗と回路開閉器との直列回路をコンデンサに並列に接続し、このコンデンサの両端にコンデンサ電圧検出器を接続し、前記コンデンサの電圧が第1設定電圧を上回ったことを検出すれば前記回路開閉器を駆動する開閉器駆動器へ閉路信号を与え、前記コンデンサ電圧が前記第1設定電圧よりも低く設定した第2設定電圧を下回ったことを検出すれば前記開閉器駆動器へ開路信号を与えるコンデンサの過電圧抑制回路において、
前記回路開閉器の両端電圧の有無を検出する開閉器電圧検出器と、前記開閉器駆動器へ閉路信号が与えられているときに開閉器両端電圧が有りならば異常で無しならば正常と判定し、前記開閉器駆動器へ開路信号が与えられているときに開閉器両端電圧が有りならば正常で無しならば異常と判定する論理回路と、を備えることを特徴とするコンデンサの過電圧抑制回路。
A series circuit of a discharge resistor and a circuit switch is connected in parallel to a capacitor, a capacitor voltage detector is connected to both ends of the capacitor, and if it is detected that the voltage of the capacitor exceeds the first set voltage, the circuit A closing signal is given to a switch driver for driving the switch, and when it is detected that the capacitor voltage is lower than a second set voltage set lower than the first set voltage, an open circuit signal is sent to the switch driver. In the capacitor overvoltage suppression circuit
A switch voltage detector that detects the presence / absence of a voltage across the circuit switch, and a determination that the voltage across the switch is abnormal when the switch drive signal is given and is normal if there is no voltage across the switch And an overvoltage suppression circuit for a capacitor, comprising: a logic circuit that determines that if there is a voltage across the switch when there is an open circuit signal to the switch driver, it is normal if there is no voltage across the switch .
請求項1に記載のコンデンサの過電圧抑制回路において、
前記開閉器電圧検出器は、前記開閉器の両端に抵抗を接続して構成することを特徴とするコンデンサの過電圧抑制回路。
The capacitor overvoltage suppression circuit according to claim 1,
The overvoltage suppression circuit for a capacitor, wherein the switch voltage detector is configured by connecting resistors to both ends of the switch.
JP2000082396A 2000-03-23 2000-03-23 Capacitor overvoltage suppression circuit Expired - Lifetime JP3740937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000082396A JP3740937B2 (en) 2000-03-23 2000-03-23 Capacitor overvoltage suppression circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000082396A JP3740937B2 (en) 2000-03-23 2000-03-23 Capacitor overvoltage suppression circuit

Publications (2)

Publication Number Publication Date
JP2001268933A JP2001268933A (en) 2001-09-28
JP3740937B2 true JP3740937B2 (en) 2006-02-01

Family

ID=18599212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000082396A Expired - Lifetime JP3740937B2 (en) 2000-03-23 2000-03-23 Capacitor overvoltage suppression circuit

Country Status (1)

Country Link
JP (1) JP3740937B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471087B1 (en) 2003-01-09 2005-03-10 삼성전자주식회사 Power supply device and control method thereof
JP2005204429A (en) * 2004-01-16 2005-07-28 Toshiba Corp High-frequency restraint and control device
JP2012231556A (en) * 2011-04-25 2012-11-22 Aisin Aw Co Ltd Discharge control circuit
WO2012161167A1 (en) * 2011-05-23 2012-11-29 Murayama Katsuichi Ac-dc conversion power supply circuit
FR3035557B1 (en) * 2015-04-23 2017-05-12 Labinal Power Systems SYSTEM AND METHOD FOR DISSIPATING ELECTRICAL ENERGY REGENERATED BY ACTUATORS
JP2018152931A (en) * 2017-03-09 2018-09-27 株式会社東芝 Railroad vehicle control device and method

Also Published As

Publication number Publication date
JP2001268933A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
JP2752125B2 (en) Control device for air conditioner
JPH07222436A (en) Life detection apparatus of smoothing electrolytic capacitor
JP3740937B2 (en) Capacitor overvoltage suppression circuit
JPS6022489A (en) Overload preventing method in motor controller
JPH07322484A (en) Power converter
JPH06325866A (en) Surge preventive circuit for electromagnetic induction heating cooker
WO2006016438A1 (en) Electric vehicle controller
JP3474984B2 (en) DC component detector
JP2002531044A (en) System and method for protecting electric motor and its control circuit, and electric motor
JP2000050410A (en) Drive circuit of permanent magnet synchronous motor train
JP2004112929A (en) Ac-dc converter
JPS6353796B2 (en)
JP3565054B2 (en) Inverter device protection method
JPH0638360A (en) Deterioration and failure diagnosis system for capacitor
JP3849298B2 (en) Voltage type inverter
JP2791157B2 (en) Inverter device abnormality detection device
JP4609634B2 (en) Protection device for AC-AC direct converter
JPH07288979A (en) Converter circuit and motor injection molding machine
JPH05260761A (en) Detecting device for load of invertor
JPH07308074A (en) Inverter device
JPH10201004A (en) Power supply for car
JP3851576B2 (en) Power converter
JP3376644B2 (en) Ground fault detector
JPH0236770A (en) Inverter apparatus
JPH07154974A (en) Power converter apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

R150 Certificate of patent or registration of utility model

Ref document number: 3740937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term