JP3737916B2 - Method for removing selenium in exhaust gas - Google Patents

Method for removing selenium in exhaust gas Download PDF

Info

Publication number
JP3737916B2
JP3737916B2 JP28835099A JP28835099A JP3737916B2 JP 3737916 B2 JP3737916 B2 JP 3737916B2 JP 28835099 A JP28835099 A JP 28835099A JP 28835099 A JP28835099 A JP 28835099A JP 3737916 B2 JP3737916 B2 JP 3737916B2
Authority
JP
Japan
Prior art keywords
selenium
exhaust gas
adsorbent
gas
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28835099A
Other languages
Japanese (ja)
Other versions
JP2001104748A (en
Inventor
博文 吉川
泰良 加藤
成仁 高本
滋 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP28835099A priority Critical patent/JP3737916B2/en
Publication of JP2001104748A publication Critical patent/JP2001104748A/en
Application granted granted Critical
Publication of JP3737916B2 publication Critical patent/JP3737916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス中のセレン除去方法に係り、特に、ボイラ等の燃焼装置から排出される排ガス中の二酸化セレン(SeO2 )を除去するのに好適な、排ガス中のセレン除去方法に関する。
【0002】
【従来の技術】
火力発電所等において、石炭などの化石燃料の燃焼に伴って発生する排煙中にはセレンが含まれており、含有量はそれ程多くないが、その毒性の強さから、処理技術の確立が望まれている。なお、セレンは排ガス中で、主としてSeO2 等の酸化物として存在する。
従来の典型的な排煙処理システムは、ボイラの排ガス煙道に設けられた排煙脱硝装置の後流に排ガス中のばい塵を除去する集じん装置および硫黄酸化物(SOx)を除去する脱硫装置が設置されており、前記脱硫装置は、例えば石灰石−石膏法による湿式脱硫法が主流となっていた。
【0003】
図11は、従来の排煙処理システムを示す説明図である。図11において、この装置は、ボイラ1と、該ボイラ1の排ガス煙道に順次設けられた脱硝装置2、エアヒータ(A/H)3、ガス−ガスヒータ(GGH)の熱回収部4、電気集じん器(EP)5、脱硫装置6、ガス−ガスヒータ(GGH)の再加熱部7および煙突8と、前記電気集じん器5に連結されたばい塵Bの溶解装置12と、前記脱硫装置6に順次連結された脱水機9、還元装置10および沈殿装置11とから主として構成されている。
【0004】
ボイラ1から排出される排ガスAは、脱硝装置2で排ガス中のNOxが除去されたのち、エアヒータ(A/H)3およびガス−ガスヒータ(GGH)の熱回収部4を経てEP5に流入し、ここで排ガスA中のばい塵Bが除去される。EP5で除去されなかった一部のばい塵を含む排ガスAは、脱硫装置6に流入し、ここでSO2 が除去され、GGHの再加熱部7で加熱されたのち、煙突8から大気に放出される。排ガスAに含まれるセレン成分は、EP5で回収された、灰粒子を主成分とするばい塵Bの表面に付着するか、または脱硫装置6内で噴霧される脱硫吸収液で捕集される。セレン成分を捕集した脱硫吸収液は脱水機9で石膏Cが分離されたのち、ばい塵Bを溶解した溶解装置12から流出する溶解液と共に、後流の還元装置10に流入し、ここで液中のセレンが沈殿し易い形態に還元される。還元されたセレンは後流の沈殿装置11に流入し、ここで、例えば凝集剤が添加されて凝集し、セレンを含むスラッジDとして回収される。
【0005】
排ガス中のセレン成分が分離、回収される詳細なメカニズムや反応条件は必ずしも明らかではないが、排ガスAに含まれるセレンの化学形態は二酸化セレン(SeO 2 )であり、ばい塵Bに付着した、または脱硫吸収液に捕集されたCeO2 の一部は酸化されて三酸化セレン(SeO3)となり、液中ではその大部分がセレン酸(H2 SeO4 )として存在するものと考えられる。特に、排ガスA中のSO2 を吸収することによって生成する亜硫酸を酸化するために吸収液中に空気が吹き込まれる脱硫装置の前記脱硫吸収液に捕集されたセレンは、前記空気によって酸化されて6価のセレン(H2 SeO4 )になり易いと考えられる。6価のセレン(H2 SeO4 )は溶解度が高く、これを液中から沈殿除去することは非常に困難である。従って、溶液中のセレン成分を分離するために、上述したように従来から、前記セレン酸(H2 SeO4)を含む溶液を還元装置10に導入して6価のセレン(H2 SeO4 )を沈殿し易い4価のセレン(亜セレン酸:H2 SeO3)に還元し、これを沈殿装置11で沈殿させ、セレン含有スラッジDとして回収しているものと考えられる。なお、前記セレン(6価)の還元方法としては、例えば特開平6−79286号公報のような硫酸鉄等の化学物質を用いる方法、例えば特開平9−224656号公報等の生物で還元する方法が挙げられる。
【0006】
【発明が解決しようとする課題】
しかしながら上記従来技術は、ばい塵に付着したセレン成分および脱硫吸収液に溶解したセレン成分を順次後流の還元装置および沈殿装置で処理していたために、該還元装置および沈殿装置における処理液中のセレン濃度が低くかつ処理液量が大量であるために、処理効率が悪く、処理コストが嵩むという問題があった。
本発明の課題は、上記従来技術の問題点を解決し、排ガス中のセレンを効率よく捕集、回収して前記排ガスから除去することができる、排ガス中のセレン除去方法および除去装置を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本願で特許請求する発明は以下のとおりである。
(1)化石燃料の燃焼に伴って発生するセレン酸化物を含む排ガスを脱硝処理後、酸化チタンを主成分とする吸着材に接触させ、前記セレン酸化物を吸着除去することを特徴とする化石燃料燃焼排ガス中のセレンの除去方法。
(2)前記吸着材が、成形体である上記(1)に記載の方法。
(3)前記吸着材が、粉末またはスラリ状である上記(1)に記載の方法。
(4)前記吸着材と接触させる排ガス温度が、200℃以下であることを特徴とする上記(1)〜(3)の何れかに記載の方法。
(5)前記セレン酸化物を吸着した吸着材の温度を高めて吸着しているセレン酸化物を離脱させたのち、再度前記排ガスと接触させることを特徴とする上記(1)〜(4)の何れかに記載の方法。
【0008】
(6)前記セレン酸化物を離脱させる際の排ガス温度が、300℃以上であることを特徴とする上記(5)に記載の方法。
(7)前記吸着材から離脱したセレン酸化物を含むガスを水と接触させて前記セレン成分を回収することを特徴とする上記(5)または(6)に記載の方法。
【0010】
【発明の実施の形態】
以下、本発明を実施例によって詳細に説明する。
図1は、本発明の一実施例である排ガス中のセレン除去方法を示す装置系統図であり、図2〜図4は、図1に用いた本発明の一実施例であるセレン除去装置の説明図である。なお、図2は、セレン除去装置の上方視図、図3は、図2の III− III線矢視方向断面図、図4は、図2のIV−IV線矢視方向断面図である。
図1において、この装置が図11の従来技術と相違するところは、エアヒータ3とGGHの熱回収部4との間に、セレン除去装置15を設け、該セレン除去装置15のセレン回収部14を沈殿装置11の前流の還元装置10に連結した点である。
【0011】
図2〜図4において、本実施例のセレン除去装置は、排ガス煙道16に隣設されたガス加熱炉17と、該ガス加熱炉17と前記排ガス煙道16との間に設けられた回転軸18を中心にして前記排ガス煙道16およびガス加熱炉17を横切って回転し、前記排ガス煙道16内でセレン成分を吸着して前記ガス加熱炉17で離脱させる円盤状の吸着材としての成形体20と、前記離脱したセレン成分を水で吸収するセレン回収手段とから主として構成されており、セレン回収手段は、前記ガス加熱炉17にガス流路27を介して連結されたセレン吸収塔30と、該セレン吸収塔30の天井部分に設けられた噴霧ノズル25および底部に設けられた液溜部28と、該液溜部28と前記噴霧ノズル25を連結する循環配管29と、該循環配管29に設けられた循環ポンプ26とから主として構成されている。21は、成形体20のセレン吸着部、22は、セレン脱離部、23は、成形体20の駆動装置、24は、バーナである。なお、成形体20のセレン吸着部21からなる部分をセレン捕集部13と、該セレン捕集部13の後段以降をセレン回収部14ということができる。
【0012】
このような構成において、ボイラ1から排出される排ガスAは、排ガス煙道16を流通し、脱硝装置2でNOxが除去されたのち、A/H3を経てセレン除去装置15のセレン捕集部13に流入し、酸化チタンを主成分とする吸着材の成形体20の吸着部21を通過する際に、排ガスに含まれるセレン成分が前記成形体20に吸着する。成形体20は駆動装置23により回転軸18を中心としてゆっくり回転し、前記セレン成分が吸着した吸着部21が、ガス加熱炉17内に移動して離脱部22となり、ここでバーナ24の燃焼によって、300℃以上、例えば320℃に加熱され、吸着していたセレン成分が離脱する。以下、成形体20は排ガス煙道16とガス加熱炉17を横切って回転を続け、同様にして排ガス中のセレン成分の吸着と離脱を繰り返す。脱離した高濃度のセレン成分を含んだガスは流路27を経てセレン吸収塔30に流入し、噴霧ノズル25を経て噴霧される水と接触して吸収、回収される。セレンを回収した水は、液溜部28に落下し、該液溜部28から循環ポンプ26および循環配管29を経て前記噴霧ノズル25に循環して再利用され、高濃度のセレン成分含有水として回収される。高濃度のセレン成分を含む水は、後流の還元装置10および沈殿装置11に送られ(図1参照)、従来技術と同様に、例えば6価のセレンが4価に還元されたのち、沈殿装置11で、例えば凝集剤によって沈殿除去され、セレンを含むスラッジDが回収される。
【0013】
セレン成分が除去された排ガスはガス流路27を経て排ガス煙道16へ戻され、GGHの熱回収部4を経てEP5に導かれ、ここでばい塵Bが除去されたのち、脱硫装置6に流入し、ここで排ガス中のSO2 が除去され、GGHの再加熱部7で排ガス温度が高められたのち、煙突8から大気に放出される。なお、脱硫装置6から抜き出された吸収液は脱水機9に導入され、ここで脱水して石膏Cが回収される。
本実施例によれば、セレン除去装置15の捕集部13で捕集したセレン成分を回収部14で高濃度で回収できるので、還元装置10および沈殿装置11に送られる被処理液中のセレン濃度を従来技術の10〜100倍程度に高めることができる。換言すれば、処理すべき絶対量として同等量のセレン成分を含む全液量を、従来技術の1/10〜1/100程度に低減できる。従って、還元装置10および沈殿装置11をより小さくできるだけでなく、薬品をはじめとするユーティリティーを含めた処理コストを大幅に低減することができる。
【0014】
本発明において、セレン吸着部21における排ガス温度は200℃以下であることが好ましく、より好ましくは、180℃以下である。200℃よりも高くなるとセレン捕集率が低下する。一方セレン離脱部22における排ガス温度は、300℃以上であることが好ましく、より好ましくは320℃以上である。300℃よりも低くなると脱離率が低下する。
図5は、本発明におけるガス温度とセレン捕集率との関係を示す図である。図においてガス温度200℃以下で捕集率が高くなることが分かる。また図6は、本発明における排ガス温度とセレン離脱率との関係を示す図である。図において排ガス温度が300℃以上になると離脱率が高くなることが分かる。なお、セレン捕集部における排ガス温度の下限は、図5から120℃程度、セレン離脱部における排ガス温度の上限は、図6から370℃程度であることが好ましいと言うことができる。
【0015】
図7は、本発明の別の実施例である排ガス中のセレン除去方法を示す装置系統図であり、図8〜図10は、図7で用いた本発明の別の実施例であるセレン除去装置を示す説明図である。なお、図8は、セレン除去装置の上方視図、図9は、図8のIX−IX線矢視方向断面図、図10は、図8のX−X線矢視方向断面図である。
図7において、この装置が図1の装置と異なる点は、EP5を脱硝装置2の前流に移し、セレン除去装置として、酸化チタンを主成分とする粉末を排ガス中に噴霧して前記排ガス中のセレン成分を吸着、捕集し、該捕集したセレン成分を離脱させて水で吸収するセレン除去装置33を設けた点である。
【0016】
図8〜図10において、このセレン除去装置は、排ガスの入口34と出口35を有するセレン吸着塔本体36と、該セレン吸着塔本体36の天井部分に設けられた吸着材の噴霧ノズルとしての粉体ノズル37および底部に設けられた吸着材貯蔵部としての粉体貯蔵部38と、該粉体貯蔵部38と前記粉体ノズル37とを連結する連結配管としての循環配管39と、前記粉体ノズル37から噴射され、吸着塔本体36内でセレン含有ガスと接触してセレン成分を吸着した吸着材としての粉体Eを排ガス流路27を介して受け取り、前記粉体Eを加熱してセレン成分を離脱させる加熱炉41と、離脱したセレン成分を水で吸収して回収するセレン回収手段とから主として構成されており、前記加熱炉41の底部には、加熱ガスFによって粉体Eを流動させるガス加熱部42が設けられている。なお、セレン回収手段は図2および図4に示したセレン吸収塔30と同様の構成であるので、説明を省略する。また、排ガスに粉末状の吸着材を噴霧してセレン成分を吸着分離する、主としてセレン吸着塔からなる部分をセレン捕集部31と、前記セレン成分を吸着した吸着材を加熱する加熱炉41とその後流のセレン吸収塔30とから主としてなる部分をセレン回収部32ということができる。
【0017】
このような構成において、ボイラ1から排出される排ガスAは、EP5によりばい塵Bが除去されたのち、脱硝装置2およびA/H3を経てセレン除去装置33のセレン捕集塔36に排ガス入口34から流入し、粉体ノズル37から噴射される酸化チタンを主成分とする粉体Eと接触して排ガス中のセレン成分が吸着される。セレン成分を吸着した粉体Eはセレン吸着塔本体36の底部粉体貯蔵部38に一時的に貯留され、循環配管39および粉体供給装置40を介して前記粉体ノズル37へ供給されて循環使用される。このとき、セレン成分を吸着した粉体Eの一部は、ガス流路27を経て加熱炉41に送られ、ここで、例えば加熱ガスFと流動接触して、例えば320℃に加熱され、吸着していたセレン成分が離脱する。離脱した高濃度のセレン成分を含むガスはガス流路27を経てセレン吸収塔30に流入し、噴霧ノズル25を経て噴霧される水と接触して吸収、回収される。セレンを回収した水は、上記実施例と同様に循環使用され、高濃度のセレン成分含有水として回収される。高濃度のセレン成分を含む水は、上記実施例と同様、後流の還元装置10および沈殿装置11に送られ(図7参照)、セレンは従来技術と同様に、セレンを含むスラッジDとして回収される。
【0018】
セレン成分を離脱した、加熱炉41内の粉末Eは、図示省略した管路を経てセレン吸着塔本体36に戻されて循環使用され、排ガス中のセレン成分の吸着と分離を繰り返す。一方、セレン成分が除去された排ガスはセレン吸着塔本体36の排ガス出口35から流出し、GGHの熱回収部4で所定温度に調整されたのち、後流の脱硫装置6に流入し、ここでSO2 が除去される。SO2 が除去された排ガスはGGHの再加熱部7でその温度が所定温度に高められたのち、煙突8から大気に放出される。
本実施例によれば、上記実施例と同様、排ガス中のセレン成分を高効率で除去、回収することができる。
本実施例において、セレン成分を吸着した、酸化チタンを主成分とする粉末Eを加熱して前記セレン成分を脱着させて処理する代わりに、前記粉末Eをそのまま、固化、無害化してもよい。
【0019】
本実施例において、セレン成分を吸着するセレン吸着塔本体36における排ガス温度は200℃以下であることが好ましく、セレン成分を離脱させる加熱炉41内のガス温度は、300℃以上であることが好ましい。
本実施例において、酸化チタンを主成分とする粉末状の吸着材の代わりに、前記酸化チタンを主成分とする吸着材のスラリを用いることもできる。
本発明において、排ガス温度の調整方法は特に限定されるものではない。すなわち排ガスの冷却方法としては、例えば排ガス中に水を噴霧する方法、熱交換装置を使用する方法等が挙げられ、加熱方法としては、例えばバーナによる燃焼加熱方法、ボイラ排ガスの一部を混入させる方法等が挙げられるが、その他の方法であってもよい。
【0020】
【発明の効果】
本願の請求項1に記載の発明によれば、排ガスに含まれるセレン成分を効率よく除去することができる。
本願の請求項2に記載の発明によれば、上記発明の効果に加え、吸着材の取り扱いが容易となる。
本願の請求項3に記載の発明によれば、上記発明の効果に加え、セレン成分の吸着効率が向上する。
【0021】
本願の請求項4に記載の発明によれば、上記発明の効果に加え、セレン成分の除去効率が向上する。
本願の請求項5に記載の発明によれば、上記発明の効果に加え、吸着材の利用率が向上する。
本願の請求項6に記載の発明によれば、上記発明の効果に加え、排ガスから分離したセレン成分の回収率が向上する。
本願の請求項7に記載の発明によれば、上記発明と同様、セレン成分の回収率が向上する。
【図面の簡単な説明】
【図1】本発明の一実施例を示す装置系統図。
【図2】図1のセレン除去装置の説明図。
【図3】図2の III− III線矢視方向断面図。
【図4】図2のIV−IV線矢視方向断面図。
【図5】排ガス温度とセレン捕集率との関係を示す図。
【図6】排ガス温度とセレン脱離率との関係を示す図。
【図7】本発明の他の実施例を示す装置系統図。
【図8】図7のセレン除去装置の説明図。
【図9】図8のIX−IX線矢視方向断面図。
【図10】図8のX−X線矢視方向断面図。
【図11】従来技術を示す説明図。
【符号の説明】
1…ボイラ、2…脱硝装置、3…エアヒータ(A/H)、4…ガス−ガスヒータ(GGH)の熱回収部、5…電気集じん機(EP)、6…脱硫装置、7…ガス−ガスヒータ(GGH)の再加熱部、8…煙突、9…脱水機、10…還元装置、11…沈殿装置、12…溶解装置、13…セレン捕集部、14…セレン回収部、15…セレン除去装置、16…排ガス煙道、17…ガス加熱炉、18…回転軸、20…成形体、21…セレン吸着部、22…セレン離脱部、23…駆動装置、24…バーナ、25…噴霧ノズル、26…循環ポンプ、27…ガス流路、28…液溜部、29…循環配管、30…セレン吸収塔、31…セレン捕集部、32…セレン回収部、33…セレン除去装置、34…排ガス入口、35…排ガス出口、36…セレン吸着塔本体、37…粉体ノズル、38…粉体貯蔵部、39…循環配管、40…粉体供給装置、41…加熱炉、42…ガス加熱部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a selenium removal how in the exhaust gas, in particular, suitable for removing selenium dioxide in an exhaust gas discharged from the combustion device such as a boiler (SeO 2), selenium removal how in the exhaust gas Related.
[0002]
[Prior art]
In thermal power plants, etc., selenium is contained in the flue gas generated by the combustion of fossil fuels such as coal, and the content is not so high. It is desired. Selenium is present mainly in the exhaust gas as an oxide such as SeO 2 .
The conventional typical flue gas treatment system includes a dust collector for removing dust in the exhaust gas and a desulfurization for removing sulfur oxide (SOx) downstream of the flue gas denitration device provided in the flue gas flue of the boiler. An apparatus is installed, and for the desulfurization apparatus, for example, a wet desulfurization method based on a limestone-gypsum method has been mainstream.
[0003]
FIG. 11 is an explanatory diagram showing a conventional flue gas treatment system. In FIG. 11, this apparatus includes a boiler 1, a denitration device 2 sequentially provided in an exhaust gas flue of the boiler 1, an air heater (A / H) 3, a heat recovery unit 4 of a gas-gas heater (GGH), an electric collector. A dust collector (EP) 5, a desulfurization device 6, a reheating part 7 and a chimney 8 of a gas-gas heater (GGH), a dust B melting device 12 connected to the electric dust collector 5, and the desulfurization device 6 Are mainly composed of a dehydrator 9, a reduction device 10 and a precipitation device 11 sequentially connected to each other.
[0004]
The exhaust gas A discharged from the boiler 1 flows into the EP 5 through the heat recovery part 4 of the air heater (A / H) 3 and the gas-gas heater (GGH) after NOx in the exhaust gas is removed by the denitration device 2. Here, the dust B in the exhaust gas A is removed. Exhaust gas A containing a portion of the soot and dust that was not removed by EP5 flows into the desulfurization device 6, wherein SO 2 is removed, after being heated in the reheating section 7 of GGH, released from chimney 8 to the atmosphere Is done. The selenium component contained in the exhaust gas A adheres to the surface of the dust B mainly composed of ash particles collected by EP5, or is collected by a desulfurization absorbing liquid sprayed in the desulfurization apparatus 6. The desulfurization absorption liquid which collected the selenium component is separated into gypsum C by the dehydrator 9 and then flows into the downstream reduction apparatus 10 together with the dissolution liquid flowing out from the dissolution apparatus 12 in which the dust B is dissolved. Selenium in the liquid is reduced to a form that tends to precipitate. The reduced selenium flows into the downstream settling device 11, where, for example, a flocculant is added to agglomerate and are recovered as sludge D containing selenium.
[0005]
Although the detailed mechanism and reaction conditions for separating and recovering the selenium component in the exhaust gas are not always clear, the chemical form of selenium contained in the exhaust gas A is selenium dioxide ( SeO 2 ), and adhered to the dust B. Alternatively, it is considered that a part of CeO 2 collected in the desulfurization absorbing solution is oxidized to selenium trioxide (SeO 3 ) and most of the CeO 2 exists as selenic acid (H 2 SeO 4 ) in the solution. In particular, selenium collected in the desulfurization absorption liquid of the desulfurization apparatus in which air is blown into the absorption liquid to oxidize sulfurous acid generated by absorbing SO 2 in the exhaust gas A is oxidized by the air. It is considered that hexavalent selenium (H 2 SeO 4 ) is likely to be formed. Hexavalent selenium (H 2 SeO 4 ) has high solubility, and it is very difficult to remove it from the liquid by precipitation. Therefore, in order to separate the selenium component in the solution, as described above, conventionally, a solution containing the selenic acid (H 2 SeO 4 ) is introduced into the reduction device 10 to obtain hexavalent selenium (H 2 SeO 4 ). Is reduced to tetravalent selenium (selenous acid: H 2 SeO 3 ), which is easily precipitated, and is precipitated by the precipitation device 11 and recovered as selenium-containing sludge D. As a method for reducing the selenium (hexavalent), for example, a method using a chemical substance such as iron sulfate as disclosed in JP-A-6-79286, for example, a method of reducing with a living organism such as JP-A-9-224656. Is mentioned.
[0006]
[Problems to be solved by the invention]
However, in the above prior art, since the selenium component adhering to the dust and the selenium component dissolved in the desulfurization absorption liquid are sequentially processed by the downstream reduction device and the precipitation device, Since the selenium concentration is low and the amount of the treatment liquid is large, there is a problem that the treatment efficiency is low and the treatment cost increases.
An object of the present invention is to provide a method and apparatus for removing selenium in exhaust gas that solves the above-described problems of the prior art and can efficiently collect and recover selenium in exhaust gas and remove it from the exhaust gas. There is.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the invention claimed in the present application is as follows.
(1) A fossil characterized by adsorbing and removing the selenium oxide after denitration treatment of exhaust gas containing selenium oxide generated by combustion of fossil fuel and then contacting with an adsorbent mainly composed of titanium oxide. A method for removing selenium from fuel combustion exhaust gas.
(2) The method according to (1), wherein the adsorbent is a molded body.
(3) The method according to (1), wherein the adsorbent is in the form of powder or slurry.
(4) The method according to any one of (1) to (3) above, wherein an exhaust gas temperature to be brought into contact with the adsorbent is 200 ° C. or lower.
(5) The temperature of the adsorbent that has adsorbed the selenium oxide is increased to separate the adsorbed selenium oxide, and then contacted with the exhaust gas again. (1) to (4) above The method in any one.
[0008]
(6) The method according to (5) above, wherein an exhaust gas temperature when the selenium oxide is separated is 300 ° C. or higher.
(7) The method according to (5) or (6), wherein the selenium component is recovered by bringing a gas containing selenium oxide separated from the adsorbent into contact with water.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail by way of examples.
FIG. 1 is a system diagram showing a method for removing selenium in exhaust gas according to an embodiment of the present invention, and FIGS. 2 to 4 show the selenium removing apparatus according to an embodiment of the present invention used in FIG. It is explanatory drawing. 2 is a top view of the selenium removing device, FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
In FIG. 1, this apparatus differs from the prior art of FIG. 11 in that a selenium removal device 15 is provided between the air heater 3 and the GGH heat recovery unit 4, and the selenium recovery unit 14 of the selenium removal device 15 is provided. This is a point connected to the reduction device 10 in the upstream of the precipitation device 11.
[0011]
2 to 4, the selenium removal apparatus of the present embodiment includes a gas heating furnace 17 adjacent to the exhaust gas flue 16, and a rotation provided between the gas heating furnace 17 and the exhaust gas flue 16. As a disc-shaped adsorbent that rotates about the shaft 18 across the flue gas flue 16 and the gas heating furnace 17, adsorbs the selenium component in the flue gas flue 16 and separates it in the gas heating furnace 17. The selenium absorption tower is mainly composed of a molded body 20 and selenium recovery means for absorbing the separated selenium component with water, and the selenium recovery means is connected to the gas heating furnace 17 via a gas flow path 27. 30, a spray nozzle 25 provided at the ceiling of the selenium absorption tower 30, a liquid reservoir 28 provided at the bottom, a circulation pipe 29 connecting the liquid reservoir 28 and the spray nozzle 25, and the circulation Installed in pipe 29 It is composed mainly of obtained circulation pump 26.. 21 is a selenium adsorbing portion of the molded body 20, 22 is a selenium desorbing portion, 23 is a driving device of the molded body 20, and 24 is a burner. In addition, the part which consists of the selenium adsorption | suction part 21 of the molded object 20 can be called the selenium collection part 13, and the latter part after this selenium collection part 13 can be called the selenium collection | recovery part 14. FIG.
[0012]
In such a configuration, the exhaust gas A discharged from the boiler 1 flows through the exhaust gas flue 16, and after NOx is removed by the denitration device 2, the selenium collector 13 of the selenium removal device 15 passes through A / H 3. The selenium component contained in the exhaust gas is adsorbed to the molded body 20 when passing through the adsorbing portion 21 of the molded body 20 of the adsorbent mainly composed of titanium oxide. The molded body 20 is slowly rotated around the rotating shaft 18 by the driving device 23, and the adsorption portion 21 to which the selenium component is adsorbed moves into the gas heating furnace 17 to become a separation portion 22, where the burner 24 burns. When heated to 300 ° C. or higher, for example, 320 ° C., the adsorbed selenium component is released. Thereafter, the molded body 20 continues to rotate across the exhaust gas flue 16 and the gas heating furnace 17, and similarly repeats adsorption and separation of the selenium component in the exhaust gas. The desorbed gas containing a high-concentration selenium component flows into the selenium absorption tower 30 via the flow path 27 and is absorbed and recovered by contacting with the sprayed water via the spray nozzle 25. The water from which the selenium is recovered falls into the liquid reservoir 28 and is circulated from the liquid reservoir 28 through the circulation pump 26 and the circulation pipe 29 to the spray nozzle 25 and reused as high-concentration selenium component-containing water. Collected. Water containing a high concentration of selenium component is sent to the downstream reduction device 10 and the precipitation device 11 (see FIG. 1), and, for example, hexavalent selenium is reduced to tetravalent, and then precipitated, as in the prior art. In the apparatus 11, the sludge D containing selenium is recovered by precipitation with a flocculant, for example.
[0013]
The exhaust gas from which the selenium component has been removed is returned to the exhaust gas flue 16 through the gas flow path 27 and guided to the EP 5 through the GGH heat recovery section 4, where the dust B is removed, and then the desulfurization device 6 The SO 2 in the exhaust gas is removed and the exhaust gas temperature is increased by the GGH reheating unit 7 and then released from the chimney 8 to the atmosphere. In addition, the absorption liquid extracted from the desulfurization apparatus 6 is introduced into the dehydrator 9, where it is dehydrated and the gypsum C is recovered.
According to the present embodiment, since the selenium component collected by the collection unit 13 of the selenium removal apparatus 15 can be collected at a high concentration by the collection unit 14, selenium in the liquid to be processed sent to the reduction apparatus 10 and the precipitation apparatus 11. The concentration can be increased to about 10 to 100 times that of the prior art. In other words, the total amount of liquid containing the same amount of selenium component as the absolute amount to be processed can be reduced to about 1/10 to 1/100 of the prior art. Therefore, not only the reduction apparatus 10 and the precipitation apparatus 11 can be made smaller, but also the processing cost including utilities including chemicals can be greatly reduced.
[0014]
In this invention, it is preferable that the exhaust gas temperature in the selenium adsorption part 21 is 200 degrees C or less, More preferably, it is 180 degrees C or less. When it becomes higher than 200 degreeC, a selenium collection rate will fall. On the other hand, the exhaust gas temperature in the selenium separation part 22 is preferably 300 ° C. or higher, more preferably 320 ° C. or higher. When the temperature is lower than 300 ° C., the desorption rate decreases.
FIG. 5 is a diagram showing the relationship between the gas temperature and the selenium collection rate in the present invention. In the figure, it can be seen that the collection rate increases at a gas temperature of 200 ° C. or lower. FIG. 6 is a graph showing the relationship between the exhaust gas temperature and the selenium removal rate in the present invention. In the figure, it can be seen that the separation rate increases when the exhaust gas temperature is 300 ° C. or higher. It can be said that the lower limit of the exhaust gas temperature in the selenium collecting part is preferably about 120 ° C. from FIG. 5 and the upper limit of the exhaust gas temperature in the selenium separation part is preferably about 370 ° C.
[0015]
FIG. 7 is an apparatus system diagram showing a method for removing selenium in exhaust gas according to another embodiment of the present invention, and FIGS. 8 to 10 show selenium removal according to another embodiment of the present invention used in FIG. It is explanatory drawing which shows an apparatus. 8 is a top view of the selenium removing device, FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. 8, and FIG. 10 is a cross-sectional view taken along the line XX in FIG.
In FIG. 7, this apparatus is different from the apparatus of FIG. 1 in that EP5 is moved to the upstream of the denitration apparatus 2 and, as a selenium removal apparatus, powder containing titanium oxide as a main component is sprayed into the exhaust gas. The selenium removal device 33 for adsorbing and collecting the selenium component, separating the collected selenium component and absorbing it with water is provided.
[0016]
8 to 10, this selenium removing apparatus includes a selenium adsorption tower body 36 having an exhaust gas inlet 34 and an outlet 35, and powder as an adsorbent spray nozzle provided on a ceiling portion of the selenium adsorption tower body 36. A powder storage part 38 as an adsorbent storage part provided at the body nozzle 37 and the bottom, a circulation pipe 39 as a connecting pipe connecting the powder storage part 38 and the powder nozzle 37, and the powder The powder E as an adsorbent, which is injected from the nozzle 37 and comes into contact with the selenium-containing gas in the adsorption tower body 36 and adsorbs the selenium component, is received via the exhaust gas flow path 27, and the powder E is heated to selenium. A heating furnace 41 for separating the components and a selenium collecting means for absorbing and recovering the separated selenium components with water are mainly constituted. Powder E is heated at the bottom of the heating furnace 41 by the heating gas F. Gas heating unit 42 for moving is provided. The selenium recovery means has the same configuration as the selenium absorption tower 30 shown in FIGS. 2 and 4 and will not be described. In addition, a powdered adsorbent is sprayed on the exhaust gas to adsorb and separate the selenium component. The selenium collecting tower 31 is mainly composed of a selenium adsorption tower, and a heating furnace 41 is used to heat the adsorbent adsorbing the selenium component. A portion mainly composed of the downstream selenium absorption tower 30 can be referred to as a selenium recovery unit 32.
[0017]
In such a configuration, after the dust B is removed by EP5, the exhaust gas A discharged from the boiler 1 passes through the denitration device 2 and A / H3 and enters the exhaust gas inlet 34 into the selenium collection tower 36 of the selenium removal device 33. Selenium component in the exhaust gas is adsorbed in contact with the powder E mainly composed of titanium oxide injected from the powder nozzle 37. The powder E adsorbing the selenium component is temporarily stored in the bottom powder storage section 38 of the selenium adsorption tower body 36, and is supplied to the powder nozzle 37 through the circulation pipe 39 and the powder supply device 40 and circulates. used. At this time, a part of the powder E adsorbing the selenium component is sent to the heating furnace 41 through the gas flow path 27, where it is in fluid contact with, for example, the heating gas F and heated to, for example, 320 ° C. The selenium component that had been released is released. The separated gas containing the high-concentration selenium component flows into the selenium absorption tower 30 through the gas flow path 27 and is absorbed and recovered by contacting with the water sprayed through the spray nozzle 25. The water from which the selenium is recovered is circulated and used in the same manner as in the above-described embodiment, and is recovered as water having a high concentration of selenium component. The water containing the high concentration selenium component is sent to the downstream reduction device 10 and the precipitation device 11 as in the above embodiment (see FIG. 7), and the selenium is recovered as sludge D containing selenium as in the prior art. Is done.
[0018]
The powder E in the heating furnace 41 from which the selenium component has been released is returned to the selenium adsorption tower main body 36 through a pipe line (not shown) and circulated for repeated adsorption and separation of the selenium component in the exhaust gas. On the other hand, the exhaust gas from which the selenium component has been removed flows out from the exhaust gas outlet 35 of the selenium adsorption tower body 36, is adjusted to a predetermined temperature by the GGH heat recovery section 4, and then flows into the downstream desulfurization device 6. SO 2 is removed. The exhaust gas from which SO 2 has been removed is released to the atmosphere from the chimney 8 after its temperature is raised to a predetermined temperature by the GGH reheating unit 7.
According to this embodiment, as in the above embodiment, the selenium component in the exhaust gas can be removed and recovered with high efficiency.
In this embodiment, instead of heating the powder E mainly composed of titanium oxide adsorbing the selenium component and desorbing the selenium component, the powder E may be solidified and made harmless as it is.
[0019]
In this embodiment, the exhaust gas temperature in the selenium adsorption tower main body 36 that adsorbs the selenium component is preferably 200 ° C. or less, and the gas temperature in the heating furnace 41 for releasing the selenium component is preferably 300 ° C. or more. .
In this embodiment, instead of the powdery adsorbent mainly composed of titanium oxide, a slurry of the adsorbent mainly composed of titanium oxide can be used.
In the present invention, the method for adjusting the exhaust gas temperature is not particularly limited. That is, examples of the exhaust gas cooling method include a method of spraying water into the exhaust gas, a method of using a heat exchange device, and the like. As a heating method, for example, a combustion heating method using a burner, a part of boiler exhaust gas is mixed. The method etc. are mentioned, However, Other methods may be used.
[0020]
【The invention's effect】
According to the first aspect of the present invention, the selenium component contained in the exhaust gas can be efficiently removed.
According to invention of Claim 2 of this application, in addition to the effect of the said invention, handling of an adsorbent becomes easy.
According to invention of Claim 3 of this application, in addition to the effect of the said invention, the adsorption | suction efficiency of a selenium component improves.
[0021]
According to invention of Claim 4 of this application, in addition to the effect of the said invention, the removal efficiency of a selenium component improves.
According to invention of Claim 5 of this application, in addition to the effect of the said invention, the utilization factor of adsorbent improves.
According to invention of Claim 6 of this application, in addition to the effect of the said invention, the recovery rate of the selenium component isolate | separated from waste gas improves.
According to the invention described in claim 7 of the present application, the recovery rate of the selenium component is improved as in the case of the above invention.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of the present invention.
FIG. 2 is an explanatory diagram of the selenium removal apparatus of FIG.
3 is a cross-sectional view taken along line III-III in FIG.
4 is a cross-sectional view taken along line IV-IV in FIG.
FIG. 5 is a graph showing the relationship between exhaust gas temperature and selenium collection rate.
FIG. 6 is a graph showing the relationship between exhaust gas temperature and selenium desorption rate.
FIG. 7 is an apparatus system diagram showing another embodiment of the present invention.
FIG. 8 is an explanatory diagram of the selenium removal apparatus of FIG.
9 is a cross-sectional view taken along the line IX-IX in FIG.
10 is a cross-sectional view in the direction of arrows XX in FIG.
FIG. 11 is an explanatory diagram showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Boiler, 2 ... Denitration device, 3 ... Air heater (A / H), 4 ... Heat recovery part of gas-gas heater (GGH), 5 ... Electric dust collector (EP), 6 ... Desulfurization device, 7 ... Gas- Gas heater (GGH) reheating unit, 8 ... chimney, 9 ... dehydrator, 10 ... reduction device, 11 ... precipitation device, 12 ... dissolution device, 13 ... selenium collection unit, 14 ... selenium recovery unit, 15 ... selenium removal Device: 16 ... Flue gas flue, 17 ... Gas heating furnace, 18 ... Rotating shaft, 20 ... Molded body, 21 ... Selenium adsorption part, 22 ... Selenium release part, 23 ... Drive device, 24 ... Burner, 25 ... Spray nozzle, DESCRIPTION OF SYMBOLS 26 ... Circulation pump, 27 ... Gas flow path, 28 ... Liquid storage part, 29 ... Circulation piping, 30 ... Selenium absorption tower, 31 ... Selenium collection part, 32 ... Selenium collection | recovery part, 33 ... Selenium removal apparatus, 34 ... Exhaust gas Inlet, 35 ... exhaust gas outlet, 36 ... Selenium adsorption tower body, 7 ... powder nozzle, 38 ... powder reservoir, 39 ... circulating pipe, 40 ... powder supplying device, 41 ... heating furnace, 42 ... gas heating unit.

Claims (7)

化石燃料の燃焼に伴って発生するセレン酸化物を含む排ガスを脱硝処理後、酸化チタンを主成分とする吸着材に接触させ、前記セレン酸化物を吸着除去することを特徴とする化石燃料燃焼排ガス中のセレンの除去方法。A fossil fuel combustion exhaust gas characterized by adsorbing and removing the selenium oxide after denitration treatment of exhaust gas containing selenium oxide generated by the combustion of fossil fuel and then contacting with an adsorbent mainly composed of titanium oxide Of removing selenium in the inside. 前記吸着材が、成形体である請求項1に記載の方法。  The method according to claim 1, wherein the adsorbent is a molded body. 前記吸着材が、粉末またはスラリ状である請求項1に記載の方法。  The method of claim 1, wherein the adsorbent is in the form of a powder or slurry. 前記吸着材と接触させる排ガス温度が、200℃以下であることを特徴とする請求項1〜3の何れかに記載の方法。  The method according to any one of claims 1 to 3, wherein an exhaust gas temperature to be brought into contact with the adsorbent is 200 ° C or lower. 前記セレン酸化物を吸着した吸着材の温度を高めて吸着しているセレン酸化物を離脱させたのち、再度前記排ガスと接触させることを特徴とする請求項1〜4の何れかに記載の方法Mixture was allowed to leave the selenium oxide is adsorbed by increasing the temperature of the adsorbent which has adsorbed the selenium oxide A method according to any one of claims 1 to 4, characterized in that contacting again the exhaust gas . 前記セレン酸化物を離脱させる際の排ガス温度が、300℃以上であることを特徴とする請求項5に記載の方法。The method according to claim 5, wherein an exhaust gas temperature when the selenium oxide is separated is 300 ° C. or more. 前記吸着材から離脱したセレン酸化物を含むガスを水と接触させて前記セレン成分を回収することを特徴とする請求項5または6に記載の方法。The method according to claim 5 or 6, wherein the selenium component is recovered by contacting a gas containing selenium oxide separated from the adsorbent with water.
JP28835099A 1999-10-08 1999-10-08 Method for removing selenium in exhaust gas Expired - Fee Related JP3737916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28835099A JP3737916B2 (en) 1999-10-08 1999-10-08 Method for removing selenium in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28835099A JP3737916B2 (en) 1999-10-08 1999-10-08 Method for removing selenium in exhaust gas

Publications (2)

Publication Number Publication Date
JP2001104748A JP2001104748A (en) 2001-04-17
JP3737916B2 true JP3737916B2 (en) 2006-01-25

Family

ID=17729079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28835099A Expired - Fee Related JP3737916B2 (en) 1999-10-08 1999-10-08 Method for removing selenium in exhaust gas

Country Status (1)

Country Link
JP (1) JP3737916B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5851440B2 (en) * 2013-03-11 2016-02-03 日本山村硝子株式会社 Selenium recovery system and method for recovering selenium in exhaust gas
JP6046526B2 (en) * 2013-03-11 2016-12-14 日本山村硝子株式会社 Selenium recovery system and method for recovering selenium in exhaust gas
JP2016151560A (en) * 2015-02-19 2016-08-22 三菱重工業株式会社 Method for analyzing selenium
CN114682071A (en) * 2022-03-04 2022-07-01 金川集团股份有限公司 Process method for recovering selenium from selenium-containing flue gas

Also Published As

Publication number Publication date
JP2001104748A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP5180097B2 (en) Exhaust gas treatment method and apparatus
ES2753970T3 (en) Exhaust gas treatment system and exhaust gas treatment method
JP5656649B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP4920993B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
TWI355289B (en) Method of removing mercury from flue gas after com
JP4932840B2 (en) Method for removing sulfur trioxide from exhaust gas stream
TWI444224B (en) A method and a device for removing nitrogen oxides and sulphur trioxide from a process gas
EP2481471B1 (en) Apparatus and system for NOx reduction in wet flue gas
TWI276460B (en) Exhaust smoke-processing system
CN109569228A (en) The exhaust system and technique of flue gas of garbage furnace
CN109432936A (en) Sintering flue gas processing method and processing system
JP3676032B2 (en) Smoke exhaust treatment facility and smoke exhaust treatment method
PL204639B1 (en) Method and apparatus for removing mercury species from hot flue gas
JP2000312813A (en) Usage of gas and liquid containing sulfide for removing mercury from flue gas
WO2009043108A1 (en) Removal of pollutants from a gas flow
JP5369048B2 (en) Exhaust gas treatment system and method having carbon dioxide chemical absorption equipment
JP4227676B2 (en) Gas purification equipment
JP3737916B2 (en) Method for removing selenium in exhaust gas
JP5161906B2 (en) Gas treatment method and gasification equipment in gasification equipment
CN105381698A (en) Mercury curing and removing method for coal-fired power plant and device thereof
JP2003236334A (en) Purifying system for flue gas treating liquid
JP4508307B2 (en) Gas treatment method and gasification equipment in gasification equipment
JP5113788B2 (en) Exhaust gas treatment system
JP2000053980A (en) Purification of gas
JP2001123184A (en) Method for gas purification

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees