JP3739908B2 - Silver halide emulsion, silver halide emulsion production method, silver halide color photographic light-sensitive material, and image forming method - Google Patents

Silver halide emulsion, silver halide emulsion production method, silver halide color photographic light-sensitive material, and image forming method Download PDF

Info

Publication number
JP3739908B2
JP3739908B2 JP28282397A JP28282397A JP3739908B2 JP 3739908 B2 JP3739908 B2 JP 3739908B2 JP 28282397 A JP28282397 A JP 28282397A JP 28282397 A JP28282397 A JP 28282397A JP 3739908 B2 JP3739908 B2 JP 3739908B2
Authority
JP
Japan
Prior art keywords
silver
silver halide
emulsion
halide emulsion
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28282397A
Other languages
Japanese (ja)
Other versions
JPH11109534A (en
Inventor
美郎 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP28282397A priority Critical patent/JP3739908B2/en
Priority to US09/159,545 priority patent/US6183946B1/en
Priority to CNB981200699A priority patent/CN1173228C/en
Publication of JPH11109534A publication Critical patent/JPH11109534A/en
Application granted granted Critical
Publication of JP3739908B2 publication Critical patent/JP3739908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/0051Tabular grain emulsions
    • G03C1/0053Tabular grain emulsions with high content of silver chloride
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/09Noble metals or mercury; Salts or compounds thereof; Sulfur, selenium or tellurium, or compounds thereof, e.g. for chemical sensitising
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/10Organic substances
    • G03C1/12Methine and polymethine dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/015Apparatus or processes for the preparation of emulsions
    • G03C2001/0153Fine grain feeding method
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03517Chloride content
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03541Cubic grains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03552Epitaxial junction grains; Protrusions or protruded grains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/09Noble metals or mercury; Salts or compounds thereof; Sulfur, selenium or tellurium, or compounds thereof, e.g. for chemical sensitising
    • G03C2001/093Iridium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C2200/00Details
    • G03C2200/01100 crystal face
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C2200/00Details
    • G03C2200/03111 crystal face
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/3022Materials with specific emulsion characteristics, e.g. thickness of the layers, silver content, shape of AgX grains

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲン化銀乳剤に関し、詳しくは高照度での相反則特性に優れ、かつ露光後処理までの時間変動による感度変動及び階調変動が小さく、さらに高湿度の中で露光したときの感度低下が小さいハロゲン化銀乳剤、この製造方法及びこれを用いたハロゲン化銀カラー写真感光材料に関するものである。
【0002】
【従来の技術】
近年、カラー印画紙においては、高感度化、処理安定化、高画質化、現像処理工程の迅速化等の性能に対する要求が著しく強まっている一方で、最近ではレーザー走査露光装置の普及により、短時間かつ高照度露光適性も重要な性能の1つに挙げられる。レーザー走査露光では、露光の高速化及び解像度の向上が図れることが大きな特徴である。しかしながら、これをカラー印画紙に用いれば、今までにない非常に短時間(具体的には10-6秒)かつ高照度での露光適性が要求される。
これまでこのような高照度露光でのハロゲン化銀乳剤の相反則不軌改良のため、イリジウムに代表される金属化合物を基盤粒子にドープする方法は当業界ではよく知られている。
【0003】
イリジウムによるハロゲン化銀乳剤の相反則不軌改良は、たとえばB.H.Carroll の”Iridium Sensitization :A Literature Review ”、Photographic Science and Engineering,Vol.24,No.6,1980 やR.S.Eachusの”The Mechanism of Ir3+ Sensitization(Photographic Science の国際会議1982) に記載されている。
一方、イリジウムを添加したハロゲン化銀乳剤が、露光後処理までの経過時間により写真性能(例えば感度、階調)を変える非常に好ましくない特性を示すことも知られている。この特性は、H.Zwickyの”On the Mechanism of the Sensitivity Increase With Iridium in Silver Halide Emulsions ”,The Journal of Photographic Science,Vol.33,pp.201-203,1985 に記載されている。これまでの方法では、確かに高照度相反則不軌は著しく改良されるが、露光後処理までの時間変動による感度変動が著しく大きくなり、とても実用に供するものではなかった。
また、塩化銀含有率の高いハロゲン化銀乳剤は、発色現像の迅速化を目的として用いられているが、通常の化学増感では高感度で硬調な階調が得られにくいという欠点を有している。高塩化銀乳剤において高感化の試みは多くなされている。その中で、ハロゲン化銀ホスト粒子の粒子頂点近傍に臭化銀富有相を形成し高感化を達成する技術が特開昭64−26837号などに開示されている。また、特開平5−61136号では、ハロゲン化銀ホスト粒子の粒子頂点近傍に臭化銀富有相を多段階で形成させる技術が開示されている。しかし、これらの技術では、高照度相反則不軌を改良するものではなかった。さらに、米国特許第5284745号、同第5391471号、同第5415991号、同5043256号、同5627020号では、高塩化銀基盤粒子の臭化銀富有相中にIrに代表される金属化合物をドープする方法が開示されている。また、欧州特許第0568091A 号、米国特許第5356770号、特開平6−35147号では、高塩化銀粒子に臭化物をイリジウムと同時または後に添加する方法が開示されている。これらの方法では、いずれも露光後処理までの時間変動による感度変動を抑えつつ高照度相反則不軌が改良されるものの、レーザー走査露光のような非常に短時間高照度露光においては十分ではなかった。また、高湿度の中で露光したときの感度低下を防ぐものではなかった。
【0004】
【発明が解決しようとする課題】
したがって、本発明の目的は、短時間高照度での相反則特性に優れ、かつ露光後処理までの時間変動による感度変動が小さく、さらに高湿度の中で露光したときの感度低下が小さいハロゲン化銀乳剤とその製造方法及びこれを用いたハロゲン化銀カラー写真感光材料並びに画像形成方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者が鋭意検討を重ねた結果、上記目的は、下記(1)〜(7)に記載の方法により効果的に達成しうることを見い出した。
すなわち、
(1)塩化銀含有率90mol%以上の塩臭化銀または塩沃臭化銀乳剤において、該乳剤中のハロゲン化銀粒子の粒子表面近傍にイリジウム化合物を含有した臭化銀富有相を有し、該臭化銀富有相の内側部に、イリジウム化合物密度が該富有相の外側部より高い領域を有することを特徴とするハロゲン化銀乳剤。
(2)前記ハロゲン化銀粒子が、立方体または14面体粒子であることを特徴とする(1)に記載のハロゲン化銀乳剤。
(3)前記ハロゲン化銀乳剤の全粒子の全投影面積の50%以上が、主平面が{100}からなる、平均アスペクト比2以上の平板状粒子、あるいは主平面が{111}面からなる、平均アスペクト比2以上の平板状粒子であることを特徴とする(1)に記載のハロゲン化銀乳剤。
(4)塩化銀含有率90mol%以上の塩臭化銀または塩沃臭化銀乳剤中のハロゲン化銀粒子の粒子表面近傍にイリジウム化合物を含有した臭化銀富有相を形成するハロゲン化銀乳剤の製造方法において、該臭化銀富有相形成が少なくとも2段階の形成工程から成り、ある形成工程で添加するイリジウム化合物の添加する銀に対するモル量が、それ以後のいずれかの形成工程で添加するイリジウム化合物の添加する銀に対するモル量よりも高いことを特徴とするハロゲン化銀乳剤製造方法。
(5)前記の臭化銀富有相形成が、塩臭化銀または塩沃臭化銀ホスト粒子からなるハロゲン化銀乳剤よりも粒径が小さい臭化銀微粒子乳剤または塩臭化銀微粒子乳剤を少なくとも2回添加することで行われることを特徴とする(4)に記載のハロゲン化銀乳剤製造方法。
(6)支持体上にそれぞれ少なくとも一層の青感性ハロゲン化銀乳剤層、緑感性ハロゲン化銀乳剤層、及び赤感性ハロゲン化銀乳剤層を有するハロゲン化銀カラー写真感光材料において、前記青感性ハロゲン化銀乳剤層、緑感性ハロゲン化銀乳剤層、及び赤感性ハロゲン化銀乳剤層の少なくとも一層が、塩化銀含有率90mol%以上の塩臭化銀または塩沃臭化銀乳剤であり、該乳剤中のハロゲン化銀粒子の粒子表面近傍にイリジウム化合物を含有した臭化銀富有相を有し、該臭化銀富有相内にイリジウム化合物密度が表面側より高い領域を有することを特徴とするハロゲン化銀乳剤を、含有することを特徴とするハロゲン化銀カラー写真感光材料。
(7)(6)に記載のハロゲン化銀カラー写真感光材料を画像情報に基づいて変調したレーザー光ビームにより、1画素あたりの露光時間が10-4秒よりも短い走査露光をした後に現像処理することを特徴とする画像形成方法。
【0006】
【発明の実施の形態】
本発明について以下説明する。
本発明の乳剤を作るのに用いられるホストハロゲン化銀粒子は、好ましくは実質的に{100}面を持つ立方体または14面体の結晶粒子(これらは角が丸みを帯び、さらに高次の面を有していてもよい)であり、また、全投影面積の50%以上が{100}面または{111}面からなるアスペクト比2以上の平板状の結晶粒子が好ましい。アスペクト比とは、投影面積に相当する円の直径を粒子の厚さで割った値である。アスペクト比が大きいほど、粒子の厚みは薄くなり、平たくなる。本発明において、平板状粒子とはアスペクト比が1.2以上のものであり、平均アスペクト比とは乳剤中の全平板状粒子のアスペクト比の平均値を意味する。本発明では、立方体または{100}面を主平面とする平板状粒子が好ましく適用される。さらに、{100}平板状粒子では、隣接辺比が10以下の平板状粒子が好ましい。この隣接辺比とは、隣接する2辺の大きい方の辺を小さい方の辺で割った値である。隣接辺比は、1に近いほど、主平面が正方形に近づく。
【0007】
高濃度に塩化銀を含有する平板状粒子としては、{100}主平面を有する粒子と、{111}主平面を有する粒子がある。
【0008】
{100}主平面を有する平板状ハロゲン化銀乳剤粒子の形成法としては、ゼラチン水溶液のような分散媒中に銀塩水溶液とハロゲン化物塩水溶液を攪拌しながら添加、混合することにより行うが、この時、例えば、特開平6−301129号や特開平6−347929号ではヨウ化銀を、また、例えば、特開平9−34045号では臭化銀を存在させ、塩化銀との結晶格子の大きさの違いから核に歪みを生じさせ、螺旋転位を導入する方法が開示されている。螺旋転位が導入されると、その面での2次元核の形成が律速ではなくなるため、この面での結晶化が進み、螺旋転位を直交する2つの{100}面に導入することによって平板状の粒子が形成される。また、特開平6−347928号ではイミダゾール類、3,5−ジアミノトリアゾール類を用いたり、特開平8−339044号ではポリビニルアルコール類を用いるなどして、{100}面形成促進剤を添加して{100}平板粒子形成する方法が開示されている。
【0009】
また、{111}主平面を有する平板状ハロゲン化銀乳剤粒子の形成法としては、例えば、米国特許第4400463号、同第5185239号、同第5176991号、同第特開昭63−213836号、米国特許第5176992号では、それぞれアミノアザインデン、トリアミノピリミジン、ヒドロキシアミノアジン、チオ尿素、キサントノイドの晶癖制御剤の存在下で粒子形成を行う方法が開示されている。
【0010】
塩化銀含有率が90モル%以上の塩沃臭化銀結晶である場合には、沃化銀含有率は2モル%以下で、塩化銀含有率95モル%以上の結晶が好ましく、さらには沃化銀含有率は1モル%以下で、塩化銀含有率99モル%以上の結晶が特に好ましい。
【0011】
このハロゲン化銀粒子の平均粒径は、好ましくは0.2μm〜2μmである。その分布状態は単分散であるほど好ましい。単分散乳剤とは、ハロゲン化銀粒子の粒径に関する変動係数(S/平均r)が、0.25以下、好ましくは0.15以下の粒径分布を有する乳剤である。ここで平均rは平均粒径、Sは粒径に関する標準偏差である。すなわち、個々の乳剤粒子の粒径がriであり、その数niであるとき、平均粒径rは、
【0012】
【数1】

Figure 0003739908
【0013】
で定義され、その標準偏差Sは、
【0014】
【数2】
Figure 0003739908
【0015】
と定義される。本発明でいう個々の粒子径とは、ハロゲン化銀乳剤をT.H.James ら著「The Theory of the Photographic Process」第3版 36〜43頁、マクミラン社発行(1966年)に記載されているような当業界でよく知られた方法(通常は電子顕微鏡撮影)で微小撮影した場合に投影された面積に相当した投影面積相当直径である。ここでハロゲン化銀粒子の投影面積相当直径とは上述の著書に示されているようにハロゲン化銀粒子の投影面積と等しい円の直径で定義される。
【0016】
本発明の臭化銀富有相の形成は、以下の方法で行うことができる。
▲1▼臭化カリウム水溶液などの水可溶性化合物を添加・混合する方法。
▲2▼ハロゲン化銀ホスト粒子よりも平均粒径が小さくしかも、臭化銀含有率(モル%)が高いハロゲン化銀粒子を添加・混合する方法。
▲3▼一般式(S)で表される臭素および/または臭素イオンプレカーサーを添加・混合する方法。
また、該臭素および/または臭素イオンの供給において上記方法▲1▼や▲2▼を組み合わせて行ってもよい。臭化銀富有相における臭化銀含有率は10モル%以上70モル%以下であることが好ましく、20モル%以上60モル%以下であることがより好ましい。
【0017】
【化1】
Figure 0003739908
【0018】
(式中、Yはハメットのσp 値が0よりも大きい有機基を表し、R1 及びR2 は水素原子、それぞれ置換もしくは無置換のアルキル基、アルケニル基、アラルキル基、アリール基またはYで表される基を表す。ただしYとR1 は閉環してヘテロ環を形成してもよい。nは1〜3の整数を表す。)
【0019】
以下、一般式(S)について、さらに詳しく説明する。Yはハメットのσp 値が0より大きい有機基を表すが、ハメットのσp 値は「薬物の構造活性相関」(南江堂)96頁(1979年)に記載されており、この表に基づいて置換基を選ぶことができる。Yとして好ましくはハロゲン原子(例えば臭素原子、塩素原子、フッ素原子など)、トリフルオロメチル基、シアノ基、ホルミル基、カルボン酸基、スルホン酸基、カルバモイル基(例えば、無置換カルバモイル、ジエチルカルバモイルなど)、アシル基(例えば、アセチル基、ベンゾイル基など)、オキシカルボニル基(例えばメトキシカルボニル基、エトキシカルボニル基、など)、スルホニル基(例えば、メタンスルホニル基、ベンゼンスルホニル基、など)、スルホニルオキシ基(例えば、メタンスルホニルオキシ基、など)、カルボニルオキシ基(例えば、アセトキシ基、など)、スルファモイル基(例えば、無置換スルファモイル基、ジメチルスルファモイル基、など)ヘテロ環基(例えば、2−チエニル基、2−ベンゾオキサゾリル基、2−ベンゾチアゾリル基、1−メチル−2−ベンゾイミダゾリル基、1−テトラゾリル基、2−キノリル基、など)があげられる。R1 およびR2 は、水素原子、それぞれ置換もしくは無置換のアルキル基(例えば、メチル基、エチル基、n−プロピル基、ヒドロキシエチル基、など)、アルケニル基(例えば、ビニル基、アリル基、など)、アラルキル基(例えば、ベンジル基、など)、アリール基(例えば、フェニル基、p−トリル基、など)、またはYで表される基を表す。ただし、YとR1 は閉環してヘテロ環(例えばイミダゾリル基、ピリジル基、チエニル基、キノリル基、テトラゾリル基、など)、を形成してもよい。一般式(S)中、好ましくは、Yはシアノ基、カルボン酸基、カルバモイル基、アシル基、スルホニル基、オキシカルボニル基、スルファモイル基、またはヘテロ環基を表し、R1 およびR2 は水素原子またはYを表し、nは1〜2の整数を表す。以下に本発明の一般式(S)で表される化合物の具体例を示すが、本発明の化合物はこれに限定されるものではない。
【0020】
【化2】
Figure 0003739908
【0021】
一般式(S)の化合物は市販の試薬として容易に入手できる。一般式(S)の化合物は全ハロゲン化銀量の0.1〜5モル%の範囲で添加されるのが好ましく、より好ましくは0.2〜3モル%の範囲である。
【0022】
臭化銀富有相は、以下の過程を通して形成させることができる。まずは、前記ホストハロゲン化銀粒子に対し、臭素イオンもしくは臭化銀微粒子を供給してホストハロゲン化銀粒子の表面により臭化銀に富んだ新しいハロゲン化銀相を析出させる。この過程は、臭素イオンによる過程は、ホストハロゲン化銀粒子表面のハロゲンイオンとの交換反応により、いわゆる「ハロゲンコンバージョン」と呼ばれる過程で進行する。もう一方の臭化銀微粒子による過程は、ホストハロゲン化銀粒子と、臭化銀微粒子との間におけるより安定な組成の結晶を作ろうとする「再結晶化」と呼ばれる反応により進行し、コンバージョン反応とは分けて考えられる内容のものである。このような再結晶化の反応においては反応の推進力はエントロピーの増大であり、オストワルド熟成とは全く異なった反応である。このことは、例えば、H.C.Yutzy 著「Journal of American Chemical Society」59916 頁(1937)などに記載がある。これらのような全く異なった2種の反応でありながら、どちらの反応もホスト粒子の頂点近傍をより臭化銀に富んだ新しい相の形成場所として選択するのは驚くべきことであるが、よく知られた現象である。
【0023】
本発明のハロゲン化銀粒子は、粒子表面近傍にイリジウム化合物を含有した臭化銀富有相を有する。表面近傍とは、粒子表層部または粒子エッジ部または粒子コーナー部のいずれかである。イリジウム化合物とは、周期律表第VIII族金属のイリジウムのイオンまたは錯イオンを含有した化合物である。好ましい使用量としては、粒子総銀の1モル当たり、10-3〜10-9モルの範囲である。更に好ましくは10-4〜10-7モルである。このイリジウム化合物について更に詳細に説明するが、これらに限定されるものではない。
【0024】
イリジウム化合物は、3価または4価の塩または錯塩で、その中でも錯塩が好ましい。例えば、塩化第一イリジウム(III)、臭化第一イリジウム(III)、塩化第二イリジウム(IV)、ヘキサクロロイリジウム(III)酸ナトリウム、ヘキサクロロイリジウム(IV)酸カリウム、ヘキサアンミンイリジウム(IV)塩、トリオキザラトイリジウム(III)塩、トリオキザラトイリジウム(IV)塩等のハロゲン、アミン類またはシュウ酸を配位子とする錯塩類が好ましい。
【0025】
形成した臭化銀富有相は、その内側部にイリジウム化合物が存在し、そのイリジウム化合物の密度が、その臭化銀富有相の内側部に外側部分のイリジウム化合物密度よりも高いところが存在することを特徴とする。ここでいう外側部分とは、臭化銀富有相の表面から6Å以上の部分であり、体積で言えば、臭化銀富有相体積の1%〜99%の部分であるが、好ましくは30%〜95%の部分であり、更に好ましくは50〜90%の部分である。逆に、ここでいう内側部とは、この外側部分よりも内側の部分を意味する。臭化銀富有相内のイリジウム化合物の密度は、外側部分の密度より内側部分の密度が高ければ高い程よい。内側部分のイリジウム化合物の密度は、外側部分のイリジウム化合物密度に対して3倍以上であることが好ましく、10倍以上であることが更に好ましく、外側部分にイリジウム化合物が存在せず、内側部分のみに存在する場合が最も好ましい。イリジウム化合物は、臭化銀富有相内のみに存在することが好ましいが、ハロゲン化銀ホスト粒子中に存在していてもよい。
【0026】
本発明におけるハロゲン化銀乳剤の調製工程は、一般によく知られているように、水溶性銀と水溶性ハロゲン化物の反応によるハロゲン化銀粒子形成工程、脱塩工程及び化学熟成工程よりなり、本発明の臭化銀富有相形成は前記工程のうち化学熟成工程直前または化学熟成中または化学熟成後であることが好ましい。さらには、化学熟成中であることがより好ましい。
【0027】
本発明の臭化銀富有相の形成には、ハロゲンコンバージョンや再結晶化の開始を抑制または阻止する化合物(CR化合物)を用いることが有効である。CR化合物とは一般に、特定結晶面に選択的に吸着することによって、該化合物が吸着しない場合に比べてハロゲンコンバージョンや再結晶化の開始を遅らせるか、あるいは全く阻止するように機能する物質である。本発明では、一般式(I)、(II)、又は(III)で表される化合物が特に好ましく用いられる。その他、シアニン色素、メロシアニン色素、メルカプトアゾール類、核酸分解物(例えばデオキシリボ核酸やリボ核酸の分解途中の生成物やアデニン、グアニン、ウラシル、シトシル、チミンなど)を用いることもできる。
【0028】
【化3】
Figure 0003739908
【0029】
式中、Z101 とZ102 はそれぞれ含窒素複素環核を形成するに必要な原子団を表す。含窒素複素環核としては、複素原子として窒素原子およびその他、硫黄原子、酸素原子、セレン原子、又はテルル原子を含む5〜6員環核が好ましい。ただし、これらの環にはさらに縮合環が結合していてもよく、またさらに置換基が結合していてもよい。前記の含窒素複素環核の具体例としては、チアゾール核、ベンゾチアゾール核、ナフトチアゾール核、セレナゾール核、ベンゾセレナゾール核、ナフトセレナゾール核、オキサゾール核、ベンゾオキサゾール核、ナフトオキサゾール核、イミダゾール核、ベンズイミダゾール核、ナフトイミダゾール核、4−キノリン核、ピロリン核、ピリジン核、テトラゾール核、インドレニン核、ベンズインドレニン核、インドール核、テルラゾール核、ベンゾテルラゾール核、ナフトテルラゾール核などを挙げることができる。R101 とR102 はそれぞれアルキル基、アルケニル基、アルキニル基またはアラルキル基を表す。これらの基および以下に述べる基はそれぞれその置換体を含む意味で用いられている。例えば、アルキル基を例にして述べると、無置換及び置換アルキル基を含み、これらの基は直鎖でも分岐でもあるいは環状でもよい。アルキル基の炭素数好ましくは1〜8である。
【0030】
また、置換アルキル基の置換基の具体例としては、ハロゲン原子(フッ素、塩素、臭素、沃素など)、シアノ基、アルコキシ基、置換または無置換アミノ基、カルボン酸基、スルホン酸基、水酸基などを挙げることができ、これらの1個でまたは複数が組み合って置換していてもよい。アルケニル基の具体例としては、ビニルメチル基を挙げることができる。アラルキル基の具体例としては、ベンジル基やフェネチル基を挙げることができる。m101 は0または1、2または3の正数を表す。m101 が1の場合、R103 は水素原子、低級アルキル基、アラルキル基、アリール基を表す。前記のアリール基の具体例としては、置換または無置換フェニル基を挙げることができる。R104 は水素原子を表す。m101 が2または3の場合、R103 は水素原子を表し、R104 は水素原子、低級アルキル基、アラルキル基、またはR102 と連結して5〜6員環を形成することができる。また、m101 が2または3を表し、R104 が水素原子を表す場合、R103 の他のR103 と連結して炭化水素環または複素環を形成してもよい。これらの環は5〜6員環が好ましい。j101 、k101 は0または1を表し、X- 101は酸アニオンを表し、n101 は0または1を表す。
【0031】
【化4】
Figure 0003739908
【0032】
式中、Z201 、Z202 は前述のZ101 、またはZ102 と同義である。R201 、R202 はR101 、またはR102 と同義であり、R203 はアルキル、アルケニル、アルキニルまたはアリール基(置換または無置換フェニル基など)を表す。m201 は0、1または2を表す。R204 は水素原子、低級アルキル基、アリール基を表すほか、m201 が2を表す場合、R204 とR204 とが連結して炭化水素環または複素環を形成してもよい。これらの環は5〜6員環が好ましい。Q201 は硫黄原子、酸素原子、セレン原子または>N−R205 を表しR205 はR203 と同義である。j201 、R201 、X- 201およびn201 はそれぞれj101 、k101 、X- 101およびn101 と同義である。
【0033】
【化5】
Figure 0003739908
【0034】
式中、Z301 は含窒素複素環を形成するのに必要な原子団を表す。この含窒素複素環としては、Z101 やZ102 に関して述べたもの及びその具体例としてはその他チアゾリジン、チアゾリン、ベンゾチアゾリン、ナフトチアゾリン、セレナゾリジン、セレナゾリン、ベンゾセレナゾリン、ナフトセレナゾリン、ベンゾオキサゾリン、ナフトオキサゾリン、ジヒドロピリジン、ジヒドロキノリン、ベンズイミダゾリン、ナフトイミダゾリンなどの核を挙げることができる。Q301はQ201 と同義である。R301 はR101 またはR102 と、R302 はR203 と同義である。m301 はm201 と同義である。R303 はR204 と同義の他、m301 が2または3を表す場合、R303 と他のR303 とが連結して炭化水素環または複素環を形成してもよい。j301 はj101 と同義である。
【0035】
CR化合物はホスト粒子より臭化銀に富んだ新しい相の初めの形成場所の選択性を高めることの他に、最初に形成された前記の新しい相がさらにホスト粒子の表面と再結晶化を繰り返してホスト粒子の表面全体を均一な新しい相とするような反応を行うことを防止し、ホスト粒子の頂点部近傍に限定されてエピタキシャルに成長した「より臭化銀に富んだ新しい相」を形成・保持することを促進する。高臭化銀微粒子とホスト粒子とを混合熟成する方法は反応の均一性が高くコントロールしやすい利点がある。また、この方法によれば新しい相の臭化銀含有率も混合熟成に用いる高臭化銀微粒子の臭化銀含有率や粒子サイズ、再結晶化反応時のpAgなどの条件により広く調節が可能であり好ましい。この方法によって造られたハロゲン化銀粒子は、塩化銀を90モル%以上含有するホスト粒子の頂点近傍にホスト粒子に比べてより臭化銀に富んだ新しい相がエピタキシャルに成長したものであり、新しい相とホスト粒子との間には緩やかなハロゲン組成の遷移領域を有することがある。このような粒子の構造は、種々の分析方法によって観察される。先ず電子顕微鏡による観察で粒子の形態変化から粒子の頂点近傍に新しい相が接合されていることが観察される。
【0036】
また、X線回折法によってホスト粒子と、新しい相のハロゲン組成を求めることができる。表面の平均ハロゲン組成については、XPS(X-ray Photoelectron Spectroscopy)法により、例えば島津−du Pont 社製ESCA750 型分光機を用いて測定できる。この測定法について、具体的には染野、安盛井著「表面分析」講談社(1977年発行)に記載されている。X線回折法によりホスト粒子と、新しい相のハロゲン組成を知り、XPS法により表面の平均ハロゲン化銀組成を知ることで、ホスト粒子より臭化銀に富んだ新しい相が全表面のどの程度の割合を占めているのかを、おおよそ測定できる。また、ホスト粒子より臭化銀に富んだ新しい相の存在位置を特定したり、それが粒子の頂点近傍でどの程度の割合を占めているかを測るためには前記電子顕微鏡の観察による方法のほかに、EDX(Energy Dispersive X-ray analysis)法により、透過型電子顕微鏡に装備したEDXスペクトロメーターを用いて測定できる。この測定法について具体的には、副島啓義著「電子線マイクロアナリシス」日刊工業新聞社(1987年発行)に記載されている。本発明における新しい相は、ホスト粒子の頂点近傍に局在することが好ましく、表面の平均ハロゲン組成は臭化銀が15モル%以下であることが好ましく、10モル%以下であることがより好ましい。表面の平均臭化銀含有率が高まることは、新しい相の頂点近傍への局在度が低下することを意味し、同時に感度の低下をもたらす。本発明の好ましい製造法において形成された新しい相はホスト粒子のコーナー部にエピタキシャルに接合・成長した形をしていることが電子顕微鏡によって観察されている。
【0037】
本発明に用いる臭化銀微粒子乳剤の好ましい粒子サイズはホスト粒子のサイズやハロゲン組成によって変わるが、0.3μm以下のものが通常用いられる。より好ましくは、0.1μm以下のものである。臭化銀微粒子乳剤のハロゲン組成は、ホスト粒子より臭化銀含量の高いことが必須であり、30モル%以上の臭化物濃度であることが好ましい。より好ましくは50モル%以上の臭化物を含むことが望まれる。臭化銀微粒子乳剤には必要により沃化銀を含むことも可能である。臭化銀微粒子乳剤の添加で代表される臭素または臭素イオンの全供給量は、ホストのハロゲン化銀に対して銀量で5モル%から0.01モル%の範囲が好ましい。より好ましくは0.05モル%から1.5モル%である。混合される温度は30℃から80℃の間で自由に選べるが、40℃から60℃の範囲が好ましい。
【0038】
本発明に用いるCR化合物、一般式(I)、(II)または(III)は、増感色素としても機能させることができるので、分光感度の高感度化にも有利であり、特にまた表面の部分的再結晶化によって分光感度をさらに安定化することができる。さらに高感度化と安定化を高めるために他の増感色素と組み合わせてもよく、また強色増感剤と組み合わせて用いることができる。たとえば、含窒素複素環核基で置換されたアミノスチルベンゼン化合物(例えば特開昭62−1747385号に記載の一般式(I)の化合物、特に具体的化合物例(I−1)〜(I−17)などや、米国特許第2,933,390号、同3,635,721号に記載のもの)、芳香族有機酸ホルムアルデヒド縮合物(例えば米国特許第3,743,510号に記載のもの)、カドミウム塩、アザインデン化合物などを含んでもよい。米国特許第3,615,613号、同第3,615,641号、同第3,617,295号、同第3,635,721号に記載の組み合わせは特に有用である。次に一般式(I)、(II)または(III)で表されるCR化合物の具体的化合物例を挙げる。しかし、これに限られるものではない。
【0039】
【化6】
Figure 0003739908
【0040】
【化7】
Figure 0003739908
【0041】
【化8】
Figure 0003739908
【0042】
【化9】
Figure 0003739908
【0043】
【化10】
Figure 0003739908
【0044】
【化11】
Figure 0003739908
【0045】
【化12】
Figure 0003739908
【0046】
【化13】
Figure 0003739908
【0047】
【化14】
Figure 0003739908
【0048】
本発明に用いるハロゲン化銀乳剤は、乳剤粒子形成もしくは物理熟成の過程において、イリジウム以外に種々の多価金属イオン不純物を導入することができる。使用する化合物の例としては、鉄、ルテニウム、オスミウム、レニウム、ロジウム、カドミウム、亜鉛、鉛、銅、タリウム等の塩、もしくは錯塩を併用して用いることができる。本発明においては、少なくとも4つのシアノ配位子を有する鉄、ルテニウム、オスミウム、レニウム等の金属化合物が高照度感度を更に高め、潜像増感も抑制する点で、特に好ましい。これらの化合物の添加量は目的に応じて広範囲にわたるが、ハロゲン化銀1モルに対して10-9〜10-2モルが好ましい。
本発明に用いるハロゲン化銀乳剤は、通常化学増感および分光増感を施される。化学増感法については、不安定硫黄化合物の添加に代表される硫黄増感、金増感に代表される貴金属増感、あるいは還元増感等を単独もしくは併用して用いることができる。化学増感に用いられる化合物については、特開昭62−215272号の第18頁右下欄から第22頁右上欄に記載のものが好ましく用いられる。
【0049】
本発明に用いられるハロゲン化銀乳剤は、当業界に知られる金増感を施したものであることが好ましい。金増感を施すことにより、レーザー光等によって走査露光したときの写真性能の変動を更に小さくすることができるからである。金増感を施すには、塩化金酸もしくはその塩、チオシアン酸金類あるいはチオ硫酸金類等の化合物を用いることができる。これらの化合物の添加量は場合に応じて広範囲に変わり得るがハロゲン化銀1モルあたり5×10-7〜5×10-3モル、好ましくは1×10-6〜1×10-4モルである。
【0050】
本発明においては、金増感を他の増感法、例えば硫黄増感、セレン増感、テルル増感、還元増感あるいは金化合物以外を用いた貴金属増感等と組み合わせてもよい。
【0051】
本発明に用いられるハロゲン化銀乳剤には、乳剤のあるいは感光材料の製造工程、保存中あるいは写真処理中のかぶりを防止し、あるいは写真性能を安定化させる目的で、種々の化合物を含有させることができる。すなわちアゾール類、例えばベンゾチアゾリウム塩、ニトロイミダゾール類、ニトロベンズイミダゾール類、クロロベンズイミダゾール類、ブロモベンズイミダゾール類、メルカプトチアゾール類、メルカプトベンゾチアゾール類、メルカプトベンズイミダゾール類、メルカプトチアイジアゾール類、アミノトリアゾール類、ベンゾトリアゾール類、ニトロベンゾトリアゾール類、メルカプトテトラゾール類(特に、1−フェニル−5−メルカプトテトラゾールなど)、メルカプトピリミジン類、メルカプトトリアジン類など;例えばオキサドリンチオンのようなチオケト化合物;アザインデン類、例えばトリアザインデン類、テトラアザインデン類(特に4−ヒドロキシ置換−1,3,3a,7−テトラアザインデン)ペンタアザインデン類;ベンゼンチオスルフォン酸、ベンゼンスルフィン酸、ベンゼンスルフォン酸アミドなどのようなかぶり防止剤または安定剤として知られた多くの化合物を加えることができる。特に好ましいのは、メルカプトテトラゾール類である。これは、かぶり防止、安定化以外に高照度感度を更に高める働きがあり好ましい。
【0052】
本発明のカラー写真感光材料に用いられるハロゲン化銀乳剤としては、ハロゲン化銀乳剤層の少なくとも一層に、本発明の製造法で作られたハロゲン化銀乳剤を含む。本発明のカラー感光材料に用いられるその他のハロゲン化銀としては、塩化銀、臭化銀、(沃)塩臭化銀、沃臭化銀などを用いることができるが、特に迅速処理の目的から塩化銀含有率が90モル%以上、更には95モル%以上、特に98モル%以上の高塩化銀乳剤の使用が好ましい。これらの態様の中でも、色相の異なる三種のハロゲン化銀乳剤層が全て本発明の製造法で作られたハロゲン化銀乳剤を含む態様が最も好ましい。
【0053】
本発明に係わる感光材料には、画像にシャープネス等を向上させる目的で親水性コロイド層に、欧州特許EP0,337,490A2号の第27〜76頁に記載の、処理により脱色可能な染料(中でもオキソノール系染料)を該感光材料の680nmにおける光学反射濃度が0.70以上になるように添加したり、支持体の耐水性樹脂層中に2〜4価のアルコール類(例えばトリメチロールエタン)等で表面処理された酸化チタンそ12重量%以上(より好ましくは14重量%以上)含有させるのが好ましい。
【0054】
本発明に用いうるシアン、マゼンタ、イエローカプラー等の写真添加剤は高沸点有機溶媒に溶解させて用いるのが好ましく、その高沸点有機溶媒は、融点が100℃以下、沸点が140℃以上の水と非混和性の化合物で、カプラーの良溶媒であれば使用できる。高沸点有機溶媒の融点は好ましくは80℃以下である。高沸点有機溶媒の沸点は、好ましくは160℃以上であり、より好ましくは170℃以上である。
これらの高沸点有機溶媒の詳細については、特開昭62−215272号公開明細書の第137頁右下欄〜144頁右上欄に記載されている。
また、シアン、マゼンタまたはイエローカプラーは前記の高沸点有機溶媒の存在下でまたは不存在下でローダブルラテックスポリマー(例えば米国特許第4,203,716号)に含浸させて、または水不溶性且つ有機溶媒可溶性のポリマーとともに溶かして親水性コロイド水溶液に乳化分散させる事ができる。
好ましくは米国特許4,857,449号明細書の第7欄〜15欄及び国際公開WO88/00723号明細書の第12頁〜30頁に記載の単独重合体または共重合体が用いられ、より好ましくはメタクリレート系あるいはアクリルアミド系ポリマー、特にアクリルアミド系ポリマーの使用が色像安定化等の上で好ましい。
【0055】
また、本発明に係わる感光材料には、カプラーと共に欧州特許EP0,277,589A2号に記載のような色像保存性改良化合物を使用するのが好ましい。特に潜像増感を抑える上で、ピロロトリアゾールカプラーおよび/またはピラゾロアゾールカプラーとの併用が好ましい。
即ち、発色現像処理後に残存する芳香族アミン系現像主薬と化学結合して、化学的に不活性でかつ実質的に無色の化合物を生成する化合物(F)および/または発色現像処理後に残存する芳香族アミン系発色現像主薬の酸化体と化学結合して、化学的に不活性でかつ実質的に無色の化合物を生成する化合物(G)を同時または単独に用いることが、例えば処理後の保存における膜中残存発色現像主薬ないしその酸化体とカプラーの反応による発色色素生成によるステイン発生その他の副作用を防止する上で好ましい。
【0056】
また、本発明に係わる感光材料には、親水性コロイド層中に繁殖して画像を劣化させる各種の黴や細菌を防ぐために、特開昭63−271247号に記載のような防黴剤を添加するのが好ましい。
【0057】
また、本発明に係わる感光材料に用いられる支持体としては、ディスプレイ用に白色ポリエステル系支持体または白色顔料を含む層がハロゲン化銀乳剤層を有する側の支持体上に設けられた支持体を用いてもよい。更に鮮鋭性を改良するために、アンチハレーション層を支持体のハロゲン化銀乳剤層塗布側または裏面に塗設するのが好ましい。特に反射光でも透過光でもディスプレイが観賞できるように、支持体の透過濃度を0.35〜0.8の範囲に設定するのが好ましい。
【0058】
本発明に係わる感光材料は可視光で露光されても赤外光で露光されてもよい。露光方法としては低照度露光でも高照度短時間露光でもよく、特に後者の場合には一画素当りの露光時間が10-4秒より短いレーザー走査露光方式が好ましい。
【0059】
また、露光に際して、米国特許第4,880,726号に記載のバンド・ストップフィルターを用いるのが好ましい。これによって光混色が取り除かれ、色再現性が著しく向上する。
【0060】
露光済みの感光材料は慣用のカラー現像処理が施されうるが、カラー感材の場合には迅速処理の目的からカラー現像の後、漂白定着処理するのが好ましい。特に前記高塩化銀乳剤が用いられる場合には、漂白定着液のpHは脱銀促進等の目的から約6.5以下が好ましく、更に約6以下が好ましい。
【0061】
本発明に係わる感光材料に適用されるハロゲン化銀乳剤やその他の素材(添加剤など)および写真構成層(層配置など)、並びにこの感材を処理するために適用される処理法や処理用添加剤としては、下記の特許公報、特に欧州特許EP0,355,660A2号(特開平2−139544号)に記載されているものが好ましく用いられる。
【0062】
【表1】
Figure 0003739908
【0063】
【表2】
Figure 0003739908
【0064】
【表3】
Figure 0003739908
【0065】
【表4】
Figure 0003739908
【0066】
【表5】
Figure 0003739908
【0067】
また、シアンカプラーとして、特開平2−33144号に記載のジフェニルイミダゾール系シアンカプラーの他に、欧州特許EP0,333,185A2号に記載の3−ヒドロキシピリジン系シアンカプラー(なかでも具体例として列挙されたカプラー(42)の4当量カプラーに塩素離脱基をもたせて2当量化したものや、カプラー(6)や(9)が特に好ましい)や特開昭64−32260号に記載された環状活性メチレン系シアンカプラー(なかでも具体例として列挙されたカプラー例3、8、34が特に好ましい)の使用も好ましい。特に好ましいシアンカプラーは特開平9−189988号に記載のピロロトリアゾールシアンカプラーである。
【0068】
また、塩化銀含有率が90モル%以上の高塩化銀乳剤を使用するハロゲン化銀カラー感光材料の処理方法としては、特開平2−207250号の第27頁左上欄〜34頁右上欄に記載の方法が好ましく適用される。
【0069】
【実施例】
以下に本発明を実施例によって具体的に説明するが、本発明はこれに限定されない。
【0070】
実施例1
(乳剤Aの調製)石灰処理ゼラチンの3%水溶液に塩化ナトリウム3.5gを加え、N,N’−ジメチルイミダゾリジン−2−チオン(1%水溶液)を1.0ml添加した。この水溶液に硝酸銀0.8モル含む水溶液と塩化ナトリウムを0.8モル含む水溶液とを激しく撹拌しながら50℃で添加混合した。続いて硝酸銀0.20モルを含む水溶液と塩化ナトリウムを0.20モル含む水溶液とを激しく撹拌しながら50℃で添加混合した。この時同時に黄血塩を6.4×10-6モル添加混合した。その後40℃にて沈降水洗を行い脱塩を施した。さらに石灰処理ゼラチン80.0gを加え、乳剤のpHとpAgをそれぞれ7.2と7.0に調整した。この乳剤に臭素供給過程として粒子サイズ0.05μmの塩臭化銀微粒子乳剤(ハロゲン比率Br/Cl=60/40)の銀量にして0.004モルを60℃にて添加する方法を用い、塩化銀ホスト粒子表面に臭化銀富有相を形成した後、金増感剤(塩化金酸)1.1×10-4モル/モルAg、硫黄増感剤(トリエチルチオ尿素)2.7 ×10-6モル/モルAg、実施例2と同じ赤感性分光増感色素(G及びH)1.4×10-5モル/モルAg及び実施例2と同じ化合物Iを2.6×10-3モル添加し、60℃にて最適に化学増感及び分光増感し、さらに1−(5−メチルウレイドフェニル)−5−メルカプトテトラゾール7.7 ×10-4モル/モルAgを添加した。尚、塩臭化銀微粒子乳剤中にはその粒子形成中にヘキサクロロイリジウム(IV)酸カリウムを1.7×10-4モル/モルAg含有させておいた。(以下この微粒子乳剤を微粒子乳剤イと称す。)電子顕微鏡写真から、粒子の形状は立方体であり、粒子サイズは0.5μm、変動係数は0.08であった。粒子サイズは粒子の投影面積と等価な円の直径の平均値をもって表し、粒子サイズ分布は粒子サイズ標準偏差を平均粒子サイズで割った値を用いた。
【0071】
(乳剤Bの調製)上記乳剤(A)において、塩臭化銀微粒子中のヘキサクロロイリジウム(IV)酸カリウムの量を3.4×10-4モル/モルAgにした。(以下、この塩臭化銀微粒子乳剤を微粒子乳剤ロと称す。)
(乳剤Cの調製)上記乳剤(A)において、塩臭化銀微粒子中のヘキサクロロイリジウム(IV)酸カリウムの量を6.8×10-4モル/モルAgにした。(以下、この塩臭化銀微粒子乳剤を微粒子乳剤ハと称す。)
(乳剤Dの調製)上記乳剤(A)の臭素供給過程のみを変更し、微粒子乳剤イを銀量にして0.001モル60℃にて添加し、5分間熟成して塩化銀ホスト粒子の頂点近傍に臭化銀富有相を形成した後、さらに微粒子乳剤イを銀量にして0.003モル同条件で添加する方法を用いた。
(乳剤Eの調製)上記乳剤(D)の臭素供給過程の塩臭化銀微粒子乳剤を変更し、第1回目の塩臭化銀微粒子乳剤にはヘキサクロロイリジウム(IV)酸カリウムを含有させず、第2回目の塩臭化銀微粒子乳剤にはその粒子形成中にヘキサクロロイリジウム(IV)酸カリウムを2.3×10-4モル/モルAg含有して添加した。(以下、第1回目の微粒子乳剤を微粒子乳剤ニ、第2回目の微粒子乳剤を微粒子乳剤ホと称す。)
【0072】
(乳剤Fの調製)上記乳剤(D)の臭素供給過程の塩臭化銀微粒子乳剤を変更し、第1回目の塩臭化銀微粒子乳剤には微粒子乳剤ハを添加し、第2回目の塩臭化銀微粒子乳剤にはヘキサクロロイリジウム(IV)酸カリウムを含有しない微粒子乳剤ニを添加した。
(乳剤Gの調製)上記乳剤(F)の臭素供給過程の第2回目の塩臭化銀微粒子乳剤のハロゲン組成をBr/Cl=30/70に変更し添加した。その他は乳剤Fと同じにした。
(乳剤Hの調製)上記乳剤(A)の臭素供給過程を変更し、下記のように調製した水溶液(I)を添加し、4分間熟成して塩化銀ホスト粒子の頂点近傍に臭化銀富有相を形成した後、微粒子乳剤ニを銀量にして0.003モル50℃にて添加し、12分間熟成する方法を用いた。
水溶液(I):KBr 0.5モル/リットル水溶液 6.0cc
【0073】
(乳剤Iの調製)上記乳剤(H)の臭素供給過程において、微粒子乳剤ニの添加1分後にヘキサクロロイリジウム(IV)酸カリウム水溶液を1×10-4モル一度に添加した。
(乳剤Jの調製)上記乳剤(H)の臭素供給過程において、水溶液(I)の添加直前にヘキサクロロイリジウム(IV)酸カリウム水溶液を1×10-4モル一度に添加した。
(乳剤Kの調製)上記乳剤(J)の水溶液(I)を下記の水溶液(II)に変更した。
水溶液(II):前記 S−3 0.5モル/リットル水溶液 6.0cc
(乳剤Lの調製)上記乳剤Fにおいて前記のCR−7(ハロゲン化銀1.0モルあたり3.0×10-4モル)を臭素供給過程の前に添加した。
【0074】
上記調製乳剤に対し、臭素供給過程の各段階をサンプリングし、第1回目の臭素供給直後の未反応Br量と第2回目の臭素供給直前の未反応Br量の比率を調べたところ、乳剤(D)〜(L)において、第2回目の臭素供給は第1回目の臭化銀富有相形成の90%以上終了後にいずれも行われたことが分かった。また、乳剤(D)〜(F)において、第2回目臭素供給直前と終了後の乳剤をメンブランろ過した溶液の原子吸光分析を行ったが、いずれもイリジウム原子は検出限界以下であった。
【0075】
次にシアンカプラー(ExC−1)9.6gおよび色像安定剤(Cpd−9)0.6g、色像安定剤(Cpd−20)5.4g、色像安定剤(Cpd−1)12g、色像安定剤(Cpd−12)1.5g、色像安定剤(Cpd−19)0.4g、に酢酸エチル25.0ccおよび溶媒(solv−6)4.2gを加え溶解し、この溶液を10%ドデシルベンゼンスルホン酸ナトリウム20.0ccを含む10%ゼラチン水溶液402ccに乳化分散させ乳化分散物Aを調製した。表6のような内容の、合計12種類の試料を作成した。乳剤層および保護層を塗布した側のポリエチレンには、二酸化チタンおよび微量の群青を含有する。各層の硬膜剤としては、1−オキシ−3,5−ジクロロ−s−トリアジンアトリウム塩を用いた。
【0076】
【表6】
Figure 0003739908
【0077】
これらの塗布試料の写真特性を調べるために以下のような実験を行った。まず、塗布試料に対して感光計(富士フイルム(株)製FWH型及び山下電装社製SMP−201A)を用いて、センシトメトリー用の階調露光を与えた。この時の露光量は300CMSにし、10秒の低照度と10-6秒の高照度にて680nmの干渉フィルターを装着して露光した。その後、露光後10秒後と露光後2時間後に以下に示す発色現像処理を行った。
【0078】
Figure 0003739908
【0079】
発色現像液
トリエタノールアミン 8.12g
N,N−ジエチルヒドロキシルアミン 4.93g
蛍光増白剤(チバガイギー社製 UVITEX CK) 2.80g
4−アミノ−3−メチル−N−エチル−N−
〔β−(メタンスルホンアミド)エチル〕−
p−フェニレンジアミン硫酸塩 4.96g
亜硫酸ナトリウム 0.13g
炭酸カリウム 18.40g
炭酸水素カリウム 4.85g
EDTA・2Na・2H2 O 2.20g
塩化ナトリウム 1.36g
水を加えて 1000ml
pH 10.05
【0080】
漂白定着液
チオ硫酸アンモニウム(54wt%) 103.0ml
NH4 EDTA・Fe 54.10mg
EDTA・2Na・2H2 O 3.41g
亜硫酸ナトリウム 16.71g
氷酢酸 8.61g
水を加えて 1000ml
pH 5.44
【0081】
処理後の各試料の発色濃度を測定し、感度、階調を求めた。感度は、最低発色濃度より1.0高い発色濃度を与える露光量の逆数をもって規定し、試料101の10秒で露光し2時間後に現像処理した感度、および10-6秒で露光し2時間後に現像処理した感度をそれぞれ100としたときの相対値で表した。また、高照度不軌による階調変動は特に肩部の変動が顕著であるため、階調は、発色濃度1.5を与える露光量の対数と、2.0を与える露光量の対数との差で表した。この値が小さい方が、より硬調を意味する。この結果を表7、表8にまとめた。
【0082】
【表7】
Figure 0003739908
【0083】
【表8】
Figure 0003739908
【0084】
これらの表から分かるように、乳剤A〜Cで、臭化銀富有相中のイリジウムの量を単に増量しただけでは、少し高照度不軌が小さくなるものの(表7)、露光後処理までの時間による感度変動が大きい(表8)。ところが、乳剤Fのように臭化銀富有相の内部にイリジウムを閉じ込めたものは、露光後処理までの時間による感度変動を小さく保ったまま(表8)、高照度不軌を著しく改良した(表7)。特に、CR−7の存在下で臭化銀富有相を形成した乳剤Lは効果が大きかった。
【0085】
さらに、上記試料101〜112を用いて、部屋の温湿度が25℃−55%(相対湿度)と25℃−85%(相対湿度)の雰囲気で、高照度10-6秒の露光を与えた。その後、2時間経過した後に、前記の発色現像処理を行った。
【0086】
現像処理後の各資料の発色濃度を測定し、感度を求めた。感度は前記と同様に規定し、資料101の25℃−55%(相対湿度)雰囲気で露光したときの感度を100とした。
その結果を表9にまとめた。
【0087】
【表9】
Figure 0003739908
【0088】
表9を見ると、イリジウム化合物を使用していない試料108では、高湿度で露光されたときの感度低下(以下、高湿減感とする。)が小さいが、イリジウム化合物の使用量を増量した試料101〜103では、高湿減感が顕著に大きくなった。ところが、本発明の臭化銀富有相の内部にのみイリジウム化合物が含有されている試料106、107、110〜112では、比較の試料に対し、高湿減感が小さかった。
【0089】
実施例2
紙の両面をポリエチレン樹脂で被覆してなる支持体の表面に、コロナ放電処理を施した後、ドデシルベンゼンスルホン酸ナトリウムを含むゼラチン下塗層を設け、さらに第一層〜第七層の写真構成層を順次塗設して、以下に示す層構成のハロゲン化銀カラー写真感光材料の試料(201)を作製した。各写真構成層用の塗布液は、以下のようにして調製した。
【0090】
第五層塗布液調製
シアンカプラー(ExC−2)130g、シアンカプラー(ExC−3)30g、色像安定剤(Cpd−1)50g、色像安定剤(Cpd−6)50g、色像安定剤(Cpd−7)20g、色像安定剤(Cpd−9)40g、色像安定剤(Cpd−10)10g、色像安定剤(Cpd−14)10g、色像安定剤(Cpd−15)60g、色像安定剤(Cpd−16)90g、色像安定剤(Cpd−17)90g、及び色像安定剤(Cpd−18)10gを、溶媒(Solv−5)150g、溶媒(Solv−8)50g、溶媒(Solv−9)100gおよび酢酸エチル350mlに溶解し、この液を10%ドデシルベンゼンスルホン酸ナトリウム200mlを含む10%ゼラチン水溶液6500gに乳化分散させて乳化分散物Cを調製した。
この乳化分散物Cと実施例1で調整した乳剤Aとを混合溶解し、後記組成となるように第五層塗布液を調製した。乳剤塗布量は銀量換算塗布量を示す。
【0091】
第一層〜第四層および第六層〜第七層用の塗布液も第五層塗布液と同様の方法で調製した。各層のゼラチン硬化剤としては、1−オキシ−3,5−ジクロロ−s−トリアジンナトリウム塩を用いた。
また、各層にAb−1、Ab−2、Ab−3およびAb−4をそれぞれ全量が15.0mg/m2 、60.0mg/m2 、5.0mg/m2 および10.0mg/m2 となるように添加した。
【0092】
【化15】
Figure 0003739908
【0093】
各感光性乳剤層の塩臭化銀乳剤には以下の分光増感色素をそれぞれ用いた。
青感性乳剤層
【0094】
【化16】
Figure 0003739908
【0095】
(増感色素A、BおよびCをハロゲン化銀1モル当り、大サイズ乳剤に対してはそれぞれ1.4×10-4モル、小サイズ乳剤に対してはそれぞれ1.7×10-4モル添加した。)
緑感性乳剤層
【0096】
【化17】
Figure 0003739908
【0097】
(増感色素Dをハロゲン化銀1モル当り、大サイズ乳剤に対しては3.0×10-4モル、小サイズ乳剤に対しては3.6×10-4モル、また、増感色素Eをハロゲン化銀1モル当り、大サイズ乳剤に対しては4.0×10-5モル、小サイズ乳剤に対しては7.0×10-5モル、また、増感色素Fをハロゲン化銀1モル当たり、大サイズ乳剤に対しては2.0×10-4モル、小サイズ乳剤に対しては2.8×10-4モル添加した。)
赤感性乳剤層
【0098】
【化18】
Figure 0003739908
【0099】
【化19】
Figure 0003739908
【0100】
また、青感性乳剤層、緑感性乳剤層および赤感性乳剤層に対し、1−(3−メチルウレイドフェニル)−5−メルカプトテトラゾールを、それぞれハロゲン化銀1モル当り3.3×10-4モル、1.0×10-3モルおよび5.9×10-4モル添加した。
さらに、第二層、第四層、第六層および第七層にも、それぞれ0.2mg/m2 、0.2mg/m2 、0.6mg/m2 、0.1mg/m2 となるように添加した。
また、青感性乳剤層および緑感性乳剤層に対し、4−ヒドロキシ−6−メチル−1,3,3a,7−テトラザインデンを、それぞれハロゲン化銀1モル当たり、1×10-4モル、2×10-4モル添加した。
また、赤感性乳剤層にメタクリル酸とアクリル酸ブチルの共重合体(重量比1:1、平均分子量200000〜400000)を0.05g/m2 を添加した。
また、第二層、第四層および第六層にカテコール−3,5−ジスルホン酸二ナトリウムをそれぞれ6mg/m2 、6mg/m2 、18mg/m2 となるように添加した。
また、イラジエーション防止のために、乳剤層に以下の染料(カッコ内は塗布量を表す)を添加した。
【0101】
【化20】
Figure 0003739908
【0102】
(層構成)
以下に、各層の構成を示す。数字は塗布量(g/m2 )を表す。ハロゲン化銀乳剤は、銀換算塗布量を表す。
支持体
ポリエチレン樹脂ラミネート紙
[第一層側のポリエチレン樹脂に白色顔料(TiO2 ;含有率16重量%、ZnO;含有率4重量%)と蛍光増白剤(4,4’−ビス(ベンゾオキサゾリル)スチルベンと4,4’−ビス(5−メチルベンゾオキサゾリル)スチルベンの8/2混合物:含有率0.05重量%)、青味染料(群青)を含む]
Figure 0003739908
【0103】
第二層(混色防止層)
ゼラチン 0.99
混色防止剤(Cpd−4) 0.09
色像安定剤(Cpd−5) 0.018
色像安定剤(Cpd−6) 0.13
色像安定剤(Cpd−7) 0.01
溶媒(Solv−1) 0.06
溶媒(Solv−2) 0.22
【0104】
Figure 0003739908
【0105】
第四層(混色防止層)
ゼラチン 0.71
混色防止剤(Cpd−4) 0.06
色像安定剤(Cpd−5) 0.013
色像安定剤(Cpd−6) 0.10
色像安定剤(Cpd−7) 0.007
溶媒(Solv−1) 0.04
溶媒(Solv−2) 0.16
【0106】
第五層(赤感性乳剤層)
実施例1の乳剤A 0.12
ゼラチン 1.11
シアンカプラー(ExC−2) 0.13
シアンカプラー(ExC−3) 0.03
色像安定剤(Cpd−1) 0.05
色像安定剤(Cpd−6) 0.05
色像安定剤(Cpd−7) 0.02
色像安定剤(Cpd−9) 0.04
色像安定剤(Cpd−10) 0.01
色像安定剤(Cpd−14) 0.01
色像安定剤(Cpd−15) 0.06
色像安定剤(Cpd−16) 0.09
色像安定剤(Cpd−17) 0.09
色像安定剤(Cpd−18) 0.01
溶媒(Solv−5) 0.15
溶媒(Solv−8) 0.05
溶媒(Solv−9) 0.10
【0107】
第六層(紫外線吸収層)
ゼラチン 0.66
紫外線吸収剤(UV−1) 0.19
紫外線吸収剤(UV−2) 0.06
紫外線吸収剤(UV−3) 0.06
紫外線吸収剤(UV−4) 0.05
紫外線吸収剤(UV−5) 0.09
溶媒(Solv−7) 0.25
第七層(保護層)
ゼラチン 1.00
ポリビニルアルコールのアクリル変性共重合体(変性度17%) 0.04
流動パラフィン 0.02
界面活性剤(Cpd−13) 0.01
【0108】
【化21】
Figure 0003739908
【0109】
【化22】
Figure 0003739908
【0110】
【化23】
Figure 0003739908
【0111】
【化24】
Figure 0003739908
【0112】
【化25】
Figure 0003739908
【0113】
【化26】
Figure 0003739908
【0114】
【化27】
Figure 0003739908
【0115】
【化28】
Figure 0003739908
【0116】
【化29】
Figure 0003739908
【0117】
【化30】
Figure 0003739908
【0118】
さらに、以上のように作製したハロゲン化銀カラー写真感光材料201に対して、第五層の乳剤を実施例1の乳剤B〜Lに変更したそれぞれの試料202〜212を作製した。
【0119】
ここで得られた試料201〜212を用いて、実施例1と全く同じ実験を行ったところ、実施例1の結果と同様に、本発明の試料206,207,210,211,212は、高照度不軌が小さく、かつ露光後処理までの時間による感度変動が小さい効果が顕著に現れた。
【0120】
実施例3
(乳剤TAの調製)石灰処理ゼラチンの2%水溶液に塩化ナトリウム1.0gを加え、酸を加えてpH4.5にした。この水溶液に硝酸銀0.05モル含む水溶液と塩化ナトリウム及び臭化カリウム合わせて0.05モル含む水溶液とを激しく攪拌しながら40℃にて添加混合した。続いて臭化カリウムを0.004モル含む水溶液を添加した後、硝酸銀0.13モル含む水溶液と塩化ナトリウム0.13モル含む水溶液を添加した。さらに温度を75℃に上げ、pAgを7.0に保ちながら、硝酸銀1.0モル含む水溶液と塩化ナトリウム1.0モルを含む水溶液を添加混合した。その後、40℃にて沈降水洗を行い、脱塩を施した。さらに石灰処理ゼラチン100gを加え、pH6.0,pAg7.4に調整した。この乳剤に金増感剤(塩化金酸)、硫黄増感剤(トリエチルチオ尿素)、赤感性分光増感色素(G及びH)及び前記の化合物Iを添加し、60℃にて最適に化学増感及び分光増感し、さらに1−(5−メチルウレイドフェニル)−5−メルカプトテトラゾールを添加した後、実施例1の乳剤Aと同様に臭化銀富有相形成を行った。電子顕微鏡写真から、粒子の形状は、主平面が{100}面の平板状粒子であり、投影面積相当直径1.2μm、平均アスペクト比5、変動係数20%であった。
【0121】
(乳剤TB〜TLの調製)上記乳剤TAの臭化銀富有相形成のみが、実施例1の乳剤B〜乳剤Lの臭化銀富有相形成に置き換わった乳剤を調製し、それぞれ乳剤TB〜乳剤TLとした。
【0122】
上記調製乳剤を用いて、実施例1と全く同様に塗布試料301〜312を作製し、実施例1と全く同様の実験を行った結果、本発明の臭化銀富有相形成を行うことによって、平板状粒子においても実施例1と同様の効果が得られることが分かった。
【0123】
実施例4
実施例1において、10-6秒の高照度露光を、レーザー走査露光に変え、試料101〜112、201〜212、及び301〜312に対して全く同様な実験を行った。
レーザー光源としては、半導体レーザーGaAlAs(発振波長 808.5nm)を励起光源としたYAG固体レーザー(発振波長 946nm)を反転ドメイン構造を有するLiNbO3 のSHG結晶により波長変換して取り出した473nmと、半導体レーザーGaAlAs(発振波長 808.7nm)を励起光源としたYVO4 固体レーザー(発振波長 1064nm)を反転ドメイン構造を有するLiNbO3 のSHG結晶により波長変換して取り出した532nmと、AlGaInP(発振波長 約680nm:松下電産製タイプNo.LN9R20)とを用いた。3色のそれぞれのレーザー光はポリゴンミラーにより走査方向に対して垂直方向に移動し、試料上に、順次走査露光できるようにした。半導体レーザーの温度による光量変動は、ペルチェ素子を利用して温度が一定に保たれることで抑えられている。実効的なビーム径は、80μmで、走査ピッチは42.3μm(600dpi)であり、1画素あたりの平均露光時間は、1.7×10-7秒であった。
この結果においても、実施例1〜実施例3の結果と全く同様で、本発明の試料は、露光後処理までの時間変動による感度変動及び階調変動が小さいまま、高照度相反則不軌が小さく、さらに、高湿度中で露光されたときの感度低下が小さいことが確認された。
【0124】
【発明の効果】
本発明によれば、レーザー走査露光のような超短時間高照度露光での高照度相反則不軌が改良され、さらに露光から処理までの時間変動による感度変動及び階調変動が小さく、さらに高湿度の中で露光したときの感度の低下が小さいハロゲン化銀乳剤、その製造方法及びこれを用いたハロゲン化銀カラー写真感光材料並びに画像形成方法を提供することが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silver halide emulsion, and in particular, is excellent in reciprocity characteristics at high illuminance, has small sensitivity fluctuation and gradation fluctuation due to time fluctuation until post-exposure processing, and further when exposed in high humidity. The present invention relates to a silver halide emulsion having a small reduction in sensitivity, a production method thereof, and a silver halide color photographic light-sensitive material using the same.
[0002]
[Prior art]
In recent years, for color photographic paper, the demand for performance such as high sensitivity, stable processing, high image quality, and rapid development processing has been remarkably increased. Time and high illumination exposure suitability are also one of the important performances. The laser scanning exposure is characterized in that the exposure speed can be increased and the resolution can be improved. However, if this is used for color photographic paper, it has never been possible for a very short time (specifically, 10-6Second) and high exposure intensity is required.
To improve the reciprocity failure of silver halide emulsions at such high illumination exposure, a method of doping a base compound with a metal compound typified by iridium is well known in the art.
[0003]
The reciprocity failure improvement of silver halide emulsions by iridium is described in, for example, “Iridium Sensitization: A Literature Review” by BHCarroll, Photographic Science and Engineering, Vol.24, No.6, 1980 and “The Mechanism of Ir3 + Sensitization by RSEachus” (Photographic Science International Conference 1982).
On the other hand, it is also known that silver halide emulsions added with iridium exhibit very unfavorable characteristics that change photographic performance (for example, sensitivity and gradation) depending on the elapsed time until post-exposure processing. This property is described in H. Zwicky's “On the Mechanism of the Sensitivity Increase With Iridium in Silver Halide Emulsions”, The Journal of Photographic Science, Vol. 33, pp. 201-203, 1985. Although the high-illuminance reciprocity failure has been remarkably improved by the conventional methods, the sensitivity fluctuation due to the time fluctuation until the post-exposure processing becomes remarkably large, and it has not been practically used.
In addition, silver halide emulsions with a high silver chloride content are used for the purpose of speeding up color development, but have the disadvantage that it is difficult to obtain high-sensitivity and high-contrast gradations with normal chemical sensitization. ing. Many attempts have been made to enhance the sensitivity of high silver chloride emulsions. Among them, a technique for achieving high sensitivity by forming a silver bromide-rich phase in the vicinity of the grain apex of silver halide host grains is disclosed in JP-A No. 64-26837. Japanese Patent Application Laid-Open No. 5-61136 discloses a technique for forming a silver bromide-rich phase in multiple stages near the grain apexes of silver halide host grains. However, these techniques have not improved the high-illuminance reciprocity failure. Further, in US Pat. Nos. 5,284,745, 5,391,471, 5,415,991, 5,043,256, and 5,627,020, a metal compound typified by Ir is doped in a silver bromide-rich phase of a high chloride base particle. A method is disclosed. In addition, EP 0568091A, US Pat. No. 5,356,770, and JP-A-6-35147 disclose a method of adding bromide to high silver chloride grains simultaneously with or after iridium. Although these methods all improve high-illuminance reciprocity failure while suppressing sensitivity fluctuations due to time fluctuations until post-exposure processing, they were not sufficient for very short high-illuminance exposures such as laser scanning exposure. . Moreover, it did not prevent a decrease in sensitivity when exposed in high humidity.
[0004]
[Problems to be solved by the invention]
Accordingly, the object of the present invention is to provide a halogenated halogen which is excellent in reciprocity characteristics at high illuminance for a short time, has little sensitivity fluctuation due to time fluctuation until post-exposure processing, and has a small sensitivity drop when exposed in high humidity. It is an object of the present invention to provide a silver emulsion, a production method thereof, a silver halide color photographic light-sensitive material using the same, and an image forming method.
[0005]
[Means for Solving the Problems]
As a result of extensive studies by the present inventors, it has been found that the above object can be effectively achieved by the methods described in the following (1) to (7).
That is,
(1) A silver chlorobromide or silver chloroiodobromide emulsion having a silver chloride content of 90 mol% or more has a silver bromide rich phase containing an iridium compound in the vicinity of the grain surface of the silver halide grains in the emulsion. A silver halide emulsion characterized by having a region in which the iridium compound density is higher in the inner part of the silver bromide rich phase than in the outer part of the rich phase.
(2) The silver halide emulsion as described in (1), wherein the silver halide grains are cubic or tetrahedral grains.
(3) 50% or more of the total projected area of all the grains of the silver halide emulsion is a tabular grain having an average aspect ratio of 2 or more, or a main plane consisting of {111} planes. The silver halide emulsion as described in (1), which is a tabular grain having an average aspect ratio of 2 or more.
(4) A silver halide emulsion that forms a silver bromide-rich phase containing an iridium compound in the vicinity of the surface of silver halide grains in a silver chlorobromide or silver chloroiodobromide emulsion having a silver chloride content of 90 mol% or more. In this production method, the formation of the silver bromide-rich phase comprises at least two stages of formation processes, and the molar amount of the iridium compound added in a certain formation process with respect to silver added is added in any of the subsequent formation processes. A method for producing a silver halide emulsion, which is higher than the molar amount of silver added by an iridium compound.
(5) A silver bromide fine grain emulsion or a silver chlorobromide fine grain emulsion in which the silver bromide-rich phase formation is smaller than the silver halide emulsion composed of silver chlorobromide or silver chloroiodobromide host grains. (4) The method for producing a silver halide emulsion according to (4), wherein the method is carried out by adding at least twice.
(6) In the silver halide color photographic material having at least one blue-sensitive silver halide emulsion layer, green-sensitive silver halide emulsion layer, and red-sensitive silver halide emulsion layer, respectively, on the support, the blue-sensitive halogen At least one of the silver halide emulsion layer, the green-sensitive silver halide emulsion layer, and the red-sensitive silver halide emulsion layer is a silver chlorobromide or silver chloroiodobromide emulsion having a silver chloride content of 90 mol% or more. A silver bromide-rich phase containing an iridium compound in the vicinity of the grain surface of the silver halide grains therein, and a halogen having a region in which the iridium compound density is higher than the surface side in the silver bromide-rich phase A silver halide color photographic light-sensitive material comprising a silver halide emulsion.
(7) The exposure time per pixel is 10 by a laser light beam obtained by modulating the silver halide color photographic material described in (6) based on image information.-FourAn image forming method comprising performing development after scanning exposure shorter than 1 second.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below.
The host silver halide grains used to make the emulsions of the present invention are preferably cubic or tetrahedral crystal grains having substantially {100} faces (these have rounded corners and higher order faces. In addition, it is preferable to use tabular crystal grains having an aspect ratio of 2 or more, in which 50% or more of the total projected area is composed of {100} planes or {111} planes. The aspect ratio is a value obtained by dividing the diameter of a circle corresponding to the projected area by the thickness of the particle. The larger the aspect ratio, the thinner and flatter the particle thickness. In the present invention, the tabular grains have an aspect ratio of 1.2 or more, and the average aspect ratio means an average value of the aspect ratios of all tabular grains in the emulsion. In the present invention, tabular grains having a cubic or {100} plane as the main plane are preferably applied. Further, the {100} tabular grains are preferably tabular grains having an adjacent side ratio of 10 or less. The adjacent side ratio is a value obtained by dividing the larger side of two adjacent sides by the smaller side. As the adjacent side ratio is closer to 1, the main plane is closer to a square.
[0007]
As tabular grains containing silver chloride at a high concentration, there are grains having {100} major planes and grains having {111} major planes.
[0008]
As a method for forming tabular silver halide emulsion grains having {100} main planes, an aqueous silver salt solution and an aqueous halide salt solution are added and mixed in a dispersion medium such as an aqueous gelatin solution while stirring. At this time, for example, silver iodide is present in JP-A-6-301129 and JP-A-6-347929, and silver bromide is present in JP-A-9-34045, for example, and the crystal lattice size with silver chloride is increased. A method for introducing a screw dislocation by causing strain in the nucleus due to the difference is disclosed. When the screw dislocation is introduced, the formation of the two-dimensional nucleus on the surface is not rate-determining, so that the crystallization on this surface proceeds and the screw dislocation is introduced into two orthogonal {100} planes to form a flat plate shape. Particles are formed. In addition, imidazoles and 3,5-diaminotriazoles are used in JP-A-6-347928, polyvinyl alcohols are used in JP-A-8-339044, and a {100} surface formation accelerator is added. A method of forming {100} tabular grains is disclosed.
[0009]
Examples of the method for forming tabular silver halide emulsion grains having {111} major planes include, for example, U.S. Pat. Nos. 4,440,343, 5,185,239, 5,176,991, and JP-A-63-213836. US Pat. No. 5,176,992 discloses a method of forming particles in the presence of a crystal habit controlling agent of aminoazaindene, triaminopyrimidine, hydroxyaminoazine, thiourea and xanthonoid, respectively.
[0010]
In the case of a silver chloroiodobromide crystal having a silver chloride content of 90 mol% or more, a crystal having a silver iodide content of 2 mol% or less and a silver chloride content of 95 mol% or more is preferable. Crystals having a silver chloride content of 1 mol% or less and a silver chloride content of 99 mol% or more are particularly preferred.
[0011]
The average grain size of the silver halide grains is preferably 0.2 μm to 2 μm. The distribution state is more preferably monodispersed. The monodispersed emulsion is an emulsion having a grain size distribution in which the coefficient of variation (S / average r) regarding the grain size of silver halide grains is 0.25 or less, preferably 0.15 or less. Here, the average r is the average particle diameter, and S is the standard deviation regarding the particle diameter. That is, when the grain size of each emulsion grain is ri, and its number ni, the average grain size r is
[0012]
[Expression 1]
Figure 0003739908
[0013]
The standard deviation S is defined as
[0014]
[Expression 2]
Figure 0003739908
[0015]
Is defined. The individual grain size referred to in the present invention is a silver halide emulsion as described in THJames et al., “The Theory of the Photographic Process”, 3rd edition, pages 36-43, published by Macmillan (1966). This is a projected area equivalent diameter corresponding to the projected area when micro-photographed by a method well known in the art (usually electron micrographing). Here, the projected area equivalent diameter of the silver halide grains is defined by the diameter of a circle equal to the projected area of the silver halide grains as shown in the above-mentioned book.
[0016]
The formation of the silver bromide-rich phase of the present invention can be carried out by the following method.
(1) A method of adding and mixing a water-soluble compound such as an aqueous potassium bromide solution.
(2) A method of adding and mixing silver halide grains having an average grain size smaller than that of the silver halide host grains and having a high silver bromide content (mol%).
(3) A method of adding and mixing bromine and / or a bromine ion precursor represented by the general formula (S).
Further, the above methods (1) and (2) may be combined in the supply of bromine and / or bromine ions. The silver bromide content in the silver bromide-rich phase is preferably 10 mol% or more and 70 mol% or less, and more preferably 20 mol% or more and 60 mol% or less.
[0017]
[Chemical 1]
Figure 0003739908
[0018]
(In the formula, Y represents an organic group having Hammett's σp value larger than 0, and R1 And R2 Represents a hydrogen atom, a substituted or unsubstituted alkyl group, an alkenyl group, an aralkyl group, an aryl group or a group represented by Y, respectively. Y and R1 May be closed to form a heterocycle. n represents an integer of 1 to 3. )
[0019]
Hereinafter, the general formula (S) will be described in more detail. Y represents an organic group having Hammett's σp value greater than 0. Hammett's σp value is described in “Structure-activity relationship of drugs” (Nanedo), page 96 (1979). Can be selected. Y is preferably a halogen atom (for example, bromine atom, chlorine atom, fluorine atom), trifluoromethyl group, cyano group, formyl group, carboxylic acid group, sulfonic acid group, carbamoyl group (for example, unsubstituted carbamoyl, diethylcarbamoyl, etc.) ), Acyl group (for example, acetyl group, benzoyl group, etc.), oxycarbonyl group (for example, methoxycarbonyl group, ethoxycarbonyl group, etc.), sulfonyl group (for example, methanesulfonyl group, benzenesulfonyl group, etc.), sulfonyloxy group (Eg, methanesulfonyloxy group, etc.), carbonyloxy group (eg, acetoxy group, etc.), sulfamoyl group (eg, unsubstituted sulfamoyl group, dimethylsulfamoyl group, etc.) heterocyclic group (eg, 2-thienyl) Group, 2-benzoxa Lil group, 2-benzothiazolyl group, 1-methyl-2-benzimidazolyl group, 1-tetrazolyl group, 2-quinolyl group, etc.) and the like. R1And R2Is a hydrogen atom, a substituted or unsubstituted alkyl group (for example, methyl group, ethyl group, n-propyl group, hydroxyethyl group, etc.), alkenyl group (for example, vinyl group, allyl group, etc.), aralkyl group. (For example, benzyl group, etc.), an aryl group (for example, phenyl group, p-tolyl group, etc.), or a group represented by Y. However, Y and R1 May be closed to form a heterocycle (eg, imidazolyl, pyridyl, thienyl, quinolyl, tetrazolyl, etc.). In general formula (S), Y preferably represents a cyano group, a carboxylic acid group, a carbamoyl group, an acyl group, a sulfonyl group, an oxycarbonyl group, a sulfamoyl group, or a heterocyclic group, and R1 And R2 Represents a hydrogen atom or Y, and n represents an integer of 1 to 2. Specific examples of the compound represented by the general formula (S) of the present invention are shown below, but the compound of the present invention is not limited thereto.
[0020]
[Chemical formula 2]
Figure 0003739908
[0021]
The compound of general formula (S) can be easily obtained as a commercially available reagent. The compound of the general formula (S) is preferably added in the range of 0.1 to 5 mol%, more preferably in the range of 0.2 to 3 mol% of the total silver halide amount.
[0022]
The silver bromide rich phase can be formed through the following process. First, bromine ions or silver bromide fine particles are supplied to the host silver halide grains to precipitate a new silver halide phase rich in silver bromide on the surface of the host silver halide grains. This process proceeds with bromine ions in a process called “halogen conversion” by an exchange reaction with halogen ions on the surface of the host silver halide grains. The process with the other silver bromide fine particles proceeds by a reaction called “recrystallization” that attempts to form crystals with a more stable composition between the host silver halide particles and the silver bromide fine particles, and a conversion reaction Is something that can be considered separately. In such a recrystallization reaction, the driving force of the reaction is an increase in entropy, which is a completely different reaction from Ostwald ripening. This is described in, for example, H.C. Yutzy, "Journal of American Chemical Society", page 59916 (1937). Although these are two very different reactions like these, it is surprising that both reactions select the vicinity of the top of the host grain as the site of formation of a new silver bromide-rich phase. It is a known phenomenon.
[0023]
The silver halide grain of the present invention has a silver bromide rich phase containing an iridium compound in the vicinity of the grain surface. The vicinity of the surface is either the particle surface layer portion, the particle edge portion, or the particle corner portion. The iridium compound is a compound containing an iridium ion or complex ion of the Group VIII metal of the periodic table. The preferred amount of use is 10 per mole of total silver particles.-3-10-9The range of moles. More preferably 10-Four-10-7Is a mole. Although this iridium compound is demonstrated still in detail, it is not limited to these.
[0024]
The iridium compound is a trivalent or tetravalent salt or complex salt, and among them, a complex salt is preferable. For example, primary iridium (III) chloride, primary iridium bromide (III), secondary iridium chloride (IV), sodium hexachloroiridium (III), potassium hexachloroiridium (IV), hexaammineiridium (IV) salt And complex salts having halogen, amines or oxalic acid as a ligand, such as trioxalatoiridium (III) salt and trioxalatoiridium (IV) salt.
[0025]
The formed silver bromide-rich phase has an iridium compound in its inner part, and the density of the iridium compound is higher in the inner part of the silver bromide-rich phase than the iridium compound density in the outer part. Features. The outer portion referred to here is a portion of 6 mm or more from the surface of the silver bromide-rich phase. In terms of volume, it is a portion of 1% to 99% of the silver bromide-rich phase volume, preferably 30%. It is a part of -95%, More preferably, it is a part of 50-90%. On the contrary, the inner part here means a part inside the outer part. The density of the iridium compound in the silver bromide rich phase is better as the density of the inner part is higher than the density of the outer part. The density of the iridium compound in the inner part is preferably at least 3 times the iridium compound density in the outer part, more preferably 10 times or more, no iridium compound is present in the outer part, only the inner part. Is most preferred. The iridium compound is preferably present only in the silver bromide-rich phase, but may be present in the silver halide host grain.
[0026]
The silver halide emulsion preparation process in the present invention comprises, as is generally well known, a silver halide grain formation process by the reaction of water-soluble silver and a water-soluble halide, a desalting process, and a chemical ripening process. The formation of the silver bromide-rich phase of the invention is preferably performed immediately before the chemical ripening step, during the chemical ripening step or after the chemical ripening step. Furthermore, it is more preferable that chemical aging is in progress.
[0027]
For the formation of the silver bromide-rich phase of the present invention, it is effective to use a compound (CR compound) that suppresses or prevents the start of halogen conversion and recrystallization. In general, a CR compound is a substance that functions to delay or prevent the start of halogen conversion and recrystallization as compared with the case where the compound does not adsorb by selectively adsorbing on a specific crystal plane. . In the present invention, a compound represented by the general formula (I), (II) or (III) is particularly preferably used. In addition, cyanine dyes, merocyanine dyes, mercaptoazoles, and nucleic acid degradation products (for example, deoxyribonucleic acid, products in the middle of degradation of ribonucleic acid, adenine, guanine, uracil, cytosyl, thymine, etc.) can also be used.
[0028]
[Chemical Formula 3]
Figure 0003739908
[0029]
Where Z101 And Z102 Each represents an atomic group necessary to form a nitrogen-containing heterocyclic nucleus. The nitrogen-containing heterocyclic nucleus is preferably a 5- or 6-membered cyclic nucleus containing a nitrogen atom as a hetero atom and other sulfur atoms, oxygen atoms, selenium atoms, or tellurium atoms. However, a condensed ring may be further bonded to these rings, and a substituent may be further bonded. Specific examples of the nitrogen-containing heterocyclic nucleus include thiazole nucleus, benzothiazole nucleus, naphthothiazole nucleus, selenazole nucleus, benzoselenazole nucleus, naphthoselenazole nucleus, oxazole nucleus, benzoxazole nucleus, naphthoxazole nucleus, imidazole nucleus. Benzimidazole nucleus, naphthimidazole nucleus, 4-quinoline nucleus, pyrroline nucleus, pyridine nucleus, tetrazole nucleus, indolenine nucleus, benzindolenine nucleus, indole nucleus, tellurazole nucleus, benzotelrazole nucleus, naphthotelrazole nucleus, etc. be able to. R101 And R102 Each represents an alkyl group, an alkenyl group, an alkynyl group or an aralkyl group. These groups and the groups described below are each used in the sense of including their substituents. For example, taking an alkyl group as an example, it includes unsubstituted and substituted alkyl groups, and these groups may be linear, branched or cyclic. The carbon number of the alkyl group is preferably 1-8.
[0030]
Specific examples of the substituent of the substituted alkyl group include halogen atoms (fluorine, chlorine, bromine, iodine, etc.), cyano groups, alkoxy groups, substituted or unsubstituted amino groups, carboxylic acid groups, sulfonic acid groups, hydroxyl groups, etc. These may be substituted by one or more of them. Specific examples of the alkenyl group include a vinylmethyl group. Specific examples of the aralkyl group include a benzyl group and a phenethyl group. m101 Represents a positive number of 0, 1, 2 or 3. m101 If is 1, R103 Represents a hydrogen atom, a lower alkyl group, an aralkyl group or an aryl group. Specific examples of the aryl group include a substituted or unsubstituted phenyl group. R104 Represents a hydrogen atom. m101 R is 2 or 3, R103 Represents a hydrogen atom and R104 Is a hydrogen atom, a lower alkyl group, an aralkyl group, or R102 To form a 5- to 6-membered ring. M101 Represents 2 or 3, and R104 R represents a hydrogen atom, R103 Other R103 To form a hydrocarbon ring or a heterocyclic ring. These rings are preferably 5- to 6-membered rings. j101 , K101 Represents 0 or 1, X- 101Represents an acid anion and n101 Represents 0 or 1.
[0031]
[Formula 4]
Figure 0003739908
[0032]
Where Z201 , Z202 Is the aforementioned Z101 Or Z102 It is synonymous with. R201 , R202 Is R101 Or R102 Is synonymous with R203 Represents an alkyl, alkenyl, alkynyl or aryl group (such as a substituted or unsubstituted phenyl group). m201 Represents 0, 1 or 2. R204 Represents a hydrogen atom, a lower alkyl group, an aryl group, and m201 R represents 2, R204 And R204 And may form a hydrocarbon ring or a heterocyclic ring. These rings are preferably 5- to 6-membered rings. Q201 Is a sulfur atom, oxygen atom, selenium atom or> N—R205 Represents R205 Is R203 It is synonymous with. j201 , R201 , X- 201And n201 Are j101, K101 , X- 101And n101 It is synonymous with.
[0033]
[Chemical formula 5]
Figure 0003739908
[0034]
Where Z301 Represents an atomic group necessary to form a nitrogen-containing heterocycle. As this nitrogen-containing heterocycle, Z101 And Z102 And other specific examples include thiazolidine, thiazoline, benzothiazoline, naphthothiazoline, selenazolidine, selenazoline, benzoselenazoline, naphthoselenazoline, benzoxazoline, naphthoxazoline, dihydropyridine, dihydroquinoline, benzimidazoline, naphthimidazoline, etc. Can be mentioned. Q301Is Q201 It is synonymous with. R301 Is R101 Or R102 And R302 Is R203 It is synonymous with. m301 Is m201 It is synonymous with. R303 Is R204 And m301 R represents 2 or 3, R303 And other R303 And may form a hydrocarbon ring or a heterocyclic ring. j301 Is j101 It is synonymous with.
[0035]
In addition to increasing the selectivity of the initial formation site of a new phase rich in silver bromide than the host grain, the CR compound further repeats recrystallization with the surface of the host grain. This prevents the reaction that causes the entire surface of the host grain to become a uniform new phase, and forms a “more silver bromide-rich phase” that grows epitaxially confined to the vicinity of the top of the host grain.・ Promote holding. The method of mixing and ripening high silver bromide fine grains and host grains has the advantage of high reaction uniformity and easy control. Also, according to this method, the silver bromide content of the new phase can be widely adjusted depending on conditions such as the silver bromide content and grain size of the high silver bromide fine grains used for mixed ripening, and the pAg during the recrystallization reaction. preferable. The silver halide grains produced by this method are those in which a new phase richer in silver bromide than in the host grains is epitaxially grown near the top of the host grains containing 90 mol% or more of silver chloride. There may be a transition region with a mild halogen composition between the new phase and the host particle. The structure of such particles is observed by various analytical methods. First, it is observed by observation with an electron microscope that a new phase is bonded in the vicinity of the vertex of the particle from the change in the shape of the particle.
[0036]
In addition, the halogen composition of the host particles and the new phase can be determined by X-ray diffraction. The average halogen composition on the surface can be measured by an XPS (X-ray Photoelectron Spectroscopy) method, for example, using an ESCA750 type spectrometer manufactured by Shimadzu-Dupont. This measurement method is specifically described in Someno, Yasumori “Surface Analysis” Kodansha (published in 1977). By knowing the host grain and the halogen composition of the new phase by the X-ray diffraction method and knowing the average silver halide composition of the surface by the XPS method, how much the new phase richer in silver bromide than the host grain is on the entire surface. You can measure roughly whether it occupies a proportion. In addition to the method based on observation by the electron microscope described above, the position of a new phase rich in silver bromide from the host grain and the proportion of the new phase near the top of the grain are measured. Further, it can be measured by an EDX spectrometer equipped in a transmission electron microscope by EDX (Energy Dispersive X-ray analysis) method. Specifically, this measurement method is described in Hiroyoshi Soejima's “Electron Beam Microanalysis”, Nikkan Kogyo Shimbun (published in 1987). The new phase in the present invention is preferably localized in the vicinity of the apex of the host grain, and the average halogen composition on the surface is preferably 15 mol% or less of silver bromide, and more preferably 10 mol% or less. . An increase in the average silver bromide content on the surface means a decrease in the degree of localization near the top of the new phase, and at the same time a decrease in sensitivity. It has been observed with an electron microscope that the new phase formed in the preferred production method of the present invention has a shape in which the corners of the host particles are epitaxially bonded and grown.
[0037]
The preferred grain size of the silver bromide fine grain emulsion used in the present invention varies depending on the size of the host grain and the halogen composition, but usually 0.3 μm or less is used. More preferably, it is 0.1 μm or less. The halogen composition of the silver bromide fine grain emulsion must have a higher silver bromide content than the host grains, and preferably has a bromide concentration of 30 mol% or more. More preferably, it is desired to contain 50 mol% or more bromide. The silver bromide fine grain emulsion can contain silver iodide if necessary. The total supply amount of bromine or bromine ions represented by addition of the silver bromide fine grain emulsion is preferably in the range of 5 mol% to 0.01 mol% with respect to the silver halide of the host. More preferably, it is 0.05 mol% to 1.5 mol%. The mixing temperature can be freely selected between 30 ° C. and 80 ° C., but the range of 40 ° C. to 60 ° C. is preferable.
[0038]
The CR compound used in the present invention, the general formula (I), (II) or (III) can also function as a sensitizing dye, and is therefore advantageous for increasing the spectral sensitivity. Spectral sensitivity can be further stabilized by partial recrystallization. Furthermore, it may be combined with other sensitizing dyes in order to increase sensitivity and stabilization, and can be used in combination with supersensitizers. For example, an aminostilbenzene compound substituted with a nitrogen-containing heterocyclic nucleus group (for example, compounds of the general formula (I) described in JP-A-62-1747385, particularly specific compound examples (I-1) to (I- 17) and the like, and those described in US Pat. Nos. 2,933,390 and 3,635,721), and aromatic organic acid formaldehyde condensates (for example, those described in US Pat. No. 3,743,510). ), Cadmium salts, azaindene compounds, and the like. The combinations described in U.S. Pat. Nos. 3,615,613, 3,615,641, 3,617,295, and 3,635,721 are particularly useful. Next, specific compound examples of the CR compound represented by the general formula (I), (II) or (III) will be given. However, it is not limited to this.
[0039]
[Chemical 6]
Figure 0003739908
[0040]
[Chemical 7]
Figure 0003739908
[0041]
[Chemical 8]
Figure 0003739908
[0042]
[Chemical 9]
Figure 0003739908
[0043]
Embedded image
Figure 0003739908
[0044]
Embedded image
Figure 0003739908
[0045]
Embedded image
Figure 0003739908
[0046]
Embedded image
Figure 0003739908
[0047]
Embedded image
Figure 0003739908
[0048]
In the silver halide emulsion used in the present invention, various polyvalent metal ion impurities can be introduced in addition to iridium in the course of emulsion grain formation or physical ripening. As an example of the compound to be used, a salt such as iron, ruthenium, osmium, rhenium, rhodium, cadmium, zinc, lead, copper, thallium, or a complex salt can be used in combination. In the present invention, metal compounds such as iron, ruthenium, osmium, rhenium and the like having at least four cyano ligands are particularly preferable in terms of further enhancing high-light sensitivity and suppressing latent image sensitization. The amount of these compounds added varies over a wide range depending on the purpose, but it is 10 per mol of silver halide.-9-10-2Mole is preferred.
The silver halide emulsion used in the present invention is usually subjected to chemical sensitization and spectral sensitization. Regarding chemical sensitization, sulfur sensitization represented by addition of unstable sulfur compounds, noble metal sensitization represented by gold sensitization, reduction sensitization, or the like can be used alone or in combination. As compounds used for chemical sensitization, those described in JP-A-62-215272, from page 18, right lower column to page 22, upper right column are preferably used.
[0049]
The silver halide emulsion used in the present invention is preferably subjected to gold sensitization known in the art. This is because by performing gold sensitization, fluctuations in photographic performance when scanning exposure is performed with laser light or the like can be further reduced. For gold sensitization, a compound such as chloroauric acid or a salt thereof, gold thiocyanate or gold thiosulfate can be used. The amount of these compounds added may vary widely depending on the case, but is 5 × 10 5 per mole of silver halide.-7~ 5x10-3Moles, preferably 1 × 10-6~ 1x10-FourIs a mole.
[0050]
In the present invention, gold sensitization may be combined with other sensitization methods such as sulfur sensitization, selenium sensitization, tellurium sensitization, reduction sensitization, or noble metal sensitization using other than gold compounds.
[0051]
The silver halide emulsion used in the present invention contains various compounds for the purpose of preventing fogging during the production process, storage or photographic processing of the emulsion or photosensitive material, or stabilizing the photographic performance. Can do. That is, azoles such as benzothiazolium salts, nitroimidazoles, nitrobenzimidazoles, chlorobenzimidazoles, bromobenzimidazoles, mercaptothiazoles, mercaptobenzothiazoles, mercaptobenzimidazoles, mercaptothiadiazoles, Aminotriazoles, benzotriazoles, nitrobenzotriazoles, mercaptotetrazoles (especially 1-phenyl-5-mercaptotetrazole etc.), mercaptopyrimidines, mercaptotriazines etc .; thioketo compounds such as oxadrine thione; Such as triazaindenes, tetraazaindenes (especially 4-hydroxy-substituted-1,3,3a, 7-tetraazaindene) pentaazaindene ; Benzenethiosulfonate, can be added benzene sulfinic acid, many compounds known as antifoggants or stabilizers, such as benzenesulfonic acid amide. Particularly preferred are mercaptotetrazoles. This is preferable because it has the function of further enhancing the high illuminance sensitivity in addition to prevention of fogging and stabilization.
[0052]
The silver halide emulsion used in the color photographic light-sensitive material of the present invention includes a silver halide emulsion prepared by the production method of the present invention in at least one silver halide emulsion layer. As other silver halides used in the color light-sensitive material of the present invention, silver chloride, silver bromide, (iodo) silver chlorobromide, silver iodobromide and the like can be used. It is preferable to use a high silver chloride emulsion having a silver chloride content of 90 mol% or more, more preferably 95 mol% or more, and particularly 98 mol% or more. Among these embodiments, the embodiment in which the three types of silver halide emulsion layers having different hues all contain a silver halide emulsion prepared by the production method of the present invention is most preferable.
[0053]
In the light-sensitive material according to the present invention, a dye which can be decolored by processing described in pages 27 to 76 of European Patent EP0,337,490A2 is added to a hydrophilic colloid layer for the purpose of improving the sharpness of an image. An oxonol dye) such that the optical reflection density at 680 nm of the light-sensitive material is 0.70 or more, or a divalent to tetravalent alcohol (for example, trimethylolethane) in the water-resistant resin layer of the support. It is preferable to contain 12% by weight or more (more preferably 14% by weight or more) of the titanium oxide surface-treated with.
[0054]
The photographic additives such as cyan, magenta, and yellow coupler that can be used in the present invention are preferably dissolved in a high boiling point organic solvent, and the high boiling point organic solvent is water having a melting point of 100 ° C. or lower and a boiling point of 140 ° C. or higher. It can be used as long as it is a good solvent for couplers. The melting point of the high boiling point organic solvent is preferably 80 ° C. or lower. The boiling point of the high-boiling organic solvent is preferably 160 ° C. or higher, more preferably 170 ° C. or higher.
Details of these high-boiling organic solvents are described in JP-A-62-215272, from page 137, lower right column to page 144, upper right column.
Cyan, magenta or yellow couplers can also be impregnated into a loadable latex polymer (eg, US Pat. No. 4,203,716) in the presence or absence of the high boiling organic solvent or water insoluble and organic. It can be dissolved together with a solvent-soluble polymer and emulsified and dispersed in a hydrophilic colloid aqueous solution.
Preferably, homopolymers or copolymers described in U.S. Pat. No. 4,857,449, columns 7 to 15 and International Publication WO 88/00723, pages 12 to 30, are used. The use of a methacrylate or acrylamide polymer, particularly an acrylamide polymer is preferred for color image stabilization and the like.
[0055]
In the light-sensitive material according to the present invention, it is preferable to use a color image preservability improving compound as described in European Patent EP 0,277,589A2 together with a coupler. In particular, in order to suppress latent image sensitization, it is preferable to use a pyrrolotriazole coupler and / or a pyrazoloazole coupler in combination.
That is, the compound (F) that chemically bonds with the aromatic amine-based developing agent remaining after the color development processing to form a chemically inert and substantially colorless compound and / or the fragrance remaining after the color development processing. The compound (G) that chemically bonds to an oxidized form of an aromatic amine color developing agent to form a chemically inert and substantially colorless compound can be used simultaneously or alone, for example in storage after processing. It is preferable for preventing the occurrence of stains and other side effects due to the formation of color dyes by the reaction of the color developing agent remaining in the film or its oxidant and a coupler.
[0056]
In addition, an antifungal agent as described in JP-A-63-271247 is added to the light-sensitive material according to the present invention in order to prevent various wrinkles and bacteria that propagate in the hydrophilic colloid layer and degrade the image. It is preferable to do this.
[0057]
The support used in the light-sensitive material according to the present invention includes a support provided on a support on the side having a silver halide emulsion layer and a white polyester support or a layer containing a white pigment for display. It may be used. In order to further improve the sharpness, an antihalation layer is preferably coated on the silver halide emulsion layer coating side or the back surface of the support. In particular, the transmission density of the support is preferably set in the range of 0.35 to 0.8 so that the display can be viewed with either reflected light or transmitted light.
[0058]
The photosensitive material according to the present invention may be exposed with visible light or with infrared light. The exposure method may be low illuminance exposure or high illuminance short time exposure. In the latter case, the exposure time per pixel is 10.-FourA laser scanning exposure method shorter than 1 second is preferable.
[0059]
In exposure, a band stop filter described in US Pat. No. 4,880,726 is preferably used. This removes light color mixing and remarkably improves color reproducibility.
[0060]
The exposed light-sensitive material can be subjected to conventional color development processing. However, in the case of a color light-sensitive material, it is preferable to perform bleach-fixing processing after color development for the purpose of rapid processing. In particular, when the high silver chloride emulsion is used, the pH of the bleach-fix solution is preferably about 6.5 or less, more preferably about 6 or less for the purpose of promoting desilvering.
[0061]
Silver halide emulsions and other materials (additives, etc.) and photographic composition layers (layer arrangement, etc.) applied to the light-sensitive material according to the present invention, and processing methods and processing applied to process this light-sensitive material As the additive, those described in the following patent publications, particularly European Patent EP 0,355,660A2 (Japanese Patent Laid-Open No. 2-139544) are preferably used.
[0062]
[Table 1]
Figure 0003739908
[0063]
[Table 2]
Figure 0003739908
[0064]
[Table 3]
Figure 0003739908
[0065]
[Table 4]
Figure 0003739908
[0066]
[Table 5]
Figure 0003739908
[0067]
Further, as a cyan coupler, in addition to the diphenylimidazole cyan coupler described in JP-A-2-33144, a 3-hydroxypyridine cyan coupler described in European Patent EP 0,333,185A2 (among others listed as a specific example). The coupler (42) is a 4-equivalent coupler having a chlorine-eliminating group to give 2 equivalents, couplers (6) and (9) are particularly preferred) and cyclic active methylenes described in JP-A 64-32260. It is also preferable to use a cyan coupler (particularly, coupler examples 3, 8, and 34 listed as specific examples are particularly preferred). Particularly preferred cyan couplers are pyrrolotriazole cyan couplers described in JP-A-9-189988.
[0068]
Further, as a processing method of a silver halide color light-sensitive material using a high silver chloride emulsion having a silver chloride content of 90 mol% or more, it is described in JP-A-2-207250, page 27, upper left column to page 34, upper right column. The method is preferably applied.
[0069]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.
[0070]
Example 1
(Preparation of Emulsion A) 3.5 g of sodium chloride was added to a 3% aqueous solution of lime-processed gelatin, and 1.0 ml of N, N′-dimethylimidazolidine-2-thione (1% aqueous solution) was added. An aqueous solution containing 0.8 mol of silver nitrate and an aqueous solution containing 0.8 mol of sodium chloride were added to and mixed at 50 ° C. with vigorous stirring. Subsequently, an aqueous solution containing 0.20 mol of silver nitrate and an aqueous solution containing 0.20 mol of sodium chloride were added and mixed at 50 ° C. with vigorous stirring. At the same time, 6.4 × 10-6Mole added and mixed. Thereafter, it was washed with sedimentation water at 40 ° C. for desalting. Further, 80.0 g of lime-processed gelatin was added, and the pH and pAg of the emulsion were adjusted to 7.2 and 7.0, respectively. In this bromine supply process, a silver chlorobromide fine grain emulsion having a grain size of 0.05 μm (halogen ratio Br / Cl = 60/40) was added in a silver amount of 0.004 mol at 60 ° C. After forming a silver bromide rich phase on the surface of silver chloride host grains, gold sensitizer (chloroauric acid) 1.1 × 10-FourMol / mol Ag, sulfur sensitizer (triethylthiourea) 2.7 × 10-6Mol / mol Ag, the same red-sensitive spectral sensitizing dye (G and H) as in Example 2 1.4 × 10-Five2.6 × 10 6 mol / mol Ag and the same compound I as in Example 2-3Mole addition, chemical sensitization and spectral sensitization optimally at 60 ° C., and 1- (5-methylureidophenyl) -5-mercaptotetrazole 7.7 × 10-FourMole / mole Ag was added. In addition, in the silver chlorobromide fine grain emulsion, potassium hexachloroiridium (IV) was added 1.7 × 10 5 during the grain formation.-FourMol / mol Ag was contained. (Hereinafter, this fine grain emulsion is referred to as fine grain emulsion A.) From the electron micrograph, the shape of the grain was cubic, the grain size was 0.5 μm, and the coefficient of variation was 0.08. The particle size was expressed as an average value of the diameter of a circle equivalent to the projected area of the particle, and the particle size distribution was obtained by dividing the particle size standard deviation by the average particle size.
[0071]
(Preparation of Emulsion B) In the above emulsion (A), the amount of potassium hexachloroiridium (IV) in the silver chlorobromide fine grains was 3.4 × 10-FourMol / mol Ag. (Hereinafter, this silver chlorobromide fine grain emulsion is referred to as a fine grain emulsion b.)
(Preparation of Emulsion C) In the above emulsion (A), the amount of potassium hexachloroiridium (IV) in the silver chlorobromide fine grains was 6.8 × 10 6.-FourMol / mol Ag. (Hereinafter, this silver chlorobromide fine grain emulsion is referred to as fine grain emulsion C.)
(Preparation of Emulsion D) Only the bromine supply process of the emulsion (A) was changed, and the fine grain emulsion (a) was added in a silver amount of 0.001 mol at 60 ° C. and ripened for 5 minutes. After forming a silver bromide-rich phase in the vicinity, a method of adding 0.003 mol of the fine grain emulsion a under the same conditions as the silver amount was further used.
(Preparation of Emulsion E) The silver chlorobromide fine grain emulsion in the bromine supply process of the emulsion (D) was changed, and the first silver chlorobromide fine grain emulsion did not contain potassium hexachloroiridium (IV), The second silver chlorobromide fine grain emulsion contains 2.3 × 10 5 potassium hexachloroiridium (IV) during grain formation.-FourIt was added containing mol / mol Ag. (Hereinafter, the first fine grain emulsion is referred to as fine grain emulsion d, and the second fine grain emulsion is referred to as fine grain emulsion E.)
[0072]
(Preparation of Emulsion F) The silver chlorobromide fine grain emulsion in the bromine supply process of the emulsion (D) was changed, and the fine grain emulsion C was added to the first silver chlorobromide fine grain emulsion, and the second salt To the silver bromide fine grain emulsion, a fine grain emulsion D not containing potassium hexachloroiridium (IV) was added.
(Preparation of Emulsion G) The halogen composition of the second silver chlorobromide fine grain emulsion in the bromine supply process of the emulsion (F) was changed to Br / Cl = 30/70 and added. The rest was the same as Emulsion F.
(Preparation of Emulsion H) The bromine supply process of the emulsion (A) was changed, the aqueous solution (I) prepared as follows was added, and the mixture was aged for 4 minutes. After forming the phase, the fine grain emulsion was added in the amount of silver at 0.003 mol at 50 ° C. and ripened for 12 minutes.
Aqueous solution (I): KBr 0.5 mol / liter aqueous solution 6.0 cc
[0073]
(Preparation of Emulsion I) In the bromine supply process of the emulsion (H), 1 × 10 potassium hexachloroiridium (IV) aqueous solution was added 1 minute after the addition of the fine emulsion D.-FourMole was added at once.
(Preparation of Emulsion J) In the bromine supplying process of the emulsion (H), a potassium hexachloroiridium (IV) aqueous solution was added 1 × 10 immediately before the addition of the aqueous solution (I).-FourMole was added at once.
(Preparation of emulsion K) The aqueous solution (I) of the emulsion (J) was changed to the following aqueous solution (II).
Aqueous solution (II): S-3 0.5 mol / liter aqueous solution 6.0 cc
(Preparation of Emulsion L) In the above emulsion F, the CR-7 (3.0 × 10 per 1.0 mol of silver halide) was prepared.-FourMol) was added before the bromine feed process.
[0074]
Each stage of the bromine supply process was sampled with respect to the above prepared emulsion, and the ratio of the unreacted Br amount immediately after the first bromine supply to the unreacted Br amount immediately before the second bromine supply was examined. In (D) to (L), it was found that the second bromine supply was performed after completion of 90% or more of the first silver bromide-rich phase formation. In addition, in the emulsions (D) to (F), atomic absorption analysis was performed on a solution obtained by membrane filtration of the emulsion immediately before and after the second bromine supply, and all of the iridium atoms were below the detection limit.
[0075]
Next, 9.6 g of cyan coupler (ExC-1) and 0.6 g of color image stabilizer (Cpd-9), 5.4 g of color image stabilizer (Cpd-20), 12 g of color image stabilizer (Cpd-1), To 1.5 g of the color image stabilizer (Cpd-12) and 0.4 g of the color image stabilizer (Cpd-19), 25.0 cc of ethyl acetate and 4.2 g of the solvent (solv-6) were added and dissolved. An emulsified dispersion A was prepared by emulsifying and dispersing in 402 cc of a 10% gelatin aqueous solution containing 20.0 cc of 10% sodium dodecylbenzenesulfonate. A total of 12 types of samples having the contents shown in Table 6 were prepared. The polyethylene on the side coated with the emulsion layer and the protective layer contains titanium dioxide and a trace amount of ultramarine blue. As a hardening agent for each layer, 1-oxy-3,5-dichloro-s-triazine atrium salt was used.
[0076]
[Table 6]
Figure 0003739908
[0077]
In order to examine the photographic characteristics of these coated samples, the following experiment was conducted. First, gradation exposure for sensitometry was given to the coated sample using a photometer (FWH type manufactured by Fuji Film Co., Ltd. and SMP-201A manufactured by Yamashita Denso Co., Ltd.). The exposure amount at this time is 300 CMS, low illumination of 10 seconds, 10-6The exposure was carried out with a 680 nm interference filter at a high illuminance of 2 seconds. Thereafter, the following color development processing was performed 10 seconds after exposure and 2 hours after exposure.
[0078]
Figure 0003739908
[0079]
Color developer
Triethanolamine 8.12g
4.93 g of N, N-diethylhydroxylamine
Fluorescent whitening agent (UVITEX CK manufactured by Ciba Geigy) 2.80 g
4-Amino-3-methyl-N-ethyl-N-
[Β- (Methanesulfonamido) ethyl]-
p-phenylenediamine sulfate 4.96 g
Sodium sulfite 0.13g
Potassium carbonate 18.40g
4.85 g potassium hydrogen carbonate
EDTA ・ 2Na ・ 2H2 O 2.20 g
Sodium chloride 1.36g
1000ml with water
pH 10.05
[0080]
Bleach fixer
Ammonium thiosulfate (54wt%) 103.0ml
NHFour EDTA · Fe 54.10mg
EDTA ・ 2Na ・ 2H2 O 3.41g
Sodium sulfite 16.71g
Glacial acetic acid 8.61g
1000ml with water
pH 5.44
[0081]
The color density of each sample after processing was measured, and the sensitivity and gradation were determined. The sensitivity is defined by the reciprocal of the exposure amount giving a color density higher by 1.0 than the minimum color density, and the sensitivity of the sample 101 exposed for 10 seconds and developed after 2 hours, and 10-6The sensitivity was expressed as a relative value when the sensitivity of exposure after 2 seconds and development processing after 2 hours was 100, respectively. In addition, since the change in gradation due to high illumination failure is particularly significant in the shoulder, the gradation is the difference between the logarithm of the exposure amount giving a color density of 1.5 and the logarithm of the exposure amount giving 2.0. Expressed in A smaller value means higher contrast. The results are summarized in Tables 7 and 8.
[0082]
[Table 7]
Figure 0003739908
[0083]
[Table 8]
Figure 0003739908
[0084]
As can be seen from these tables, the increase in the amount of iridium in the silver bromide rich phase in emulsions A to C slightly reduces the high-illuminance failure (Table 7), but the time until post-exposure processing. (Table 8). However, in the case of iridium confined inside the silver bromide-rich phase as in Emulsion F, the high-illuminance failure was remarkably improved while the sensitivity fluctuation with the time until post-exposure processing was kept small (Table 8). 7). In particular, Emulsion L in which a silver bromide rich phase was formed in the presence of CR-7 was highly effective.
[0085]
Furthermore, using the samples 101 to 112, the room temperature and humidity were 25 ° C.-55% (relative humidity) and 25 ° C.-85% (relative humidity), and high illuminance of 10-6Second exposure was given. Thereafter, after the elapse of 2 hours, the above color development processing was performed.
[0086]
The color density of each material after development processing was measured to determine the sensitivity. The sensitivity was defined in the same manner as described above, and the sensitivity when the material 101 was exposed in an atmosphere of 25 ° C. to 55% (relative humidity) was set to 100.
The results are summarized in Table 9.
[0087]
[Table 9]
Figure 0003739908
[0088]
As shown in Table 9, in the sample 108 not using the iridium compound, the decrease in sensitivity when exposed at high humidity (hereinafter referred to as high humidity desensitization) was small, but the amount of the iridium compound used was increased. In samples 101 to 103, the high humidity desensitization was significantly increased. However, in samples 106, 107, and 110-112 in which the iridium compound is contained only in the silver bromide-rich phase of the present invention, high humidity desensitization was smaller than that of the comparative sample.
[0089]
Example 2
After the corona discharge treatment is applied to the surface of the support formed by coating both sides of the paper with polyethylene resin, a gelatin subbing layer containing sodium dodecylbenzenesulfonate is provided, and the photographic composition of the first to seventh layers The layers were sequentially coated to prepare a sample (201) of a silver halide color photographic light-sensitive material having the following layer structure. The coating solution for each photographic constituent layer was prepared as follows.
[0090]
Fifth layer coating solution preparation
Cyan coupler (ExC-2) 130 g, cyan coupler (ExC-3) 30 g, color image stabilizer (Cpd-1) 50 g, color image stabilizer (Cpd-6) 50 g, color image stabilizer (Cpd-7) 20 g Color image stabilizer (Cpd-9) 40 g, Color image stabilizer (Cpd-10) 10 g, Color image stabilizer (Cpd-14) 10 g, Color image stabilizer (Cpd-15) 60 g, Color image stabilizer ( Cpd-16) 90 g, color image stabilizer (Cpd-17) 90 g, and color image stabilizer (Cpd-18) 10 g, solvent (Solv-5) 150 g, solvent (Solv-8) 50 g, solvent (Solv- 9) Dissolve in 100 g and 350 ml of ethyl acetate, and emulsify and disperse this liquid in 6500 g of a 10% gelatin aqueous solution containing 200 ml of 10% sodium dodecylbenzenesulfonate to prepare an emulsified dispersion C. .
The emulsified dispersion C and the emulsion A prepared in Example 1 were mixed and dissolved to prepare a fifth layer coating solution having a composition described later. The emulsion coating amount indicates the coating amount in terms of silver amount.
[0091]
The coating solutions for the first to fourth layers and the sixth to seventh layers were prepared in the same manner as the fifth layer coating solution. As a gelatin hardener for each layer, 1-oxy-3,5-dichloro-s-triazine sodium salt was used.
Moreover, the total amount of Ab-1, Ab-2, Ab-3 and Ab-4 is 15.0 mg / m in each layer.2 60.0 mg / m2 5.0 mg / m2 And 10.0 mg / m2 It added so that it might become.
[0092]
Embedded image
Figure 0003739908
[0093]
The following spectral sensitizing dyes were used in the silver chlorobromide emulsion of each photosensitive emulsion layer.
Blue sensitive emulsion layer
[0094]
Embedded image
Figure 0003739908
[0095]
(Sensitizing dyes A, B and C per mole of silver halide and 1.4 × 10 for each large emulsion-Four1.7 x 10 each for molar and small emulsions-FourMole was added. )
Green sensitive emulsion layer
[0096]
Embedded image
Figure 0003739908
[0097]
(Sensitizing dye D per mole of silver halide, 3.0 x 10 for large size emulsions-Four3.6 × 10 for small, small emulsions-FourMol, and Sensitizing Dye E per mol of silver halide, 4.0 × 10 for large size emulsions-Five7.0 x 10 for molar, small emulsions-FiveMole, and sensitizing dye F per mole of silver halide is 2.0 × 10 5 for large size emulsions.-Four2.8 × 10 for small, small emulsions-FourMole was added. )
Red sensitive emulsion layer
[0098]
Embedded image
Figure 0003739908
[0099]
Embedded image
Figure 0003739908
[0100]
Further, 1- (3-methylureidophenyl) -5-mercaptotetrazole was added to the blue-sensitive emulsion layer, the green-sensitive emulsion layer, and the red-sensitive emulsion layer, respectively, at 3.3 × 10 5 per mol of silver halide.-FourMol, 1.0 × 10-3Moles and 5.9 × 10-FourMole was added.
In addition, the second layer, the fourth layer, the sixth layer, and the seventh layer are each 0.2 mg / m 2.2 0.2 mg / m2 0.6 mg / m2 0.1 mg / m2 It added so that it might become.
In addition, 4-hydroxy-6-methyl-1,3,3a, 7-tetrazaindene is added to the blue-sensitive emulsion layer and the green-sensitive emulsion layer, respectively at 1 × 10 6 per mole of silver halide.-FourMol, 2 × 10-FourMole was added.
Further, 0.05 g / m of a copolymer of methacrylic acid and butyl acrylate (weight ratio 1: 1, average molecular weight 200,000 to 400,000) was added to the red sensitive emulsion layer.2 Was added.
Further, disodium catechol-3,5-disulfonate was added to the second layer, the fourth layer, and the sixth layer, respectively, at 6 mg / m.2 6 mg / m2 18 mg / m2 It added so that it might become.
In order to prevent irradiation, the following dyes were added to the emulsion layer (the amount in parentheses represents the coating amount).
[0101]
Embedded image
Figure 0003739908
[0102]
(Layer structure)
The structure of each layer is shown below. Numbers are application amount (g / m2 ). A silver halide emulsion represents a coating amount in terms of silver.
Support
Polyethylene resin laminated paper
[White pigment (TiO 2 on the first layer side polyethylene resin)2 Content 16% by weight, ZnO; content 4% by weight) and optical brightener (4,4′-bis (benzoxazolyl) stilbene and 4,4′-bis (5-methylbenzoxazolyl) 8/2 mixture of stilbenes: content 0.05% by weight), including bluish dye (ultraviolet)]
Figure 0003739908
[0103]
Second layer (color mixing prevention layer)
Gelatin 0.99
Color mixing inhibitor (Cpd-4) 0.09
Color image stabilizer (Cpd-5) 0.018
Color image stabilizer (Cpd-6) 0.13
Color image stabilizer (Cpd-7) 0.01
Solvent (Solv-1) 0.06
Solvent (Solv-2) 0.22
[0104]
Figure 0003739908
[0105]
Fourth layer (color mixing prevention layer)
Gelatin 0.71
Color mixing inhibitor (Cpd-4) 0.06
Color image stabilizer (Cpd-5) 0.013
Color image stabilizer (Cpd-6) 0.10
Color image stabilizer (Cpd-7) 0.007
Solvent (Solv-1) 0.04
Solvent (Solv-2) 0.16
[0106]
5th layer (red-sensitive emulsion layer)
Emulsion A of Example 1 0.12
Gelatin 1.11
Cyan coupler (ExC-2) 0.13
Cyan coupler (ExC-3) 0.03
Color image stabilizer (Cpd-1) 0.05
Color image stabilizer (Cpd-6) 0.05
Color image stabilizer (Cpd-7) 0.02
Color image stabilizer (Cpd-9) 0.04
Color image stabilizer (Cpd-10) 0.01
Color image stabilizer (Cpd-14) 0.01
Color image stabilizer (Cpd-15) 0.06
Color image stabilizer (Cpd-16) 0.09
Color image stabilizer (Cpd-17) 0.09
Color image stabilizer (Cpd-18) 0.01
Solvent (Solv-5) 0.15
Solvent (Solv-8) 0.05
Solvent (Solv-9) 0.10
[0107]
Sixth layer (UV absorbing layer)
Gelatin 0.66
Ultraviolet absorber (UV-1) 0.19
UV absorber (UV-2) 0.06
UV absorber (UV-3) 0.06
UV absorber (UV-4) 0.05
Ultraviolet absorber (UV-5) 0.09
Solvent (Solv-7) 0.25
Seventh layer (protective layer)
Gelatin 1.00
Acrylic-modified copolymer of polyvinyl alcohol (degree of modification 17%) 0.04
Liquid paraffin 0.02
Surfactant (Cpd-13) 0.01
[0108]
Embedded image
Figure 0003739908
[0109]
Embedded image
Figure 0003739908
[0110]
Embedded image
Figure 0003739908
[0111]
Embedded image
Figure 0003739908
[0112]
Embedded image
Figure 0003739908
[0113]
Embedded image
Figure 0003739908
[0114]
Embedded image
Figure 0003739908
[0115]
Embedded image
Figure 0003739908
[0116]
Embedded image
Figure 0003739908
[0117]
Embedded image
Figure 0003739908
[0118]
Further, samples 202 to 212 were prepared by changing the emulsion of the fifth layer to the emulsions BL of Example 1 with respect to the silver halide color photographic light-sensitive material 201 prepared as described above.
[0119]
Using the samples 201 to 212 obtained here, the same experiment as in Example 1 was performed. As in the results of Example 1, the samples 206, 207, 210, 211, and 212 of the present invention were The effect that the illuminance failure is small and the sensitivity fluctuation with the time until the post-exposure processing is small appears remarkably.
[0120]
Example 3
(Preparation of emulsion TA) 1.0 g of sodium chloride was added to a 2% aqueous solution of lime-processed gelatin, and an acid was added to adjust the pH to 4.5. An aqueous solution containing 0.05 mol of silver nitrate and an aqueous solution containing 0.05 mol of sodium chloride and potassium bromide were added and mixed at 40 ° C. with vigorous stirring. Subsequently, after adding an aqueous solution containing 0.004 mol of potassium bromide, an aqueous solution containing 0.13 mol of silver nitrate and an aqueous solution containing 0.13 mol of sodium chloride were added. Further, the temperature was raised to 75 ° C., and an aqueous solution containing 1.0 mol of silver nitrate and an aqueous solution containing 1.0 mol of sodium chloride were added and mixed while maintaining pAg at 7.0. Thereafter, washing with sedimentation was performed at 40 ° C. to perform desalting. Further, 100 g of lime-processed gelatin was added to adjust the pH to 6.0 and pAg 7.4. To this emulsion was added a gold sensitizer (chloroauric acid), a sulfur sensitizer (triethylthiourea), a red-sensitive spectral sensitizing dye (G and H), and the above-mentioned compound I, and an optimum chemistry at 60 ° C. After sensitization and spectral sensitization and further addition of 1- (5-methylureidophenyl) -5-mercaptotetrazole, a silver bromide-rich phase was formed in the same manner as Emulsion A of Example 1. From the electron micrograph, the shape of the grain was a tabular grain having a {100} plane as the main plane, a projected area equivalent diameter of 1.2 μm, an average aspect ratio of 5, and a variation coefficient of 20%.
[0121]
(Preparation of emulsions TB to TL) Emulsions in which only the formation of the silver bromide rich phase of the above emulsion TA was replaced with the formation of the silver bromide rich phase of the emulsion B to the emulsion L of Example 1 were prepared. TL.
[0122]
Using the above prepared emulsion, coated samples 301 to 312 were prepared in exactly the same manner as in Example 1. As a result of conducting the same experiment as in Example 1, the formation of the silver bromide-rich phase of the present invention resulted in: It has been found that the same effect as in Example 1 can be obtained in the tabular grains.
[0123]
Example 4
In Example 1, 10-6High-intensity exposure for 2 seconds was changed to laser scanning exposure, and exactly the same experiment was performed on samples 101 to 112, 201 to 212, and 301 to 312.
As a laser light source, a YAG solid-state laser (oscillation wavelength 946 nm) using a semiconductor laser GaAlAs (oscillation wavelength 808.5 nm) as an excitation light source is a LiNbO having an inverted domain structure.Three YVO using an excitation light source of 473 nm extracted by wavelength conversion with an SHG crystal and a semiconductor laser GaAlAs (oscillation wavelength 808.7 nm)Four LiNbO with an inversion domain structure from a solid-state laser (oscillation wavelength 1064 nm)Three 532 nm extracted by wavelength conversion using SHG crystal and AlGaInP (oscillation wavelength: about 680 nm: type No. LN9R20 manufactured by Matsushita Electric Industrial Co., Ltd.) were used. The laser beams of the three colors are moved in the direction perpendicular to the scanning direction by the polygon mirror so that the sample can be sequentially scanned and exposed. Variation in the amount of light due to the temperature of the semiconductor laser is suppressed by keeping the temperature constant using a Peltier element. The effective beam diameter is 80 μm, the scanning pitch is 42.3 μm (600 dpi), and the average exposure time per pixel is 1.7 × 10.-7Second.
Also in this result, the results of Examples 1 to 3 are exactly the same. In the sample of the present invention, the high-illuminance reciprocity law failure is small while the sensitivity fluctuation and gradation fluctuation due to the time fluctuation until post-exposure processing are small. Furthermore, it was confirmed that the sensitivity reduction was small when exposed in high humidity.
[0124]
【The invention's effect】
According to the present invention, high-illuminance reciprocity failure in ultra-short-time high-illuminance exposure such as laser scanning exposure is improved, sensitivity fluctuation and gradation fluctuation due to time fluctuation from exposure to processing are small, and high humidity Among them, it is possible to provide a silver halide emulsion having a small decrease in sensitivity when exposed to light, a production method thereof, a silver halide color photographic light-sensitive material using the same, and an image forming method.

Claims (7)

塩化銀含有率90mol%以上の塩臭化銀または塩沃臭化銀乳剤において、該乳剤中のハロゲン化銀粒子の粒子表面近傍にイリジウム化合物を含有した臭化銀富有相を有し、該臭化銀富有相の内側部に、イリジウム化合物密度が該富有相の外側部より高い領域を有することを特徴とするハロゲン化銀乳剤。A silver chlorobromide or silver chloroiodobromide emulsion having a silver chloride content of 90 mol% or more has a silver bromide rich phase containing an iridium compound in the vicinity of the grain surface of the silver halide grains in the emulsion, and the odor A silver halide emulsion comprising a region having an iridium compound density higher than an outer portion of the rich phase in an inner portion of the silver halide-rich phase. 前記ハロゲン化銀粒子が、立方体または14面体粒子であることを特徴とする請求項1に記載のハロゲン化銀乳剤。The silver halide emulsion according to claim 1, wherein the silver halide grains are cubic or tetradecahedral grains. 前記ハロゲン化銀乳剤の全粒子の全投影面積の50%以上が、主平面が{100}からなる、平均アスペクト比2以上の平板状粒子、あるいは主平面が{111}面からなる、平均アスペクト比2以上の平板状粒子であることを特徴とする請求項1に記載のハロゲン化銀乳剤。50% or more of the total projected area of all grains of the silver halide emulsion is a tabular grain having an average aspect ratio of 2 or more, or a main plane consisting of {111} planes. 2. The silver halide emulsion according to claim 1, wherein the silver halide emulsion is a tabular grain having a ratio of 2 or more. 塩化銀含有率90mol%以上の塩臭化銀または塩沃臭化銀乳剤中のハロゲン化銀粒子の粒子表面近傍にイリジウム化合物を含有した臭化銀富有相を形成するハロゲン化銀乳剤の製造方法において、該臭化銀富有相形成が少なくとも2段階の形成工程から成り、ある形成工程で添加するイリジウム化合物の添加する銀に対するモル量が、それ以後のいずれかの形成工程で添加するイリジウム化合物の添加する銀に対するモル量よりも高いことを特徴とするハロゲン化銀乳剤製造方法。Method for producing silver halide emulsion for forming silver bromide rich phase containing iridium compound in the vicinity of surface of silver halide grains in silver chlorobromide or silver chloroiodobromide emulsion having silver chloride content of 90 mol% or more The formation of the silver bromide-rich phase comprises at least two stages of formation process, and the molar amount of the iridium compound added in a certain formation process with respect to the added silver is that of the iridium compound added in any of the subsequent formation processes. A method for producing a silver halide emulsion, which is higher than a molar amount relative to silver to be added. 前記の臭化銀富有相形成が、塩臭化銀または塩沃臭化銀ホスト粒子からなるハロゲン化銀乳剤よりも粒径が小さい臭化銀微粒子乳剤または塩臭化銀微粒子乳剤を少なくとも2回添加することで行われることを特徴とする請求項4に記載のハロゲン化銀乳剤製造方法。Silver bromide fine grain emulsion or silver chlorobromide fine grain emulsion having a grain size smaller than that of silver halide emulsion composed of silver chlorobromide or silver chloroiodobromide host grains is formed at least twice. The method for producing a silver halide emulsion according to claim 4, wherein the silver halide emulsion is added. 支持体上にそれぞれ少なくとも一層の青感性ハロゲン化銀乳剤層、緑感性ハロゲン化銀乳剤層、及び赤感性ハロゲン化銀乳剤層を有するハロゲン化銀カラー写真感光材料において、前記青感性ハロゲン化銀乳剤層、緑感性ハロゲン化銀乳剤層、及び赤感性ハロゲン化銀乳剤層の少なくとも一層が、塩化銀含有率90mol%以上の塩臭化銀または塩沃臭化銀乳剤であり、該乳剤中のハロゲン化銀粒子の粒子表面近傍にイリジウム化合物を含有した臭化銀富有相を有し、該臭化銀富有相内にイリジウム化合物密度が表面側より高い領域を有することを特徴とするハロゲン化銀乳剤を、含有することを特徴とするハロゲン化銀カラー写真感光材料。In the silver halide color photographic light-sensitive material having at least one blue-sensitive silver halide emulsion layer, green-sensitive silver halide emulsion layer, and red-sensitive silver halide emulsion layer, respectively, on the support, the blue-sensitive silver halide emulsion At least one of the layer, the green-sensitive silver halide emulsion layer, and the red-sensitive silver halide emulsion layer is a silver chlorobromide or silver chloroiodobromide emulsion having a silver chloride content of 90 mol% or more. A silver halide emulsion having a silver bromide-rich phase containing an iridium compound in the vicinity of the surface of the silver halide grain, and having a region having a higher iridium compound density than the surface side in the silver bromide-rich phase A silver halide color photographic light-sensitive material characterized by comprising: 請求項6に記載のハロゲン化銀カラー写真感光材料を画像情報に基づいて変調したレーザー光ビームにより、1画素あたりの露光時間が10-4秒よりも短い走査露光をした後に現像処理することを特徴とする画像形成方法。7. A silver halide color photographic light-sensitive material according to claim 6 is subjected to a scanning exposure with a laser beam modulated on the basis of image information, followed by a developing process after scanning exposure shorter than 10 −4 seconds. An image forming method.
JP28282397A 1997-09-30 1997-09-30 Silver halide emulsion, silver halide emulsion production method, silver halide color photographic light-sensitive material, and image forming method Expired - Fee Related JP3739908B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28282397A JP3739908B2 (en) 1997-09-30 1997-09-30 Silver halide emulsion, silver halide emulsion production method, silver halide color photographic light-sensitive material, and image forming method
US09/159,545 US6183946B1 (en) 1997-09-30 1998-09-24 Silver halide emulsion, production process of silver halide emulsion, silver halide color photographic light-sensitive material and image formation method
CNB981200699A CN1173228C (en) 1997-09-30 1998-09-29 Silver halide emulsion, production process of silver halide emulsion, silver halide color photographic light-sensitive material and image formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28282397A JP3739908B2 (en) 1997-09-30 1997-09-30 Silver halide emulsion, silver halide emulsion production method, silver halide color photographic light-sensitive material, and image forming method

Publications (2)

Publication Number Publication Date
JPH11109534A JPH11109534A (en) 1999-04-23
JP3739908B2 true JP3739908B2 (en) 2006-01-25

Family

ID=17657553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28282397A Expired - Fee Related JP3739908B2 (en) 1997-09-30 1997-09-30 Silver halide emulsion, silver halide emulsion production method, silver halide color photographic light-sensitive material, and image forming method

Country Status (3)

Country Link
US (1) US6183946B1 (en)
JP (1) JP3739908B2 (en)
CN (1) CN1173228C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294319B1 (en) * 1998-06-10 2001-09-25 Konica Corporation Silver halide photographic emulsion
US6558885B1 (en) * 1999-11-25 2003-05-06 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material and image-forming method
EP1220023B1 (en) * 2000-11-27 2005-05-18 Fuji Photo Film Co., Ltd. Silver halide emulsion and silver halide photosensitive material
US6916601B2 (en) 2001-12-28 2005-07-12 Fuji Photo Film Co., Ltd. Image-forming method using a silver halide color photographic light-sensitive material, and silver halide color photographic light-sensitive material
CN1299163C (en) * 2003-01-27 2007-02-07 中国乐凯胶片集团公司 Silver halide emulsion and preparation method thereof
CN104142610A (en) * 2013-05-09 2014-11-12 天津天感科技有限公司 Fog prevention method for silver chlorobromide film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895736A (en) 1981-12-02 1983-06-07 Konishiroku Photo Ind Co Ltd Silver halide color photosensitive material
EP0273429B1 (en) 1986-12-26 1993-08-18 Fuji Photo Film Co., Ltd. Corner development type silver halide photographic emulsions
JPH0734103B2 (en) * 1987-10-19 1995-04-12 富士写真フイルム株式会社 Silver halide photographic light-sensitive material
JPH0561136A (en) 1991-09-04 1993-03-12 Fuji Photo Film Co Ltd Preparation of silver halide photographic emulsion, and silver halide color photographic sensitive material
EP0573854B1 (en) 1992-05-29 1995-10-04 Eastman Kodak Company Color photographic materials and methods with stabilized silver chloride emulsions
JPH0695280A (en) 1992-09-16 1994-04-08 Fuji Photo Film Co Ltd Silver halide photographic sensitive material
EP0658802B1 (en) * 1993-12-14 2000-03-15 Fuji Photo Film Co., Ltd. Surface latent image type photographic material containing silver halide grains doped with cyano-chromium-complex ion
US5462849A (en) * 1994-10-27 1995-10-31 Eastman Kodak Company Silver halide emulsions with doped epitaxy

Also Published As

Publication number Publication date
CN1221126A (en) 1999-06-30
JPH11109534A (en) 1999-04-23
US6183946B1 (en) 2001-02-06
CN1173228C (en) 2004-10-27

Similar Documents

Publication Publication Date Title
JP3739908B2 (en) Silver halide emulsion, silver halide emulsion production method, silver halide color photographic light-sensitive material, and image forming method
US6696236B2 (en) Silver halide emulsion and silver halide photosensitive material
US6727054B2 (en) Silver halide photographic emulsion and silver halide color photographic material using the same
US5916742A (en) Surface latent image type photographic material containing silver halide grains doped with cyano-chromium-complex ion
JPH06289518A (en) Silver halide color photographic sensitive material
US6706469B2 (en) Silver halide emulsion, silver halide color photographic light-sensitive material and image-forming method
JP4022349B2 (en) Silver halide emulsion and silver halide color photographic light-sensitive material
JP2001188311A (en) Silver halide photographic sensitive material and image forming method
EP0531799B1 (en) A method for preparing a silver halide emulsion and a silver halide color photographic light-sensitive material containing the emulsion
US6706468B2 (en) Silver halide photographic emulsion and silver halide color photographic material using the same
JP4137368B2 (en) Silver halide photographic material
JP2001100345A (en) Silver halide emulsion and color photographic sensitive material using same and image forming method
US6703195B2 (en) Silver halide emulsion, and color photographic light-sensitive material and image forming method using the same
JP4280435B2 (en) Silver halide color photographic light-sensitive material
JP4280430B2 (en) Silver halide emulsion and silver halide color photographic material using the same
JP2001281822A (en) Silver halide color photographic sensitive material
JP4130141B2 (en) Image forming method using silver halide emulsion and silver halide color photographic material containing the same
JP4291966B2 (en) Silver halide emulsion
JP4381596B2 (en) Disulfide compound and method for producing the same, silver halide emulsion, and silver halide photographic light-sensitive material
JP2002174872A (en) Silver halide emulsion and silver halide color photosensitive material
JP2002274855A (en) Method for producing iridium complex and silver halide photographic sensitive material containing the same
JP2002162707A (en) Silver halide color photosensitive material and image forming method using the same
JP2002107879A (en) Silver halide color photographic sensitive material
JP2004004446A (en) Silver halide emulsion, method for preparation of this emulsion, silver halide photographic sensitive material, and image forming method for this photosensitive material
JP2003075949A (en) Silver halide photographic emulsion, silver halide color photographic sensitive material and image forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees