JP3737860B2 - Thrust ball bearing - Google Patents

Thrust ball bearing Download PDF

Info

Publication number
JP3737860B2
JP3737860B2 JP22863996A JP22863996A JP3737860B2 JP 3737860 B2 JP3737860 B2 JP 3737860B2 JP 22863996 A JP22863996 A JP 22863996A JP 22863996 A JP22863996 A JP 22863996A JP 3737860 B2 JP3737860 B2 JP 3737860B2
Authority
JP
Japan
Prior art keywords
raceway
pair
raceway surface
ball bearing
thrust ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22863996A
Other languages
Japanese (ja)
Other versions
JPH09324816A (en
Inventor
雅彦 里田
正敏 新名
幸光 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP22863996A priority Critical patent/JP3737860B2/en
Priority to US08/834,505 priority patent/US5758978A/en
Publication of JPH09324816A publication Critical patent/JPH09324816A/en
Application granted granted Critical
Publication of JP3737860B2 publication Critical patent/JP3737860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スクロール圧縮機における旋回スクロール部材と静止スクロール部材のように、相互間で偏心回転運動を行なう二つの部材間に介装されるスラスト玉軸受に関する。
【0002】
【従来の技術】
例えば、スクロール圧縮機は、図5に示すように、旋回スクロール部材11及び静止スクロール部材12にそれぞれ螺旋状隔壁11b、12bを設け、両螺旋状隔壁11b、12b間に形成される圧縮室Pを、旋回スクロール部材11の静止スクロール部材12に対する偏心回転に伴って容積変化させることにより、圧縮室P内の流体の圧縮動作を行なうものである。
【0003】
旋回スクロール部材11の軸心と駆動モータ15の軸心とは偏心量eだけ偏心しており、駆動モータ15の出力軸15aが回転すると、旋回スクロール部材11が偏心量eに等しい旋回半径で偏心回転する。この時、旋回スクロール部材11にはこれを自転させようとする力が働き、また、流体の圧縮動作に伴うスラスト荷重が負荷される。そこで、旋回スクロール部材11の自転を防止し、スラスト荷重を支持するため、旋回スクロール部材11と静止スクロール部材12(同図に示す構成では、静止スクロール部材12に固定された静止フレーム13)との間にスラスト玉軸受14を介装している。
【0004】
図7に拡大して示すように、スラスト玉軸受14は、一対の軌道輪14a、14bと、これら軌道輪14a、14bの軌道面14a1、14b1間に介在する複数のボール14cとで構成される。軌道輪14a、14bは、それぞれ、旋回スクロール部材11と静止フレーム13の、軸方向に相対向した装着部11a、13aに固定される。
【0005】
図6に示すように、軌道輪14a、14bは同形状・同寸法のリングであり、その一方の端面には複数の軌道面14a1(14b1)が同一円周上に形成されている。各軌道面14a1(14b1)は環状形状のものであり、その断面形状は円弧状をなす。各軌道面14a1(14b1)に配されたボール14cは、旋回スクロール部材11の偏心回転に伴って、軌道面14a1(14b1)のピッチ円PCD上を転動する。軌道面14a1(14b1)のピッチ円PCDの直径dは、偏心量eと等しい。
【0006】
【発明が解決しようとする課題】
従来のスラスト玉軸受14においては、一対の軌道輪14a、14bは同形状・同寸法であり、軌道面14a1、14b1の溝曲率は同一である。軌道面14a1、14b1に溝曲率をもたせてあるのは、ボール14cとの接触面圧を低減し、寿命向上を図るためである。
【0007】
しかしながら、取付誤差等により、軌道輪14a、14b相互間の位置関係にずれが生じる場合があり、そのような位置ずれを吸収し得る機能が要求される。
【0008】
本発明は、接触面圧の低減、軸受機能の確保という基本的な要求を考慮しつつ、軌道輪相互間の位置ずれを吸収し得る構成を提供しようとするものである。
【0009】
【課題を解決するための手段】
本発明のスラスト玉軸受は、相互間で偏心回転運動を行なう二つの部材の、軸方向に相対向した装着部にそれぞれ固定される一対の軌道輪と、これら軌道輪の複数箇所に形成された環状の軌道面間に介在するボールとを備え、前記一対の軌道輪が溝曲率の大きい軌道面と溝曲率の小さい軌道面を有する同一形状の軌道輪であって、この一対の軌道輪を相互に円周方向にずらせ、相対向した軌道面の溝曲率が相互に異なるようにしたことを特徴とする。
【0010】
また、本発明のスラスト玉軸受は、軸方向に相対向配置される一対の軌道輪と、これら軌道輪の複数箇所に形成された環状の軌道面間に介在するボールとを備え、前記一対の軌道輪が溝曲率の大きい軌道面と溝曲率の小さい軌道面を有する同一形状の軌道輪であって、この一対の軌道輪を相互に円周方向にずらせ、相対向した軌道面の溝曲率が相互に異なるようにしたことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明をスクロール圧縮機用スラスト玉軸受に適用した場合の実施形態について説明する。
【0013】
図1は、図5に示すようなスクロール圧縮機におけるスラスト玉軸受4の周辺部を示している。旋回スクロール部材1と静止フレーム3(静止フレーム3は静止スクロール部材2に固定される。)の、軸方向に相対向した装着部1a、3aにスラスト玉軸受4の一対の軌道輪4a、4bがそれぞれ固定され、一対の軌道輪4a、4bに形成された複数の軌道面4a1、4b1間にそれぞれボール4cが配されている。旋回スクロール部材1が、静止スクロール部材2に対して偏心量eに等しい旋回半径で偏心回転することにより、両者の螺旋状隔壁1b、2b間に形成される圧縮室Pが容積変化して、流体の圧縮動作が行なわれる。スラスト玉軸受4は、そのような圧縮動作が行なわれる際の、旋回スクロール部材1の自転を防止するとともに、スラスト荷重を支持する役割をなす。
【0014】
図1(b)に拡大して示すように、この実施形態において、装着部1a、3aはいずれも段状であり、旋回側の軌道輪4aの内周4a2は装着部1aの肩部1a1に嵌合され、静止側の軌道輪4bの外周4b2は装着部3aの肩部3a1に嵌合され、それぞれ適宜の回り止め手段を施される。
【0015】
軌道輪4a(4b)は、例えば鋼板素材からプレス加工等により成形したもので、その一方の端面には複数の軌道面4a1(4b1)が同一円周上に形成されている。各軌道面4a1は環状形状のものであり、各軌道面4a1に配されたボール4cは、旋回スクロール部材1の偏心回転に伴って、軌道面4a1(4b1)のピッチ円上を転動する。
【0016】
図2に拡大して示すように、この実施形態のスラスト玉軸受4が従来構成と異なる点は、一方の軌道輪例えば旋回側の軌道輪4aの軌道面4a1の溝曲率(曲率半径)Raを、他方の軌道輪例えば静止側の軌道輪4bの軌道面4b1の溝曲率(曲率半径)Rbよりも大きくした点にある(Ra〉Rb)。尚、溝曲率の大小関係はRa〈Rbとしても良い。
【0017】
図3に示すように、取付誤差等により、旋回側の軌道輪4aと静止側の軌道輪4bとの間に位置ずれαが生じた場合には、軌道面4a1の溝曲率が大きい軌道輪4aによって位置ずれが吸収される。軌道面4b1のピッチ円PCDの直径は偏心量eと等しい。
【0018】
図4に示すように、一方の軌道輪例えば旋回側の軌道輪4aの軌道面4a1の溝曲率を無限大とし、平坦状にすることもできる。
【0019】
以上は、一方の軌道輪4aと他方の軌道輪4bのそれぞれにつき、異なる型を用いて鋼板素材からプレス加工等した実施形態について説明したが、必ずしもこれに限られるものではなく、旋回側と静止側の両方に同一の軌道輪を用いるようにしてもよい。例えば、図8(a)に示すように、溝曲率の大きい軌道面24a1と溝曲率の小さい軌道面24a2を一つの軌道輪24aの同一円周上に交互に形成し、これを一対用いてもよい。この場合、一対の軌道輪24aを軌道面24a1(24a2)1つ分だけ円周方向に相互にずらして相対向させ、旋回側の軌道輪24aの内周24a3を図1(b)に示す装着部1aの肩部1a1に嵌合させ、静止側の軌道輪24の外周24a4を装着部3aの肩部3a1に嵌合させる。そうすると、円周方向の各位相において、溝曲率の大きい軌道面24a1と溝曲率の小さい軌道面24a2とが、相対向した状態になる。この軌道輪24aの軌道面24a1の溝曲率は、上述した軌道面4a1の溝曲率Raと同じとし、軌道面24a2の溝曲率は、上述した軌道面4b1の溝曲率Rbと同じとする(Ra〉Rb)。また、軌道面24a2のピッチ円PCDの直径は図1に示す偏心量eと等しい。但し、図8では説明の便宜上、軌道面24a1を軌道面24a2よりもやや大きく誇張して図示している。なお、その他の諸構成は、図1に示すスラスト玉軸受4と同様であるので適宜同一符号を用いて説明を簡略する。
【0020】
この軌道輪24aは、同一形状のものを一対として用いるので、旋回側と静止側にそれぞれ形状の異なる軌道輪4a,4bを装着する前記実施形態に比べて部品の種類を少なくでき、製造コストを大幅に軽減できる。
【0021】
このように一対の軌道輪24a,24aにおける軌道面24a1,24a2の配列を工夫したことにより、1種類(同一形状)の軌道輪24a,24aを用いて、2種類(異種形状)の軌道輪4a,4bを用いた前記実施形態と同様に、取付誤差等による一対の軌道輪24a,24aの位置ずれを確実に吸収することができる。
【0022】
あるいは、図8(b)に示すように、溝曲率が大きい軌道面34a1と溝曲率の小さい軌道面34a2を一つの軌道輪34aの同一円周上に3つずつ交互に形成してもよい。この軌道輪34aも、前記軌道輪24aと同様の機能及び効果を奏する。
【0023】
さらには、図8(c)に示すように、溝曲率が大きい軌道面44a1と溝曲率が小さい軌道面44a2を、一つの軌道輪44aの同一円周上にそれぞれ半面ずつ連続して形成してもよい。
【0024】
尚、本発明は、スクロール圧縮機用スラスト玉軸受に限らず、相互間で偏心回転運動を行なう二つの部材間に介在して、スラスト荷重を支持するスラスト玉軸受一般に適用することができる。
【0025】
【発明の効果】
以上説明したように、本発明は、一対の軌道輪の相対向した軌道面の溝曲率が相互に異なるようにしたので、軌道輪相互間の位置ずれを溝曲率の大きな軌道面によって吸収させることができると同時に、ボールの適正な転動を溝曲率が小さな軌道面によって確保することができる。したがって、本発明によれば、接触面圧の低減、軸受機能の確保という基本的な要求を満足させつつ、軌道輪相互間の位置ずれを吸収し得るスラスト玉軸受を提供することができる。
【0026】
しかも、溝曲率の大きい軌道面と溝曲率の小さい軌道面とを所定のパターンに形成した同一形状の軌道輪を一対として用い、この一対の軌道輪を相互に円周方向にずらして相対向させるので軌道輪の種類を一種類にして製造コストの軽減を図ることができる。
【図面の簡単な説明】
【図1】実施形態に係わるスクロール圧縮機におけるスラスト玉軸受の周辺部を示す断面図(図a)、スラスト玉軸受の近傍を示す拡大断面図(図b)である。
【図2】実施形態に係わるスラスト玉軸受の軌道面周辺部を示す拡大断面図である。
【図3】実施形態に係わるスラスト玉軸受の軌道面周辺部を示す拡大断面図である。
【図4】実施形態に係わるスラスト玉軸受の軌道面周辺部を示す拡大断面図である。
【図5】スクロール圧縮機の一形態を示す斜視図である。
【図6】軌道輪を示す平面図である。
【図7】従来のスラスト玉軸受を示す断面図である。
【図8】(A)(B)(C)は、それぞれ軌道輪の他の実施形態を示す平面図である。
【符号の説明】
1 旋回スクロール部材
1a 装着部
2 静止スクール部材
3 静止フレーム
3a 装着部
4 スラスト玉軸受
4a 軌道輪
4a1 軌道面
4b 軌道輪
4b1 軌道面
4c ボール
24a 軌道輪
24a1 軌道面
24a2 軌道面
34a 軌道輪
34a1 軌道面
34a2 軌道面
44a 軌道輪
44a1 軌道面
44a2 軌道面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thrust ball bearing that is interposed between two members that perform eccentric rotational movement between each other, such as a turning scroll member and a stationary scroll member in a scroll compressor.
[0002]
[Prior art]
For example, as shown in FIG. 5, the scroll compressor is provided with spiral partition walls 11b and 12b on the orbiting scroll member 11 and the stationary scroll member 12, respectively, and a compression chamber P formed between the spiral partition walls 11b and 12b. The fluid in the compression chamber P is compressed by changing the volume in accordance with the eccentric rotation of the orbiting scroll member 11 with respect to the stationary scroll member 12.
[0003]
The axis of the orbiting scroll member 11 and the axis of the drive motor 15 are eccentric by an eccentric amount e. When the output shaft 15a of the drive motor 15 rotates, the orbiting scroll member 11 rotates eccentrically with an orbiting radius equal to the eccentric amount e. To do. At this time, the orbiting scroll member 11 is subjected to a force to rotate it, and a thrust load accompanying a fluid compression operation is applied. Therefore, in order to prevent the orbiting scroll member 11 from rotating and to support the thrust load, the orbiting scroll member 11 and the stationary scroll member 12 (in the configuration shown in the figure, the stationary frame 13 fixed to the stationary scroll member 12). A thrust ball bearing 14 is interposed therebetween.
[0004]
As shown in an enlarged view in FIG. 7, the thrust ball bearing 14 includes a pair of race rings 14a and 14b and a plurality of balls 14c interposed between the raceway surfaces 14a1 and 14b1 of the race rings 14a and 14b. . The track rings 14a and 14b are fixed to the mounting portions 11a and 13a of the orbiting scroll member 11 and the stationary frame 13 facing each other in the axial direction.
[0005]
As shown in FIG. 6, the race rings 14a and 14b are rings of the same shape and size, and a plurality of raceway surfaces 14a1 (14b1) are formed on the same circumference on one end face thereof. Each raceway surface 14a1 (14b1) has an annular shape, and its cross-sectional shape has an arc shape. The balls 14c arranged on the raceway surfaces 14a1 (14b1) roll on the pitch circle PCD of the raceway surface 14a1 (14b1) as the orbiting scroll member 11 rotates eccentrically. The diameter d of the pitch circle PCD of the raceway surface 14a1 (14b1) is equal to the eccentricity e.
[0006]
[Problems to be solved by the invention]
In the conventional thrust ball bearing 14, the pair of race rings 14a and 14b have the same shape and the same dimensions, and the groove curvatures of the raceway surfaces 14a1 and 14b1 are the same. The reason why the raceway surfaces 14a1 and 14b1 have a groove curvature is to reduce the contact surface pressure with the ball 14c and to improve the service life.
[0007]
However, there may be a deviation in the positional relationship between the races 14a and 14b due to an attachment error or the like, and a function capable of absorbing such a positional deviation is required.
[0008]
The present invention is intended to provide a configuration capable of absorbing the positional deviation between the races while taking into account the basic requirements of reducing the contact surface pressure and ensuring the bearing function.
[0009]
[Means for Solving the Problems]
The thrust ball bearing of the present invention is formed at a plurality of locations of a pair of bearing rings that are respectively fixed to mounting portions opposite to each other in the axial direction of two members that perform eccentric rotational motion between each other. A pair of raceways having a groove surface with a large groove curvature and a raceway surface with a small groove curvature, and the pair of raceways are mutually connected. The groove curvatures of the opposed raceway surfaces are different from each other in the circumferential direction .
[0010]
The thrust ball bearing of the present invention includes a pair of raceways arranged opposite to each other in the axial direction, and balls interposed between annular raceway surfaces formed at a plurality of locations of the raceways . The raceway is a raceway of the same shape having a raceway surface having a large groove curvature and a raceway surface having a small groove curvature, and the pair of raceways are displaced in the circumferential direction so that the groove curvatures of the opposed raceway surfaces are It is characterized by being different from each other .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment when the present invention is applied to a thrust ball bearing for a scroll compressor will be described.
[0013]
FIG. 1 shows a peripheral portion of a thrust ball bearing 4 in a scroll compressor as shown in FIG. A pair of race rings 4a, 4b of a thrust ball bearing 4 are mounted on mounting portions 1a, 3a opposite to each other in the axial direction of the orbiting scroll member 1 and the stationary frame 3 (the stationary frame 3 is fixed to the stationary scroll member 2). Balls 4c are respectively disposed between a plurality of raceway surfaces 4a1 and 4b1 fixed to each other and formed on the pair of raceways 4a and 4b. When the orbiting scroll member 1 rotates eccentrically with an orbiting radius equal to the eccentric amount e with respect to the stationary scroll member 2, the volume of the compression chamber P formed between the spiral partition walls 1b and 2b changes, and the fluid The compression operation is performed. The thrust ball bearing 4 serves to support the thrust load while preventing the orbiting scroll member 1 from rotating when such a compression operation is performed.
[0014]
As shown in an enlarged view in FIG. 1B, in this embodiment, the mounting portions 1a and 3a are both stepped, and the inner periphery 4a2 of the turning-side raceway 4a is connected to the shoulder 1a1 of the mounting portion 1a. The outer periphery 4b2 of the stationary raceway ring 4b is fitted to the shoulder portion 3a1 of the mounting portion 3a, and appropriate anti-rotation means is applied.
[0015]
The raceway ring 4a (4b) is formed, for example, by pressing from a steel plate material, and a plurality of raceway surfaces 4a1 (4b1) are formed on the same circumference on one end face thereof. Each raceway surface 4a1 has an annular shape, and the ball 4c disposed on each raceway surface 4a1 rolls on the pitch circle of the raceway surface 4a1 (4b1) as the orbiting scroll member 1 rotates eccentrically.
[0016]
As shown in FIG. 2 in an enlarged manner, the thrust ball bearing 4 of this embodiment is different from the conventional configuration in that the groove curvature (curvature radius) Ra of the raceway surface 4a1 of one raceway ring, for example, the raceway ring 4a on the turning side, is set. The other raceway ring, for example, is in a point larger than the groove curvature (curvature radius) Rb of the raceway surface 4b1 of the stationary raceway ring 4b (Ra> Rb). The magnitude relationship of the groove curvature may be Ra <Rb.
[0017]
As shown in FIG. 3, when a positional deviation α occurs between the turning-side raceway ring 4a and the stationary-side raceway ring 4b due to an attachment error or the like, the raceway ring 4a having a large groove curvature on the raceway surface 4a1. The position shift is absorbed by. The diameter of the pitch circle PCD of the raceway surface 4b1 is equal to the eccentricity e.
[0018]
As shown in FIG. 4, the groove curvature of the raceway surface 4a1 of one raceway, for example, the raceway 4a on the turning side, may be infinite and flat.
[0019]
In the above, the embodiment in which a different die is used for press working from a steel plate material has been described for each of the one raceway ring 4a and the other raceway ring 4b. However, the embodiment is not necessarily limited to this. The same race may be used for both sides. For example, as shown in FIG. 8A, a raceway surface 24a1 having a large groove curvature and a raceway surface 24a2 having a small groove curvature are alternately formed on the same circumference of one raceway ring 24a, and a pair thereof may be used. Good. In this case, the pair of race rings 24a are shifted from each other in the circumferential direction by one raceway surface 24a1 (24a2) so as to face each other, and the inner circumference 24a3 of the turning raceway 24a is mounted as shown in FIG. The shoulder part 1a1 of the part 1a is fitted, and the outer periphery 24a4 of the stationary ring 24 is fitted to the shoulder part 3a1 of the mounting part 3a. Then, in each phase in the circumferential direction, the raceway surface 24a1 having a large groove curvature and the raceway surface 24a2 having a small groove curvature are opposed to each other. The groove curvature of the raceway surface 24a1 of the raceway ring 24a is the same as the groove curvature Ra of the raceway surface 4a1, and the groove curvature of the raceway surface 24a2 is the same as the groove curvature Rb of the raceway surface 4b1 (Ra>). Rb). Further, the diameter of the pitch circle PCD of the raceway surface 24a2 is equal to the eccentricity e shown in FIG. However, in FIG. 8, for the convenience of explanation, the raceway surface 24a1 is exaggerated slightly larger than the raceway surface 24a2. In addition, since other various structures are the same as that of the thrust ball bearing 4 shown in FIG. 1, description is simplified using the same code | symbol suitably.
[0020]
Since this bearing ring 24a uses the same shape as a pair, the number of parts can be reduced and the manufacturing cost can be reduced as compared with the embodiment in which the bearing rings 4a and 4b having different shapes are mounted on the turning side and the stationary side, respectively. Can be greatly reduced.
[0021]
Thus, by devising the arrangement of the raceway surfaces 24a1 and 24a2 in the pair of raceways 24a and 24a, using one type (same shape) of raceways 24a and 24a, two types (different shapes) of raceways 4a. , 4b, the positional deviation of the pair of race rings 24a, 24a due to an attachment error or the like can be reliably absorbed.
[0022]
Alternatively, as shown in FIG. 8B, a raceway surface 34a1 having a large groove curvature and a raceway surface 34a2 having a small groove curvature may be alternately formed on the same circumference of one raceway ring 34a. The track ring 34a also has the same functions and effects as the track ring 24a.
[0023]
Further, as shown in FIG. 8 (c), a raceway surface 44a1 having a large groove curvature and a raceway surface 44a2 having a small groove curvature are continuously formed on the same circumference of one raceway ring 44a by half. Also good.
[0024]
The present invention is not limited to thrust ball bearings for scroll compressors, and can be applied to thrust ball bearings that support thrust loads by interposing between two members that perform eccentric rotational motion between each other.
[0025]
【The invention's effect】
As described above, the present invention, since opposite the raceway surface groove curvature of the pair of bearing rings is so different from each other, Ru positional deviation between raceway cross is absorbed by a large raceway surface of the groove curvature At the same time, proper rolling of the ball can be ensured by the raceway surface having a small groove curvature . Therefore, according to the present invention, it is possible to provide a thrust ball bearing that can absorb the positional deviation between the race rings while satisfying the basic requirements of reducing the contact surface pressure and ensuring the bearing function.
[0026]
In addition , a pair of raceways having the same shape in which a raceway surface having a large groove curvature and a raceway surface having a small groove curvature are formed in a predetermined pattern are used as a pair, and the pair of raceways are shifted from each other in the circumferential direction to face each other. Therefore , it is possible to reduce the manufacturing cost by using only one type of track ring .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view (FIG. A) showing a peripheral portion of a thrust ball bearing in a scroll compressor according to an embodiment, and an enlarged cross-sectional view (FIG. B) showing the vicinity of a thrust ball bearing.
FIG. 2 is an enlarged cross-sectional view showing a periphery of a raceway surface of a thrust ball bearing according to an embodiment.
FIG. 3 is an enlarged cross-sectional view showing the periphery of the raceway surface of the thrust ball bearing according to the embodiment.
FIG. 4 is an enlarged sectional view showing a periphery of a raceway surface of a thrust ball bearing according to the embodiment.
FIG. 5 is a perspective view showing an embodiment of a scroll compressor.
FIG. 6 is a plan view showing a track ring.
FIG. 7 is a sectional view showing a conventional thrust ball bearing.
FIGS. 8A, 8B, and 8C are plan views showing other embodiments of the raceway, respectively.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Orbiting scroll member 1a Mounting part 2 Stationary school member 3 Static frame 3a Mounting part 4 Thrust ball bearing 4a Track ring 4a1 Track surface 4b Track ring 4b1 Track surface 4c Ball 24a Track ring 24a1 Track surface 24a2 Track surface 34a Track ring 34a1 Track surface 34a2 Track surface 44a Track ring 44a1 Track surface 44a2 Track surface

Claims (2)

相互間で偏心回転運動を行なう二つの部材の、軸方向に相対向した装着部にそれぞれ固定される一対の軌道輪と、これら軌道輪の複数箇所に形成された環状の軌道面間に介在するボールとを備え、
前記一対の軌道輪が溝曲率の大きい軌道面と溝曲率の小さい軌道面を有する同一形状の軌道輪であって、この一対の軌道輪を相互に円周方向にずらせ、相対向した軌道面の溝曲率が相互に異なるようにしたことを特徴とするスラスト玉軸受。
Two members that perform eccentric rotational movement between each other are interposed between a pair of race rings fixed to mounting portions facing each other in the axial direction and annular raceway surfaces formed at a plurality of locations of these race rings. With a ball,
The pair of races is a raceway of the same shape having a raceway surface with a large groove curvature and a raceway surface with a small groove curvature, and the pair of race rings are shifted in the circumferential direction with respect to each other. A thrust ball bearing characterized in that the groove curvatures are different from each other .
軸方向に相対向配置される一対の軌道輪と、これら軌道輪の複数箇所に形成された環状の軌道面間に介在するボールとを備え、
前記一対の軌道輪が溝曲率の大きい軌道面と溝曲率の小さい軌道面を有する同一形状の軌道輪であって、この一対の軌道輪を相互に円周方向にずらせ、相対向した軌道面の溝曲率が相互に異なるようにしたことを特徴とするスラスト玉軸受。
A pair of raceways arranged opposite to each other in the axial direction, and balls interposed between annular raceway surfaces formed at a plurality of locations of these raceways,
The pair of races is a raceway of the same shape having a raceway surface with a large groove curvature and a raceway surface with a small groove curvature, and the pair of race rings are shifted in the circumferential direction with respect to each other. A thrust ball bearing characterized in that the groove curvatures are different from each other .
JP22863996A 1996-04-05 1996-08-29 Thrust ball bearing Expired - Fee Related JP3737860B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22863996A JP3737860B2 (en) 1996-04-05 1996-08-29 Thrust ball bearing
US08/834,505 US5758978A (en) 1996-04-05 1997-04-04 Thrust ball bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-84256 1996-04-05
JP8425696 1996-04-05
JP22863996A JP3737860B2 (en) 1996-04-05 1996-08-29 Thrust ball bearing

Publications (2)

Publication Number Publication Date
JPH09324816A JPH09324816A (en) 1997-12-16
JP3737860B2 true JP3737860B2 (en) 2006-01-25

Family

ID=26425316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22863996A Expired - Fee Related JP3737860B2 (en) 1996-04-05 1996-08-29 Thrust ball bearing

Country Status (1)

Country Link
JP (1) JP3737860B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3299710B2 (en) * 1998-02-05 2002-07-08 サンデン株式会社 A mechanism for preventing rotation of a movable scroll in a scroll-type fluid machine
JP3249781B2 (en) * 1998-08-05 2002-01-21 サンデン株式会社 Thrust ball bearings
FR2791102B1 (en) * 1999-03-18 2003-01-10 Ntn Toyo Bearing Co Ltd BALL BEARING
US6315460B1 (en) 1999-12-29 2001-11-13 Visteon Global Technologies, Inc. Orbital motion bearing
CN109915479A (en) * 2019-04-11 2019-06-21 无锡沃尔德轴承有限公司 The thrust ball bearing of axial reciprocating oscillation

Also Published As

Publication number Publication date
JPH09324816A (en) 1997-12-16

Similar Documents

Publication Publication Date Title
US5758978A (en) Thrust ball bearing
JP3136267B2 (en) Anti-rotation mechanism of scroll compressor
JP2997103B2 (en) Thrust ball bearings
JP3737860B2 (en) Thrust ball bearing
JP3012063B2 (en) Thrust ball bearings
JPH05126140A (en) Thrust supporter of turning member
JP3342452B2 (en) Thrust ball bearings
JP3299710B2 (en) A mechanism for preventing rotation of a movable scroll in a scroll-type fluid machine
JP3899745B2 (en) Toroidal continuously variable transmission
JPH05118324A (en) Thrust support device revolving member
JPH0587128A (en) Eccentric double-direction thrust ball bearing
JP3453701B2 (en) Rolling bearing
JP3115553B2 (en) A mechanism for preventing rotation of a movable scroll in a scroll-type fluid machine
JP3342450B2 (en) Thrust ball bearings
JP2002333011A (en) Triple-degree-of-freedom type bearing, parallel link mechanism and moving device
JPH1193950A (en) Thrust ball bearing
JPH07217661A (en) Thrust ball bearing
CN219119647U (en) High structural strength needle bearing
JPH09291934A (en) Thrust ball bearing
JPH0988849A (en) Scroll type fluid machinery
JP2001304251A (en) Bearing for supporting parallel link mechanism, parallel link mechanism, and moving device
JP3342444B2 (en) Scroll compressor
US6315460B1 (en) Orbital motion bearing
JPH09273545A (en) Thrust ball bearing
JPH0587129A (en) Thrust supporting device for turning member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees