JP3740299B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition Download PDF

Info

Publication number
JP3740299B2
JP3740299B2 JP33936198A JP33936198A JP3740299B2 JP 3740299 B2 JP3740299 B2 JP 3740299B2 JP 33936198 A JP33936198 A JP 33936198A JP 33936198 A JP33936198 A JP 33936198A JP 3740299 B2 JP3740299 B2 JP 3740299B2
Authority
JP
Japan
Prior art keywords
temperature coefficient
capacitance
point
bao
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33936198A
Other languages
Japanese (ja)
Other versions
JP2000169215A (en
Inventor
修三 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33936198A priority Critical patent/JP3740299B2/en
Publication of JP2000169215A publication Critical patent/JP2000169215A/en
Application granted granted Critical
Publication of JP3740299B2 publication Critical patent/JP3740299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波コンデンサとして、あるいは高周波レゾネータの温度補償用負荷容量などに適したコンデンサ材料として好適に利用される誘電体磁器組成物に関する。
【0002】
【従来技術】
近年、マルチメディアによるコンピュータ及び周辺機器の家庭への普及、また、通信機器の小型化による携帯電話、PHSの一般家庭への普及により、マイクロコンピュータや携帯用コンピュータおよび周辺機器へ組み込む発振子の需要が高まってきている。また、これらのコンピュータや携帯電話は小型軽量化され、モバイルパソコンや携帯型情報機器端末として普及している。
【0003】
また、近年カード社会における技術発展により、カードにIC等の電子部品を組み込んだICカードが開発され、普及しつつある。しかし、携帯機器は落下の危険性が、また、ICカードの場合、カードのたわみからカードに搭載された電子部品に対して高い強度が要求される。
【0004】
また、小型軽量化および電池駆動による低電圧作動による駆動時間の延長のため、部品点数の低減が行われている。このため、発振子は1個で複数のICに信号を送る設計が行われている。IC間の誤作動を起こさせないために、発振周波数温度特性ができるだけ小さいことが求められる。そこで、発振子に組み込む負荷容量の静電容量温度特性を発振子の発振周波数温度特性に応じて調整することにより発振子全体の発振周波数の温度特性を小さくすることが考えられる。
【0005】
例えば、発振子の発振周波数の温度特性を負荷容量での静電容量温度特性で補正しようとする場合、発振周波数の温度係数が負の場合、静電容量の温度係数が負の物質を組み合わせることによって補正できる。逆に、発振周波数の温度係数が正の場合は、静電容量の温度係数が正の物質を組み合わせることによって補正できる。
【0006】
【発明が解決しようとする課題】
従来からコンデンサ材料として知られるペロブスカイト系材料(PbZrTiO3 系、リラクサ系、BaTiO3 系等)では、静電容量の温度係数が正あるいは負の材料が知られているが、それらはいずれも抗折強度がせいぜい100MPa程度と低く、機械的特性が不十分であるために、ICカード等に適用した場合、前述したような落下による衝撃や、ICカードのたわみに対する応力で破壊してしまうものであった。
【0007】
これに対して、従来より高強度セラミックスとして知られるアルミナ、窒化珪素、窒化アルミニウム、ムライト、スピネル等のセラミックスは、静電容量の温度係数が正の物質であるために、発振周波数の温度係数が正の場合の補償用物質として利用できるものの、発振周波数の温度係数が負の場合の補償用物質として利用できず、静電容量の温度係数が負の発振子と組み合わせる負荷容量用の高強度の材料がないのが現状であった。
【0008】
しかも、上記高強度セラミックスは、静電容量温度係数が正であり、それを変化させることができないため、発振周波数の温度特性に応じて静電容量の温度係数を所望の値に変えることができず、温度補償用の負荷容量材料として使用できないものであった。
【0009】
従って、本発明は、静電容量の温度係数が負の値を有し、所望の値に任意に変化でき、且つ高い抗折強度を有する磁器組成物を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明者は、高い抗折強度を持ち、且つ静電容量の温度係数が負の値であり、所望の静電容量の温度特性に制御できる材料として、アルミナセラミックスをベースに鋭意研究した結果、アルミナにBaO、V2 5 を所定の割合で含有せしめ、磁器中の結晶相として少なくともタングステンブロンズ構造の結晶を含む磁器組成物によって上記目的が達成できることを見い出し、本発明に至った。
【0011】
即ち、本発明の誘電体磁器組成物は、【請求項1】Al、BaOおよびVを主成分とし、各成分のモル比による組成比が、図1のAl−BaO−V3元組成図における下記点
Al BaO V
点A 95.0 2.5 2.5
点B 81.5 16.0 2.5
点C 50.0 40.0 10.0
点D 0.5 73.0 26.5
点E 0.5 44.5 55.0
点F 50.0 2.0 48.0
の点A−B−C−D−E−F−Aを結ぶ線分で囲まれる範囲内にあり、少なくともタングステンブロンズ構造の結晶相を含み、相対密度が98%以上であり、かつ、静電容量の−40℃〜80℃における温度係数が0〜−2700ppm/℃であることを特徴とするものである。
【0012】
【発明の実施の形態】
本発明によれば、Al2 3 に対してBaO及びV2 5 を複合化し、結晶相として、少なくともBa6 AlV9 30、あるいはその固溶体で表されるようなタングステンブロンズ構造を持つ結晶相を生成させることにより静電容量の温度係数を負側に移行させることができる。
【0013】
上記のような特定の結晶相を析出させるとともに、静電容量の温度係数を負側に移行させるためには、Al2 3 、BaO及びV2 5 を特定の範囲に調整することが必要である。詳細には、Al2 3 、BaO及びV2 5 を図1のAl2 3 −BaO−V2 5 3元組成図における下記の組成点

Figure 0003740299
における点A−B−C−D−E−F−Aを結ぶ線分で囲まれる範囲内に制御することが必要である。
【0014】
組成および結晶相を上記のように制御することによって、−40℃〜80℃における静電容量の温度係数を0ppm/℃〜−2700ppm/℃の範囲で変化させることができるとともに、JISR1601に基づく4点曲げ強度においても180MPa以上の高強度を維持することができ、これにより、携帯機器の電子部品にも使用可能な優れた温度特性と抗折強度を両立させることが可能となる。
【0015】
なお、上記組成においてAl2 3 量が上記組成範囲よりも多いか、または少ないといずれも静電容量の温度係数が0ppm/℃より大きくなり正側へ移行する。また、Al2 3 含有量が範囲内であっても、BaO量およびV2 5 量が上記組成範囲を逸脱すると、BaO・6Al2 3 やAlVO4 などの他の結晶相が多量に析出し静電容量の温度係数が正側に移行してしまう。
【0016】
特に、本発明の誘電体磁器組成物は、
Figure 0003740299
における点A−G−H−I−J−Aで囲まれた範囲内に制御することによりさらに抗折強度を220MPa以上に高めることができる。
【0017】
本発明の誘電体磁器組成物によって磁器を作製するには、Al2 3 、BaOおよびV2 5 の各酸化物粉末あるいは焼成により前記酸化物を形成し得る炭酸塩、硝酸塩などの金属塩を用いて上記の組成範囲になるように秤量混合する。
【0018】
その後、この混合物を所望の成形手段、例えば、ドクターブレード法などのシート成形法、金型プレス法、冷間静水圧プレス法、押し出し成形法、圧延法、等により任意の形状に成形する。そして、この成形体を大気中等の酸化雰囲気中で1050℃〜1450℃の温度で焼成することにより、相対密度98%以上に緻密化する。
【0019】
なお、本発明の誘電体磁器組成物においては、上記Al2 3 、BaO、V2 5 以外に、例えばMg、Si、Fe、Ca、Na、Gaなどの元素が不可避不純物、あるいは製造工程中に混入する場合もあるが、これらの成分は、酸化物換算で全量中0.2重量%以下であれば、とりわけ本発明の効果に影響を及ぼすことはない。
【0020】
また、本発明の誘電体磁器組成物によって得られる磁器は、発振子における温度補償用の負荷容量部材として好適に使用できる。そこで、発振子の概略図を図2に示した。図2の発振子1によれば、共振子2の一方の端面に、共振子2に対する負荷容量を賦与するために、負荷容量部材3が一体的に設けられている。かかる構造の発振子1における発振周波数の温度係数は、共振子2と組み合わせる負荷容量部材3の静電容量の温度係数によって変化する。
【0021】
負荷容量部材3の静電容量温度係数が0ppm/℃のとき、発振子1の発振周波数の温度係数が負の値を示す共振子2の場合、負荷容量部材3の静電容量温度係数が負の値を持つものに変更すると、発振周波数の温度係数は正の方向に変化する。このため、負の発振周波数の温度係数を持つ共振子2に負の静電容量温度係数を持つ負荷容量を組み合わせることにより、発振周波数の温度係数を小さくすることができる。
【0022】
本発明の誘電体磁器組成物は、−40℃〜80℃における静電容量の温度係数を0ppm/℃〜−2700ppm/℃の範囲で任意に変化させることが可能であるため、発振子における温度補償用の負荷容量部材として好適に用いることができるのである。
【0023】
なお、本発明による誘電体磁器を発振子における温度補償用の負荷容量部材として用いる場合において、好適に用いられる共振子としては、厚みすべり振動モードの基本波を使用する共振子であり、PbTiO3 −PbZrO3 系等の磁器からなる共振周波数の温度係数が負の磁器が用いられる。
【0024】
【実施例】
純度99.9%のAl2 3 粉末、BaCO3 粉末およびV2 5 粉末を表1、表2の組成となるように秤量し、この混合粉末を純度99.9%のアルミナボール、イソプロピルアルコールと共に500mlポリポットに投入し、24時間回転ミルにて混合した。混合後のスラリーを120℃大気中にて乾燥し、#80メッシュを通し評価粉末を得た。
【0025】
この粉末にバインダーとしてパラフィンワックスを6重量%添加し、金型プレスにて1000kg/cm2 で直径20mm、厚み2mmに成形した。そして、成形体は大気中400℃、2時間で脱脂した後、1300℃、3時間保持して相対密度98%以上に焼成した。
【0026】
得られた焼結体を直径15mm、厚み1mmのペレットに研磨加工した。そして、測定周波数8MHz、−40〜80℃の範囲にて静電容量を測定し、温度係数を表1、表2に記載した。また、波長λ=1.5418ÅのCuKα線によるX線回折により磁器の結晶相の同定を行なった。焼結体の抗折強度はJISR1601による4点曲げ強度を測定した。
【0027】
また、図3に示されるように、厚み0.5mm、長さ6mmの角形状の誘電体磁器4を8.5×5.5×0.3mmの大きさのプリント基板(FR4)5表面に接着材によって張り付けによって実装し、プリント基板5の端部のたわみ量が5mmとなるまでたわませる操作を5回繰り返した後、磁器4におけるクラックの有無を確認した。
【0028】
【表1】
Figure 0003740299
【0029】
【表2】
Figure 0003740299
【0030】
表1、表2の結果によれば、組成範囲が図1の3元組成図の特定範囲から逸脱する試料は、いずれも静電容量の温度係数が正側になるか、または強度が180MPaよりも低いものであった。これに対して、本発明における組成範囲の試料は、いずれも結晶相として少なくともBa6 AlV9 30で示されるタングステンブロンズ構造の結晶相が析出しており、静電容量の温度係数が−40〜80℃で0ppm/℃〜−2700ppm/℃、抗折強度180MPa以上の優れた特性を示し、その結果、たわみ試験においても優れた耐久性を示した。
【0031】
とりわけ、図1の3元組成図において、線分A−H−I−J−Aにより囲まれた範囲では、−40〜80℃における静電容量の温度係数は0ppm/℃〜−2700ppm/℃の範囲に制御され、且つ抗折強度が220MPa以上の優れた特性を示した。
【0032】
【発明の効果】
以上詳述した通り、本発明の誘電体磁器組成物は、Al2 3 に対してBaOおよびV2 5 を所定の関係を満足するように含有せしめ、特定の結晶相を析出されることにより、高い抗折強度と、静電容量の温度係数を0〜−2700ppm/℃の範囲で任意に制御することができる。これにより、発振子内の共振周波数の温度係数に応じて、それを補正する負荷容量部材として使用することができ、発振子の温度特性の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の誘電体磁器組成物のAl2 3 、BaO、V2 5 の組成範囲を示す3元組成図である。
【図2】本発明の誘電体磁器組成物を使用した発振子の概略図である。
【図3】本発明の実施例におけるたわみ試験の概略図である。
【符号の説明】
1 発振子
2 共振子
3 負荷容量部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic composition suitably used as a microwave capacitor or a capacitor material suitable for a temperature compensation load capacity of a high frequency resonator.
[0002]
[Prior art]
In recent years, with the spread of multimedia computers and peripheral devices to homes, and the spread of mobile phones and PHS to general homes due to the miniaturization of communication devices, demand for oscillators incorporated into microcomputers, portable computers and peripheral devices is increasing. Is growing. In addition, these computers and mobile phones are reduced in size and weight, and are widely used as mobile personal computers and portable information device terminals.
[0003]
In recent years, with the development of technology in the card society, IC cards in which electronic components such as ICs are incorporated into cards have been developed and are becoming popular. However, there is a risk of dropping the portable device, and in the case of an IC card, high strength is required for the electronic components mounted on the card due to the deflection of the card.
[0004]
In addition, the number of parts has been reduced in order to reduce the size and weight and to extend the driving time by low voltage operation by battery driving. For this reason, there is a design in which a single oscillator is used to send signals to a plurality of ICs. In order not to cause malfunction between ICs, it is required that the oscillation frequency temperature characteristic is as small as possible. Therefore, it is conceivable to reduce the temperature characteristic of the oscillation frequency of the entire oscillator by adjusting the capacitance temperature characteristic of the load capacitance incorporated in the oscillator according to the oscillation frequency temperature characteristic of the oscillator.
[0005]
For example, when trying to correct the temperature characteristics of the oscillation frequency of the resonator with the capacitance temperature characteristics of the load capacitance, if the temperature coefficient of the oscillation frequency is negative, combine substances with a negative capacitance temperature coefficient. It can be corrected by. Conversely, when the temperature coefficient of the oscillation frequency is positive, it can be corrected by combining substances having a positive temperature coefficient of capacitance.
[0006]
[Problems to be solved by the invention]
Conventionally known perovskite materials (PbZrTiO 3 , relaxor, BaTiO 3, etc.), which are known as capacitor materials, are known to have positive or negative temperature coefficient of capacitance. Since the strength is as low as about 100 MPa and the mechanical properties are insufficient, when applied to an IC card or the like, it is destroyed by the impact caused by dropping or the stress against the deflection of the IC card as described above. It was.
[0007]
In contrast, ceramics such as alumina, silicon nitride, aluminum nitride, mullite, and spinel, which are conventionally known as high-strength ceramics, have a positive temperature coefficient of capacitance, and therefore have a temperature coefficient of oscillation frequency. Although it can be used as a compensation material in the positive case, it cannot be used as a compensation material in the case where the temperature coefficient of the oscillation frequency is negative, and it has a high strength for load capacitance combined with an oscillator having a negative temperature coefficient of capacitance. There was no material at present.
[0008]
Moreover, since the high-strength ceramic has a positive capacitance temperature coefficient and cannot be changed, the capacitance temperature coefficient can be changed to a desired value according to the temperature characteristics of the oscillation frequency. Therefore, it cannot be used as a load capacity material for temperature compensation.
[0009]
Therefore, an object of the present invention is to provide a porcelain composition having a negative temperature coefficient of capacitance, which can be arbitrarily changed to a desired value, and having a high bending strength. .
[0010]
[Means for Solving the Problems]
As a result of earnest research based on alumina ceramics as a material having a high bending strength and a negative temperature coefficient of capacitance, and capable of controlling the temperature characteristics of a desired capacitance, It has been found that the above object can be achieved by a porcelain composition containing BaO and V 2 O 5 in a predetermined ratio in alumina and containing at least a tungsten bronze structure crystal as a crystal phase in the porcelain.
[0011]
That is, the dielectric ceramic composition of the present invention has the following composition: (1) Al 2 O 3 , BaO and V 2 O 5 as main components, and the composition ratio according to the molar ratio of each component is Al 2 O 3 in FIG. -BaO-V 2 O 5 ternary composition diagram
Al 2 O 3 BaO V 2 O 5
Point A 95.0 2.5 2.5
Point B 81.5 16.0 2.5
Point C 50.0 40.0 10.0
Point D 0.5 73.0 26.5
Point E 0.5 44.5 55.0
Point F 50.0 2.0 48.0
In the range surrounded by the line connecting the points A-B-C-D-E-F-A, at least including a crystalline phase of a tungsten bronze structure, a relative density of 98% or more, and electrostatic The temperature coefficient at −40 ° C. to 80 ° C. of the capacity is 0 to −2700 ppm / ° C.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, BaO and V 2 O 5 are compounded with Al 2 O 3 , and a crystal having a tungsten bronze structure represented by at least Ba 6 AlV 9 O 30 or a solid solution thereof as a crystal phase. By generating the phase, the temperature coefficient of capacitance can be shifted to the negative side.
[0013]
In order to precipitate the specific crystal phase as described above and shift the temperature coefficient of capacitance to the negative side, it is necessary to adjust Al 2 O 3 , BaO and V 2 O 5 to a specific range. It is. Specifically, Al 2 O 3 , BaO and V 2 O 5 are represented by the following composition points in the Al 2 O 3 —BaO—V 2 O 5 ternary composition diagram of FIG.
Figure 0003740299
It is necessary to control within the range surrounded by the line segment connecting the points A-B-C-D-E-F-A.
[0014]
By controlling the composition and crystal phase as described above, the temperature coefficient of capacitance at −40 ° C. to 80 ° C. can be changed in the range of 0 ppm / ° C. to −2700 ppm / ° C., and 4 based on JIS R1601 As for the point bending strength, it is possible to maintain a high strength of 180 MPa or more. This makes it possible to achieve both excellent temperature characteristics and bending strength that can be used for electronic parts of portable devices.
[0015]
In the above composition, if the amount of Al 2 O 3 is larger or smaller than the above composition range, the capacitance temperature coefficient becomes larger than 0 ppm / ° C. and shifts to the positive side. Even if the content of Al 2 O 3 is within the range, if the amount of BaO and V 2 O 5 depart from the above composition range, a large amount of other crystal phases such as BaO · 6Al 2 O 3 and AlVO 4 Precipitation occurs and the temperature coefficient of capacitance shifts to the positive side.
[0016]
In particular, the dielectric ceramic composition of the present invention is
Figure 0003740299
The bending strength can be further increased to 220 MPa or more by controlling within the range surrounded by the point A-G-H-I-J-A.
[0017]
In order to produce a ceramic with the dielectric ceramic composition of the present invention, Al 2 O 3 , BaO and V 2 O 5 oxide powders or metal salts such as carbonates and nitrates that can form the oxides by firing. Are weighed and mixed so as to be in the above composition range.
[0018]
Thereafter, the mixture is formed into a desired shape by a desired forming means, for example, a sheet forming method such as a doctor blade method, a die pressing method, a cold isostatic pressing method, an extrusion forming method, a rolling method. The compact is densified to a relative density of 98% or higher by firing at a temperature of 1050 ° C. to 1450 ° C. in an oxidizing atmosphere such as the air.
[0019]
In the dielectric ceramic composition of the present invention, in addition to the above Al 2 O 3 , BaO, V 2 O 5 , for example, elements such as Mg, Si, Fe, Ca, Na, and Ga are inevitable impurities, or manufacturing processes. In some cases, these components do not affect the effects of the present invention as long as they are 0.2% by weight or less of the total amount in terms of oxides.
[0020]
Moreover, the ceramic obtained by the dielectric ceramic composition of the present invention can be suitably used as a load capacity member for temperature compensation in an oscillator. Therefore, a schematic diagram of the oscillator is shown in FIG. According to the resonator 1 of FIG. 2, a load capacity member 3 is integrally provided on one end face of the resonator 2 in order to give a load capacity to the resonator 2. The temperature coefficient of the oscillation frequency in the resonator 1 having such a structure varies depending on the temperature coefficient of the capacitance of the load capacity member 3 combined with the resonator 2.
[0021]
In the case of the resonator 2 in which the temperature coefficient of the oscillation frequency of the resonator 1 shows a negative value when the capacitance temperature coefficient of the load capacitance member 3 is 0 ppm / ° C., the capacitance temperature coefficient of the load capacitance member 3 is negative. If it is changed to one having the value of, the temperature coefficient of the oscillation frequency changes in the positive direction. For this reason, the temperature coefficient of the oscillation frequency can be reduced by combining the resonator 2 having the temperature coefficient of the negative oscillation frequency with the load capacitance having the negative capacitance temperature coefficient.
[0022]
Since the dielectric ceramic composition of the present invention can arbitrarily change the temperature coefficient of capacitance at −40 ° C. to 80 ° C. in the range of 0 ppm / ° C. to −2700 ppm / ° C., the temperature in the oscillator It can be suitably used as a load capacity member for compensation.
[0023]
When the dielectric ceramic according to the present invention is used as a load capacity member for temperature compensation in an oscillator, a resonator that is preferably used is a resonator that uses a fundamental wave of a thickness-shear vibration mode, and PbTiO 3 A porcelain having a negative temperature coefficient of resonance frequency made of a porcelain such as -PbZrO 3 system is used.
[0024]
【Example】
The Al 2 O 3 powder, the BaCO 3 powder and the V 2 O 5 powder having a purity of 99.9% were weighed so as to have the compositions shown in Tables 1 and 2, and the mixed powder was obtained with an alumina ball and isopropyl having a purity of 99.9%. The mixture was poured into a 500 ml polypot together with alcohol and mixed in a rotary mill for 24 hours. The mixed slurry was dried in the atmosphere at 120 ° C., and an evaluation powder was obtained through # 80 mesh.
[0025]
To this powder, 6% by weight of paraffin wax was added as a binder, and formed into a diameter of 20 mm and a thickness of 2 mm at 1000 kg / cm 2 with a mold press. The molded body was degreased at 400 ° C. for 2 hours in the atmosphere, then held at 1300 ° C. for 3 hours and fired to a relative density of 98% or more.
[0026]
The obtained sintered body was polished into a pellet having a diameter of 15 mm and a thickness of 1 mm. And the electrostatic capacitance was measured in the range of measurement frequency 8MHz and -40-80 degreeC, and the temperature coefficient was described in Table 1 and Table 2. In addition, the crystal phase of the porcelain was identified by X-ray diffraction using CuKα rays having a wavelength λ = 1.5418. The bending strength of the sintered body was measured by four-point bending strength according to JIS R1601.
[0027]
Also, as shown in FIG. 3, a rectangular dielectric ceramic 4 having a thickness of 0.5 mm and a length of 6 mm is placed on the surface of a printed circuit board (FR4) 5 having a size of 8.5 × 5.5 × 0.3 mm. After mounting by bonding with an adhesive and bending the end of the printed circuit board 5 until the deflection amount of the printed circuit board 5 becomes 5 mm, the presence or absence of cracks in the porcelain 4 was confirmed.
[0028]
[Table 1]
Figure 0003740299
[0029]
[Table 2]
Figure 0003740299
[0030]
According to the results in Tables 1 and 2, any sample whose composition range deviates from the specific range of the ternary composition diagram in FIG. 1 has a positive temperature coefficient of capacitance or a strength of 180 MPa. Was also low. On the other hand, in all the samples in the composition range in the present invention, at least a crystal phase having a tungsten bronze structure represented by Ba 6 AlV 9 O 30 is precipitated as the crystal phase, and the temperature coefficient of capacitance is −40. It exhibited excellent properties of 0 ppm / ° C. to −2700 ppm / ° C. and a bending strength of 180 MPa or more at -80 ° C., and as a result, excellent durability was also exhibited in the deflection test.
[0031]
In particular, in the ternary composition diagram of FIG. 1, the temperature coefficient of capacitance at −40 to 80 ° C. is 0 ppm / ° C. to −2700 ppm / ° C. in the range surrounded by the line segment A-HI-JA. The bending strength was 220 MPa or more, and excellent characteristics were exhibited.
[0032]
【The invention's effect】
As described above in detail, the dielectric ceramic composition of the present invention contains BaO and V 2 O 5 so as to satisfy a predetermined relationship with Al 2 O 3 , and a specific crystal phase is precipitated. Therefore, the high bending strength and the temperature coefficient of capacitance can be arbitrarily controlled in the range of 0 to -2700 ppm / ° C. As a result, it can be used as a load capacity member for correcting the temperature coefficient of the resonance frequency in the oscillator, and the temperature characteristics of the oscillator can be improved.
[Brief description of the drawings]
FIG. 1 is a ternary composition diagram showing a composition range of Al 2 O 3 , BaO, and V 2 O 5 of a dielectric ceramic composition of the present invention.
FIG. 2 is a schematic view of an oscillator using the dielectric ceramic composition of the present invention.
FIG. 3 is a schematic view of a deflection test in an example of the present invention.
[Explanation of symbols]
1 Oscillator 2 Resonator 3 Load capacity member

Claims (1)

Al、BaOおよびVを主成分とし、各成分のモル比による組成比が、図1のAl−BaO−V3元組成図における下記点
Al BaO V
点A 95.0 2.5 2.5
点B 81.5 16.0 2.5
点C 50.0 40.0 10.0
点D 0.5 73.0 26.5
点E 0.5 44.5 55.0
点F 50.0 2.0 48.0
の点A−B−C−D−E−F−Aを結ぶ線分で囲まれる範囲内にあり、少なくともタングステンブロンズ構造の結晶相を含み、相対密度が98%以上であり、かつ、静電容量の−40℃〜80℃における温度係数が0〜−2700ppm/℃であることを特徴とする誘電体磁器組成物。
Al 2 O 3 , BaO and V 2 O 5 are the main components, and the composition ratio according to the molar ratio of each component is as follows in the Al 2 O 3 —BaO—V 2 O 5 ternary composition diagram of FIG.
Al 2 O 3 BaO V 2 O 5
Point A 95.0 2.5 2.5
Point B 81.5 16.0 2.5
Point C 50.0 40.0 10.0
Point D 0.5 73.0 26.5
Point E 0.5 44.5 55.0
Point F 50.0 2.0 48.0
In the range surrounded by the line connecting the points A-B-C-D-E-F-A, at least including a crystalline phase of a tungsten bronze structure, a relative density of 98% or more, and electrostatic A dielectric ceramic composition having a temperature coefficient of 0 to -2700 ppm / ° C at -40 ° C to 80 ° C.
JP33936198A 1998-11-30 1998-11-30 Dielectric porcelain composition Expired - Fee Related JP3740299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33936198A JP3740299B2 (en) 1998-11-30 1998-11-30 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33936198A JP3740299B2 (en) 1998-11-30 1998-11-30 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JP2000169215A JP2000169215A (en) 2000-06-20
JP3740299B2 true JP3740299B2 (en) 2006-02-01

Family

ID=18326746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33936198A Expired - Fee Related JP3740299B2 (en) 1998-11-30 1998-11-30 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3740299B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102430851B1 (en) 2016-10-17 2022-08-09 쇼에이 가가쿠 가부시키가이샤 Dielectric Ceramic Compositions and Ceramic Electronic Components
CN111954649B (en) 2018-04-11 2022-10-21 昭荣化学工业株式会社 Dielectric ceramic composition and ceramic electronic component
CN111954650B (en) 2018-04-11 2022-11-29 昭荣化学工业株式会社 Dielectric ceramic composition and ceramic electronic component

Also Published As

Publication number Publication date
JP2000169215A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
JP3740299B2 (en) Dielectric porcelain composition
JP3730783B2 (en) Dielectric porcelain composition
JP3677395B2 (en) Dielectric porcelain composition
JP3758869B2 (en) Porcelain composition
JP3450913B2 (en) Dielectric porcelain composition
JP3220360B2 (en) Alumina porcelain composition and method for producing the same
CN113880575A (en) Doped lead manganese niobate-lead zirconate titanate piezoelectric ceramic material and preparation method thereof
JP2003146752A (en) Dielectric ceramic composition
JP2008137873A (en) Dielectric ceramic composition and ceramic electronic component
JP2902926B2 (en) Dielectric porcelain composition
JP3771762B2 (en) Piezoelectric ceramic composition
JP4484297B2 (en) Dielectric porcelain composition
JP4553301B2 (en) Dielectric porcelain composition and electronic component
JP2001278662A (en) Method for manufacturing dielectric ceramic
JP3151972B2 (en) Porcelain composition for multilayer substrate and multilayer substrate
JPH0952760A (en) Dielectric ceramic composition
JP3405634B2 (en) Dielectric porcelain composition
JPH11209172A (en) Dielectric porcelain composition and composite dielectric porcelain composition
JP3450919B2 (en) Dielectric ceramic composition for temperature compensation
JP3450134B2 (en) Dielectric porcelain composition
WO2001027942A1 (en) Dielectric ceramic composition
JP3082478B2 (en) Porcelain composition for multilayer substrate
EP0523608A1 (en) Dielectric ceramic composition
JP3377914B2 (en) Dielectric porcelain composition and electronic component
JPH09148180A (en) Laminated capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees