JP3738343B2 - Ammonia injection system for exhaust gas denitration system - Google Patents

Ammonia injection system for exhaust gas denitration system Download PDF

Info

Publication number
JP3738343B2
JP3738343B2 JP27828999A JP27828999A JP3738343B2 JP 3738343 B2 JP3738343 B2 JP 3738343B2 JP 27828999 A JP27828999 A JP 27828999A JP 27828999 A JP27828999 A JP 27828999A JP 3738343 B2 JP3738343 B2 JP 3738343B2
Authority
JP
Japan
Prior art keywords
exhaust gas
ammonia
injection
denitration
injection pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27828999A
Other languages
Japanese (ja)
Other versions
JP2001096131A (en
Inventor
恵美子 東
徹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP27828999A priority Critical patent/JP3738343B2/en
Publication of JP2001096131A publication Critical patent/JP2001096131A/en
Application granted granted Critical
Publication of JP3738343B2 publication Critical patent/JP3738343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ガスタービンやボイラ、加熱炉、コージェネレーションプラント、都市ごみ焼却炉等の排ガスに含まれる窒素酸化物(NOx)を選択的接触還元によって除去する排ガス脱硝システムにおいて、還元剤としてのアンモニアを排ガスダクト内に注入するアンモニア注入装置に関する。
【0002】
【従来の技術】
排ガス脱硝システムは、図1に示すように、ボイラ、加熱炉、ガスタービン等の排ガスダクト内に配置されかつ内部に触媒充填層を有する脱硝反応器と、排ガスダクト内における脱硝反応器の上流側に配置されたアンモニア注入グリッドからなるアンモニア注入装置とを備えている。アンモニア注入グリッドには、液体アンモニアを気化させることにより生じたアンモニアガスを空気との混合状態で供給する。従来の脱硝装置では、図6に示すように、脱硝反応器(21)およびアンモニア注入グリッド(22)は、通常、排ガスダクト(23)の途中に設けられた排熱回収ボイラ(24)内に配置されている。そして、アンモニア注入グリッド(22)は、図7に示すように、方形枠(27)と、方形枠(27)の対向枠部に渡された複数のアンモニア注入管(25)と、同管(25)を方形枠(27)に支持する複数のサポート(28)とからなり、各アンモニア注入管(25)には、多数の注入ノズル(図示略)が形成されている。このアンモニア注入グリッド(22)から排ガスダクト(23)内に排ガス中のNOxと等量のアンモニア(アンモニアと希釈空気の混合流体)を注入すると、これが排ガス中に拡散して、下流側の脱硝反応器(21)内の触媒充填層で反応させられることにより、NOxがNとHOに無害化される。
【0003】
上記脱硝システムにおいて、脱硝率を向上させるには、1) アンモニア注入グリッド(22)から排ガスダクト(23)内に注入されたアンモニアガスが排ガス中に均一に拡散するようにすること、および、2) アンモニアガスを含む排ガスが脱硝反応器(21)の触媒充填層を一様に通過して、脱硝反応器(21)内のいずれの箇所でも反応が均等に進むようにすることが肝要である。そこで、図7に示すように、アンモニア注入グリッド(22)を構成する複数のアンモニア注入管(25)を排ガスダクト(23)断面において均等に配置して、これらの管(25)の多数の注入ノズルからアンモニアガスを排ガス中に均等に噴出させ、さらに、アンモニア注入グリッド(22)と脱硝反応器(21)内の触媒充填層との距離をある程度大きくとって、拡散の促進を図っている。
【0004】
【発明が解決しようとする課題】
上記の脱硝システムでは、脱硝効率が80%という条件を満たすことが可能であったが、近年、環境保護の点から、入口NOx濃度が低下させられ、それにもかかわらず、システムの脱硝効率が90%という厳しい条件が課せられるようになっている。
【0005】
脱硝効率向上のためには、多数の注入ノズルにおけるアンモニアガス噴射量を、その付近の排ガス速度(流量)に比例するよう変化させることが好ましいが、上記従来のアンモニア注入グリッドは、排ガス速度分布を排ガスダクト内で均一化し、すべてのノズルからのガス噴射量を等しくするよう設計されており、そのためダクト内での排ガス流速の微少な不均一性に対応させることはできなかった。
【0006】
この発明の目的は、排ガス流速の微少な不均一性に対応してアンモニアの供給量を調整することにより、脱硝効率を向上させることができる排ガス脱硝システムのアンモニア注入装置を提供することにある。
【0007】
【課題を解決するための手段】
この発明による排ガス脱硝システムのアンモニア注入装置は、多数のノズルを有しかつ所定間隔をおいて配置されている複数のアンモニア注入管と、各注入管へのアンモニア供給量を調整する調整弁とを有し、調整弁は、バタフライ弁で各注入管の両端にそれぞれ設けられており、基準とされた注入管位置(No.i)と残りの注入管位置(No.1,…No.n,…No.18)との排ガス流量比が予め求められ、この流量比に見合うように各調整弁の開度が調整されているものである。
【0008】
排ガス流量比を求めるには、排ガスの速度が大きくなるほど注入管周りの圧力が低下する現象を利用することにより、基準とされた注入管の周囲の圧力と残りの注入管の周囲の圧力との差圧ΔPを計測し、この結果に基づいて、アンモニア注入断面における排ガスの速度比分布=流量比が求められる。速度比分布は、最初の定常運転時に求められ、予め準備されたプログラムにより、計測と同時に出力され、これに基づいて、調整弁の開度が調整され、以後、この開度に応じたアンモニアが供給される。こうして、注入管位置における排ガス流速の微少な不均一性に対応してアンモニアの供給量を調整することができる。
【0009】
排ガス流量比、すなわち、基準とされた注入管位置の排ガス速度Uiと残りの注入管位置の排ガス速度Uとの比U/Uは、計測結果から求められた差圧をΔP、排ガス密度をρ、圧力係数をKとして、次の式を用いて求められる。
【0010】
ΔP=ρ・(1−K){(U/U−1}・U /2
上記式を用いることにより、簡単にかつ精度良く、アンモニア注入位置における排ガス流量を知ることができる。
【0011】
【発明の実施の形態】
この発明の実施形態を図面を参照して以下に説明する。
【0012】
図2は、この発明による排ガス脱硝システムのアンモニア注入装置を示している。同図に示すように、アンモニア注入装置は、排ガスダクト(1)の両側壁の外側に配置された一対の垂直ヘッダ管(2)と、両端部が排ガスダクト(1)の両側壁を貫通するようにダクト(1)内に上下に所定間隔をおいて配置されかつ多数の注入ノズルを有する複数本の水平アンモニア注入管(3)とを備えている。
【0013】
ダクト(1)は、縦7.4m、横5.6mであり、注入管(3)の数は、18本とされている。各注入管(3)は、断面円形で、その両端開口がアンモニアの流入口とされ、ここには、アンモニア供給量を調整するためのバタフライ弁(調整弁)(4)が設けられている。また、各注入管(3)の両端には、圧力計(5)が設けられている。
【0014】
バタフライ弁(4)の開度は、ダクト(1)内の速度比分布が予め計測され、その結果に基づいて設定されている。
【0015】
図3に、ダクト内速度比分布の計測装置(6)を示す。この計測装置(6)は、基準とされた注入管(No.i)と残りの注入管(No.1,…No.n,…No.18)との差圧を求める微差圧計(11)と、残りの注入管(No.1,…No.n,…No.18)にそれぞれ接続された複数の入口と微差圧計(11)に接続された1つの出口を有し残りの注入管(No.1,…No.n,…No.18)のうちのいずれかと微差圧計(11)とを選択的に接続するロータリーバルブ(12)とを備えている。
【0016】
注入管の差圧を計測して速度比分布を求める方法は以下の考え方による。
【0017】
図4において、排ガス密度をρ、注入管(No.1…NO.n…NO.i…No.18)への排ガスの近寄り速度をUとし、注入管のノズル付近では、速度がK・U、圧力がPになるとする。各注入管の流線上において、ベルヌーイの定理を適用し、No.iの注入管を基準として、NO.nの注入管との差をとると、
−P=ρ・(1−K)(U −U )/2
=ρ・(1−K){(U/U−1}・U /2……(1)
となる。ここで、Kは円柱周りの気流が増速される係数である。したがって、バタフライ弁を全閉にした状態で、基準となる注入管の管内圧力と計測する注入管の管内圧力との差から、Uに対するそれぞれの注入管付近での速度比を求めることができる。
【0018】
例として、U=25m/s、U/U=0.9、ρ=0.5、K=1.5の場合、P−P=0.5・(1-1.5)・(0.9−1)・25/2=37.1(Pa)となる。差圧が小さいことから、微差圧計を用いて計測することが好ましい。
【0019】
図5のグラフは、上記の差圧計測から求めた速度比と、ピトー管による速度計測から求めた速度比とを比較したものである。
【0020】
ダクト面積が縦7.4m横5.6mと大きく、温度が550℃と高温であり、速度が25m/sを越えるような高速であるという条件下で、速度を計測できるものとしては、ピトー管が知られているが、ピトー管の場合、精度を上げるために、計測点を多く取ろうとすると計測プローブが多く必要となって計測費用が高く付き、しかも、計測に要する時間(日数)が多くなり、また、注入管の位置と計測点とがずれることによる誤差が含まれることになる。図5に示す5点は、3日間測定して得られた結果であるが、速度比分布のパターンの変化がはっきりせず、上流側の流れの状態が変化したためなのか、測定誤差なのかの判断が付かないという問題が残った。これに対して、この計測装置によると、速度比は、各注入管位置で求められるので、ピトー管によって計測するのに比べて、位置の精度が向上する。また、計測日数も、ピトー管の3日に対して、1日と大幅に短縮することができる。
【0021】
脱硝反応は、NOxとアンモニアが等量反応するため、局所的にどちらかの量が多いと、脱硝率が下がるか、未反応アンモニア量が増加するが、上記のアンモニア注入装置によると、各注入管位置での排ガス速度比分布したがって排ガス濃度を考慮してアンモニア供給量を調整することにより、局所的不均一に対応でき、脱硝効率を向上させ、未反応アンモニア量を減少することができる。上記の例では、脱硝装置出口におけるNOx濃度を偏差±10%以内に抑えることができた。
【0022】
【発明の効果】
この発明による排ガス脱硝システムのアンモニア注入装置によると、排ガスの高さによる流速の微少な不均一性に対応してアンモニアの供給量を調整することができ、これにより、脱硝効率を向上させることができる。調整弁は、バタフライ弁でかつ各注入管の両端にそれぞれ設けられているので、開度調整の容易さおよび調整精度を向上させることができる。
【図面の簡単な説明】
【図1】排ガス脱硝システムを示すフローシートである。
【図2】この発明による排ガス脱硝システムのアンモニア注入装置を概略的に示す正面図である。
【図3】差圧計測の配管図である。
【図4】ダクト内の流線を示す図である。
【図5】差圧の計測から求めた速度比分布とピトー管から求めた速度比分布を比較するグラフである。
【図6】従来の脱硝装置を示す縦断面図である。
【図7】従来のアンモニア注入グリッドを示す平面図である。
【符号の説明】
(3) アンモニア注入管
(4) バタフライ弁(調整弁)
(6) 差圧計測装置
(No.i) 基準とされた注入管
(No.1,…No.n,…No.18) 残りの注入管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to ammonia as a reducing agent in an exhaust gas denitration system that removes nitrogen oxide (NOx) contained in exhaust gas of a gas turbine, boiler, heating furnace, cogeneration plant, municipal waste incinerator, etc. by selective catalytic reduction. The present invention relates to an ammonia injection device for injecting gas into an exhaust gas duct.
[0002]
[Prior art]
As shown in FIG. 1, the exhaust gas denitration system includes a denitration reactor disposed in an exhaust gas duct of a boiler, a heating furnace, a gas turbine, etc. and having a catalyst packed bed therein, and an upstream side of the denitration reactor in the exhaust gas duct And an ammonia injection device composed of an ammonia injection grid. Ammonia gas generated by vaporizing liquid ammonia is supplied to the ammonia injection grid in a mixed state with air. In the conventional denitration apparatus, as shown in FIG. 6, the denitration reactor (21) and the ammonia injection grid (22) are usually placed in an exhaust heat recovery boiler (24) provided in the middle of the exhaust gas duct (23). Has been placed. As shown in FIG. 7, the ammonia injection grid (22) includes a rectangular frame (27), a plurality of ammonia injection pipes (25) passed to the opposite frame portion of the rectangular frame (27), and the same pipe ( 25) comprises a plurality of supports (28) for supporting the rectangular frame (27), and a plurality of injection nozzles (not shown) are formed in each ammonia injection pipe (25). When ammonia equal in amount to NOx in the exhaust gas (mixed fluid of ammonia and diluted air) is injected into the exhaust gas duct (23) from this ammonia injection grid (22), it diffuses into the exhaust gas and downstream denitration reaction By reacting in the catalyst packed bed in the vessel (21), NOx is rendered harmless to N 2 and H 2 O.
[0003]
In the denitration system, in order to improve the denitration rate, 1) the ammonia gas injected from the ammonia injection grid (22) into the exhaust gas duct (23) is diffused uniformly into the exhaust gas; ) It is important that the exhaust gas containing ammonia gas uniformly passes through the catalyst packed bed of the denitration reactor (21) so that the reaction proceeds evenly in any part of the denitration reactor (21). . Therefore, as shown in FIG. 7, a plurality of ammonia injection pipes (25) constituting the ammonia injection grid (22) are arranged uniformly in the cross section of the exhaust gas duct (23), and a large number of injections of these pipes (25) are performed. Ammonia gas is uniformly ejected into the exhaust gas from the nozzle, and further, the distance between the ammonia injection grid (22) and the catalyst packed bed in the denitration reactor (21) is increased to some extent to promote diffusion.
[0004]
[Problems to be solved by the invention]
In the above-mentioned denitration system, it was possible to satisfy the condition that the denitration efficiency was 80%. However, in recent years, the NOx concentration at the inlet has been reduced from the viewpoint of environmental protection. % Has become a strict condition.
[0005]
In order to improve the denitration efficiency, it is preferable to change the injection amount of ammonia gas in a large number of injection nozzles in proportion to the exhaust gas velocity (flow rate) in the vicinity thereof, but the conventional ammonia injection grid described above has an exhaust gas velocity distribution. It is designed to be uniform in the exhaust gas duct and equalize the gas injection amount from all nozzles, and therefore it cannot cope with the slight non-uniformity of the exhaust gas flow velocity in the duct.
[0006]
An object of the present invention is to provide an ammonia injection device of an exhaust gas denitration system that can improve the denitration efficiency by adjusting the supply amount of ammonia in response to a slight non-uniformity of the exhaust gas flow velocity.
[0007]
[Means for Solving the Problems]
An ammonia injection apparatus for an exhaust gas denitration system according to the present invention comprises a plurality of ammonia injection pipes having a large number of nozzles and arranged at predetermined intervals, and an adjustment valve for adjusting the amount of ammonia supplied to each injection pipe. The adjustment valve is a butterfly valve and is provided at each end of each injection pipe. The reference injection pipe position (No.i) and the remaining injection pipe positions (No.1, ... No.n, The exhaust gas flow rate ratio with No. 18) is obtained in advance, and the opening degree of each regulating valve is adjusted to meet this flow rate ratio.
[0008]
In order to obtain the exhaust gas flow rate ratio, a phenomenon in which the pressure around the injection pipe decreases as the exhaust gas velocity increases is used, so that the pressure around the reference injection pipe and the pressure around the remaining injection pipes are reduced. The differential pressure ΔP is measured, and based on this result, the exhaust gas velocity ratio distribution = flow rate ratio in the ammonia injection section is obtained. The speed ratio distribution is obtained at the time of the first steady operation, and is output simultaneously with the measurement by a program prepared in advance. Based on this, the opening of the regulating valve is adjusted, and thereafter ammonia corresponding to this opening is changed. Supplied. In this way, it is possible to adjust the supply amount of ammonia in response to minute non-uniformity of the exhaust gas flow rate at the injection pipe position.
[0009]
Exhaust gas flow rate ratio, i.e., the ratio U n / U i between the exhaust gas velocity U n of the exhaust gas velocity Ui and the rest of the injection tube position of the reference infusion tube position, [Delta] P the pressure difference determined from the measurement result, the exhaust gas The density is calculated using the following equation, with ρ g and the pressure coefficient K 2 .
[0010]
ΔP = ρ g · (1- K 2) {(U n / U i) 2 -1} · U i 2/2
By using the above equation, the exhaust gas flow rate at the ammonia injection position can be known easily and accurately.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0012]
FIG. 2 shows an ammonia injection device of an exhaust gas denitration system according to the present invention. As shown in the figure, the ammonia injection device is composed of a pair of vertical header pipes (2) arranged outside both side walls of the exhaust gas duct (1), and both ends penetrate both side walls of the exhaust gas duct (1). As described above, a plurality of horizontal ammonia injection pipes (3) having a large number of injection nozzles arranged at predetermined intervals in the vertical direction in the duct (1) are provided.
[0013]
The duct (1) has a length of 7.4 m and a width of 5.6 m, and the number of injection pipes (3) is 18. Each injection pipe (3) has a circular cross section, and both end openings serve as ammonia inflow ports, and a butterfly valve (regulation valve) (4) for adjusting the ammonia supply amount is provided here. In addition, pressure gauges (5) are provided at both ends of each injection pipe (3).
[0014]
The opening degree of the butterfly valve (4) is set based on the result of measuring the speed ratio distribution in the duct (1) in advance.
[0015]
FIG. 3 shows a measuring device (6) for the speed ratio distribution in the duct. This measuring device (6) is a micro differential pressure gauge (11) for obtaining a differential pressure between the reference injection pipe (No.i) and the remaining injection pipes (No.1, ... No.n, ... No.18). ) And a plurality of inlets respectively connected to the remaining injection pipes (No.1, ... No.n, ... No.18) and one outlet connected to the differential pressure gauge (11) A rotary valve (12) for selectively connecting any one of the pipes (No. 1,... No. n,... No. 18) and the micro differential pressure gauge (11) is provided.
[0016]
The method of measuring the pressure difference in the injection tube to obtain the speed ratio distribution is based on the following concept.
[0017]
In FIG. 4, the exhaust gas density is ρ g , the exhaust gas approach speed to the injection pipe (No. 1 NO.n ... NO.i ... No. 18) is U i, and the speed is K near the nozzle of the injection pipe. · U i, the pressure to be a P i. On the flow line of each injection tube, applying Bernoulli's theorem, taking the difference from the NO.n injection tube with reference to the No. i injection tube,
P n −P i = ρ g · (1−K 2 ) (U n 2 −U i 2 ) / 2
= Ρ g · (1-K 2) {(U n / U i) 2 -1} · U i 2/2 ...... (1)
It becomes. Here, K is a coefficient by which the airflow around the cylinder is increased. Therefore, with the butterfly valve fully closed, the speed ratio in the vicinity of each injection tube with respect to U i can be obtained from the difference between the pressure in the reference injection tube and the pressure in the injection tube to be measured. .
[0018]
As an example, when U i = 25 m / s, U n / U i = 0.9, ρ g = 0.5, and K = 1.5, P n −P i = 0.5 · (1−1.5 2 ) · (0.9 2 −1)・ 25 2 /2=37.1 (Pa). Since the differential pressure is small, it is preferable to measure using a differential pressure gauge.
[0019]
The graph of FIG. 5 compares the speed ratio obtained from the above differential pressure measurement with the speed ratio obtained from the speed measurement using a Pitot tube.
[0020]
Pitot tube is known as the one that can measure the speed under the condition that the duct area is as large as 7.4m in length and 5.6m in width, the temperature is as high as 550 ℃, and the speed is over 25m / s. However, in the case of a Pitot tube, in order to increase the accuracy, many measurement probes are required to increase the number of measurement points, and the measurement cost is high, and the time (number of days) required for measurement increases. In addition, an error due to a deviation between the position of the injection tube and the measurement point is included. The five points shown in FIG. 5 are the results obtained by measuring for three days, but the change in the speed ratio distribution pattern is not clear, whether the upstream flow state has changed, or is it a measurement error? The problem of not being able to make a judgment remained. On the other hand, according to this measuring apparatus, since the speed ratio is obtained at each injection tube position, the accuracy of the position is improved as compared with the case where the velocity ratio is measured by the Pitot tube. Also, the number of measurement days can be greatly reduced to 1 day with respect to 3 days of the Pitot tube.
[0021]
In the denitration reaction, NOx and ammonia are reacted in equal amounts, so if either amount is high locally, the denitration rate will decrease or the amount of unreacted ammonia will increase. By adjusting the ammonia supply amount in consideration of the exhaust gas velocity ratio distribution at the pipe position and hence the exhaust gas concentration, it is possible to cope with local non-uniformity, improve the denitration efficiency, and reduce the unreacted ammonia amount. In the above example, the NOx concentration at the outlet of the denitration apparatus could be suppressed within a deviation of ± 10%.
[0022]
【The invention's effect】
According to the ammonia injection device of the exhaust gas denitration system according to the present invention, it is possible to adjust the supply amount of ammonia in response to a slight non-uniformity in the flow rate due to the height of the exhaust gas, thereby improving the denitration efficiency. it can. Since the adjusting valves are butterfly valves and are provided at both ends of each injection pipe, the ease of opening degree adjustment and the adjustment accuracy can be improved.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing an exhaust gas denitration system.
FIG. 2 is a front view schematically showing an ammonia injection device of the exhaust gas denitration system according to the present invention.
FIG. 3 is a piping diagram for differential pressure measurement.
FIG. 4 is a diagram showing streamlines in a duct.
5 is a tolyl rough comparing the speed ratio distribution obtained from the speed ratio distribution and pitot tube obtained from the measurement of differential pressure.
FIG. 6 is a longitudinal sectional view showing a conventional denitration apparatus.
FIG. 7 is a plan view showing a conventional ammonia injection grid.
[Explanation of symbols]
(3) Ammonia injection pipe
(4) Butterfly valve (regulating valve)
(6) Differential pressure measuring device
(No.i) Reference injection pipe
(No.1,… No.n,… No.18) Remaining injection tube

Claims (1)

多数のノズルを有しかつ所定間隔をおいて配置されている複数のアンモニア注入管(3)と、各注入管(3)へのアンモニア供給量を調整する調整弁(4)とを有し、調整弁 (4) は、バタフライ弁で各注入管 (3) の両端にそれぞれ設けられており、基準とされた注入管位置(No.i)と残りの注入管位置(No.1,…No.n,…No.18)との排ガス流量比が予め求められ、この流量比に見合うように各調整弁(4)の開度が調整されている脱硝装置におけるアンモニア注入装置。A plurality of ammonia injection pipes (3) having a large number of nozzles and arranged at predetermined intervals, and an adjustment valve (4) for adjusting the amount of ammonia supplied to each injection pipe (3), The regulating valve (4) is a butterfly valve and is provided at both ends of each injection pipe (3) . The reference injection pipe position (No.i) and the remaining injection pipe positions (No.1, ... No. ..., No. 18), an ammonia injection device in the denitration device in which the exhaust gas flow rate ratio with respect to No. 18) is obtained in advance and the opening of each regulating valve (4) is adjusted to match this flow rate ratio.
JP27828999A 1999-09-30 1999-09-30 Ammonia injection system for exhaust gas denitration system Expired - Fee Related JP3738343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27828999A JP3738343B2 (en) 1999-09-30 1999-09-30 Ammonia injection system for exhaust gas denitration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27828999A JP3738343B2 (en) 1999-09-30 1999-09-30 Ammonia injection system for exhaust gas denitration system

Publications (2)

Publication Number Publication Date
JP2001096131A JP2001096131A (en) 2001-04-10
JP3738343B2 true JP3738343B2 (en) 2006-01-25

Family

ID=17595286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27828999A Expired - Fee Related JP3738343B2 (en) 1999-09-30 1999-09-30 Ammonia injection system for exhaust gas denitration system

Country Status (1)

Country Link
JP (1) JP3738343B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107261827B (en) * 2017-07-31 2021-06-08 中国大唐集团科学技术研究院有限公司华东分公司 Ammonia injection optimization adjustment method based on small-zone NOX generation amount
CN109289573B (en) * 2018-10-16 2024-04-05 中国华电科工集团有限公司 Gas mixing device and method applied to denitration system
CN109806762A (en) * 2019-03-05 2019-05-28 华北电力科学研究院有限责任公司 Spray ammonia based on denitrification apparatus entrance Flow Field Distribution optimizes and revises device and method
CN112856445B (en) * 2020-12-28 2021-10-22 上海域德环保工程有限公司 Adjustable injection urea can get rid of waste heat stove of flying dust

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176635U (en) * 1983-05-10 1984-11-26 バブコツク日立株式会社 Reducing agent injection device
JPH11179155A (en) * 1997-12-19 1999-07-06 Babcock Hitachi Kk Apparatus and method for feeding ammonia in denitrification reactor

Also Published As

Publication number Publication date
JP2001096131A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
KR970001440B1 (en) Method and apparatus for reducing nox emissions
KR100259104B1 (en) Using flue gas energy to vaporize aqueous reducing agent for reduction of nox in flue gas
TW533090B (en) Channelized SCR inlet for improved ammonia injection and efficient NOx control
US6887435B1 (en) Integrated air foil and ammonia injection grid for SCR systems
CN201524524U (en) Analog platform of flow field distribution structure of flue gas denitration device
US20130291770A1 (en) Solid fuel burner and combustion device using same
CN105510532A (en) Denitration catalytic performance evaluation system and method
KR101497828B1 (en) System for selective catalytic reuction and method for selective catalytic reuction
Zhou et al. Optimization of ammonia injection grid in hybrid selective non-catalyst reduction and selective catalyst reduction system to achieve ultra-low NOx emissions
JP3738343B2 (en) Ammonia injection system for exhaust gas denitration system
CN217006549U (en) SCR deNOx systems nitrogen oxide sampling device
JPH02298719A (en) Performance diagnosis method for air preheater
KR20080112016A (en) Exhaust gas of high temperature denitrifing system and denitrifing method using the system
JP4069196B2 (en) Exhaust gas denitration equipment
CN103962006A (en) Ammonia injection uniformity adjusting method for SCR (Selective Catalytic Reduction) flue gas denitration system
JPH0975673A (en) Exhaust gas denitration apparatus
CN219879564U (en) Ammonia-spraying grid model and resistance characteristic test device thereof
CN114414194B (en) Parameter adjusting device and method for high-ultrasonic speed variable Mach number wind tunnel
CN212701335U (en) SCR denitration device for coal-fired boiler
JP3241744U (en) SCR denitration ammonia injection system
JP2004141754A (en) Apparatus and method for denitrifying stack gas
CN207654951U (en) A kind of Mobile low-temperature denitrification apparatus
CN113912083B (en) Method for improving urea pyrolysis rate of SCR pyrolysis furnace
CN212712774U (en) Energy-saving urea pyrolysis system
CN113204872B (en) Uneven ammonia spraying partition nozzle resistance design method based on numerical simulation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees