JP3740248B2 - Method for manufacturing polarizing element and method for manufacturing optical isolator - Google Patents

Method for manufacturing polarizing element and method for manufacturing optical isolator Download PDF

Info

Publication number
JP3740248B2
JP3740248B2 JP10358297A JP10358297A JP3740248B2 JP 3740248 B2 JP3740248 B2 JP 3740248B2 JP 10358297 A JP10358297 A JP 10358297A JP 10358297 A JP10358297 A JP 10358297A JP 3740248 B2 JP3740248 B2 JP 3740248B2
Authority
JP
Japan
Prior art keywords
glass
polarizing element
layer
light
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10358297A
Other languages
Japanese (ja)
Other versions
JPH1054910A (en
Inventor
徹 深野
恭史 佐藤
真人 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10358297A priority Critical patent/JP3740248B2/en
Publication of JPH1054910A publication Critical patent/JPH1054910A/en
Application granted granted Critical
Publication of JP3740248B2 publication Critical patent/JP3740248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only

Description

【0001】
【発明の属する技術分野】
本発明は、光通信機器、光記録機器、光センサ等に使用される偏光素子の製造方法および光アイソレータに関し、特に誘電体中に異方性を有する金属粒子が分散された偏光素子の製造方法と、その偏光素子を用いた光アイソレータの製造方法に関する。
【0002】
【従来の技術】
偏光素子は特定の方向に偏光した光を取り出すために用いるもので、光通信,光センサ,光干渉計等に使用されている。例えば、光通信の場合、偏光素子は光アイソレータの主要部品である。光アイソレータは、例えばホルダ内に第1の偏光素子とファラデー回転子と第2の偏光素子とを光軸上に配置し、周囲に同軸のマグネットを配置したものである。
【0003】
ここで、ホルダには例えばNi−Fe合金等を用い、偏光素子は低融点ガラスまたは半田でホルダに溶着して気密に封止する。偏光性能は光通信に用いる波長での値が重要であり、光アイソレータはレーザダイオード等を組合わせて用い、第1の偏光素子で特定の方向に偏光した光を取り出し、ファラデー回転子で偏光方向を回転させ、第2の偏光素子で偏光方向を回転させた光を取り出すようにし、逆方向からの反射戻り光は光アイソレータから出射させないようにする。
【0004】
現在、実用化されている偏光素子は、主としてガラス中に回転楕円体状の銀粒子を分散させたものである(特公平2−40619号公報,対応米国特許USP4,486,213、及びUSP4,479,819)。この偏光素子は、銀とハロゲンとを有するガラス素地を熱処理してハロゲン化銀の粒子を析出させ、加熱下に延伸してハロゲン化銀粒子を回転楕円体状に引き延ばす。この過程でハロゲン化銀粒子に異方性が生じる。次いで、還元雰囲気下で加熱し、ハロゲン化銀を金属銀へ還元する。
【0005】
ところが、この偏光素子ではアスペクト比(長軸長さと短軸長さとの比)が不均一で、短軸や長軸の長さが均一な銀粒子を析出させることが困難である。さらに、ガラス内部でのハロゲン化銀の還元が困難で不透明なハロゲン化銀が残留する。また、ハロゲン化銀の還元の過程でガラスが収縮することに伴い、ガラス表面がポーラスになり長期安定性が低下する。
【0006】
このような問題点を解決するために、真空蒸着やスパッタリング等の薄膜形成プロセスを用いて、偏光素子を製造することが提案されている(1990年電子情報通信学会,秋季大会,講演予稿集C−212)。この提案では、ガラスから成る誘電体基板上に金属層を真空蒸着で設け、ガラスから成る誘電体層をスパッタリング等でその上に積層する。そして、金属層と誘電体層を交互に数層形成する。次に加熱下で基板を引き延ばし、金属層を不連続で島状の金属粒子の層に変形する。金属粒子層での各金属粒子は延伸方向に引き延ばされて回転楕円体状になり、偏光性能が発現する。
【0007】
【発明が解決しようとする課題】
しかしながら、発明者らは、このような製造方法では、延伸等の熱塑性変形後に、最上の誘電体層表面において亀裂が発生することを見出した。この原因について、発明者らが鋭意研究を重ねた結果、金属粒子に異方性を与えるための延伸等における加熱時に、偏光層中に含まれる誘電体層の形成用のスパッタリングガスが膨張し、特に積層界面において気泡が発生していることが判明した。さらに、延伸や押し出し等の熱塑性変形を行なうことにより、その気泡が加熱により膨らみ、これが塑性変形で引き裂かれ、最上の誘電体層表面に亀裂を発生させていることが判明した。なおここで、スパッタリングガスが成膜中に含まれる現象は、一般的に「ガス混入」特にスパッタリングガスにArが使用されている場合、「Arトラップ」などと呼ばれ、スパッタ装置を使用する場合避けられないものである。
【0008】
したがって、従来の偏光素子においてはこのような亀裂の発生により、光の散乱等を引き起こし、ひいては挿入損失を増大させるので、ガラス素地内にハロゲン化銀を析出させて延伸・還元を行なう従来からの製法で得られたものと同等の特性は未だ実現されていなかった。
【0009】
そこで本発明の目的は、不純物ガスの混入による、偏光層での亀裂発生の恐れが全く無く、偏光特性や長期信頼性に非常に優れた偏光素子の製造方法および光アイソレータの製造方法を提供することにある。
【0010】
【課題を解決するための手段】
上記問題を解決するために、本発明の偏光素子の製造方法は、透光性を有するガラス基板の少なくとも一方の主面上に、多数の金属粒子から成る金属粒子層を形成する工程と、該金属粒子層上にガラス層をスパッタリングで形成する工程とを交互に繰り返すことにより、前記金属粒子層と前記ガラス層とが複数層に積層された積層体を作製し、該積層体を300℃以上前記ガラス層のガラス転移点以下の温度で熱処理した後に、該積層体を積層方向と直交する方向へ熱塑性変形させることにより、前記多数の金属粒子に形状異方性を付与し配向せしめたことを特徴とする。なお、ガラス基板はとはBK7ガラス、パイレックスガラス、石英ガラス等とする。
【0011】
また、本発明の光アイソレータの製造方法は、上記製造方法によって偏光素子を作製し、この偏光素子を光を透過させるファラデー回転子の光入射側及び/又は光出射側に配設することを特徴とする。
【0012】
ここで、誘電体層の膨れる現象は次のように説明される。誘電体層が加熱されると誘電体層中のスパッタリングガスが大気に放出しはじめるが、ガラス転位点付近まで温度が上昇すると、ガラスの粘性が高くなり、通気性が悪くなる。その結果、ガスが大気中に放出されなくなり、誘電体層を膨らませる。スパッタリングガスはガラス転位点温度よりはるかに低い300℃付近から放出し、400℃以上でスパッタリングガスが多く放出される。これにより、ガラス転位点以下の温度にて、数時間熱処理を行なうことにより、誘電体層中のスパッタリングガスを所定の値以下にすることが可能となり、ひいては延伸もしくは押し出し時における加熱時に亀裂が発生せず、挿入損失の低い偏光素子を提供できる。
【0013】
【発明の実施の形態】
以下に、本発明の実施形態について図面に基づき説明する。図1及び図2に示すように、偏光素子1は透光性を有する誘電体の基板2の少なくとも一方の主面上に偏光層3を設けたものであり、この偏光層3は誘電体基板2上に個数密度が基板面方向に40個/μm2(平方ミクロン)以下の形状異方性を有する金属粒子4aが多数分散された金属粒子層4と透光性を有する誘電体層5とが交互に複数積層されて成るものである。また、偏光層3はスパッタリングガスとして好適に使用される0族元素(例えばAr、Ne、He等)の含有量が1.5×1020 molecules/cm3以下としている。ここで、透光性を有するとは使用波長に対して透明という意味である。また、金属粒子4aの個数密度は基板面S方向における密度であって、少なくとも1個の金属粒子4aの長軸を含む面(基板面Sに平行な面)で切断したときに計測した密度である。なお、図1及び図2では、金属粒子層4と誘電体層5との積層状態の一部を省略して図示している。
【0014】
基板2は例えばパイレックスガラス(パイレックスとは、コーニング・ガラス・インダストリーの商標)やBK7ガラス(BK7とは、ショット・グラス社の商品名)等のほう珪酸ガラスを用い、これ以外にシリカガラス等の高融点ガラスやソーダガラス等の低融点ガラスを用いてもよい。また、このようなガラス材料に代えて他の透明材料を用いても良いが、ガラス材料は安価で延伸が容易であるので好適に使用される。
【0015】
また、ガラス材料の内、特にほう珪酸ガラスが基板2に好ましい。なぜなら、ほう珪酸ガラスの体熱膨張率は、光アイソレータのホルダに使用される金属材料に近似するからである。例えば、ほう珪酸ガラスの体熱膨張率は、ホルダ材料として使用されるNi−Fe合金の体熱膨張率の90〜96×10−7/℃に近く、ホルダへの封止が極めて容易であるからである。例えば、BK7ガラスの体熱膨張率は72〜89×10−7/℃程度で、Ni−Fe合金の体熱膨張率に非常に近似しているので好適に使用可能である。
【0016】
誘電体層5は基板2と同種の材料が好ましく、例えば基板2にパイレックスガラスを用いる場合には、誘電体層5にもパイレックスガラスを用い、熱膨張率等の特性を一致させることが好ましい。
【0017】
金属粒子4aにはAu,Ag,Pt,Rh,Ir等の貴金属や、Cu,Fe,Ni,Cr等の遷移金属から選択される1種以上の金属であることが好ましく、基板2や誘電体層5との濡れ性が悪く凝集しやすい金属でしかも酸化され難く、誘電体層5中で金属粒子4aとして存在し得るものが好ましい。これらの内、特に好ましいものは、低融点なため凝集が容易で、ガラスとの濡れが悪く、しかも酸化され難いAuと、安価でガラスとの濡れ性が悪いCuである。なお、金属粒子4aは金属単体に限定されるものではなく合金でもよい。
【0018】
金属粒子4aは回転楕円体状で異方性が有り、図1(ただし、光の進行方向をZ方向とし、これに直角な平面をX−Y平面とする。)では、金属粒子4aの長軸方向がX方向で、短軸方向がY方向である。また、金属粒子4aの長軸長さと短軸長さの比をアスペクト比とし、ここでは多数の金属粒子4aのアスペクト比の平均値を単にアスペクト比と呼ぶものとする。
【0019】
金属粒子4aが回転楕円体状になるのは、基板2上に偏光層3の成膜後の延伸時に、基板2と共に金属粒子4aが延伸方向に引き延ばされるからである。そして、アスペクト比が高いほど消光比が増加するが、それと同時に基板2の延伸率が増加して延伸が困難になり、しかも消光比の増加率がアスペクト比の高い領域で減少するため、アスペクト比は3〜30が適当であり、特に好ましくは15〜25程度とする。なお、消光比は所定波長において偏光していない入力光を用いた際に、X方向の透過光とY方向の透過光のエネルギーの比をデシベル単位で示したものとする。金属粒子4aの短軸長さが増加すると、透過すべきY方向の偏光に対する挿入損失が増加し、このことからもアスペクト比が3以上、より好ましくは15以上で短軸長さが短く挿入損失を小さくすることが好ましい。金属粒子4aの長軸平均長さが増加すると、X方向の吸収ピーク波長が増加し、光通信で用いる波長域(1.3μm程度)に接近する。しかしながら、金属粒子4aのアスペクト比に製造上の制限があり、短軸長さの増加が挿入損失をもたらすことを加味すると、長軸長さにも制限が生じる。そこで、金属粒子4aについての好ましい条件は、アスペクト比が3〜30であり、より好ましくはアスペクト比が10〜30、最も好ましくはアスペクト比が15〜25である。
【0020】
上記偏光素子1は、例えば次のようにして作製する。すなわち、まず、透光性を有するガラス基板の少なくとも一方の主面上に、真空蒸着法により多数の金属微粒子から成る金属薄膜層を形成し、この金属薄膜層を加熱することにより金属微粒子が凝集して得られた島状の金属粒子から成る金属粒子層を形成し、この金属粒子層上にガラス層をスパッタリングで形成する。
【0021】
さらに、このガラス層上に、上記のように金属粒子層を形成する工程とガラス層を形成する工程とを交互に繰り返すことにより、金属粒子層とガラス層とが複数層に積層された積層体を作製する。
【0022】
そして、この積層体を300℃以上で且つガラス層のガラス転移点以下の温度で熱処理した後に、この積層体を積層方向と直交する方向へ熱塑性変形させることにより、多数の金属粒子に形状異方性を付与し配向せしめて得られる。ここで、積層体を300℃以上で且つガラス層のガラス転移点以下の温度で熱処理する理由は、偏光層中に含まれるスパッタリングガスを放出させ、その含有量を1.5×1020 molecules/cm3以下とさせるためであり、これにより、特に挿入損失を増大させないようにすることができる。ガラス転移点は、例えばBK7ガラスで580℃、パイレックスガラスで550℃である。そして、後述の表1から明らかなように、ガラス転移点以下で脱ガスすることにより、気泡を発生させずに脱ガスすることができる。
【0023】
このようにして得られた偏光素子1は、図1に示すように、Z方向に入射した入射光L1は、X方向の偏光成分が金属粒子5の自由電子との共鳴で吸収され、Y方向の偏光成分は透過率が高く、偏光した出射光L2となる。ここで、X方向とY方向とでは吸収のピーク波長に差があり、X方向ではY方向よりも長波長側に吸収のピークがある。なお、特に指摘しない場合、消光比はX方向の吸収のピークが生じる波長で定めるものとする。
【0024】
したがって、例えば、上記の偏光素子1をファラデー回転子における光入射側及び光出射側の少なくとも一方側に配設し、偏光素子1の金属粒子層4及び誘電体層5に光を入射するようにして光アイソレータを構成すれば、特性及び信頼性の高いものが提供できる。
【0025】
【実施例】
〔比較例〕基板には76mm×10mm×1mmの大きさのBK7ガラスを使用した。また、成膜装置としては、多元マグネトロンスパッタ装置を使用し、ターゲットには図1における金属粒子層4を成す銅と誘電体層5を成すBK7ガラスを使用した。さらに、スパッタリングガスにはArを利用した。スパッタ条件はRFパワー20W、スパッタ圧は約2.0×10−3Torr、Arガスの流量は約10ccm、銅の膜厚約24nmに設定し、銅微粒子を凝集させて成長させる為、金属膜の成膜直後に約500℃,60分間の熱処理を行ない、銅微粒子を所定の大きさの銅粒子に成長させた。なお、銅の膜厚は上記スパッタ条件にて、20分間成膜したものの膜厚を測定し、成膜速度を算出し、この値から導きだしたものである。
【0026】
次に、銅粒子をガラス中に埋め込む為、上記条件にて作製した銅粒子層の上から、基板材料と同じBK7ガラスを250nmに成膜した。上記工程を5回繰り返し、誘電体層4を5層作製した。さらに上記サンプルをBK7ガラスの軟化点温度(724℃)以下の625℃にて45kg/mmの応力により、積層方向と直交する方向へ互いに逆向きに応力を加え50mmの延伸を行なった。なお、パイレックスガラスの軟化点は820℃で、延伸は軟化点以下の温度で行なうことが好ましい。
【0027】
これにより、約400nm厚(厚さ約80nmの誘電体層が5層)の偏光層中にアスペクト比が約10(短軸長さが20〜30nm)のほぼ回転楕円体を成す金属粒子の多数が分散された、126mm×3mm×0.3mm程度の大きさの偏光素子が得られたが、この偏光素子表面(積層表面)には亀裂が発生していた。また、このサンプルの特性を光スペクトルアナライザーにより測定したところ、消光比15dB, 挿入損失2dBの望ましくない結果であった。
【0028】
〔亀裂発生原因の追求〕熱ガス脱離分析(TDS)により、上記亀裂の原因となる偏光層中の気泡中に含まれるガスについて、上記比較例で説明した金属粒子層と誘電体層とをそれぞれ5層積層した延伸前のサンプルを用いて分析した。なお、TDSとは、真空中にて試料を加熱し、その時発生するガスの定性分析を行なうと同時に、真空度の変化を測定する分析である。
【0029】
その結果を図3に示す。縦軸のEは10の指数であることを示す。ここで、X軸に加熱温度をとり、Y軸に真空度の変化、及びArガスのイオン強度をとった。これによると、550℃から600℃にかけて大きく真空度が変化することが観察され、この温度範囲にて偏光層中の気泡が破裂したと考えられる。また、定性分析を行なった結果、真空度の変化と同時にArガスが発生していることが確認された。これにより、気泡の原因はサンプルの偏光層中からのArの発生であることが確認された。さらに、気泡が破裂する前の温度でもArガスが発生していることも確認された。
【0030】
そこで、以上の結果を踏まえ、気泡が発生しない温度にて長時間熱処理を行なうことにより、サンプル中のガス含有量を低減させることとした。
【0031】
まず、気泡が発生しない温度でArが脱ガスできる温度、つまり、サンプル中のArガス含有量を低減させる温度を調査するため、サンプルを真空中で480℃から20℃ずつ上昇させた温度で約15分間加熱し、そのサンプルの積層界面における目視による気泡の有無、及び表面粗さの変化について測定を行なった。その結果を表1及び図4に示す。
【0032】
【表1】

Figure 0003740248
【0033】
表1及び図4から明らかなように、熱処理温度が560℃以下の場合にはほとんど積層表面には膨らみが全く見られず、積層界面に気泡が発生していなかった。また、表面粗さも13〜17Åでほとんど変化がなかった。一方、熱処理温度が580℃になると、目視により積層表面に膨らみが見られ積層界面に気泡が発生していることが確認された。また、その気泡の発生と同時に表面粗さも急激に変化することが確認された。その時の表面粗さは150℃であり、気泡が発生していない他のサンプルと比較すると10倍以上の値となった。以上の検討により、脱ガスの為の熱処理温度を560℃に決定した。基板2や誘電体層5にパイレックスガラスを用いると、ガラス転移点(550℃)より高い560℃での脱ガスで気泡が発生して表面粗さが増加し、ガラス転移点以下の540℃以下での脱ガスでは気泡が発生せず、表面粗さも20Å以下にすることができた。
【0034】
次に、熱処理による脱ガスの効果を確認する為、真空中で約560℃にて4時間、8時間、10時間、12時間の熱処理時間のそれぞれで加熱したサンプルのArガス含有量、また、そのサンプルの延伸温度である、625℃で加熱した時の目視による膨らみ(気泡)の有無、及び表面粗さについて調査を行なった。その結果を表2及び図5に示す。
【0035】
【表2】
Figure 0003740248
【0036】
表2及び図5から明らかなように、560℃で10時間の熱処理を行なう事により、サンプル中のAr含有量が1.5×1020molecules/cmに低減され、延伸の際に625℃に加熱しても、積層表面の膨らみ(気泡)がほとんど発生しないことが確認された。特に、560℃で12時間の熱処理を行なう事により、Ar含有量が1.0×1019molecules/cmに低減され、延伸の際に625℃に加熱しても、積層表面の膨らみ(気泡)が全く発生しないことが確認され、最も望ましくはAr含有量を1.0×1019molecules/cm以下にすることがよいことが判明した。
【0037】
〔偏光素子の製造〕上記検討を踏まえ、積層体を上記比較例と同様にして作製し、その後、サンプルの偏光層中のArの含有量を低減させる為、加熱炉にて560℃で12時間加熱した。なお、この時の雰囲気は大気雰囲気とした。ここで、大気雰囲気でArを脱ガスしたことから明らかなように、脱ガス雰囲気は任意で、好ましくは0族元素の含有量が2容積%以下(大気で1容積%)とする。
【0038】
次いで、サンプルを625℃にて45kg/mm2の応力で50mmの延伸を行なった。このサンプルの積層表面を観察したところ、膨らみは全く見られず積層界面には気泡は全く発生していなかった。さらに、表面粗さも20Å以下であり非常に平滑なものを得ることに成功した。
【0039】
また、このサンプルの光学特性を光スペクトルアナライザーにより測定したところ、消光比40dB、挿入損失0.1dBの非常に良好な結果を得ることができた。
【0040】
〔光アイソレータ〕図6に光アイソレータ10の一部断面斜視図を示すように、光アイソレータ10はNi−Fe合金から成るホルダ11内に、第1偏光素子12と磁性ガーネット等から成るファラデー回転子13と第2偏光素子14とを軸上に配置させ、周囲に同軸の磁石15を配置させて構成されています。ここで、第1偏光素子12は、図8に示すように、金属粒子4aが光の伝搬方向(入射光L1→出射光L2)に向かってタテ方向に配向している。また、第2偏光素子14は、図9に示すように、金属粒子4aが戻り光の方向(L2→L1)方向に向かって斜め方向に配向している。
【0041】
順方向(入射光L1→出射光L2)の偏光面の回転は次のようになる。すなわち、無偏光の光(図7(1))は、第1偏光素子12を透過するとタテ方向の光が遮断され、主にヨコ方向の光が透過する(図7(2))。そして、この透過光がファラデー回転子13により45°時計回りに回転させられ(図7(3))、第2偏光素子14をそのままの偏光光が透過する(図7(4))。
【0042】
一方、逆方向(戻り光〜)の偏光面の回転は次のようになる。すなわち、伝搬経路で反射された無偏光の戻り光(図7(4))は、第2偏光素子14を透過すると斜め方向の光が遮断され、その斜め方向と直交する方向の光が主に透過する(図7(3))。そして、この透過光がファラデー回転子13により45°時計回りに回転させられ(図7(2))、第1偏光素子12により遮断される(図7(1))。
【0043】
【発明の効果】
以上詳述したように、本発明の偏光素子及び光アイソレータの製造方法によれば、偏光層中のスパッタリングガスの不純物ガスの含有量を所定値以下とすることにより、偏光素子表面に気泡が生じることなしに、偏光特性及び信頼性の非常に優れた偏光素子及び光アイソレータを提供することができる。
【図面の簡単な説明】
【図1】 本発明に係る偏光素子の構造を示す斜視図である。
【図2】 本発明に係る偏光素子の要部断面図である。
【図3】 偏光素子からの気泡の発生を示すTDSによる特性図である。
【図4】 延伸前の偏光素子について、熱処理温度と表面粗さとの関係を示す特性図である。
【図5】 延伸前の偏光素子を真空中560℃で加熱した際の、熱処理時間と偏光層の表面粗さ及び偏光層中のAr含有量との関係を示す特性図である。
【図6】 光アイソレータの分解状態を示す一部破断斜視図である。
【図7】 本発明に係る光アイソレータの動作原理を説明する図であり、出射光側から入射光側へ向かってみた場合の偏光面の回転を示す図である。
【図8】 本発明に係る光アイソレータの第1偏光素子の金属粒子の配向状態を模式的に示す図である。
【図9】 本発明に係る光アイソレータの第2偏光素子の金属粒子の配向状態を模式的に示す図である。
【符号の説明】
1:偏光素子
2:基板(誘電体基板)
3:偏光層
4:金属粒子層
4a:金属粒子
5:誘電体層
10:光アイソレータ
11:ホルダ
12:第1偏光素子
13:ファラデー回転子
14:第2偏光素子
L1:入射光
L2:出射光[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a polarizing element used in an optical communication device, an optical recording device, an optical sensor, and the like, and an optical isolator, and more particularly to a method for manufacturing a polarizing element in which metal particles having anisotropy are dispersed in a dielectric. And an optical isolator manufacturing method using the polarizing element.
[0002]
[Prior art]
A polarizing element is used to extract light polarized in a specific direction, and is used in optical communication, an optical sensor, an optical interferometer, and the like. For example, in the case of optical communication, the polarizing element is a main component of the optical isolator. In the optical isolator, for example, a first polarizing element, a Faraday rotator, and a second polarizing element are arranged on an optical axis in a holder, and a coaxial magnet is arranged around the first polarizing element.
[0003]
Here, for example, a Ni—Fe alloy or the like is used as the holder, and the polarizing element is hermetically sealed by welding to the holder with low melting glass or solder. The value at the wavelength used for optical communication is important for polarization performance. The optical isolator uses a combination of laser diodes, etc., takes out the light polarized in a specific direction by the first polarizing element, and the polarization direction by the Faraday rotator. Is rotated so that the light whose polarization direction is rotated by the second polarizing element is taken out, and the reflected return light from the opposite direction is not emitted from the optical isolator.
[0004]
At present, the polarizing elements in practical use are mainly those in which spheroidal silver particles are dispersed in glass (Japanese Patent Publication No. 2-40619, corresponding US Pat. Nos. 4,486,213, and USP 4, 479, 819). In this polarizing element, a glass substrate containing silver and halogen is heat-treated to precipitate silver halide grains, which are stretched under heating to elongate the silver halide grains into a spheroid shape. In this process, anisotropy occurs in the silver halide grains. Next, heating is performed in a reducing atmosphere to reduce the silver halide to metallic silver.
[0005]
However, in this polarizing element, the aspect ratio (ratio between the major axis length and the minor axis length) is not uniform, and it is difficult to precipitate silver particles having a uniform minor axis or major axis length. Further, it is difficult to reduce the silver halide inside the glass, and opaque silver halide remains. Further, as the glass shrinks in the process of reducing silver halide, the glass surface becomes porous and long-term stability decreases.
[0006]
In order to solve such problems, it has been proposed to manufacture a polarizing element by using a thin film forming process such as vacuum deposition or sputtering (1990 IEICE, Autumn Conference, Proceedings of Presentation C). -212). In this proposal, a metal layer is provided on a dielectric substrate made of glass by vacuum deposition, and a dielectric layer made of glass is laminated thereon by sputtering or the like. Then, several metal layers and dielectric layers are alternately formed. Next, the substrate is stretched under heating, and the metal layer is transformed into a discontinuous island-shaped layer of metal particles. Each metal particle in the metal particle layer is stretched in the stretching direction to form a spheroid, and the polarization performance is exhibited.
[0007]
[Problems to be solved by the invention]
However, the inventors have found that in such a manufacturing method, cracks occur on the uppermost dielectric layer surface after thermoplastic deformation such as stretching. As a result of extensive research by the inventors, as a result of this, the sputtering gas for forming the dielectric layer contained in the polarizing layer expands during heating in stretching to give the metal particles anisotropy, In particular, it was found that bubbles were generated at the lamination interface. Furthermore, it has been found that by performing thermoplastic deformation such as stretching or extrusion, the bubbles are expanded by heating, and the bubbles are torn by the plastic deformation, causing a crack on the surface of the uppermost dielectric layer. Here, the phenomenon that the sputtering gas is included in the film formation is generally called “gas mixing”, especially when Ar is used as the sputtering gas, and is called “Ar trap” or the like. It is inevitable.
[0008]
Therefore, in the conventional polarizing element, the occurrence of such cracks causes light scattering and the like, which in turn increases the insertion loss. Thus, silver halide is deposited in the glass substrate and stretched / reduced. Properties equivalent to those obtained by the manufacturing method have not yet been realized.
[0009]
It is an object of the present invention, provision by incorporation of the impurity gas, the risk of cracking at all without the polarizing layer, the manufacturing method of manufacturing method and an optical isolator of the polarization element in which a very good polarization property and long-term reliability There is to do.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, a method for producing a polarizing element of the present invention includes a step of forming a metal particle layer composed of a large number of metal particles on at least one main surface of a glass substrate having translucency, By alternately repeating the step of forming a glass layer on the metal particle layer by sputtering, a laminate in which the metal particle layer and the glass layer are laminated in a plurality of layers is produced, and the laminate is heated to 300 ° C. or higher. After heat treatment at a temperature below the glass transition point of the glass layer, the laminate is subjected to thermoplastic deformation in a direction perpendicular to the lamination direction, thereby imparting shape anisotropy to the large number of metal particles and aligning them. Features. The glass substrate is BK7 glass, Pyrex glass, quartz glass, or the like.
[0011]
The manufacturing method of the optical isolator of the present invention, wherein a polarizing element produced by the above production method, to dispose the polarizing element on the light incident side and / or the light exit side of the Faraday rotator that transmits light And
[0012]
Here, the phenomenon that the dielectric layer swells is explained as follows. When the dielectric layer is heated, the sputtering gas in the dielectric layer starts to be released to the atmosphere. However, when the temperature rises to the vicinity of the glass transition point, the viscosity of the glass increases and the air permeability deteriorates. As a result, no gas is released into the atmosphere, causing the dielectric layer to expand. Sputtering gas is released from around 300 ° C., which is much lower than the glass transition temperature, and a lot of sputtering gas is released at 400 ° C. or higher. As a result, by performing heat treatment for several hours at a temperature below the glass transition point, it becomes possible to reduce the sputtering gas in the dielectric layer to a predetermined value or less, and as a result, cracks occur during heating during stretching or extrusion. Thus, a polarizing element with low insertion loss can be provided.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 and 2, the polarizing element 1 has a polarizing layer 3 provided on at least one main surface of a dielectric substrate 2 having translucency, and the polarizing layer 3 is a dielectric substrate. A metal particle layer 4 in which a large number of metal particles 4a having a shape anisotropy having a number density of 40 / μm 2 (square micron) or less in the substrate surface direction are dispersed on the substrate 2 and a translucent dielectric layer 5; Are stacked alternately. Further, the polarizing layer 3 has a content of a group 0 element (for example, Ar, Ne, He, etc.) preferably used as a sputtering gas, of 1.5 × 10 20 molecules / cm 3 or less. Here, having translucency means transparent to the wavelength used. Further, the number density of the metal particles 4a is a density in the direction of the substrate surface S, and is a density measured when the metal particles 4a are cut along a surface including a major axis of the at least one metal particle 4a (a surface parallel to the substrate surface S). is there. In FIGS. 1 and 2, a part of the laminated state of the metal particle layer 4 and the dielectric layer 5 is omitted.
[0014]
The substrate 2 is made of, for example, borosilicate glass such as Pyrex glass (Pyrex is a trademark of Corning Glass Industry) or BK7 glass (BK7 is a trade name of Shot Glass Co.). Low melting glass such as high melting glass or soda glass may be used. In addition, other transparent materials may be used instead of such glass materials, but glass materials are preferably used because they are inexpensive and easy to stretch.
[0015]
Of the glass materials, borosilicate glass is particularly preferable for the substrate 2. This is because the coefficient of thermal expansion of borosilicate glass approximates the metal material used for the holder of the optical isolator. For example, the body thermal expansion coefficient of borosilicate glass is close to 90-96 × 10 −7 / ° C. of the body thermal expansion coefficient of a Ni—Fe alloy used as a holder material, and it is very easy to seal the holder. Because. For example, the body thermal expansion coefficient of BK7 glass is about 72 to 89 × 10 −7 / ° C., which is very close to the body thermal expansion coefficient of a Ni—Fe alloy, and thus can be suitably used.
[0016]
The dielectric layer 5 is preferably made of the same material as that of the substrate 2. For example, when Pyrex glass is used for the substrate 2, it is preferable that Pyrex glass is also used for the dielectric layer 5 to match the characteristics such as the coefficient of thermal expansion.
[0017]
The metal particles 4a are preferably one or more metals selected from noble metals such as Au, Ag, Pt, Rh, and Ir, and transition metals such as Cu, Fe, Ni, and Cr. A metal that is poor in wettability with the layer 5 and easily agglomerates and hardly oxidizes, and can exist as the metal particles 4a in the dielectric layer 5 is preferable. Among these, particularly preferred are Au which is easy to aggregate due to its low melting point, has poor wettability with glass and is not easily oxidized, and Cu has low cost and poor wettability with glass. The metal particles 4a are not limited to a single metal but may be an alloy.
[0018]
The metal particles 4a are spheroidal and anisotropic, and in FIG. 1 (however, the light traveling direction is the Z direction and the plane perpendicular thereto is the XY plane), the length of the metal particles 4a is long. The axial direction is the X direction, and the minor axis direction is the Y direction. Further, the ratio of the major axis length to the minor axis length of the metal particles 4a is referred to as an aspect ratio, and here, the average value of the aspect ratios of a large number of metal particles 4a is simply referred to as an aspect ratio.
[0019]
The metal particles 4a have a spheroid shape because the metal particles 4a are stretched in the stretching direction together with the substrate 2 during stretching after the polarizing layer 3 is formed on the substrate 2. The higher the aspect ratio, the higher the extinction ratio. At the same time, the stretching ratio of the substrate 2 increases, making stretching difficult, and the extinction ratio increasing ratio decreases in a high aspect ratio area. Is suitably 3 to 30, particularly preferably about 15 to 25. The extinction ratio indicates the ratio of the energy of transmitted light in the X direction and transmitted light in the Y direction in decibels when input light that is not polarized at a predetermined wavelength is used. When the minor axis length of the metal particle 4a is increased, the insertion loss with respect to the polarized light in the Y direction to be transmitted increases. From this also, the minor axis length is short and the insertion loss is short when the aspect ratio is 3 or more, more preferably 15 or more. Is preferably reduced. As the major axis average length of the metal particles 4a increases, the absorption peak wavelength in the X direction increases and approaches the wavelength range (about 1.3 μm) used in optical communication. However, if the aspect ratio of the metal particles 4a is limited in production and the increase in the short axis length brings about insertion loss, the long axis length is also limited. Therefore, preferable conditions for the metal particles 4a are an aspect ratio of 3 to 30, more preferably an aspect ratio of 10 to 30, and most preferably an aspect ratio of 15 to 25.
[0020]
The polarizing element 1 is produced, for example, as follows. That is, first, a metal thin film layer composed of a large number of metal fine particles is formed on at least one main surface of a light-transmitting glass substrate by a vacuum deposition method, and the metal fine particles are aggregated by heating the metal thin film layer. A metal particle layer made of island-like metal particles obtained as described above is formed, and a glass layer is formed on the metal particle layer by sputtering.
[0021]
Further, a laminate in which the metal particle layer and the glass layer are laminated in a plurality of layers by alternately repeating the step of forming the metal particle layer and the step of forming the glass layer on the glass layer as described above. Is made.
[0022]
And after heat-treating this laminated body at a temperature not lower than 300 ° C. and not higher than the glass transition point of the glass layer, the laminated body is subjected to thermoplastic deformation in a direction orthogonal to the laminating direction, whereby a large number of metal particles are anisotropic. It is obtained by imparting properties and orienting. Here, the reason why the laminate is heat-treated at a temperature not lower than 300 ° C. and not higher than the glass transition point of the glass layer is that the sputtering gas contained in the polarizing layer is released and the content thereof is 1.5 × 10 20 molecules / This is to make the thickness 3 cm 3 or less, so that it is possible not to increase the insertion loss in particular. The glass transition point is, for example, 580 ° C. for BK7 glass and 550 ° C. for Pyrex glass. As is clear from Table 1 described later, by degassing below the glass transition point, degassing can be performed without generating bubbles.
[0023]
In the polarizing element 1 obtained in this way, as shown in FIG. 1, the incident light L1 incident in the Z direction is absorbed by the resonance of the X-direction polarization component with the free electrons of the metal particles 5, and the Y direction. The polarized light component has a high transmittance and becomes polarized outgoing light L2. Here, there is a difference in absorption peak wavelength between the X direction and the Y direction, and there is an absorption peak on the longer wavelength side than the Y direction in the X direction. Unless otherwise indicated, the extinction ratio is determined by the wavelength at which the absorption peak in the X direction occurs.
[0024]
Therefore, for example, the polarizing element 1 is disposed on at least one of the light incident side and the light emitting side of the Faraday rotator so that light is incident on the metal particle layer 4 and the dielectric layer 5 of the polarizing element 1. Thus, if an optical isolator is configured, one having high characteristics and reliability can be provided.
[0025]
【Example】
[Comparative Example] BK7 glass having a size of 76 mm × 10 mm × 1 mm was used for the substrate. Further, as the film forming apparatus, a multi-element magnetron sputtering apparatus was used, and as the target, copper forming the metal particle layer 4 and BK7 glass forming the dielectric layer 5 in FIG. 1 were used. Furthermore, Ar was used as the sputtering gas. Sputtering conditions are RF power 20 W, sputtering pressure is about 2.0 × 10 −3 Torr, Ar gas flow rate is set to about 10 ccm, copper film thickness is set to about 24 nm, and the copper film is agglomerated to grow. Immediately after the film formation, heat treatment was performed at about 500 ° C. for 60 minutes to grow copper fine particles into copper particles of a predetermined size. The copper film thickness was derived from this value by measuring the film thickness of a film formed for 20 minutes under the above sputtering conditions and calculating the film formation rate.
[0026]
Next, in order to embed the copper particles in the glass, the same BK7 glass as the substrate material was formed to 250 nm on the copper particle layer produced under the above conditions. The above process was repeated five times to produce five dielectric layers 4. Further, the sample was stretched by 50 mm at a stress of 45 kg / mm 2 at 625 ° C. below the softening point temperature (724 ° C.) of BK7 glass in directions opposite to each other in the direction perpendicular to the laminating direction. Pyrex glass preferably has a softening point of 820 ° C. and is stretched at a temperature lower than the softening point.
[0027]
As a result, a large number of metal particles forming an approximately spheroid having an aspect ratio of about 10 (short axis length of 20 to 30 nm) in a polarizing layer of about 400 nm thickness (5 dielectric layers having a thickness of about 80 nm). A polarizing element having a size of about 126 mm × 3 mm × 0.3 mm was obtained. However, cracks occurred on the surface of the polarizing element (laminated surface). Further, when the characteristics of this sample were measured with an optical spectrum analyzer, it was an undesirable result with an extinction ratio of 15 dB and an insertion loss of 2 dB.
[0028]
[Pursuit of the cause of crack generation] The gas contained in the bubbles in the polarizing layer causing the cracks by the thermal gas desorption analysis (TDS), the metal particle layer and the dielectric layer described in the comparative example described above. Each sample was analyzed using a sample before stretching in which five layers were laminated. Note that TDS is an analysis in which a sample is heated in a vacuum, a qualitative analysis of the gas generated at that time is performed, and at the same time a change in the degree of vacuum is measured.
[0029]
The result is shown in FIG. E on the vertical axis indicates an index of 10. Here, the heating temperature was taken on the X axis, the change in the degree of vacuum and the ionic strength of Ar gas were taken on the Y axis. According to this, it was observed that the degree of vacuum greatly changed from 550 ° C. to 600 ° C., and it is considered that the bubbles in the polarizing layer burst in this temperature range. Further, as a result of qualitative analysis, it was confirmed that Ar gas was generated simultaneously with the change in the degree of vacuum. Thereby, it was confirmed that the cause of bubbles was generation of Ar from the polarizing layer of the sample. Furthermore, it was confirmed that Ar gas was generated even at a temperature before the bubbles burst.
[0030]
Therefore, based on the above results, it was decided to reduce the gas content in the sample by performing heat treatment for a long time at a temperature at which bubbles do not occur.
[0031]
First, in order to investigate the temperature at which Ar can be degassed at a temperature at which no bubbles are generated, that is, the temperature at which the Ar gas content in the sample is reduced, the sample is heated at about 480 ° C. to 20 ° C. in vacuum. The sample was heated for 15 minutes, and the presence / absence of bubbles visually at the laminated interface of the sample and the change in surface roughness were measured. The results are shown in Table 1 and FIG.
[0032]
[Table 1]
Figure 0003740248
[0033]
As is apparent from Table 1 and FIG. 4, when the heat treatment temperature was 560 ° C. or lower, almost no swelling was observed on the surface of the laminate, and no bubbles were generated at the interface of the laminate. Further, the surface roughness was 13 to 17 mm, and there was almost no change. On the other hand, when the heat treatment temperature reached 580 ° C., it was confirmed that swelling was observed on the surface of the laminate and bubbles were generated at the interface of the laminate. In addition, it was confirmed that the surface roughness also changes abruptly as the bubbles are generated. The surface roughness at that time was 150 ° C., and the value was 10 times or more compared with other samples in which bubbles were not generated. From the above examination, the heat treatment temperature for degassing was determined to be 560 ° C. When Pyrex glass is used for the substrate 2 and the dielectric layer 5, bubbles are generated by degassing at 560 ° C. which is higher than the glass transition point (550 ° C.), and the surface roughness is increased. In the degassing, no bubbles were generated and the surface roughness could be reduced to 20 mm or less.
[0034]
Next, in order to confirm the effect of degassing by heat treatment, the Ar gas content of the sample heated in vacuum at about 560 ° C. for 4 hours, 8 hours, 10 hours, and 12 hours, respectively, The sample was examined for the presence or absence of swelling (bubbles) and surface roughness when heated at 625 ° C., which is the stretching temperature of the sample. The results are shown in Table 2 and FIG.
[0035]
[Table 2]
Figure 0003740248
[0036]
As is apparent from Table 2 and FIG. 5, by performing a heat treatment at 560 ° C. for 10 hours, the Ar content in the sample was reduced to 1.5 × 10 20 molecules / cm 3 , and 625 ° C. during stretching. It was confirmed that almost no bulges (bubbles) were generated on the surface of the laminate even when heated to a high temperature. In particular, by performing a heat treatment at 560 ° C. for 12 hours, the Ar content is reduced to 1.0 × 10 19 molecules / cm 3 , and even when heated to 625 ° C. during stretching, swelling of the laminated surface (bubbles) It was confirmed that the Ar content should be 1.0 × 10 19 molecules / cm 3 or less.
[0037]
[Manufacture of Polarizing Element] Based on the above examination, a laminate was produced in the same manner as in the above Comparative Example, and then, for 12 hours at 560 ° C. in a heating furnace in order to reduce the Ar content in the polarizing layer of the sample. Heated. The atmosphere at this time was an air atmosphere. Here, as is apparent from the fact that Ar was degassed in the air atmosphere, the degas atmosphere is arbitrary, and the content of the group 0 element is preferably 2% by volume or less (1% by volume in the air).
[0038]
The sample was then stretched 50 mm at 625 ° C. with a stress of 45 kg / mm 2 . When the laminated surface of this sample was observed, no swelling was observed and no bubbles were generated at the laminated interface. Furthermore, the surface roughness was 20 mm or less, and a very smooth surface was obtained.
[0039]
Further, when the optical characteristics of this sample were measured with an optical spectrum analyzer, very good results with an extinction ratio of 40 dB and an insertion loss of 0.1 dB could be obtained.
[0040]
[Optical Isolator] As shown in a partial cross-sectional perspective view of the optical isolator 10 in FIG. 6, the optical isolator 10 is placed in a holder 11 made of a Ni—Fe alloy, and a Faraday rotator made of a first polarizing element 12 and a magnetic garnet. 13 and the second polarizing element 14 are arranged on the axis, and a coaxial magnet 15 is arranged around the circumference. Here, as shown in FIG. 8, in the first polarizing element 12, the metal particles 4a are oriented in the vertical direction toward the light propagation direction (incident light L1 → emitted light L2). Further, as shown in FIG. 9, in the second polarizing element 14, the metal particles 4a are oriented obliquely in the direction of the return light (L2 → L1).
[0041]
The rotation of the polarization plane in the forward direction (incident light L1 → emitted light L2) is as follows. That is, when the non-polarized light (FIG. 7 (1)) is transmitted through the first polarizing element 12, the light in the vertical direction is blocked and the light in the horizontal direction is mainly transmitted (FIG. 7 (2)). Then, this transmitted light is rotated 45 ° clockwise by the Faraday rotator 13 (FIG. 7 (3)), and the polarized light as it is is transmitted through the second polarizing element 14 (FIG. 7 (4)).
[0042]
On the other hand, the rotation of the polarization plane in the reverse direction (return light ~) is as follows. That is, the non-polarized return light reflected in the propagation path (FIG. 7 (4)) is blocked by the oblique light when passing through the second polarizing element 14, and the light orthogonal to the oblique direction is mainly used. It penetrates (FIG. 7 (3)). Then, the transmitted light is rotated 45 ° clockwise by the Faraday rotator 13 (FIG. 7 (2)) and blocked by the first polarizing element 12 (FIG. 7 (1)).
[0043]
【The invention's effect】
As described above in detail, according to the manufacturing method of the polarizing element and the optical isolator of the present invention, bubbles are generated on the surface of the polarizing element by setting the content of the impurity gas of the sputtering gas in the polarizing layer to a predetermined value or less. Accordingly, it is possible to provide a polarizing element and an optical isolator with extremely excellent polarization characteristics and reliability.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a structure of a polarizing element according to the present invention.
FIG. 2 is a cross-sectional view of a main part of a polarizing element according to the present invention.
FIG. 3 is a characteristic diagram by TDS showing generation of bubbles from a polarizing element.
FIG. 4 is a characteristic diagram showing the relationship between the heat treatment temperature and the surface roughness of the polarizing element before stretching.
FIG. 5 is a characteristic diagram showing the relationship between the heat treatment time, the surface roughness of the polarizing layer, and the Ar content in the polarizing layer when the polarizing element before stretching is heated at 560 ° C. in vacuum.
FIG. 6 is a partially broken perspective view showing a disassembled state of the optical isolator.
FIG. 7 is a diagram for explaining the principle of operation of the optical isolator according to the present invention, and is a diagram showing the rotation of the polarization plane when viewed from the emitted light side toward the incident light side.
FIG. 8 is a diagram schematically showing the orientation state of metal particles of the first polarizing element of the optical isolator according to the present invention.
FIG. 9 is a diagram schematically showing the orientation state of the metal particles of the second polarizing element of the optical isolator according to the present invention.
[Explanation of symbols]
1: Polarizing element 2: Substrate (dielectric substrate)
3: Polarizing layer 4: Metal particle layer 4a: Metal particle 5: Dielectric layer 10: Optical isolator 11: Holder 12: First polarizing element 13: Faraday rotator 14: Second polarizing element L1: Incident light L2: Outgoing light

Claims (2)

透光性を有するガラス基板の少なくとも一方の主面上に、多数の金属粒子から成る金属粒子層を形成する工程と、該金属粒子層上にガラス層をスパッタリングで形成する工程とを交互に繰り返すことにより、前記金属粒子層と前記ガラス層とが複数層に積層された積層体を作製し、該積層体を300℃以上前記ガラス層のガラス転移点以下の温度で熱処理した後に、該積層体を積層方向と直交する方向へ熱塑性変形させることにより、前記多数の金属粒子に形状異方性を付与し配向せしめたことを特徴とする偏光素子の製造方法。  The step of forming a metal particle layer composed of a large number of metal particles on at least one main surface of a light-transmitting glass substrate and the step of forming a glass layer on the metal particle layer by sputtering are alternately repeated. By producing a laminate in which the metal particle layer and the glass layer are laminated in a plurality of layers, and heat-treating the laminate at a temperature of 300 ° C. or more and below the glass transition point of the glass layer, the laminate A manufacturing method of a polarizing element, characterized in that a shape anisotropy is imparted and oriented to the large number of metal particles by thermoplastically deforming in a direction perpendicular to the laminating direction. 請求項1の製造方法によって偏光素子を作製し、該偏光素子を光を透過させるファラデー回転子の光入射側及び/又は光出射側に配設することを特徴とする光アイソレータの製造方法。 The polarizing element prepared by the method of claim 1, a method of manufacturing an optical isolator, characterized in that arranged on the light incident side and / or the light exit side of the Faraday rotator for transmitting light to the polarizing element.
JP10358297A 1996-04-26 1997-04-21 Method for manufacturing polarizing element and method for manufacturing optical isolator Expired - Fee Related JP3740248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10358297A JP3740248B2 (en) 1996-04-26 1997-04-21 Method for manufacturing polarizing element and method for manufacturing optical isolator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-107108 1996-04-26
JP10710896 1996-04-26
JP10358297A JP3740248B2 (en) 1996-04-26 1997-04-21 Method for manufacturing polarizing element and method for manufacturing optical isolator

Publications (2)

Publication Number Publication Date
JPH1054910A JPH1054910A (en) 1998-02-24
JP3740248B2 true JP3740248B2 (en) 2006-02-01

Family

ID=26444207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10358297A Expired - Fee Related JP3740248B2 (en) 1996-04-26 1997-04-21 Method for manufacturing polarizing element and method for manufacturing optical isolator

Country Status (1)

Country Link
JP (1) JP3740248B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0999459A3 (en) * 1998-11-03 2001-12-05 Corning Incorporated UV-visible light polarizer and methods
JP4959884B2 (en) * 2001-09-12 2012-06-27 信越化学工業株式会社 Optical device manufacturing method

Also Published As

Publication number Publication date
JPH1054910A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
US5999315A (en) Polarizer and a production method thereof and an optical isolator
EP0744634B1 (en) Method of producing an optical polarizer
US6772608B1 (en) Method for producing UV polarizers
JP4402728B2 (en) Polarizing glass, optical isolator, and manufacturing method of polarizing glass
WO2019138875A1 (en) Functional element, method for manufacturing functional element, and electronic device
JP3740248B2 (en) Method for manufacturing polarizing element and method for manufacturing optical isolator
WO2009110595A1 (en) Polarizing element
JP3602913B2 (en) Polarizing element, optical isolator using the same, and method of manufacturing the same
JPH0756018A (en) Production of polarizer
JP3722603B2 (en) Manufacturing method of polarizer
JPH08248227A (en) Polarizing glass and its production
JPH06273621A (en) Polarizer and its production
JPH10300931A (en) Polarizing plate
JPH10274711A (en) Polarizing element and optical isolator using the same
JPH11248935A (en) Polarizer and its manufacture
JP3784198B2 (en) Optical isolator
JP2004070131A (en) Thin film polarizer and its manufacturing method
JPH1152129A (en) Polarizer and its production
JP3670482B2 (en) Production method of polarizer
JPH11248936A (en) High extinction ratio polarizer
JPH07301710A (en) Production of polarizer and apparatus for production
JPH09318813A (en) Polarizing element
JP2000193823A (en) Polarizer, and optical isolator using it
JPH11344617A (en) Polarizer
JPH1172618A (en) Polarizer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees