JP3737631B2 - Solid conveying device - Google Patents

Solid conveying device Download PDF

Info

Publication number
JP3737631B2
JP3737631B2 JP09839198A JP9839198A JP3737631B2 JP 3737631 B2 JP3737631 B2 JP 3737631B2 JP 09839198 A JP09839198 A JP 09839198A JP 9839198 A JP9839198 A JP 9839198A JP 3737631 B2 JP3737631 B2 JP 3737631B2
Authority
JP
Japan
Prior art keywords
solid
transport
protrusion
conveyance
path forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09839198A
Other languages
Japanese (ja)
Other versions
JPH11278635A (en
Inventor
岡田  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP09839198A priority Critical patent/JP3737631B2/en
Publication of JPH11278635A publication Critical patent/JPH11278635A/en
Application granted granted Critical
Publication of JP3737631B2 publication Critical patent/JP3737631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Jigging Conveyors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体搬送装置に関し、詳細には、それ自体駆動源を有することなく、上り勾配をも適切に固体を搬送可能な固体搬送装置に関する。
【0002】
【従来の技術】
従来、固体を搬送する搬送装置としては、駆動源を備えたものにあっては、例えば、ベルトコンベア等があるが、駆動源を備えたものは、価格が高く、装置も大型化する。
【0003】
また、従来、駆動源を持たない固体搬送装置としては、例えば、本出願人が先に出願した粉体搬送装置がある(特開平6−110357号公報参照)。この粉体搬送装置は、粉体の搬送路を形成する粉体搬送面を有する粉体搬送路形成部材を設け、この粉体搬送路形成部材を振動環境中に前記粉体搬送面を粉体搬送方向に下り勾配にして配設したことを特徴としている。すなわち、この粉体搬送装置は、環境振動と粉体搬送面の勾配を利用して、粉体を下り勾配方向に搬送させている。
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の粉体搬送装置にあっては、それ自体が駆動源を有していないため、小型で低コストの固体搬送面を提供することはできるものの、下り勾配を利用して粉体を搬送しているため、固体を下り勾配方向にしか搬送することができず、改良の余地があった。
【0005】
そこで、請求項1、2記載の発明は、固体搬送装置自体が駆動源を有することなく、環境振動で突起が振動して、突起上の固体を上り勾配方向の搬送方向にも適切に搬送することができ、小型・軽量で安価、かつ、信頼性の良好な、しかも、環境振動で搬送方向に振動する突起の固体への引っかかり力を大きくして、より大きな搬送力で固体を搬送し、搬送速度を向上させることのできる固体搬送装置を提供することを目的としている。
【0006】
請求項3記載の発明は、より大きな搬送力で固体を搬送するとともに、搬送路形成部材の上下方向に振動する環境振動によっても、突起が変形して、固体を搬送方向に搬送し、搬送速度をより一層向上させることのできる固体搬送装置を提供することを目的としている。
【0007】
請求項4記載の発明は、少なくとも突起を環境振動に共振させて、突起を大きく振動させ、より大きな搬送力で固体を搬送して、搬送速度をより一層向上させることのできる固体搬送装置を提供することを目的としている。
【0008】
請求項5記載の発明は、環境振動を搬送路形成部材から突起に効率的に伝達して、突起をより大きく振動させ、より大きな搬送力で固体を搬送して、搬送速度をより一層向上させることのできる固体搬送装置を提供することを目的としている。
【0009】
請求項6記載の発明は、搬送を阻害するような振動が突起に伝達されることを抑制し、より一層適切に固体を搬送することのできる固体搬送装置を提供することを目的としている。
【0010】
請求項7記載の発明は、突起上の固体に変形量の異なる突起により異なる大きさの搬送力を付与して、固体の搬送速度をより一層向上させるとともに、固体をスムーズに搬送することのできる固体搬送装置を提供することを目的としている。
【0011】
請求項8記載の発明は、突起上の固体に共振振動数の異なる突起により異なる大きさの搬送力を付与して、固体の搬送速度をより一層向上させるとともに、固体をスムーズに搬送することのできる固体搬送装置を提供することを目的としている。
【0012】
請求項9記載の発明は、分割されるとともに位置ずれされた突起により間隔の短い搬送方向の搬送力を固体に付与して、固体の搬送速度をより一層向上させるとともに、固体をスムーズに搬送することのできる固体搬送装置を提供することを目的としている。
【0013】
請求項10記載の発明は、突起が向かい合う方向に固体を集めつつ、固体を搬送方向に安全に搬送することのできる固体搬送装置を提供することを目的としている。
【0014】
請求項11、請求項12記載の発明は、固体を樋形状により搬送路形成部材の中央部に集めて、固体が突起上から落下するのを防止しつつ、適切に搬送することのできる固体搬送装置を提供することを目的としている。
【0015】
請求項13記載の発明は、環境振動をより一層効率的に搬送路形成部材に伝達して、突起が固体に作用する搬送力を大きくし、より一層搬送速度を向上させることのできる固体搬送装置を提供することを目的としている。
【0016】
請求項14記載の発明は、環境振動をより一層効率的にかつ拡大して搬送路形成部材に伝達して、突起が固体に作用する搬送力をより一層大きくし、より一層搬送速度を向上させることのできる固体搬送装置を提供することを目的としている。
【0017】
請求項15記載の発明は、突起上での固体の進路を定めるとともに、固体が突起から落下することを防止することのできる固体搬送装置を提供することを目的としている。
【0018】
請求項16記載の発明は、突起上での固体の進路を定めるとともに、固体が突起から落下することをより一層適切に防止することのできる固体搬送装置を提供することを目的としている。
【0019】
【課題を解決するための手段】
請求項1記載の発明の固体搬送装置は、所定の振動環境中に設置され、当該環境振動を利用して、固体を所定の搬送方向に搬送する固体搬送装置であって、所定幅を有して前記搬送方向に所定距離にわたって前記振動環境中に配設され所定厚さの板状の搬送路形成部材と、前記搬送路形成部材の表面に当該表面から略上方に向かって突出するとともに前記搬送路形成部材の略幅方向に延在して複数形成された突起とを備え、前記突起は、前記搬送方向の断面が半月形状に尖りかつ前記搬送方向の上流側に傾斜した状態で形成され、前記環境振動により前記突起が前記搬送方向と反搬送方向に振動して、前記突起上に載置された前記固体を前記搬送方向に搬送することを特徴とする。
【0020】
請求項2記載の固体搬送装置は、前記突起は、当該先端部を境にして前記搬送方向における下流側の面の摩擦係数が、前記搬送方向における上流側の面の摩擦係数よりも大きく形成されていることを特徴とする。
【0021】
上記構成によれば、固体搬送装置自体が駆動源を有することなく、環境振動で突起が振動して、突起上の固体を上り勾配方向の搬送方向にも適切に搬送することができ、固定搬送装置を小型・軽量で安価、かつ、信頼性の良好なものとすることができる。
【0022】
また、突起を半月形状に尖った先端部を有するとともに、先端部が反搬送方向に所定角度傾いた状態で形成しているので、環境振動で搬送方向に振動する突起の固体への引っかかり力を大きくして、より大きな搬送力で固体を搬送することができ、搬送速度を向上させることができる。
【0023】
請求項3に記載の固体搬送装置は、前記突起は、前記固体が載置された状態で、前記環境振動により前記搬送方向及び反搬送方向に所定量変形可能に形成されていることを特徴とする。
【0024】
上記構成によれば、より大きな搬送力で固体を搬送することができるとともに、搬送路形成部材の上下方向に振動する環境振動によっても、突起が変形して、固体を搬送方向に搬送することができ、搬送速度をより一層向上させることができる。
【0025】
請求項4に記載の固体搬送装置は、前記突起の共振振動数が、環境振動数範囲に含まれていることを特徴とする。
【0026】
上記構成によれば、少なくとも突起を環境振動に共振させて、突起を大きく振動させることができ、より大きな搬送力で固体を搬送して、搬送速度をより一層向上させることができる。
【0027】
請求項5に記載の固体搬送装置は、前記搬送路形成部材が、振動伝達率の良好な部材で形成されていることを特徴とする。
【0028】
上記構成によれば、環境振動を搬送路形成部材から突起に効率的に伝達して、突起をより大きく振動させることができ、より大きな搬送力で固体を搬送して、搬送速度をより一層向上させることができる。
【0029】
請求項6に記載の固体搬送装置は、前記搬送路形成部材が、所定の振動吸収部材で形成されていることを特徴とする。
【0030】
上記構成によれば、搬送を阻害するような振動が突起に伝達されることを抑制することができ、より一層適切に固体を搬送することができる。
【0031】
請求項7に記載の記固体搬送装置は、前記突起の変形量が搬送方向に順次異ならされていることを特徴とする。
【0032】
上記構成によれば、突起上の固体に変形量の異なる突起により異なる大きさの搬送力を付与して、固体の搬送速度をより一層向上させることができるとともに、固体をスムーズに搬送することができる。
【0033】
請求項8に記載の固体搬送装置は、前記突起の共振振動数が、搬送方向に順次異ならされていることを特徴とする。
【0034】
上記構成によれば、突起上の固体に共振振動数の異なる突起により異なる大きさの搬送力を付与して、固体の搬送速度をより一層向上させることができるとともに、固体をスムーズに搬送することができる。
【0035】
また、請求項9に記載の固体搬送装置は、前記突起は、前記搬送路形成部材の幅方向に複数に分割されているとともに、当該分割された各突起が前記搬送方向に所定量位置ずれした状態で形成されていることを特徴とする。
【0036】
上記構成によれば、分割されるとともに位置ずれされた突起により間隔の短い搬送方向の搬送力を固体に付与して、固体の搬送速度をより一層向上させることができるとともに、固体をスムーズに搬送することができる。
【0037】
請求項10に記載の固体搬送装置は、前記突起は、前記搬送路形成部材の幅方向に2分割されていると共に、当該分割された各突起が相対向する方向に所定角度傾斜して形成されていることを特徴とする。
【0038】
上記構成によれば、突起が向かい合う方向に固体を集めつつ、固体を安全に搬送方向に搬送することができる。
【0039】
請求項11に記載の固体搬送装置は、所定の振動環境中に設置され、当該環境振動を利用して、固体を所定の搬送方向に搬送する固体搬送装置であって、所定幅を有して前記搬送方向に所定距離にわたって前記振動環境中に配設され所定厚さの板状の搬送路形成部材と、前記搬送路形成部材の表面に当該表面から略上方に向かって突出するとともに前記搬送路形成部材の略幅方向に延在して複数形成された突起とを備え、前記突起は、前記搬送路形成部材の幅方向両端部が上方に湾曲して突出した樋形状に形成され、前記環境振動により前記突起が前記搬送方向と反搬送方向に振動して、前記突起上に載置された前記固体を前記搬送方向に搬送することを特徴とする。
【0040】
上記構成によれば、固体を当該樋形状により搬送路形成部材の中央部に集めて、固体が突起上から落下するのを防止しつつ、適切に搬送することができる。
【0041】
請求項12に記載の固体搬送装置は、前記突起は所定の鋭角状に尖った先端部を有し、当該先端部が前記反搬送方向に所定角度傾いた状態で形成され、前記搬送方向側の面の摩擦係数と前記反搬送方向側の面の摩擦係数とが当該先端部を境にして異なっていることを特徴とする。
【0042】
上記構成によれば、請求項11の効果に加えて、請求項1に記載の効果を奏することができる。
【0043】
請求項13に記載の固体搬送装置は、さらに、前記環境振動を前記搬送路形成部材に伝達する振動伝達部材を備えていることを特徴とする。
【0044】
上記構成によれば、環境振動をより一層効率的に搬送路形成部材に伝達して、突起が固体に作用する搬送力を大きくすることができ、より一層搬送速度を向上させることができる。
【0045】
請求項14に記載の固体搬送装置は、前記振動伝達部材は、さらに、前記環境振動の振動数範囲に含まれる共振振動数を有していることを特徴とする。
【0046】
上記構成によれば、環境振動をより一層効率的にかつ拡大して搬送路形成部材に伝達して、突起が固体に作用する搬送力をより一層大きくすることができ、より一層搬送速度を向上させることができる。
【0047】
請求項15に記載の固体搬送装置は、さらに、前記搬送方向に延在され、前記固体を前記搬送方向に案内するガイド部材を備えていることを特徴とする。
【0048】
上記構成によれば、突起上での固体の進路を定めることができるとともに、固体が突起から落下することを防止することができる。
【0049】
請求項16に記載の固体搬送装置は、前記ガイド部材は、前記搬送路形成部材の幅方向両端部で前記突起から所定量上方に突出するとともに、前記突起の上部に前記固体を搬送可能な空間を空けて当該突起の上部を覆う筒形状に形成されていることを特徴とする。
【0050】
上記構成によれば、突起上での固体の進路を定めることができるとともに、固体が突起から落下することをより一層適切に防止することができる。
【0051】
【発明の実施の形態】
以下、本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。なお、以下に述べる実施の形態は、本発明の好適な実施の形態であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
【0052】
図1は、本発明の固体搬送装置の第1の実施の形態を示す図であり、本実施の形態は、請求項1に対応するものである。
【0053】
図1は、本発明の固体搬送装置の第1の実施の形態を適用した固体搬送装置1の要部斜視図であり、本実施の形態の固体搬送装置1は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0054】
図1において、固体搬送装置1は、所定幅を有した搬送路形成部材3が固体2の搬送方向(図1中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0055】
搬送路形成部材3は、その搬送表面に搬送方向と直交する方向(搬送路形成部材3の幅方向)に延在する突起4が所定間隔で形成されており、突起4は、搬送路形成部材3の表面から所定量上方に突出して形成されている。突起4は、その先端部4aの頂点部分を境として、搬送方向側の面(搬送方向下流側の面)4bと搬送方向とは反対方向(反搬送方向)側の面(搬送方向上流側の面)4cがその摩擦係数が異なる状態で形成されており、特に、搬送方向下流側の面4bの摩擦係数が搬送方向上流側の面4cの摩擦係数よりも大きな摩擦係数となる状態で形成されている。
【0056】
搬送路形成部材3は、上記環境振動を突起4に伝達し、突起4は、搬送路形成部材3から伝達される環境振動により、図1に両矢印で示すように、搬送方向及び反搬送方向に所定量振動する。搬送路形成部材3及び突起4は、環境振動により突起4が振動可能な部材、例えば、金属、プラスチック、ゴム及び木材等で形成されている。
【0057】
次に、本実施の形態の作用を説明する。固体搬送装置1は、工場内等の所定の環境振動を有する床面に設置されると、設置面が環境振動を有しているため、この環境振動が搬送路形成部材3を介して搬送路形成部材3の突起4に伝達される。突起4は、図1に両矢印で示すように、この環境振動により搬送方向及び反搬送方向に振動する。この搬送路形成部材3の突起4上に搬送対象である固体2が載置されると、固体搬送装置1は、搬送方向及び反搬送方向に振動する突起4により固体2を搬送方向に搬送する。
【0058】
すなわち、突起4は、その先端部4aの頂点部分を境として搬送方向下流側の面4bと搬送方向上流側の面4cとで摩擦係数が異なっており、特に、搬送方向下流側の面4bの摩擦係数が搬送方向上流側の面4cの摩擦係数よりも大きく形成されているため、環境振動により突起4が搬送方向に振動すると、突起4の先端部4aよりも搬送方向下流側の摩擦係数の大きい面4bが固体2に引掛かった状態で搬送方向に向かって振動して、固体2を搬送方向に移動する。次に、突起4が反搬送方向に振動すると、突起4の先端部4aよりも搬送方向上流側の面4cが摩擦係数が小さいため、固体2に引っかからず、滑った状態で反搬送方向に戻り、固体2を元の状態に引き戻すことがない。
【0059】
この突起4の搬送方向の振動と反搬送方向の振動が、環境振動により繰り返されると、固体2は、搬送方向に順次搬送される。
【0060】
また、固体搬送装置1を、搬送方向に向かって所定角度上り勾配となる状態で、かつ、環境振動が搬送路形成部材3に伝達される状態で配設すると、突起4は、上記同様に搬送方向及び反搬送方向に振動する。この状態で突起4上に固体2を載置すると、固体2は、突起4の先端部4aから搬送方向下流側の摩擦係数の大きい面4bに引っかかった状態となって、下り側である反搬送方向に滑ることが無く、突起4の振動により上記同様に、搬送方向に搬送される。
【0061】
さらに、固体搬送装置1を、搬送方向に向かって所定角度下り勾配となる状態で、かつ、環境振動が搬送路形成部材3に伝達される状態で配設すると、突起4は、上記同様に搬送方向及び反搬送方向に振動する。この状態で突起4上に固体2を載置すると、固体2は、突起4の先端部4aから搬送方向上流側の摩擦係数の小さい面4c上を滑ることとなり、突起4の振動により搬送方向に向かって、滑って搬送されるとともに、突起4の振動により上記同様に、搬送方向に搬送される。
【0062】
このように、本実施の形態の固体搬送装置1は、それ自体駆動源を有していないため、小型で、かつ、安価であるとともに、信頼性が良好であり、また、所定の環境振動を有する環境下に設置するだけで、環境振動を利用して、水平方向及び下り勾配方向に固体2を搬送することができ、かつ、上り勾配方向に固体2を搬送することができる。
【0063】
図2は、本発明の固体搬送装置の第2の実施の形態を示す図であり、本実施の形態は、突起の先端部を、所定の鋭角状に形成するとともに、搬送方向に所定角度傾斜させたもので、請求項2に対応するものである。
【0064】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0065】
図2は、本発明の固体搬送装置の第2の実施の形態を適用した固体搬送装置10の要部正面図であり、本実施の形態の固体搬送装置10は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0066】
図2において、固体搬送装置10は、所定幅を有した搬送路形成部材3が固体2の搬送方向(図2中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0067】
搬送路形成部材3は、その搬送表面に搬送方向と直交する方向(搬送路形成部材3の幅方向)に延在する突起11が所定間隔で形成されており、突起11は、上記第1の実施の形態と同様に、搬送路形成部材3の表面から所定量上方に突出して形成されているとともに、先端部11aが鋭角状に尖るとともに所定角度だけ搬送方向上流側(反搬送方向)に傾斜した状態、本実施の形態では、その搬送方向の断面が半月形状に尖りかつ搬送方向上流側に傾斜した状態で形成されている。また、突起11は、先端部11aの頂点部分を境として、搬送方向下流側の面11bと搬送方向上流側の面11cとで摩擦係数が異なった状態、特に、搬送方向下流側の面11bが搬送方向上流側の面11cよりも摩擦係数が大きい状態で形成されている。したがって、突起11は、所定の鋭角状に尖って搬送方向上流側に多少傾斜した状態の先端部11aを有し、当該先端部11aの頂点部分を境として、搬送方向下流側の面11bと搬送方向上流側の面11cとで摩擦係数が異なった状態となっている。
【0068】
本実施の形態の固体搬送装置10は、工場内等の所定の環境振動を有する床面に設置されると、この環境振動により突起11は、図2に両矢印で示すように、搬送方向及び反搬送方向に振動する。この搬送路形成部材3の突起11上に搬送対象である固体2が載置されると、固体搬送装置10は、搬送方向及び反搬送方向に振動する突起11により固体2を搬送方向に搬送する。
【0069】
すなわち、突起11は、その先端部11aが鋭角状に尖っているとともに搬送方向上流側に向かって傾斜した状態となっており、かつ、突起11の当該先端部11aの頂点を境として搬送方向下流側の面11bと搬送方向上流側の面11cの摩擦係数が異なった状態、特に、搬送方向下流側の面11bの摩擦係数が搬送方向上流側の面11cの摩擦係数よりも大きい状態となっているため、突起11上に固体2が載置されて、環境振動により突起11が搬送方向に振動すると、突起11の先端部11aよりも搬送方向上流側の摩擦係数の大きい面11bが固体2を適切に引っかけた状態で搬送方向に向かって大きく振動し、固体2を確実に搬送方向に移動する。次に、突起11が反搬送方向に振動すると、突起11の先端部11aよりも搬送方向上流側の面11cが摩擦係数が小さくなっているため、突起11は、その面11cが固体2に引っかからず、固体2と滑った状態で元に戻り、固体2を元の状態に引き戻すことがない。
【0070】
この突起11の搬送方向の振動と反搬送方向の振動が、環境振動により繰り返されると、固体2は、搬送方向に順次搬送される。
【0071】
したがって、本実施の形態の固体搬送装置10は、突起11の鋭角状に尖った先端部11aで、固体2を確実にかつ大きな搬送力で搬送することができ、搬送速度を向上させることができる。
【0072】
図3は、本発明の固体搬送装置の第3の実施の形態を示す図であり、本実施の形態は、突起を変形可能にしたもので、請求項3に対応するものである。
【0073】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0074】
図3は、本発明の固体搬送装置の第3の実施の形態を適用した固体搬送装置20の正面図であり、本実施の形態の固体搬送装置20は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0075】
図3において、固体搬送装置20は、所定幅を有した搬送路形成部材3が固体2の搬送方向(図3中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0076】
搬送路形成部材3は、その搬送表面に搬送方向と直交する方向(搬送路形成部材3の幅方向)に延在する突起21が所定間隔で形成されており、突起21は、上記第1の実施の形態と同様に、搬送路形成部材3の表面から所定量上方に突出するとともに、先端部11aの頂点部分を境として、搬送方向下流側の面21bと搬送方向上流側の面21cとが摩擦係数が異なった状態、特に、搬送方向下流側の面21bの摩擦係数が搬送方向上流側の面21cの摩擦係数よりも大きい状態で形成されている。さらに、突起21は、搬送方向下流側と搬送方向上流側に、図3に破線と実線で示すように、所定量変形可能な状態で形成されている。
【0077】
本実施の形態の固体搬送装置20は、工場内等の所定の環境振動を有する床面に設置されると、この環境振動により搬送路形成部材3が、図3に両矢印で示す方向に振動し、この搬送路形成部材3の振動により、突起21が、搬送方向及び反搬送方向に振動するとともに、搬送方向及び反搬送方向に所定量変形する。この搬送路形成部材3の突起21上に搬送対象である固体2が載置されると、固体搬送装置1は、搬送方向及び反搬送方向に振動・変形する突起21により固体2を搬送方向に搬送する。
【0078】
すなわち、突起21は、その先端部21aの頂点部分を境として、搬送方向下流側の面11bと搬送方向上流側の面11cが摩擦係数が異なる状態、特に、搬送方向下流側の面21bの摩擦係数が搬送方向上流側の面21cの摩擦係数よりも大きい状態で形成されているとともに、搬送方向と反搬送方向に所定量変形可能に形成されているため、突起21上に固体2が載置されて、環境振動により突起21が、図3中破線で示す状態から図3に実線で示す状態へと、搬送方向に振動すると、突起21は、その変形により摩擦係数の大きい搬送方向下流側の面21bで固体2を適切に引っかけた状態で搬送方向に向かって変形し、固体2を確実に搬送方向に移動する。次に、突起21が反搬送方向に振動すると、突起21が、図3中実線で示す状態から図3に破線で示す状態に復帰するため、突起21は、その変形により摩擦係数の小さい搬送方向上流側の面21cが固体2に接触して、突起21上で固体2が滑った状態となり、固体2を元の状態に引き戻すことがない。
【0079】
この突起21の搬送方向の振動と反搬送方向の振動が、環境振動により繰り返されると、固体2は、搬送方向に順次搬送される。
【0080】
また、搬送路形成部材3が環境振動により、図3に上下方向で示すように、搬送路形成部材3に垂直な方向に振動すると、突起21が変形して、この垂直方向の振動によっても、固体2を搬送方向に搬送する。すなわち、搬送路形成部材3が垂直上方向に振動すると、突起21が固体2の重力により、図3中実線で示すように搬、送方向に変形して、突起21の摩擦係数の大きい搬送方向下流側の面11bが固体2に引っかかって、固体2を搬送方向に搬送し、搬送路形成部材3が垂直下方向に振動すると、突起21の摩擦係数の大きい搬送方向下流側の面11bに掛かっていた固体2の重量が一瞬除去された状態となり、突起21は、図3中破線で示すように、固体2に引っかからずに、元の状態に復帰して、固体2は引き戻されることなく、同じ位置にとどまる。したがって、固体搬送装置20は、垂直方向の振動によっても、超音波モータと同様の原理により、固体2を搬送することができる。
【0081】
したがって、本実施の形態の固体搬送装置10は、所定量上方に突出した突起21が、先端部11aの頂点部分を境として、搬送方向下流側の面21bと搬送方向上流側の面21cとで摩擦係数が異なった状態、特に、搬送方向下流側の面21bの摩擦係数が搬送方向上流側の面21cの摩擦係数よりも大きい状態で形成されているとともに、搬送方向上流側と搬送方向下流側に所定量変形可能に形成されているため、固体2をより一層確実に搬送することができ、搬送力を大きくすることができるとともに、搬送速度を向上させることができる。また、搬送方向の振動だけでなく、搬送路形成部材3に垂直な方向の振動によっても、固体2を搬送することができ、固体2の搬送速度をより一層向上させることができる。
【0082】
図4は、本発明の固体搬送装置の第4の実施の形態を示す図であり、本実施の形態は、少なくとも突起が環境振動に共振する共振振動数を有したもので、請求項4に対応するものである。
【0083】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0084】
図4は、本発明の固体搬送装置の第4の実施の形態を適用した固体搬送装置30の正面図であり、本実施の形態の固体搬送装置30は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0085】
図4において、固体搬送装置30は、所定幅を有した搬送路形成部材3が固体2の搬送方向(図4中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0086】
搬送路形成部材31は、その搬送表面に搬送方向と直交する方向(搬送路形成部材31の幅方向)に延在する突起32が所定間隔で形成されており、突起32は、上記第1の実施の形態と同様に、搬送路形成部材31の表面から所定量上方に突出して形成されているとともに、先端部32aの頂点部分を境として、搬送方向下流側の面32bと搬送方向上流側の面32cとで摩擦係数が異なった状態、特に、搬送方向下流側の面32bが搬送方向上流側の面32cよりも摩擦係数が大きい状態で形成されている。
【0087】
また、搬送路形成部材31は、少なくとも突起32が、環境振動の振動周波数範囲に含まれる共振振動数を有する状態で、形成されている。
【0088】
すなわち、物体は、それを構成する材質、形状及び寸法により決定される共振振動数を有している。そこで、少なくとも突起32を、環境振動の振動周波数範囲に含まれる共振振動数を有する状態で形成する。このようにすると、突起32は、搬送路形成部材31を介して伝達される環境振動に含まれる当該共振振動数に共振して、振動エネルギーが増大し、より一層大きく振動する。
【0089】
本実施の形態の固体搬送装置30は、工場内等の所定の環境振動を有する床面に設置されると、この環境振動により搬送路形成部材31が図4に両矢印で示す方向に振動し、この搬送路形成部材31の振動により、突起32が、搬送方向及び反搬送方向に振動する。この搬送路形成部材31の突起32は、環境振動の周波数範囲に含まれる共振振動数を有しているため、環境振動に共振して、大きな振動エネルギーで、搬送方向と反搬送方向に振動し、突起32上に搬送対象である固体2が載置されると、固体搬送装置30は、搬送方向及び反搬送方向に共振して振動する突起32により固体2をより一層確実かつ速やかに搬送方向に搬送する。
【0090】
すなわち、突起32は、環境振動の周波数範囲に含まれる共振振動数を有しているため、環境振動に共振して、大きな振動エネルギーで、搬送方向と反搬送方向に大きく振動し、上記同様の作用により、突起32上の固体2をより一層大きな搬送力で搬送する。したがって、より一層搬送速度を向上させることができる。
【0091】
図5は、本発明の固体搬送装置の第5の実施の形態を示す図であり、本実施の形態は、少なくとも搬送路形成部材を振動伝達率の良好な部材で形成したもので、請求項5に対応するものである。
【0092】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0093】
図5は、本発明の固体搬送装置の第5の実施の形態を適用した固体搬送装置40の正面図であり、本実施の形態の固体搬送装置40は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0094】
図5において、固体搬送装置40は、所定幅を有した搬送路形成部材41が固体2の搬送方向(図5中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0095】
搬送路形成部材41は、その搬送表面に搬送方向と直交する方向(搬送路形成部材41の幅方向)に延在する突起42が所定間隔で形成されており、突起42は、上記第1の実施の形態と同様に、搬送路形成部材41の表面から所定量上方に突出して形成されているとともに、先端部42aの頂点部分を境として、搬送方向下流側の面42bと搬送方向上流側の面42cとで摩擦係数が異なった状態、特に、搬送方向下流側の面42bが搬送方向上流側の面42cよりも摩擦係数が大きい状態で形成されている。
【0096】
上記搬送路形成部材41は、振動伝達率が所定の振動伝達率以上の大きな振動伝達率、例えば、20dB以上を有する状態で、形成されている。
【0097】
本実施の形態の固体搬送装置40は、工場内等の所定の環境振動を有する床面に設置されると、この環境振動により搬送路形成部材41が図5に両矢印で示す方向に振動し、この搬送路形成部材41の振動により、突起42が、搬送方向及び反搬送方向に振動する。この搬送路形成部材41は、振動伝達率が所定以上、例えば、20dB以上の振動伝達率を有しているため、環境振動を突起42に効率的、かつ、良好に伝達し、突起42は、環境振動により搬送方向と反搬送方向に大きく振動する。したがって、突起42上に搬送対象である固体2が載置されると、固体搬送装置40は、振動伝達率の大きい搬送路形成部材41により環境振動を突起42に伝達し、突起42が搬送方向及び反搬送方向に大きく振動して、上記同様の作用により、この振動する突起42により固体2をより一層確実かつ速やかに搬送方向に搬送する。したがって、より一層搬送速度を向上させることができる。
【0098】
図6は、本発明の固体搬送装置の第6の実施の形態を示す図であり、本実施の形態は、少なくとも搬送路形成部材を所定の振動吸収部材で形成したもので、請求項6に対応するものである。
【0099】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0100】
図6は、本発明の固体搬送装置の第6の実施の形態を適用した固体搬送装置50の正面図であり、本実施の形態の固体搬送装置50は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0101】
図6において、固体搬送装置50は、所定幅を有した搬送路形成部材51が固体2の搬送方向(図4中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0102】
搬送路形成部材51は、その搬送表面に搬送方向と直交する方向(搬送路形成部材51の幅方向)に延在する突起52が所定間隔で形成されており、突起52は、上記第1の実施の形態と同様に、搬送路形成部材51の表面から所定量上方に突出して形成されているとともに、先端部52aの頂点部分を境として、搬送方向下流側の面52bと搬送方向上流側の面52cとで摩擦係数が異なった状態、特に、搬送方向下流側の面52bが搬送方向上流側の面52cよりも摩擦係数が大きい状態で形成されている。
【0103】
上記搬送路形成部材51は、所定の振動吸収率を有する部材で形成、あるいは、所定の振動吸収率を有する部材を含有する状態で形成されている。
【0104】
本実施の形態の固体搬送装置50は、工場内等の所定の環境振動を有する床面に設置されると、この環境振動により搬送路形成部材51が図6に両矢印で示す方向に振動し、この搬送路形成部材51の振動により、突起52が、搬送方向及び反搬送方向に振動する。この搬送路形成部材51は、所定の振動吸収率を有しているため、大きな環境振動を抑制した状態で、環境振動を突起52に伝達し、突起52は、この環境振動により搬送方向と反搬送方向に振動する。したがって、突起52上に搬送対象である固体2が載置されると、固体搬送装置50は、所定の振動吸収率を有した搬送路形成部材51により環境振動を減衰させた状態で突起52に伝達し、突起52が搬送方向及び反搬送方向に振動して、上記同様の作用により、この振動する突起52により固体2を確実かつ速やかに搬送方向に搬送する。
【0105】
すなわち、大きな環境振動、例えば、垂直方向の大きな環境振動あるいは高い振動数の環境振動が発生すると、この環境振動により固体2が跳ねてしまい、突起52の先端部52aによるメカニカルグリップ、特に、摩擦係数の大きい搬送方向下流側の面52bによるメカニカルグリップが掛かりにくくなる。また、固体2は、突起52の先端部52a上を滑るか滑らないかという状態のとき最も大きな加速力が得られる。
【0106】
ところが、本実施の形態の固体搬送装置50は、搬送路形成部材51が所定の振動吸収率を有しているので、大きな環境振動を減衰させて突起52に伝達するため、上記固体2の搬送に妨げとなる振動を吸収して、適切な振動を突起52に伝達し、トラクションを向上させて、適切に固体2を搬送することができるとともに、より一層確実かつ速やかに搬送することができる。
【0107】
図7は、本発明の固体搬送装置の第7の実施の形態を示す図であり、本実施の形態は、突起を所定量変形可能に形成するとともに、変形量の異なる突起を搬送方向に所定順序で配列したもので、請求項7に対応するものである。
【0108】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0109】
図7は、本発明の固体搬送装置の第7の実施の形態を適用した固体搬送装置60の正面図であり、本実施の形態の固体搬送装置60は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0110】
図7において、固体搬送装置60は、所定幅を有した搬送路形成部材61が固体2の搬送方向(図7中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0111】
搬送路形成部材61は、その搬送表面に搬送方向と直交する方向(搬送路形成部材61の幅方向)に延在する突起62が所定間隔で形成されており、突起62は、上記第1の実施の形態と同様に、搬送路形成部材61の表面から所定量上方に突出して形成されているとともに、先端部62aの頂点部分を境として、搬送方向下流側の面62bと搬送方向上流側の面62cとで摩擦係数が異なった状態、特に、搬送方向下流側の面62bが搬送方向上流側の面62cよりも摩擦係数が大きい状態で形成されている。また、突起62は、それぞれ突起62毎に、その変形量が異なる状態で、搬送方向上流側と搬送方向下流側に、所定量変形可能な状態で形成されており、環境振動により、図7に実線と破線でその変形状態を示すように、各突起62が、搬送方向上流側と搬送方向下流側に、それぞれ異なった変形量で変形する。また、この突起62は、変形量の異なるものが搬送方向において所定順序で配列して、形成されている。
【0112】
本実施の形態の固体搬送装置60は、工場内等の所定の環境振動を有する床面に設置されると、この環境振動により搬送路形成部材61が、図7に両矢印で示す方向に振動し、この搬送路形成部材61の振動により、突起62が、それぞれ異なった振動状態で搬送方向及び反搬送方向に振動する。この搬送路形成部材61の突起62上に搬送対象である固体2が載置されると、固体搬送装置1は、搬送方向及び反搬送方向に振動するとともに、異なった変形量で変形する突起62により固体2を搬送方向に搬送する。
【0113】
すなわち、搬送路形成部材61から所定量上方に突出した突起62は、先端部62aの頂点部分を境として、搬送方向下流側の面62bと搬送方向上流側の面62cとで摩擦係数が異なった状態、特に、搬送方向下流側の面62bが搬送方向上流側の面62cよりも摩擦係数が大きい状態で形成されているとともに、搬送方向と反搬送方向にそれぞれ異なる変形量で変形可能に形成されているため、突起62上に固体2が載置されて、環境振動により突起62が搬送方向に振動すると、突起62は、図7中破線で示す状態から図7に実線で示す状態に搬送方向にそれぞれ異なった変形量だけ変形、すなわち、突起62の先端部62aから搬送方向下流側の摩擦係数の大きい面62bで固体2を適切に引っかけた状態で搬送方向に向かって変形して、固体2を確実に搬送方向に移動する。次に、突起62が反搬送方向に振動すると、突起62が、それぞれの変形量に応じて、図7中実線で示す状態から図7に破線で示す状態に復帰するため、突起62の先端部62aから搬送方向上流側の摩擦係数の小さい面11cが固体2に接触して、固体2への引っかかりがより一層低減され、滑った状態で図7中実線で示す状態から図7に破線で示す状態に復帰し、固体2を元の状態に引き戻すことがない。
【0114】
したがって、環境振動により突起62が固体に作用する搬送方向の力やその間隔が、突起62によって異なったものとなり、固体2の搬送力及び搬送速度をより一層向上させることができるとともに、変形量の異なる突起62を搬送方向において所定順序で配設することにより、突起62の搬送力を常時固体62に作用させることができ、固体2を一定の速度で搬送することができる。
【0115】
図8は、本発明の固体搬送装置の第8の実施の形態を示す図であり、本実施の形態は、突起を環境振動に共振する共振振動数を有したものとするとともに、当該共振振動数の異なる突起を搬送方向に所定順序で配列したもので、請求項8に対応するものである。
【0116】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0117】
図8は、本発明の固体搬送装置の第8の実施の形態を適用した固体搬送装置70の正面図であり、本実施の形態の固体搬送装置70は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0118】
図8において、固体搬送装置70は、所定幅を有した搬送路形成部材71が固体2の搬送方向(図8中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0119】
搬送路形成部材71は、その搬送表面に搬送方向と直交する方向(搬送路形成部材71の幅方向)に延在する突起72が所定間隔で形成されており、突起72は、上記第1の実施の形態と同様に、搬送路形成部材71の表面から所定量上方に突出して形成されているとともに、先端部72aの頂点部分を境として、搬送方向下流側の面72bと搬送方向上流側の面72cとで摩擦係数が異なった状態、特に、搬送方向下流側の面72bが搬送方向上流側の面72cよりも摩擦係数が大きい状態で形成されている。また、突起72は、環境振動の振動周波数範囲の振動数を共振振動数とするグループ毎に分類されるとともに、各グループがそれぞれ異なる共振振動数を有し、各グループに属する突起7が搬送方向に適時所定順序で配設されている。そして、各突起7は、環境振動により振動するが、例えば、図8に実線と破線で分けて示すように、各突起72が、環境振動の振動数が当該突起72の共振振動数と一致すると、大きく振動し、共振振動数と一致しない他の突起72が、共振する突起72よりも小さく振動する。
【0120】
本実施の形態の固体搬送装置70は、工場内等の所定の環境振動を有する床面に設置されると、この環境振動により搬送路形成部材71が、図8に両矢印で示す方向に振動し、この搬送路形成部材71の振動により、突起72が、それぞれ振動するとともに、当該環境振動と共振する共振振動数を有する突起72が共振して大きく振動する。この搬送路形成部材71の突起72上に搬送対象である固体2が載置されると、固体搬送装置1は、搬送方向及び反搬送方向に異なった共振振動数で振動する突起72により固体2を搬送方向に搬送する。
【0121】
すなわち、搬送路形成部材71から所定量上方に突出した突起72は、先端部72aの頂点部分を境として、搬送方向下流側の面72bと搬送方向上流側の面72cとで摩擦係数が異なった状態、特に、搬送方向下流側の面72bが搬送方向上流側の面72cよりも摩擦係数が大きい状態で形成されているとともに、共振振動数の異なるグループの突起72が搬送方向に所定順序で配列した状態で搬送路形成部材71に形成されているため、突起72上に固体2が載置されると、環境振動により、当該環境振動に共振する突起72、例えば、図8に実線で示す突起72が、大きく振動し、当該環境振動に共振しない突起72、例えば、図8に破線で示す突起72が小さく振動する。
【0122】
したがって、環境振動により、当該環境振動に共振する突起72と共振しない突起72とが存在して、突起72が固体に作用する搬送方向の力やその大きさが、突起72によって異なったものとなり、固体2の搬送力及び搬送速度をより一層向上させることができるとともに、共振振動数の異なる突起72を搬送方向に分散して搬送路形成部材71に配設することにより、突起72を常時固体2に作用させることができ、固体2を常時一定の速度で搬送することができる。
【0123】
図9は、本発明の固体搬送装置の第9の実施の形態を示す図であり、本実施の形態は、突起を搬送路形成部材の幅方向で2分割するとともに、分割した各突起を搬送方向で位置ずれさせて形成したもので、請求項9に対応するものである。
【0124】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0125】
図9は、本発明の固体搬送装置の第9の実施の形態を適用した固体搬送装置80の正面図であり、本実施の形態の固体搬送装置80は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0126】
図9において、固体搬送装置80は、所定幅を有した搬送路形成部材81が固体2の搬送方向(図9中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0127】
搬送路形成部材81は、その搬送表面に搬送方向と直交する方向(搬送路形成部材81の幅方向)に所定幅で延在する突起82と突起83が搬送方向に対して所定間隔で形成されており、突起82と突起83は、搬送方向に対して所定間隔位置ずれした状態で形成されている。突起82及び突起83は、搬送路形成部材81の表面から所定量上方に突出して形成されているとともに、先端部82a、83aの頂点部分を境として、搬送方向下流側の面82b、83bと搬送方向上流側の面82c、83cとで摩擦係数が異なった状態、特に、搬送方向下流側の面82b、83bが搬送方向上流側の面82c、83cよりも摩擦係数が大きい状態で形成されている。
【0128】
本実施の形態の固体搬送装置80は、工場内等の所定の環境振動を有する床面に設置されると、この環境振動により搬送路形成部材81が、図9に両矢印で示す方向に振動し、この搬送路形成部材81の振動により、突起82及び突起83が、それぞれ振動する。この搬送路形成部材81の突起82及び突起83上に搬送対象である固体2が載置されると、固体搬送装置1は、搬送路形成部材81の幅方向で分割され、搬送方向に所定量位置ずれして配設された突起82と突起83が搬送方向及び反搬送方向に振動して、固体2を搬送方向に搬送する。
【0129】
すなわち、搬送路形成部材81の上面には、搬送路形成部材81の幅方向で2つに分割されるとともに、搬送方向に所定量位置ずれした状態で、突起82と突起83が形成されており、突起82と突起83は、それぞれ搬送方向下流側の面82b、83bと搬送方向上流側の面82c、83cとで摩擦係数が異なった状態、特に、搬送方向下流側の面82b、83bが搬送方向上流側の面82c、83cよりも摩擦係数が大きい状態で形成されている。
【0130】
したがって、環境振動により、突起82と突起83が搬送方向及び反搬送方向に振動すると、突起82及び突起83上に載置された固体2は、搬送方向に位置ずれして形成された突起82と突起83により、間隔の細かい搬送力が付与されて、搬送方向に搬送される。その結果、固体2の搬送をスムースに行うことができるとともに、搬送力を向上させて、より一層速い搬送速度で固体2を搬送することができる。
【0131】
なお、本実施の形態においては、突起を搬送路形成部材81の幅方向で2つに分割して突起82と突起83を位置ずれさせて形成しているが、搬送路形成部材81の幅方向での分割の数は、2つに限るものではなく、2つ以上の複数に分割してもよく、この場合、各分割された突起を搬送方向に相互に位置ずれさせて、いわゆる千鳥状に形成してもよい。
【0132】
図10は、本発明の固体搬送装置の第10の実施の形態を示す図であり、本実施の形態は、突起を搬送方向に対して所定角度傾斜させて形成したもので、請求項10に対応するものである。
【0133】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0134】
図10は、本発明の固体搬送装置の第10の実施の形態を適用した固体搬送装置90の正面図であり、本実施の形態の固体搬送装置90は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0135】
図10において、固体搬送装置90は、所定幅を有した搬送路形成部材91が固体2の搬送方向(図10中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0136】
搬送路形成部材91は、その搬送表面に搬送方向と直交する方向(搬送路形成部材91の幅方向)に対して所定角度傾斜する角度で当該傾斜した方向に延在する突起92が形成されており、突起92は、搬送方向に対して所定間隔で形成されている。突起92は、搬送路形成部材91の表面から所定量上方に突出して形成されているとともに、先端部92aの頂点部分を境として、搬送方向下流側の面92bと搬送方向上流側の面92cとで摩擦係数が異なった状態、特に、搬送方向下流側の面92bが搬送方向上流側の面92cよりも摩擦係数が大きい状態で形成されている。
【0137】
本実施の形態の固体搬送装置90は、工場内等の所定の環境振動を有する床面に設置されると、この環境振動により搬送路形成部材91が、図10に両矢印で示す搬送方向及び搬送方向に直角の方向に振動し、この搬送路形成部材91の振動により、突起92が振動する。この搬送路形成部材91の突起92上に搬送対象である固体2が載置されると、固体搬送装置1は、搬送路形成部材91の幅方向に対して所定角度傾斜した状態で形成された突起92が搬送方向及び反搬送方向に振動するとともに、搬送方向に直角の方向にも振動して、固体2を搬送方向に搬送する。
【0138】
すなわち、搬送路形成部材91の上面には、搬送路形成部材91の幅方向に対して所定角度傾斜した方向に突起92が形成されており、突起92は、先端部92aの頂点部分を境として、搬送方向下流側の面92bと搬送方向上流側の面92cとで摩擦係数が異なった状態、特に、搬送方向下流側の面92bが搬送方向上流側の面92cよりも摩擦係数が大きい状態で形成されている。
【0139】
したがって、環境振動により、突起92が搬送方向及び反搬送方向に振動すると、突起92は、上記同様の作用により、突起92上に載置された固体2を搬送方向に搬送する。
【0140】
また、環境振動により、突起92が搬送方向に対して直角方向に振動すると、突起92が搬送方向に直角の方向に対して所定角度傾斜した状態で配設されているため、傾斜した突起92の搬送方向下流側の摩擦係数の大きい面92bが固体2に引っかかり、当該傾斜した突起92の搬送方向成分だけ固体2を搬送方向に搬送するとともに、逆方向に振動すると、突起92の搬送方向上流側の面11cが摩擦係数が小さく形成されているため、固体2に引掛からず、滑りが生じて、固体2を引き戻すことがない。その結果、固体2を、環境振動の搬送方向成分の振動だけでなく、搬送方向に対して直角方向の振動によっても、搬送することができ、搬送力を向上させて、より一層速い搬送速度で固体2を搬送することができる。
【0141】
図11は、本発明の固体搬送装置の第11の実施の形態を示す図であり、本実施の形態は、突起を搬送路形成部材の幅方向で2分割するとともに、分割した各突起を搬送方向において相対向する方向に所定角度傾斜させて形成したもので、請求項11に対応するものである。
【0142】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0143】
図11は、本発明の固体搬送装置の第11の実施の形態を適用した固体搬送装置100の正面図であり、本実施の形態の固体搬送装置100は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0144】
図11において、固体搬送装置100は、所定幅を有した搬送路形成部材101が固体2の搬送方向(図11中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0145】
搬送路形成部材101は、その搬送表面に搬送方向と直交する方向(搬送路形成部材101の幅方向)に所定幅で延在する突起102と突起103が形成されており、突起102と突起103は、搬送方向と直交する方向に対して搬送路形成部材101の幅方向中央部で交差するとともに、突起102の搬送方向下流側の面101bと突起103の搬送方向下流側の面102bが相向かい合う方向で所定角度傾斜して形成されている。また、突起102と突起103は、それぞれ搬送路形成部材101の表面から所定量上方に突出して形成されているとともに、先端部102a、103aの頂点部分を境として、搬送方向下流側の面102b、103bと搬送方向上流側の面102c、103cとで摩擦係数が異なった状態、特に、搬送方向下流側の面102b、103bが搬送方向上流側の面102c、103cよりも摩擦係数が大きい状態で形成されている。
【0146】
したがって、突起102及び突起103は、搬送方向下流側の面102b、103bと搬送方向上流側の面102c、103cとで摩擦係数が異なっているとともに、それぞれその先端部102a及び先端部103aが搬送方向において所定角度で向かい合った状態となっている。
【0147】
本実施の形態の固体搬送装置100は、工場内等の所定の環境振動を有する床面に設置されると、この環境振動により搬送路形成部材101が、図11に両矢印で示す方向に振動し、この搬送路形成部材101の搬送方向と反搬送方向及び搬送方向に直角の方向の振動により、搬送方向と直交する方向に対して搬送路形成部材101の幅方向中央部で交差するとともに、搬送方向の面102a、103bが相向かい合う方向で所定角度傾斜して形成されている突起102及び突起103が、それぞれ振動する。この搬送路形成部材101の突起102及び突起103上に搬送対象である固体2が載置されると、突起102と突起103は、各突起102と突起103の延在方向に対して直角方向に固体2を搬送しようとし、固体2は、搬送路形成部材101の幅方向中央部に寄せられつつ、搬送方向に搬送される。
【0148】
すなわち、搬送路形成部材101の上面には、搬送路形成部材101の幅方向中央部で搬送方向の面が相向かい合う方向で所定角度傾斜して形成された突起102と突起103が形成されており、突起102と突起103は、先端部102a、103aの頂点部分を境として、搬送方向下流側の面102b、103bと搬送方向上流側の面102c、103cとで摩擦係数が異なった状態、特に、搬送方向下流側の面102b、103bが搬送方向上流側の面102c、103cよりも摩擦係数が大きい状態で形成されている。
【0149】
したがって、図11中両矢印で示す搬送方向及び反搬送方向の環境振動により、突起102と突起103が搬送方向及び反搬送方向に振動すると、突起102及び突起103上に載置された固体2は、各突起102と突起103により、上記同様の作用により、各突起102と突起103に直角方向に固体2を搬送しようとする。その結果、固体2は、突起102と突起103により搬送路形成部材101の中央部に寄せられつつ、搬送方向に搬送される。
【0150】
また、環境振動により、突起102及び突起103が搬送方向に対して直角方向に振動すると、突起102及び突起103が搬送方向に直角の方向に対して所定角度傾斜した状態で配設されているため、傾斜した突起102及び突起103の搬送方向下流側の摩擦係数の大きい面102b、103cに固体2が引っかかり、当該傾斜した突起102及び突起103の搬送方向成分だけ固体2を搬送方向に搬送するとともに、逆方向に振動すると、突起102及び突起103の搬送方向上流側の摩擦係数の小さい面102c、103cが固体2に引掛からず、滑りが生じて、固体2を引き戻すことがない。
【0151】
その結果、固体2を、環境振動の搬送方向成分の振動だけでなく、搬送方向に対して直角方向の振動によっても、搬送路形成部材101の中央部に寄せつつ、搬送することができ、搬送力を向上させて、より一層速い搬送速度で固体2を搬送することができるとともに、固体2を搬送路形成部材101の中央部に寄せることができる。
【0152】
図12は、本発明の固体搬送装置の第12の実施の形態を示す図であり、本実施の形態は、突起を搬送路形成部材の幅方向中央部が下方に窪んだ湾曲形状に形成したもので、請求項12に対応するものである。
【0153】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0154】
図12は、本発明の固体搬送装置の第12の実施の形態を適用した固体搬送装置110の側面図であり、本実施の形態の固体搬送装置110は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0155】
図12において、固体搬送装置110は、所定幅を有した搬送路形成部材111が固体2の搬送方向(図12中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0156】
搬送路形成部材111は、その搬送表面に搬送方向と直交する方向(搬送路形成部材111の幅方向)に延在する突起112が所定間隔で形成されており、突起112は、上記第1の実施の形態と同様に、搬送路形成部材111の表面から所定量上方に突出して形成されているとともに、先端部112aの頂点部分を境として、搬送方向下流側の面112bと搬送方向上流側の面112cとで摩擦係数が異なった状態、特に、搬送方向下流側の面112bが搬送方向上流側の面112cよりも摩擦係数が大きい状態で形成されている。
【0157】
突起112には、図12に示すように、搬送方向に直角の方向、すなわち搬送路形成部材111の幅方向両端部が上方に湾曲して突出した湾曲突出部113a、113bが形成されて、搬送路形成部材111の中央部が下方に窪んだ湾曲形状に形成されたいわゆる樋形状に形成されている。
【0158】
本実施の形態の固体搬送装置110は、工場内等の所定の環境振動を有する床面に設置されると、この環境振動により突起112は、図12の紙面の表裏方向である搬送方向及び反搬送方向に振動する。この搬送路形成部材111の突起112上に搬送対象である固体2が載置されると、固体搬送装置1は、搬送方向及び反搬送方向に振動する突起112により固体2を搬送方向に搬送する。
【0159】
すなわち、搬送路形成部材111から所定量上方に突出した突起112は、先端部112aの頂点部分を境として、搬送方向下流側の面112bと搬送方向上流側の面112cとで摩擦係数が異なった状態、特に、搬送方向下流側の面112bが搬送方向上流側の面112cよりも摩擦係数が大きい状態で形成されているとともに、搬送路形成部材111の幅方向両端部が上方に湾曲して突出した湾曲突出部113a、113bが形成されて、搬送路形成部材111の中央部が下方に窪んだ湾曲形状に形成されたいわゆる樋形状に形成されている。
【0160】
したがって、突起112上に固体2が載置されて、環境振動により突起112が搬送方向に振動すると、突起112の先端部112aから搬送方向下流側の摩擦係数の大きい面112bが固体2を適切に引っかけた状態で搬送方向に向かって、固体2を確実に搬送方向に移動する。次に、突起112が反搬送方向に振動すると、突起112の先端部112aよりも搬送方向上流側の面112cが摩擦係数の小さいため、固体2に引っかからず、固体2と滑った状態で元に戻り、固体2を元の状態に引き戻すことがない。
【0161】
また、突起112は、搬送方向に直角の方向(搬送路形成部材111の幅方向両端部)が上方に湾曲して突出した湾曲突出部113a、113bを有した樋形状に形成されているため、固体2は、搬送方向と反搬送方向に振動する突起112の樋形状により、搬送路形成部材111の中央部に寄せられつつ、搬送方向に順次搬送される。
【0162】
したがって、本実施の形態の固体搬送装置110は、樋形状の突起112で、固体2を搬送路形成部材111の中央部に集めて、固体2が突起112上から落下するのを防止しつつ、確実に搬送することができる。
【0163】
図13は、本発明の固体搬送装置の第13の実施の形態を示す図であり、本実施の形態は、突起を搬送路形成部材の幅方向中央部が角状に下方に窪んだ略V字形状に形成したもので、請求項13に対応するものである。
【0164】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0165】
図13は、本発明の固体搬送装置の第13の実施の形態を適用した固体搬送装置120の側面図であり、本実施の形態の固体搬送装置120は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0166】
図13において、固体搬送装置120は、所定幅を有した搬送路形成部材121が固体2の搬送方向(図13中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0167】
搬送路形成部材121は、その搬送表面に搬送方向と直交する方向(搬送路形成部材121の幅方向)に延在する突起122が所定間隔で形成されており、突起122は、搬送路形成部材121の表面から所定量上方に突出して形成されているとともに、先端部122aの頂点部分を境として、搬送方向下流側の面122bと搬送方向上流側の面122cとで摩擦係数が異なった状態、特に、搬送方向下流側の面122bが搬送方向上流側の面122cよりも摩擦係数が大きい状態で形成されている。
【0168】
また、突起122は、搬送路形成部材121の幅方向において、その中央部が下方に角状に凹んだV字形状に形成されている。
【0169】
本実施の形態の固体搬送装置120は、工場内等の所定の環境振動を有する床面に設置されると、この環境振動により突起122は、図13の紙面の表裏方向である搬送方向及び反搬送方向に振動する。そして、突起122は、搬送路形成部材121の幅方向において、中央部が下方に窪んだV字型に形成されており、この搬送路形成部材121の突起122上に、例えば、四角形の箱形状の固体2(例えば、段ボール箱)を載置する際、図13に示すように、固体2の角部をV字型の突起122のV字型の窪んだ角部にあわせる状態で載置する。この状態で固体2が突起122上に載置されると、突起122は、箱形の固体2の2面に接触した状態で突起122上に載置されることになる。
【0170】
固体搬送装置1は、環境振動が搬送路形成部材121を介して突起122に伝達され、突起122は、搬送方向及び反搬送方向に振動して、突起122上に載置された固体2を搬送方向に搬送する。
【0171】
すなわち、搬送路形成部材121から所定量上方に突出した突起122は、先端部122aの頂点部分を境として、搬送方向下流側の面122bと搬送方向上流側の面122cとで摩擦係数が異なった状態、特に、搬送方向下流側の面122bが搬送方向上流側の面122cよりも摩擦係数が大きい状態で形成されているとともに、搬送路形成部材122の幅方向、すなわち、搬送方向に対して直角方向でその中央部が窪んだV字型に形成されているため、突起122上に固体2が載置されて、環境振動により突起122が搬送方向に振動すると、突起122の先端部122aから搬送方向下流側の摩擦係数の大きい面122bが固体2を適切に引っかけた状態で搬送方向に向かって、固体2を確実に搬送方向に移動する。次に、突起122が反搬送方向に振動すると、突起122の先端部122aから搬送方向上流側の面が摩擦係数が小さく形成されているため、突起122が固体2に引っかからず、固体2と滑った状態で元に戻り、固体2を元の状態に引き戻すことがない。
【0172】
この突起122は、搬送方向に直角の方向(搬送路形成部材121の幅方向両端部)において中央部が窪んだV字型に形成されているため、突起122が固定2の2面に接触し、突起122の振動がより一層確実に固体2に伝達され、固体2をより一層大きな搬送力でかつより一層速い速度で搬送することができるとともに、固定2を搬送方向に直角の方向の中央部に位置させた状態で搬送して、固体2が突起122から落下するのを防止しつつ、搬送方向に適切に搬送することができる。
【0173】
図14は、本発明の固体搬送装置の第14の実施の形態を示す図であり、本実施の形態は、環境振動を搬送路形成部材に伝達する振動伝達部材を設けたもので、請求項14に対応するものである。
【0174】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0175】
図14は、本発明の固体搬送装置の第14の実施の形態を適用した固体搬送装置130の正面図であり、本実施の形態の固体搬送装置130は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0176】
図14において、固体搬送装置130は、所定幅を有した搬送路形成部材3が固体2の搬送方向(図14中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0177】
搬送路形成部材3は、その搬送表面に搬送方向と直交する方向(搬送路形成部材3の幅方向)に延在する突起4が所定間隔で形成されており、突起4は、上記第1の実施の形態と同様に、搬送路形成部材3の表面から所定量上方に突出して形成されているとともに、先端部4aの頂点部分を境として、搬送方向下流側の面4bと搬送方向上流側の面4cとで摩擦係数が異なった状態、特に、搬送方向下流側の面4bが搬送方向上流側の面4cよりも摩擦係数が大きい状態で形成されている。
【0178】
また、搬送路形成部材3には、振動伝達部材131が取り付けられており、振動伝達部材131は、工場等の床面の環境振動を良好に搬送路形成部材3に伝達する。
【0179】
本実施の形態の固体搬送装置130は、工場内等の所定の環境振動有する床面に設置されると、振動伝達部材131は、図14に両矢印で示すように、この環境振動を搬送路形成部材3に伝達し、搬送路形成部材3が振動して、突起4が、少なくとも搬送方向及び反搬送方向に振動する。この搬送路形成部材3の突起4上に搬送対象である固体2が載置されると、固体搬送装置130は、搬送方向及び反搬送方向に振動する突起4により固体2を搬送方向に搬送する。
【0180】
すなわち、振動伝達部材131は、環境振動を良好に搬送路形成部材3に伝達し、この搬送路形成部材3の振動により突起4が振動する。突起4は、先端部4aの頂点部分を境として、搬送方向下流側の面4bと搬送方向上流側の面4cとで摩擦係数が異なった状態、特に、搬送方向下流側の面4bが搬送方向上流側の面4cよりも摩擦係数が大きい状態で形成されているため、突起4上に固体2が載置されて、環境振動により突起4が搬送方向に振動すると、突起4の先端部4aから搬送方向下流側の摩擦係数の大きい面4bが固体2を引っかけた状態で搬送方向に向かって、固体2を確実に搬送方向に移動する。次に、突起4が反搬送方向に振動すると、突起4の先端部4aから搬送方向上流側の面cが摩擦係数が小さいため、突起4が固体2に引っかからず、固体2と滑った状態で元に戻り、固体2を元の状態に引き戻すことがない。
【0181】
この突起4の搬送方向の振動と反搬送方向の振動が、環境振動により繰り返されると、固体2は、搬送方向に順次搬送される。
【0182】
したがって、本実施の形態の固体搬送装置130は、環境振動を振動伝達部材131が適切に搬送路形成部材3に伝達して、突起4を振動させるため、固体2をより一層確実に搬送することができ、搬送力を大きくすることができるとともに、搬送速度を向上させることができる。
【0183】
図15は、本発明の固体搬送装置の第15の実施の形態を示す図であり、本実施の形態は、環境振動を搬送路伝達部材に伝達する振動伝達部材が、環境振動の振動周波数範囲の共振振動数を有するもので、請求項15に対応するものである。
【0184】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0185】
図15は、本発明の固体搬送装置の第15の実施の形態を適用した固体搬送装置140の正面図であり、本実施の形態の固体搬送装置140は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0186】
図15において、固体搬送装置140は、所定幅を有した搬送路形成部材3が固体2の搬送方向(図15中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0187】
搬送路形成部材3は、その搬送表面に搬送方向と直交する方向(搬送路形成部材3の幅方向)に延在する突起4が所定間隔で形成されており、突起4は、上記第1の実施の形態と同様に、搬送路形成部材3の表面から所定量上方に突出して形成されているとともに、先端部4aの頂点部分を境として、搬送方向下流側の面4bと搬送方向上流側の面4cとで摩擦係数が異なった状態、特に、搬送方向下流側の面4bが搬送方向上流側の面4cよりも摩擦係数が大きい状態で形成されている。
【0188】
また、搬送路形成部材3には、振動伝達部材141が取り付けられており、振動伝達部材141は、工場等の床面の環境振動を良好に搬送路形成部材3に伝達する。
【0189】
また、搬送路形成部材3には、振動伝達部材141が取り付けられており、振動伝達部材141は、環境振動の周波数範囲に含まれる共振振動数を有している。したがって、振動伝達部材141は、工場等の床面の環境振動のうち、共振振動数で共振して、環境振動を拡大して搬送路形成部材3に伝達する。
【0190】
本実施の形態の固体搬送装置140は、工場内等の所定の環境振動有する床面に設置されると、振動伝達部材141は、図15に両矢印で示すように、環境振動の振動数範囲内に含まれる固有の共振振動数で共振して、環境振動を拡大して搬送路形成部材3に伝達し、搬送路形成部材3は、振動伝達部材141から伝達される拡大された環境振動により大きく振動する。この搬送路形成部材3の振動により突起4が、少なくとも搬送方向及び反搬送方向に振動する。この搬送路形成部材3の突起4上に搬送対象である固体2が載置されると、固体搬送装置140は、搬送方向及び反搬送方向に振動する突起4により固体2を搬送方向に搬送する。
【0191】
すなわち、突起4は、先端部4aの頂点部分を境として、搬送方向下流側の面4bと搬送方向上流側の面4cとで摩擦係数が異なった状態、特に、搬送方向下流側の面4bが搬送方向上流側の面4cよりも摩擦係数が大きい状態で形成されているため、突起4上に固体2が載置されて、環境振動により突起4が搬送方向に振動すると、突起4の先端部4aから搬送方向下流側の摩擦係数の大きい面4bが固体2を引っかけた状態で搬送方向に向かって、固体2を確実に搬送方向に移動する。次に、突起4が反搬送方向に振動すると、突起4の先端部4aから搬送方向上流側の面cが摩擦係数が小さいため、突起4が固体2に引っかからず、固体2と滑った状態で元に戻り、固体2を元の状態に引き戻すことがない。
【0192】
この突起4の搬送方向の振動と反搬送方向の振動が、環境振動により繰り返されると、搬送路形成部材3の固体2は、搬送方向に順次搬送される。
【0193】
したがって、本実施の形態の固体搬送装置140は、環境振動の振動周波数範囲に共振振動数を有する振動伝達部材141が環境振動を拡大して搬送路形成部材3に伝達して、突起4を大きく振動させるため、固体2をより一層確実に搬送することができ、搬送力をより一層大きくすることができるとともに、搬送速度をより一層向上させることができる。
【0194】
図16は、本発明の固体搬送装置の第16の実施の形態を示す図であり、本実施の形態は、突起上の固体を案内するガイド部材を配設したもので、請求項16に対応するものである。
【0195】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0196】
図16は、本発明の固体搬送装置の第16の実施の形態を適用した固体搬送装置150の正面図であり、本実施の形態の固体搬送装置150は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0197】
図16において、固体搬送装置150は、所定幅を有した搬送路形成部材3が固体2の搬送方向(図16中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0198】
搬送路形成部材3は、その搬送表面に搬送方向と直交する方向(搬送路形成部材3の幅方向)に延在する突起4が所定間隔で形成されており、突起4は、上記第1の実施の形態と同様に、搬送路形成部材3の表面から所定量上方に突出して形成されているとともに、先端部4aの頂点部分を境として、搬送方向下流側の面4bと搬送方向上流側の面4cとで摩擦係数が異なった状態、特に、搬送方向下流側の面4bが搬送方向上流側の面4cよりも摩擦係数が大きい状態で形成されている。
【0199】
また、搬送路形成部材3には、その幅方向両端部にガイド板(ガイド部材)151、152が配設されており、ガイド板151及びガイド板152は、突起4の先端部4aから所定量上方に突出した状態で配設されている。
【0200】
本実施の形態の固体搬送装置150は、工場内等の所定の環境振動有する床面に設置されると、図16に両矢印で示すように、この環境振動により搬送路形成部材3が振動して、搬送路形成部材3の振動により突起4が、少なくとも搬送方向及び反搬送方向に振動する。この搬送路形成部材3の突起4上に搬送対象である固体2が載置されると、固体搬送装置150は、ガイド板151とガイド板152により固体2を案内しつつ、搬送方向及び反搬送方向に振動する突起4により固体2を搬送方向に搬送する。
【0201】
すなわち、突起4により搬送方向に搬送される固体2を、搬送路形成部材3の幅方向両端部に配設されたガイド板151とガイド板152がガイドして、固体2が突起4上から落下するのを防止する。
【0202】
したがって、本実施の形態の固体搬送装置150は、ガイド板151及びガイド板152により固体2を確実に突起4上に保持して、突起4上から落下するのを防止することができる。
【0203】
図17は、本発明の固体搬送装置の第17の実施の形態を示す図であり、本実施の形態は、筒形状のガイド部材を突起上に配設したもので、請求項17に対応するものである。
【0204】
なお、本実施の形態は、上記第1の実施の形態と同様の固体搬送装置に適用したものであり、本実施の形態の説明においては、上記第1の実施の形態の固体搬送装置と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0205】
図17は、本発明の固体搬送装置の第17の実施の形態を適用した固体搬送装置160の正面図であり、本実施の形態の固体搬送装置160は、工場内等において、段ボール箱等の固体2を搬送するのに利用される。
【0206】
図17において、固体搬送装置160は、所定幅を有した搬送路形成部材3が固体2の搬送方向(図17中片矢印方向)に延在して長く配設され、工場等の所定の環境振動を有する床面に設置される。
【0207】
搬送路形成部材3は、その搬送表面に搬送方向と直交する方向(搬送路形成部材3の幅方向)に延在する突起4が所定間隔で形成されており、突起4は、上記第1の実施の形態と同様に、搬送路形成部材3の表面から所定量上方に突出して形成されているとともに、先端部4aの頂点部分を境として、搬送方向下流側の面4bと搬送方向上流側の面4cとで摩擦係数が異なった状態、特に、搬送方向下流側の面4bが搬送方向上流側の面4cよりも摩擦係数が大きい状態で形成されている。
【0208】
また、搬送路形成部材3には、その幅方向両端部から上方を覆う筒状のガイド板161が配設されており、ガイド板161は、突起4の先端部4aから所定量上方に突出するその両壁部161a、161bと上部を覆う上壁部161cを有している。
【0209】
本実施の形態の固体搬送装置160は、工場内等の所定の環境振動有する床面に設置されると、図17に両矢印で示すように、この環境振動により搬送路形成部材3が振動して、搬送路形成部材3の振動により突起4が、少なくとも搬送方向及び反搬送方向に振動する。この搬送路形成部材3の突起4上に搬送対象である固体2が載置されると、固体搬送装置160は、筒状のガイド板161により固体2を案内しつつ、搬送方向及び反搬送方向に振動する突起4により固体2を搬送方向に搬送する。
【0210】
すなわち、突起4により搬送方向に搬送される固体2を、搬送路形成部材3の幅方向両端部から突起4の上部を覆うように配設された筒状のガイド板161がガイドして、固体2が突起4上から落下するのを防止する。
【0211】
したがって、本実施の形態の固体搬送装置160は、ガイド板161により固体2を確実に突起4上に保持して、突起4上から落下するのを防止することができる。
【0212】
図18は、本発明の固体搬送装置の第18の実施の形態を示す図であり、本実施の形態は、請求項18に対応するものである。
【0213】
図18は、本発明の固体搬送装置の第18の実施の形態を適用した固体搬送装置170の要部正面図であり、本実施の形態の固体搬送装置170は、工場内等において、段ボール箱等の固体171を搬送するのに利用される。
【0214】
図18において、固体搬送装置170は、固体171を載置するのに充分な所定幅と所定長さを有した搬送部材172を備えており、搬送部材172は、その下端面に所定方向(搬送方向となる方向)と直交する方向に延在する突起173が所定間隔で複数形成されている。突起173は、搬送部材172下端面から所定量下方に突出して形成されている。突起173は、その先端部173aの頂点部分を境として、搬送方向(図18中矢印方向)側の面173bと搬送方向と反対側(反搬送方向側)の面173cとで摩擦係数が異なった状態、特に、反搬送方向側の面173cが搬送方向側の面173bよりも摩擦係数が大きい状態で形成されている。
【0215】
次に、本実施の形態の作用を説明する。固体搬送装置1は、工場内等の所定の環境振動を有する床面174上に突起173を当該床面174に向けた状態で配置され、突起173が直交するとともに、突起173の摩擦係数の小さい方の面173cを進行方向前側として、固体171を搬送したい方向(搬送方向)に向けて床面171上に配置される。この床面171上に設置された固体搬送装置1の搬送部材172の平坦な表面上に搬送対象である固体171を載置する。
【0216】
このように進行方向前側を搬送方向に向けて床面174上に配置され、固体171が搬送部材172上に載置されて、床面174が環境振動すると、この環境振動のうち、搬送方向の振動により固体171を載置した搬送部材172が、搬送方向に自走して、固体171を搬送する。
【0217】
すなわち、突起173は、その先端部173aの頂点部分を境として、反搬送方向側の面173cが搬送方向側の面173bよりも摩擦係数が大きい状態で形成されているため、床面174が環境振動により搬送方向に振動すると、突起173の先端部173aから反搬送方向側の摩擦係数の大きい面が床面174を引っかいた状態となって、固体搬送装置170が搬送方向に向かって移動し、固体2を搬送方向に移動する。次に、床面174が反搬送方向に振動すると、突起173の先端部173aから搬送方向側の面173bが摩擦係数が小さく形成されているため、搬送方向側の面173bが床面174に引っかからず、滑った状態となって固体搬送装置170が引き戻されることがない。
【0218】
この床面170の環境振動による搬送方向の振動と反搬送方向の振動が繰り返されると、固体2を載置した固体搬送装置170が順次搬送方向に移動して、固体2を搬送方向に順次搬送する。
【0219】
このように、本実施の形態の固体搬送装置1は、それ自体駆動源を有していないため、小型で、かつ、安価であるとともに、信頼性が良好であり、また、所定の環境振動を有する環境下に設置するだけで、環境振動を利用して、水平方向及び下り勾配方向に固体2を搬送することができ、かつ、上り勾配方向に固体2を搬送することができる。
【0220】
以上、本発明者によってなされた発明を好適な実施の形態に基づき具体的に説明したが、本発明は上記のものに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
【0221】
【発明の効果】
請求項1、2記載の発明の固体搬送装置によれば、固体搬送装置自体が駆動源を有することなく、環境振動で突起が振動して、突起上の固体を上り勾配方向の搬送方向にも適切に搬送することができ、固定搬送装置を小型・軽量で安価、かつ、信頼性の良好なものとすることができる。また、突起を半月形状の鋭角状に尖った先端部を有するとともに、先端部が反搬送方向に所定角度傾いた状態で形成しているので、環境振動で搬送方向に振動する突起の固体への引っかかり力を大きくして、より大きな搬送力で固体を搬送することができ、搬送速度を向上させることができる。
【0222】
請求項3記載の発明の固体搬送装置によれば、より大きな搬送力で固体を搬送することができるとともに、搬送路形成部材の上下方向に振動する環境振動によっても、突起が変形して、固体を搬送方向に搬送することができ、搬送速度をより一層向上させることができる。
【0223】
請求項4記載の発明の固体搬送装置によれば、少なくとも突起を環境振動に共振させて、突起を大きく振動させることができ、より大きな搬送力で固体を搬送して、搬送速度をより一層向上させることができる。
【0224】
請求項5記載の発明の固体搬送装置によれば、環境振動を搬送路形成部材から突起に効率的に伝達して、突起をより大きく振動させることができ、より大きな搬送力で固体を搬送して、搬送速度をより一層向上させることができる。
【0225】
請求項6記載の発明の固体搬送装置によれば、搬送を阻害するような振動が突起に伝達されることを抑制することができ、より一層適切に固体を搬送することができる。
【0226】
請求項7記載の発明の固体搬送装置によれば、突起上の固体に変形量の異なる突起により異なる大きさの搬送力を付与して、固体の搬送速度をより一層向上させることができるとともに、固体をスムーズに搬送することができる。
【0227】
請求項8記載の発明の固体搬送装置によれば、突起上の固体に共振振動数の異なる突起により異なる大きさの搬送力を付与して、固体の搬送速度をより一層向上させることができるとともに、固体をスムーズに搬送することができる。
【0228】
請求項9記載の発明の固体搬送装置によれば、分割されるとともに位置ずれされた突起により間隔の短い搬送方向の搬送力を固体に付与して、固体の搬送速度をより一層向上させることができるとともに、固体をスムーズに搬送することができる。
【0229】
請求項10記載の発明の固体搬送装置によれば、突起が向かい合う方向に固体を集めつつ、固体を安全に搬送方向に搬送することができる。
【0230】
請求項11記載の発明の固体搬送装置によれば、固体を樋形状とすることにより搬送路形成部材の中央部に集めて、固体が突起上から落下するのを防止しつつ、適切に搬送することができる。
【0231】
請求項12記載の発明の固体搬送装置によれば、請求項10の効果に加えて、請求項1に記載の効果を奏することができる。
【0232】
請求項13記載の発明の固体搬送装置によれば、環境振動をより一層効率的に搬送路形成部材に伝達して、突起が固体に作用する搬送力を大きくすることができ、より一層搬送速度を向上させることができる。
【0233】
請求項14記載の発明の固体搬送装置によれば、環境振動をより一層効率的にかつ拡大して搬送路形成部材に伝達して、突起が固体に作用する搬送力をより一層大きくすることができ、より一層搬送速度を向上させることができる。
【0234】
請求項15記載の発明の固体搬送装置によれば、突起上での固体の進路を定めることができるとともに、固体が突起から落下することを防止することができる。
【0235】
請求項16記載の発明の固体搬送装置によれば、突起上での固体の進路を定めることができるとともに、固体が突起から落下することをより一層適切に防止することができる。
【図面の簡単な説明】
【図1】本発明の固体搬送装置の第1の実施の形態を適用した固体搬送装置の要部斜視図。
【図2】本発明の固体搬送装置の第2の実施の形態を適用した固体搬送装置の要部正面図。
【図3】本発明の固体搬送装置の第3の実施の形態を適用した固体搬送装置の要部正面図。
【図4】本発明の固体搬送装置の第4の実施の形態を適用した固体搬送装置の要部正面図。
【図5】本発明の固体搬送装置の第5の実施の形態を適用した固体搬送装置の要部正面図。
【図6】本発明の固体搬送装置の第6の実施の形態を適用した固体搬送装置の要部正面図。
【図7】本発明の固体搬送装置の第7の実施の形態を適用した固体搬送装置の要部正面図。
【図8】本発明の固体搬送装置の第8の実施の形態を適用した固体搬送装置の要部正面図。
【図9】本発明の固体搬送装置の第9の実施の形態を適用した固体搬送装置の要部斜視図。
【図10】本発明の固体搬送装置の第10の実施の形態を適用した固体搬送装置の要部斜視図。
【図11】本発明の固体搬送装置の第11の実施の形態を適用した固体搬送装置の要部斜視図。
【図12】本発明の固体搬送装置の第12の実施の形態を適用した固体搬送装置の要部側面図。
【図13】本発明の固体搬送装置の第13の実施の形態を適用した固体搬送装置の要部側面図。
【図14】本発明の固体搬送装置の第14の実施の形態を適用した固体搬送装置の要部斜視図。
【図15】本発明の固体搬送装置の第15の実施の形態を適用した固体搬送装置の要部斜視図。
【図16】本発明の固体搬送装置の第16の実施の形態を適用した固体搬送装置の要部斜視図。
【図17】本発明の固体搬送装置の第17の実施の形態を適用した固体搬送装置の要部斜視図。
【図18】本発明の固体搬送装置の第18の実施の形態を適用した固体搬送装置の正面図。
【符号の説明】
1 固体搬送装置
2 固体
3 搬送路形成部材
4 突起
4a 先端部
4b、4c 面
10 固体搬送装置
11 突起
11a 先端部
11b、11c 面
20 固体搬送装置
21 突起
21a 先端部
21b、21c 面
30 固体搬送装置
31 搬送路形成部材
32 突起
32a 先端部
32b、32c 面
40 固体搬送装置
41 搬送路形成部材
42 突起
42a 先端部
42b、42c 面
50 固体搬送装置
51 搬送路形成部材
52 突起
52a 先端部
52b、52c 面
60 固体搬送装置
61 搬送路形成部材
62 突起
62a 先端部
62b、62c 面
70 固体搬送装置
71 搬送路形成部材
72 突起
72a 先端部
72b、72c 面
80 固体搬送装置
81 搬送路形成部材
82 突起
82a 先端部
82b、82c 面
83 突起
83a 先端部
83b、83c 面
90 固体搬送装置
91 搬送路形成部材
92 突起
92a 先端部
92b、92c 面
100 固体搬送装置
101 搬送路形成部材
102 突起
102a 先端部
102b、102c 面
103 突起
103a 先端部
103b、103c 面
110 固体搬送装置
111 搬送路形成部材
112 突起
112a 先端部
112b、112c 面
113a、113b 湾曲突出部
120 固体搬送装置
121 搬送路形成部材
122 突起
122a 先端部
122b、122c 面
130 固体搬送装置
131 振動伝達部材
140 固体搬送装置
141 振動伝達部材
150 固体搬送装置
151、152 ガイド板
160 固体搬送装置
161 ガイド板
161a、161b 壁部
161c 上壁部
170 固体搬送装置
171 固体
172 搬送部材
173 突起
173a 先端部
173b、173c 面
174 床面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid transport device, and more particularly, to a solid transport device capable of transporting a solid appropriately even in an upward gradient without having a drive source.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a transport device that transports solids, for example, there is a belt conveyor or the like provided with a drive source. However, a device equipped with a drive source is expensive and the device is also enlarged.
[0003]
Conventionally, as a solid-state transport device having no drive source, for example, there is a powder transport device previously filed by the present applicant (see Japanese Patent Laid-Open No. 6-110357). The powder conveyance device includes a powder conveyance path forming member having a powder conveyance surface that forms a powder conveyance path, and the powder conveyance surface is placed in a vibrating environment while the powder conveyance surface is placed in the powder environment. It is characterized by being arranged with a downward slope in the transport direction. That is, this powder conveyance device conveys the powder in the downward gradient direction using the environmental vibration and the gradient of the powder conveyance surface.
[0004]
[Problems to be solved by the invention]
However, in such a conventional powder conveyance device, since it does not have a drive source itself, a small and low-cost solid conveyance surface can be provided. Since the powder is conveyed, the solid can be conveyed only in the downward gradient direction, and there is room for improvement.
[0005]
Therefore, in the first and second aspects of the invention, the solid conveyance device itself does not have a drive source, and the projection vibrates due to the environmental vibration, so that the solid on the projection is appropriately conveyed also in the conveyance direction in the upward gradient direction. It is small, lightweight, inexpensive and reliable, and it has a greater conveying force by increasing the catching force of protrusions that vibrate in the conveying direction due to environmental vibration, It aims at providing the solid conveying apparatus which can improve a conveyance speed.
[0006]
The invention according to claim 3 conveys the solid with a larger conveying force, and also deforms the protrusion due to the environmental vibration that vibrates in the vertical direction of the conveying path forming member, and conveys the solid in the conveying direction. An object of the present invention is to provide a solid-state transport device that can further improve the above.
[0007]
According to a fourth aspect of the present invention, there is provided a solid transport apparatus capable of further improving the transport speed by causing at least the protrusion to resonate with environmental vibration, causing the protrusion to vibrate greatly, and transporting the solid with a larger transport force. The purpose is to do.
[0008]
The invention according to claim 5 efficiently transmits environmental vibration from the conveyance path forming member to the protrusion, vibrates the protrusion more greatly, conveys the solid with a larger conveyance force, and further improves the conveyance speed. An object of the present invention is to provide a solid transport device that can handle the above.
[0009]
An object of the present invention is to provide a solid-state transport device that can suppress vibrations that impede transport from being transmitted to the protrusions and transport the solid more appropriately.
[0010]
According to the seventh aspect of the present invention, it is possible to further improve the transport speed of the solid and to smoothly transport the solid by applying a transport force of a different size to the solid on the protrusion by the protrusion having a different deformation amount. The object is to provide a solid conveying device.
[0011]
According to the eighth aspect of the present invention, it is possible to further improve the transport speed of the solid and to smoothly transport the solid by applying a transport force of a different size to the solid on the protrusion by the protrusion having different resonance frequencies. An object of the present invention is to provide a solid conveyance device that can be used.
[0012]
According to the ninth aspect of the present invention, a transport force in the transport direction with a short interval is applied to the solid by the divided and misaligned protrusions, thereby further improving the transport speed of the solid and transporting the solid smoothly. An object of the present invention is to provide a solid transport device that can handle the above.
[0013]
The object of the present invention is to provide a solid conveying device capable of safely conveying a solid in the conveying direction while collecting the solid in a direction in which the protrusions face each other.
[0014]
The invention according to claims 11 and 12 collects the solid in the central part of the conveying path forming member in the shape of a bowl, and can convey the solid appropriately while preventing the solid from falling on the protrusion. The object is to provide a device.
[0015]
According to a thirteenth aspect of the present invention, the solid state conveying apparatus can transmit the environmental vibration to the conveying path forming member more efficiently, increase the conveying force that the protrusion acts on the solid, and further improve the conveying speed. The purpose is to provide.
[0016]
According to the fourteenth aspect of the present invention, the environmental vibration is transmitted more efficiently and expanded to the conveying path forming member, the conveying force acting on the solid is further increased, and the conveying speed is further improved. An object of the present invention is to provide a solid transport device that can handle the above.
[0017]
The object of the present invention is to provide a solid conveying device that can determine the course of the solid on the protrusion and prevent the solid from falling from the protrusion.
[0018]
The object of the present invention is to provide a solid transport device that can determine the course of the solid on the protrusion and more appropriately prevent the solid from falling from the protrusion.
[0019]
[Means for Solving the Problems]
The solid-state transport device according to the first aspect of the present invention is a solid-state transport device that is installed in a predetermined vibration environment and transports a solid in a predetermined transport direction using the environmental vibration, and has a predetermined width. A plate-shaped transport path forming member having a predetermined thickness disposed in the vibration environment over a predetermined distance in the transport direction, and projecting substantially upward from the surface to the surface of the transport path forming member and the transport A plurality of protrusions extending substantially in the width direction of the path forming member, and the protrusions are formed in a state in which the cross section in the transport direction is sharpened in a half-moon shape and inclined upstream in the transport direction, The projection vibrates in the transport direction and the counter-transport direction due to the environmental vibration, and the solid placed on the protrusion is transported in the transport direction.
[0020]
The solid conveyance device according to claim 2, wherein the protrusion is formed such that a friction coefficient of a downstream surface in the conveyance direction is larger than a friction coefficient of an upstream surface in the conveyance direction with the tip portion as a boundary. It is characterized by.
[0021]
According to the above configuration, the solid conveyance device itself does not have a drive source, the projection vibrates due to environmental vibration, and the solid on the projection can be appropriately conveyed also in the conveyance direction in the upward gradient direction. The apparatus can be small, light, inexpensive, and reliable.
[0022]
In addition, the protrusion has a half-moon-shaped tip and the tip is inclined at a predetermined angle in the anti-conveyance direction. By increasing the size, the solid can be transported with a greater transport force, and the transport speed can be improved.
[0023]
The solid transport device according to claim 3, wherein the protrusion is formed to be deformable by a predetermined amount in the transport direction and the counter-transport direction by the environmental vibration in a state where the solid is placed. To do.
[0024]
According to the above configuration, the solid can be transported with a larger transport force, and the protrusion can be deformed and transport the solid in the transport direction by the environmental vibration that vibrates in the vertical direction of the transport path forming member. And the conveyance speed can be further improved.
[0025]
According to a fourth aspect of the present invention, the resonance frequency of the protrusion is included in the environmental frequency range.
[0026]
According to the above configuration, at least the protrusions can resonate with environmental vibration, and the protrusions can be vibrated greatly, and the solid can be conveyed with a larger conveying force to further improve the conveying speed.
[0027]
The solid conveying device according to claim 5 is characterized in that the conveying path forming member is formed of a member having a good vibration transmissibility.
[0028]
According to the above configuration, the environmental vibration can be efficiently transmitted from the conveyance path forming member to the protrusion, and the protrusion can be vibrated more greatly. The solid can be conveyed with a larger conveyance force, and the conveyance speed can be further improved. Can be made.
[0029]
The solid conveying apparatus according to claim 6 is characterized in that the conveying path forming member is formed of a predetermined vibration absorbing member.
[0030]
According to the said structure, it can suppress that the vibration which inhibits conveyance is transmitted to a processus | protrusion, and can convey a solid much more appropriately.
[0031]
The solid state transport device according to claim 7 is characterized in that the deformation amount of the protrusion is sequentially changed in the transport direction.
[0032]
According to the above configuration, it is possible to further increase the transport speed of the solid by imparting different sizes of transport force to the solid on the protrusion by the protrusion having different deformation amounts, and to transport the solid smoothly. it can.
[0033]
The solid conveying device according to an eighth aspect is characterized in that the resonance frequency of the protrusion is sequentially changed in the conveying direction.
[0034]
According to the above-described configuration, it is possible to further improve the transport speed of the solid by giving the solid on the protrusion different transport forces by the protrusions having different resonance frequencies, and transport the solid smoothly. Can do.
[0035]
The solid transport device according to claim 9, wherein the protrusion is divided into a plurality of parts in the width direction of the transport path forming member, and each of the divided protrusions is displaced by a predetermined amount in the transport direction. It is formed in a state.
[0036]
According to the above configuration, the divided and misaligned protrusions can impart a transport force in the transport direction with a short interval to the solid, thereby further improving the transport speed of the solid and transporting the solid smoothly. can do.
[0037]
The solid conveyance device according to claim 10, wherein the protrusion is divided into two in the width direction of the conveyance path forming member, and the divided protrusions are inclined at a predetermined angle in a direction opposite to each other. It is characterized by.
[0038]
According to the above configuration, the solid can be safely transported in the transport direction while collecting the solid in the direction in which the protrusions face each other.
[0039]
The solid transport device according to claim 11 is a solid transport device that is installed in a predetermined vibration environment and transports a solid in a predetermined transport direction using the environmental vibration, and has a predetermined width. A plate-shaped transport path forming member disposed in the vibration environment over a predetermined distance in the transport direction and having a predetermined thickness, and the transport path projecting substantially upward from the surface to the surface of the transport path forming member A plurality of protrusions extending substantially in the width direction of the forming member, and the protrusions are formed in a bowl shape in which both end portions in the width direction of the transport path forming member are curved upward and protruded. The protrusion vibrates in the transport direction and the counter-transport direction due to vibration, and the solid placed on the protrusion is transported in the transport direction.
[0040]
According to the said structure, solid can be collected appropriately in the center part of a conveyance path formation member by the said hook shape, and it can convey appropriately, preventing solid falling from on protrusion.
[0041]
The solid transport device according to claim 12, wherein the protrusion has a tip portion sharpened at a predetermined acute angle, and the tip portion is formed in a state inclined at a predetermined angle in the anti-transport direction, The friction coefficient of the surface and the friction coefficient of the surface on the side opposite to the conveyance direction are different from each other at the tip portion.
[0042]
According to the said structure, in addition to the effect of Claim 11, the effect of Claim 1 can be show | played.
[0043]
The solid transport device according to claim 13 further includes a vibration transmission member that transmits the environmental vibration to the transport path forming member.
[0044]
According to the above configuration, the environmental vibration can be transmitted to the transport path forming member more efficiently, and the transport force on which the protrusion acts on the solid can be increased, and the transport speed can be further improved.
[0045]
The solid conveying device according to claim 14 is characterized in that the vibration transmitting member further has a resonance frequency included in a frequency range of the environmental vibration.
[0046]
According to the above configuration, the environmental vibration can be transmitted more efficiently and transmitted to the conveyance path forming member, and the conveyance force acting on the solid can be further increased, and the conveyance speed can be further improved. Can be made.
[0047]
The solid transport device according to claim 15 further includes a guide member that extends in the transport direction and guides the solid in the transport direction.
[0048]
According to the above configuration, the course of the solid on the protrusion can be determined, and the solid can be prevented from falling from the protrusion.
[0049]
The solid transport device according to claim 16, wherein the guide member protrudes upward by a predetermined amount from the protrusion at both ends in the width direction of the transport path forming member, and the solid can be transported above the protrusion. It is characterized by being formed in a cylindrical shape that covers the upper part of the protrusion with a gap.
[0050]
According to the said structure, while the course of the solid on a processus | protrusion can be defined, it can prevent much more that a solid falls from a processus | protrusion.
[0051]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. The embodiments described below are preferred embodiments of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. As long as there is no description which limits, it is not restricted to these aspects.
[0052]
FIG. 1 is a diagram showing a first embodiment of a solid conveying device of the present invention, and this embodiment corresponds to claim 1.
[0053]
FIG. 1 is a perspective view of a main part of a solid transport device 1 to which a first embodiment of a solid transport device of the present invention is applied. The solid transport device 1 of the present embodiment is a cardboard box in a factory or the like. It is used to convey the solid 2 such as.
[0054]
In FIG. 1, a solid conveyance device 1 includes a conveyance path forming member 3 having a predetermined width extending in the conveyance direction (in the direction of a single arrow in FIG. 1) of a solid 2 and arranged long. Installed on the floor with vibration.
[0055]
The conveyance path forming member 3 is formed with projections 4 extending on the conveyance surface in a direction orthogonal to the conveyance direction (width direction of the conveyance path forming member 3) at predetermined intervals. 3 is formed to project upward by a predetermined amount from the surface of 3. The protrusion 4 has a surface on the conveyance direction side (surface on the downstream side in the conveyance direction) 4b and a surface on the opposite side to the conveyance direction (counter conveyance direction) (on the upstream side in the conveyance direction) with the apex portion of the tip portion 4a as a boundary. Surface) 4c is formed with different friction coefficients, and in particular, the friction coefficient of the surface 4b on the downstream side in the transport direction is larger than the friction coefficient of the surface 4c on the upstream side in the transport direction. ing.
[0056]
The conveyance path forming member 3 transmits the environmental vibrations to the protrusions 4, and the protrusions 4 are conveyed in the conveyance direction and the anti-conveyance direction as indicated by double arrows in FIG. 1 due to the environmental vibrations transmitted from the conveyance path formation member 3. Vibrate a predetermined amount. The conveyance path forming member 3 and the protrusion 4 are formed of a member that can vibrate the protrusion 4 by environmental vibration, such as metal, plastic, rubber, and wood.
[0057]
Next, the operation of the present embodiment will be described. When the solid conveyance device 1 is installed on a floor surface having predetermined environmental vibrations such as in a factory, the installation surface has environmental vibrations. Therefore, the environmental vibrations are conveyed via the conveyance path forming member 3 to the conveyance path. It is transmitted to the protrusion 4 of the forming member 3. As shown by a double-headed arrow in FIG. 1, the protrusion 4 vibrates in the transport direction and the counter-transport direction due to this environmental vibration. When the solid 2 to be transported is placed on the protrusion 4 of the transport path forming member 3, the solid transport device 1 transports the solid 2 in the transport direction by the protrusion 4 that vibrates in the transport direction and the counter-transport direction. .
[0058]
That is, the protrusion 4 has a friction coefficient different between the surface 4b on the downstream side in the transport direction and the surface 4c on the upstream side in the transport direction with the apex of the tip 4a as a boundary, and in particular, the surface 4b on the downstream side in the transport direction. Since the friction coefficient is formed to be larger than the friction coefficient of the surface 4c on the upstream side in the transport direction, when the protrusion 4 vibrates in the transport direction due to environmental vibration, the friction coefficient on the downstream side in the transport direction with respect to the tip portion 4a of the protrusion 4 is reduced. In a state where the large surface 4b is caught by the solid 2, it vibrates in the transport direction, and moves the solid 2 in the transport direction. Next, when the protrusion 4 vibrates in the anti-conveying direction, the surface 4c on the upstream side of the conveying direction with respect to the tip 4a of the protrusion 4 has a small coefficient of friction, so that it does not get caught by the solid 2 and slips back to the anti-conveying direction. The solid 2 is not pulled back to its original state.
[0059]
When the vibration in the conveyance direction and the vibration in the anti-conveyance direction of the protrusion 4 are repeated by the environmental vibration, the solid 2 is sequentially conveyed in the conveyance direction.
[0060]
Further, when the solid transport device 1 is disposed in a state in which the solid transport device 1 is inclined at a predetermined angle toward the transport direction and the environmental vibration is transmitted to the transport path forming member 3, the protrusion 4 is transported in the same manner as described above. Vibrates in the direction and the counter-transport direction. When the solid 2 is placed on the protrusion 4 in this state, the solid 2 is caught from the tip 4a of the protrusion 4 on the surface 4b having a large friction coefficient on the downstream side in the transport direction, and thus the anti-transport on the down side. It is not slid in the direction and is transported in the transport direction by the vibration of the protrusion 4 as described above.
[0061]
Further, when the solid conveying device 1 is disposed in a state where the solid conveying device 1 is inclined downward by a predetermined angle toward the conveying direction and the environmental vibration is transmitted to the conveying path forming member 3, the protrusion 4 is conveyed in the same manner as described above. Vibrates in the direction and the counter-transport direction. When the solid 2 is placed on the protrusion 4 in this state, the solid 2 slides on the surface 4c having a small coefficient of friction upstream from the tip portion 4a of the protrusion 4, and the protrusion 4 vibrates in the transport direction. In addition to being slid and conveyed, it is conveyed in the conveying direction in the same manner as described above by the vibration of the protrusion 4.
[0062]
As described above, since the solid-state transport device 1 according to the present embodiment does not have a drive source itself, it is small and inexpensive, has high reliability, and exhibits predetermined environmental vibration. Just by installing in an environment, the solid 2 can be transported in the horizontal direction and the downward gradient direction and the solid 2 can be transported in the upward gradient direction by utilizing environmental vibration.
[0063]
FIG. 2 is a diagram showing a second embodiment of the solid-state transport device according to the present invention. In the present embodiment, the tip of the protrusion is formed in a predetermined acute angle, and is inclined at a predetermined angle in the transport direction. This corresponds to claim 2.
[0064]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0065]
FIG. 2 is a front view of a main part of a solid transport device 10 to which the second embodiment of the solid transport device of the present invention is applied. The solid transport device 10 of the present embodiment is a cardboard box in a factory or the like. It is used to convey the solid 2 such as.
[0066]
In FIG. 2, the solid transport device 10 has a transport path forming member 3 having a predetermined width extending in the transport direction of the solid 2 (in the direction of a single arrow in FIG. 2), and is disposed long. Installed on the floor with vibration.
[0067]
The conveyance path forming member 3 is formed with projections 11 extending in the direction perpendicular to the conveyance direction (the width direction of the conveyance path forming member 3) at predetermined intervals on the conveyance surface. Similar to the embodiment, it is formed so as to protrude upward by a predetermined amount from the surface of the transport path forming member 3, and the tip end portion 11a is sharply sharpened and inclined by a predetermined angle upstream in the transport direction (anti-transport direction). In this state, in this embodiment, the cross section in the transport direction is sharpened in a half-moon shape and is inclined in the upstream in the transport direction. Further, the protrusion 11 has a state in which the coefficient of friction is different between the surface 11b on the downstream side in the transport direction and the surface 11c on the upstream side in the transport direction with the apex portion of the tip portion 11a as a boundary, in particular, the surface 11b on the downstream side in the transport direction. The friction coefficient is larger than that of the surface 11c on the upstream side in the transport direction. Accordingly, the protrusion 11 has a tip portion 11a that is sharpened to a predetermined acute angle and is slightly inclined to the upstream side in the transport direction, and is transported from the surface 11b on the downstream side in the transport direction with the apex portion of the tip portion 11a as a boundary. The friction coefficient is different from that of the upstream surface 11c in the direction.
[0068]
When the solid conveyance device 10 of the present embodiment is installed on a floor surface having a predetermined environmental vibration, such as in a factory, the projection 11 causes the environmental direction and the projection 11 to be Vibrates in the opposite direction. When the solid 2 to be transported is placed on the protrusion 11 of the transport path forming member 3, the solid transport device 10 transports the solid 2 in the transport direction by the protrusion 11 that vibrates in the transport direction and the counter-transport direction. .
[0069]
In other words, the protrusion 11 has a tip 11a that is sharpened at an acute angle and is inclined toward the upstream side in the transport direction, and is downstream in the transport direction with the apex of the tip 11a of the protrusion 11 as a boundary. The friction coefficient of the side surface 11b and the surface 11c on the upstream side in the transport direction are different, in particular, the friction coefficient of the surface 11b on the downstream side in the transport direction is larger than the friction coefficient of the surface 11c on the upstream side in the transport direction. Therefore, when the solid 2 is placed on the protrusion 11 and the protrusion 11 vibrates in the transport direction due to environmental vibration, the surface 11b having a larger friction coefficient on the upstream side in the transport direction than the tip 11a of the protrusion 11 In a state where it is properly hooked, it vibrates greatly in the transport direction, and the solid 2 is reliably moved in the transport direction. Next, when the protrusion 11 vibrates in the anti-conveying direction, the surface 11c on the upstream side in the conveying direction with respect to the tip end portion 11a of the protrusion 11 has a small coefficient of friction. Without returning to the original state while sliding with the solid 2, the solid 2 is not pulled back to the original state.
[0070]
When the vibration in the conveyance direction and the vibration in the anti-conveyance direction of the protrusion 11 are repeated by the environmental vibration, the solid 2 is sequentially conveyed in the conveyance direction.
[0071]
Therefore, the solid conveying device 10 of the present embodiment can convey the solid 2 reliably and with a large conveying force at the tip end portion 11a of the protrusion 11 sharply sharpened, and can improve the conveying speed. .
[0072]
FIG. 3 is a view showing a third embodiment of the solid-conveying device of the present invention. This embodiment corresponds to claim 3 with protrusions deformable.
[0073]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0074]
FIG. 3 is a front view of a solid conveyance device 20 to which the third embodiment of the solid conveyance device of the present invention is applied. The solid conveyance device 20 of the present embodiment is a cardboard box or the like in a factory or the like. Used to transport the solid 2.
[0075]
In FIG. 3, the solid transport device 20 includes a transport path forming member 3 having a predetermined width extending in the transport direction of the solid 2 (in the direction of a single arrow in FIG. 3), and is disposed in a predetermined environment such as a factory. Installed on the floor with vibration.
[0076]
The conveyance path forming member 3 is formed with projections 21 extending in a direction perpendicular to the conveyance direction (width direction of the conveyance path forming member 3) at predetermined intervals on the conveyance surface. Similarly to the embodiment, the surface 21b protrudes from the surface of the transport path forming member 3 by a predetermined amount, and the surface 21b on the downstream side in the transport direction and the surface 21c on the upstream side in the transport direction are separated from the apex portion of the tip 11a. It is formed in a state where the friction coefficients are different, particularly in a state where the friction coefficient of the surface 21b on the downstream side in the transport direction is larger than the friction coefficient of the surface 21c on the upstream side in the transport direction. Further, the protrusions 21 are formed in a state that can be deformed by a predetermined amount on the downstream side in the transport direction and the upstream side in the transport direction, as indicated by a broken line and a solid line in FIG.
[0077]
When the solid conveyance device 20 of the present embodiment is installed on a floor surface having a predetermined environmental vibration such as in a factory, the conveyance path forming member 3 vibrates in the direction indicated by the double arrow in FIG. Then, the vibration of the transport path forming member 3 causes the protrusion 21 to vibrate in the transport direction and the counter-transport direction and to deform by a predetermined amount in the transport direction and the counter-transport direction. When the solid 2 to be transported is placed on the protrusion 21 of the transport path forming member 3, the solid transport device 1 causes the solid 2 to move in the transport direction by the protrusion 21 that vibrates and deforms in the transport direction and the counter-transport direction. Transport.
[0078]
That is, the protrusion 21 is in a state where the coefficient of friction is different between the surface 11b on the downstream side in the transport direction and the surface 11c on the upstream side in the transport direction with the apex portion of the tip 21a as a boundary, in particular, the friction on the surface 21b on the downstream side in the transport direction. The solid 2 is placed on the protrusion 21 because the coefficient is larger than the friction coefficient of the surface 21c on the upstream side in the transport direction and is deformable by a predetermined amount in the transport direction and the counter-transport direction. When the projection 21 vibrates in the conveyance direction from the state shown by the broken line in FIG. 3 to the state shown by the solid line in FIG. 3 due to environmental vibration, the projection 21 is formed on the downstream side in the conveyance direction having a large friction coefficient due to the deformation. The solid 2 is deformed toward the transport direction in a state where the solid 2 is appropriately hooked on the surface 21b, and the solid 2 is reliably moved in the transport direction. Next, when the protrusion 21 vibrates in the anti-conveying direction, the protrusion 21 returns from the state indicated by the solid line in FIG. 3 to the state indicated by the broken line in FIG. The upstream surface 21c comes into contact with the solid 2, and the solid 2 slides on the protrusion 21, so that the solid 2 is not pulled back to the original state.
[0079]
When the vibration in the transport direction and the vibration in the counter-transport direction of the protrusion 21 are repeated due to environmental vibration, the solid 2 is transported sequentially in the transport direction.
[0080]
Further, when the conveyance path forming member 3 vibrates in a direction perpendicular to the conveyance path forming member 3 due to environmental vibration, as shown in the vertical direction in FIG. 3, the protrusion 21 is deformed, and this vertical vibration also causes The solid 2 is transported in the transport direction. That is, when the conveyance path forming member 3 vibrates vertically upward, the projection 21 is deformed in the carrying and feeding directions as indicated by the solid line in FIG. When the downstream surface 11b is caught by the solid 2 to transport the solid 2 in the transport direction and the transport path forming member 3 vibrates vertically downward, the protrusion 21 is hooked on the downstream surface 11b in the transport direction having a large friction coefficient. The weight of the solid 2 was removed for a moment, and the protrusion 21 returned to the original state without being caught by the solid 2 as shown by the broken line in FIG. 3, and the solid 2 was not pulled back. Stay in the same position. Therefore, the solid transport device 20 can transport the solid 2 according to the same principle as that of the ultrasonic motor even by vertical vibration.
[0081]
Therefore, in the solid transport device 10 of the present embodiment, the protrusion 21 protruding upward by a predetermined amount is formed between the surface 21b on the downstream side in the transport direction and the surface 21c on the upstream side in the transport direction, with the apex portion of the tip portion 11a as a boundary. The friction coefficient is different, in particular, the friction coefficient of the surface 21b on the downstream side in the conveying direction is larger than the friction coefficient of the surface 21c on the upstream side in the conveying direction, and the upstream side in the conveying direction and the downstream side in the conveying direction. Therefore, the solid 2 can be transported more reliably, the transport force can be increased, and the transport speed can be improved. Further, not only the vibration in the transport direction but also the vibration in the direction perpendicular to the transport path forming member 3, the solid 2 can be transported, and the transport speed of the solid 2 can be further improved.
[0082]
FIG. 4 is a view showing a fourth embodiment of the solid-state transport device of the present invention, and this embodiment has a resonance frequency at which the protrusions resonate with environmental vibrations. Corresponding.
[0083]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0084]
FIG. 4 is a front view of a solid transport device 30 to which the fourth embodiment of the solid transport device of the present invention is applied. The solid transport device 30 of the present embodiment is a cardboard box or the like in a factory or the like. Used to transport the solid 2.
[0085]
In FIG. 4, a solid conveyance device 30 has a conveyance path forming member 3 having a predetermined width extending in the conveyance direction of solid 2 (in the direction of a single arrow in FIG. 4), and is disposed long. Installed on the floor with vibration.
[0086]
The conveyance path forming member 31 is formed with projections 32 extending in a direction perpendicular to the conveyance direction (width direction of the conveyance path forming member 31) at predetermined intervals on the conveyance surface. Similar to the embodiment, it is formed to project upward by a predetermined amount from the surface of the transport path forming member 31, and the downstream surface 32b in the transport direction and the upstream side in the transport direction with the apex of the tip 32a as a boundary. The surface 32c is formed in a state where the friction coefficient is different, particularly in a state where the surface 32b on the downstream side in the transport direction has a larger friction coefficient than the surface 32c on the upstream side in the transport direction.
[0087]
Further, the conveyance path forming member 31 is formed in a state where at least the protrusion 32 has a resonance frequency included in the vibration frequency range of the environmental vibration.
[0088]
That is, the object has a resonance frequency determined by the material, shape and dimensions of the object. Therefore, at least the protrusion 32 is formed in a state having a resonance frequency included in the vibration frequency range of the environmental vibration. In this way, the protrusion 32 resonates with the resonance frequency included in the environmental vibration transmitted through the conveyance path forming member 31, and the vibration energy is increased and the vibration is further increased.
[0089]
When the solid conveyance device 30 of the present embodiment is installed on a floor surface having a predetermined environmental vibration such as in a factory, the conveyance path forming member 31 vibrates in the direction indicated by the double arrow in FIG. 4 due to the environmental vibration. The protrusion 32 vibrates in the transport direction and the counter-transport direction due to the vibration of the transport path forming member 31. Since the protrusion 32 of the transport path forming member 31 has a resonance frequency included in the frequency range of the environmental vibration, it resonates with the environmental vibration and vibrates in the transport direction and the anti-transport direction with a large vibration energy. When the solid 2 to be transported is placed on the protrusion 32, the solid transport device 30 causes the solid 2 to be more reliably and promptly transported by the protrusion 32 that resonates and vibrates in the transport direction and the anti-transport direction. Transport to.
[0090]
That is, since the protrusion 32 has a resonance frequency included in the frequency range of the environmental vibration, it resonates with the environmental vibration and vibrates greatly in the transport direction and the counter-transport direction with a large vibration energy. By the action, the solid 2 on the protrusion 32 is transported with an even greater transport force. Therefore, the conveyance speed can be further improved.
[0091]
FIG. 5 is a view showing a fifth embodiment of the solid-conveying device of the present invention, and this embodiment is one in which at least the conveying path forming member is formed of a member having a good vibration transmission rate. This corresponds to 5.
[0092]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0093]
FIG. 5 is a front view of a solid conveyance device 40 to which the fifth embodiment of the solid conveyance device of the present invention is applied. The solid conveyance device 40 according to the present embodiment is a cardboard box or the like in a factory or the like. Used to transport the solid 2.
[0094]
In FIG. 5, the solid transport device 40 has a transport path forming member 41 having a predetermined width extending in the transport direction of the solid 2 (in the direction of a single arrow in FIG. 5), and is disposed in a predetermined environment such as a factory. Installed on the floor with vibration.
[0095]
The conveyance path forming member 41 has protrusions 42 formed on the conveyance surface extending in a direction orthogonal to the conveyance direction (the width direction of the conveyance path forming member 41) at predetermined intervals. Similar to the embodiment, it is formed so as to project a predetermined amount upward from the surface of the transport path forming member 41, and the downstream surface 42b in the transport direction and the upstream side in the transport direction with the apex portion of the tip 42a as a boundary. The surface 42c is formed in a state where the friction coefficient is different, in particular, the surface 42b on the downstream side in the transport direction has a larger friction coefficient than the surface 42c on the upstream side in the transport direction.
[0096]
The conveyance path forming member 41 is formed in a state where the vibration transmission rate has a large vibration transmission rate equal to or higher than a predetermined vibration transmission rate, for example, 20 dB or higher.
[0097]
When the solid conveyance device 40 according to the present embodiment is installed on a floor surface having a predetermined environmental vibration such as in a factory, the conveyance path forming member 41 vibrates in the direction indicated by the double arrow in FIG. The protrusion 42 vibrates in the transport direction and the counter-transport direction due to the vibration of the transport path forming member 41. Since the conveyance path forming member 41 has a vibration transmission rate of a predetermined value or more, for example, 20 dB or more, the environmental vibration is efficiently and satisfactorily transmitted to the protrusion 42. Large vibrations in the transport direction and anti-transport direction due to environmental vibration. Therefore, when the solid 2 to be transported is placed on the protrusion 42, the solid transport device 40 transmits the environmental vibration to the protrusion 42 by the transport path forming member 41 having a large vibration transmission rate, and the protrusion 42 is transported in the transport direction. Further, the solid 2 is vibrated greatly in the counter-transport direction, and the solid 2 is transported in the transport direction more reliably and promptly by the vibrating projections 42 by the same action as described above. Therefore, the conveyance speed can be further improved.
[0098]
FIG. 6 is a view showing a sixth embodiment of the solid-conveying device of the present invention. In this embodiment, at least the conveying path forming member is formed of a predetermined vibration absorbing member. Corresponding.
[0099]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0100]
FIG. 6 is a front view of a solid conveyance device 50 to which the sixth embodiment of the solid conveyance device of the present invention is applied. The solid conveyance device 50 according to the present embodiment is used in a factory or the like such as a cardboard box. Used to transport the solid 2.
[0101]
In FIG. 6, the solid transport device 50 includes a transport path forming member 51 having a predetermined width extending in the transport direction of the solid 2 (in the direction indicated by a single arrow in FIG. 4), and is disposed in a predetermined environment such as a factory. Installed on the floor with vibration.
[0102]
The conveyance path forming member 51 is formed with projections 52 extending in the direction perpendicular to the conveyance direction (the width direction of the conveyance path forming member 51) at predetermined intervals on the conveyance surface. Similar to the embodiment, it is formed so as to project a predetermined amount upward from the surface of the transport path forming member 51, and with the apex portion of the tip 52a as a boundary, the surface 52b on the downstream side in the transport direction and the upstream side in the transport direction The surface 52c is formed in a state where the friction coefficient is different, particularly in a state where the surface 52b on the downstream side in the transport direction has a larger friction coefficient than the surface 52c on the upstream side in the transport direction.
[0103]
The conveyance path forming member 51 is formed of a member having a predetermined vibration absorption rate, or is formed in a state containing a member having a predetermined vibration absorption rate.
[0104]
When the solid conveyance device 50 according to the present embodiment is installed on a floor surface having predetermined environmental vibration such as in a factory, the conveyance path forming member 51 vibrates in the direction indicated by the double arrow in FIG. The protrusion 52 vibrates in the transport direction and the counter-transport direction due to the vibration of the transport path forming member 51. Since the conveyance path forming member 51 has a predetermined vibration absorption rate, environmental vibration is transmitted to the protrusion 52 in a state in which large environmental vibration is suppressed. The protrusion 52 is opposite to the conveyance direction by the environmental vibration. Vibrates in the transport direction. Therefore, when the solid 2 to be transported is placed on the protrusion 52, the solid transport device 50 is placed on the protrusion 52 in a state where environmental vibration is attenuated by the transport path forming member 51 having a predetermined vibration absorption rate. The projection 52 vibrates in the transport direction and the counter-transport direction, and the solid 2 is reliably and promptly transported in the transport direction by the vibrating projection 52 by the same action as described above.
[0105]
That is, when a large environmental vibration, for example, a large environmental vibration in the vertical direction or an environmental vibration with a high frequency occurs, the solid 2 bounces due to this environmental vibration, and the mechanical grip by the tip 52a of the protrusion 52, particularly the friction coefficient. The mechanical grip by the surface 52b on the downstream side of the large conveyance direction is difficult to be applied. The solid 2 can obtain the greatest acceleration force when it slides on the tip 52a of the protrusion 52 or not.
[0106]
However, in the solid conveyance device 50 according to the present embodiment, since the conveyance path forming member 51 has a predetermined vibration absorption rate, the large environmental vibration is attenuated and transmitted to the protrusion 52. Therefore, it is possible to absorb the vibration that hinders the vibration, transmit the appropriate vibration to the protrusion 52, improve the traction, and transport the solid 2 appropriately, and more reliably and quickly.
[0107]
FIG. 7 is a diagram showing a seventh embodiment of the solid-conveying device of the present invention. In this embodiment, the protrusions are formed so as to be deformable by a predetermined amount, and the protrusions having different deformation amounts are predetermined in the transport direction. These are arranged in order and correspond to claim 7.
[0108]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0109]
FIG. 7 is a front view of a solid transport device 60 to which the seventh embodiment of the solid transport device of the present invention is applied. The solid transport device 60 of the present embodiment is a cardboard box or the like in a factory or the like. Used to transport the solid 2.
[0110]
In FIG. 7, the solid transport device 60 has a transport path forming member 61 having a predetermined width extending in the transport direction of the solid 2 (in the direction of a single arrow in FIG. 7), and is disposed in a predetermined environment such as a factory. Installed on the floor with vibration.
[0111]
The conveyance path forming member 61 is formed with projections 62 extending in the direction perpendicular to the conveyance direction (the width direction of the conveyance path forming member 61) at a predetermined interval on the conveyance surface. Similar to the embodiment, it is formed so as to project a predetermined amount upward from the surface of the transport path forming member 61, and with the apex portion of the tip end portion 62a as a boundary, the surface 62b on the downstream side in the transport direction and the upstream side in the transport direction The surface 62c is formed in a state where the friction coefficient is different, particularly in a state where the surface 62b on the downstream side in the transport direction has a larger friction coefficient than the surface 62c on the upstream side in the transport direction. Further, the protrusions 62 are formed in a state that can be deformed by a predetermined amount on the upstream side in the transport direction and on the downstream side in the transport direction in a state where the deformation amount is different for each of the protrusions 62. As shown by the solid line and the broken line, the protrusions 62 are deformed by different deformation amounts on the upstream side in the transport direction and on the downstream side in the transport direction. Further, the projections 62 are formed by arranging the projections having different deformation amounts in a predetermined order in the transport direction.
[0112]
When the solid conveyance device 60 according to the present embodiment is installed on a floor surface having predetermined environmental vibration such as in a factory, the conveyance path forming member 61 vibrates in the direction indicated by the double arrow in FIG. However, the vibration of the transport path forming member 61 causes the protrusions 62 to vibrate in the transport direction and the counter-transport direction in different vibration states. When the solid 2 to be transported is placed on the protrusion 62 of the transport path forming member 61, the solid transport device 1 vibrates in the transport direction and the counter-transport direction, and deforms with different deformation amounts. To transport the solid 2 in the transport direction.
[0113]
That is, the protrusion 62 protruding upward by a predetermined amount from the conveyance path forming member 61 has a friction coefficient different between the surface 62b on the downstream side in the conveyance direction and the surface 62c on the upstream side in the conveyance direction with the apex portion of the tip end portion 62a as a boundary. In particular, the surface 62b on the downstream side in the transport direction is formed with a larger coefficient of friction than the surface 62c on the upstream side in the transport direction, and is formed to be deformable with different deformation amounts in the transport direction and the counter-transport direction. Therefore, when the solid 2 is placed on the protrusion 62 and the protrusion 62 vibrates in the transport direction due to environmental vibration, the protrusion 62 moves from the state indicated by the broken line in FIG. 7 to the state indicated by the solid line in FIG. Are deformed by different deformation amounts, that is, deformed toward the transport direction in a state in which the solid 2 is appropriately hooked on the surface 62b having a large friction coefficient on the downstream side in the transport direction from the tip 62a of the protrusion 62. Te to move the solid 2 in reliably transporting direction. Next, when the protrusion 62 vibrates in the anti-conveying direction, the protrusion 62 returns from the state indicated by the solid line in FIG. 7 to the state indicated by the broken line in FIG. The surface 11c having a small friction coefficient on the upstream side in the conveying direction from 62a contacts the solid 2, and the catch on the solid 2 is further reduced, and the state shown by the solid line in FIG. It returns to the state, and the solid 2 is not pulled back to the original state.
[0114]
Accordingly, the force in the conveyance direction in which the protrusion 62 acts on the solid due to environmental vibration and the interval thereof vary depending on the protrusion 62, and the conveyance force and conveyance speed of the solid 2 can be further improved, and the amount of deformation can be reduced. By disposing the different protrusions 62 in a predetermined order in the transport direction, the transport force of the protrusions 62 can always be applied to the solid 62, and the solid 2 can be transported at a constant speed.
[0115]
FIG. 8 is a diagram showing an eighth embodiment of the solid-state transport device of the present invention. This embodiment has a resonance frequency that resonates the projection with the environmental vibration, and the resonance vibration. The projections having different numbers are arranged in a predetermined order in the transport direction, and correspond to claim 8.
[0116]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0117]
FIG. 8 is a front view of a solid transport device 70 to which the eighth embodiment of the solid transport device of the present invention is applied. The solid transport device 70 of the present embodiment is used in a factory or the like such as a cardboard box. Used to transport the solid 2.
[0118]
In FIG. 8, a solid conveyance device 70 has a conveyance path forming member 71 having a predetermined width extending in the conveyance direction of the solid 2 (in the direction of a single arrow in FIG. 8) and arranged long, and a predetermined environment such as a factory. Installed on the floor with vibration.
[0119]
The conveyance path forming member 71 has projections 72 formed on the conveyance surface extending in a direction orthogonal to the conveyance direction (width direction of the conveyance path forming member 71) at a predetermined interval. Similar to the embodiment, it is formed so as to project a predetermined amount upward from the surface of the conveyance path forming member 71, and with the apex portion of the tip 72a as a boundary, the surface 72b on the downstream side in the conveyance direction and the upstream side in the conveyance direction The surface 72c is formed in a state where the friction coefficient is different, particularly in a state where the surface 72b on the downstream side in the transport direction has a larger friction coefficient than the surface 72c on the upstream side in the transport direction. Further, the protrusions 72 are classified for each group in which the frequency in the vibration frequency range of the environmental vibration is a resonance frequency, and each group has a different resonance frequency, and the protrusion 7 belonging to each group has a conveyance direction. Are arranged in a predetermined order in a timely manner. Each projection 7 vibrates due to environmental vibration. For example, as shown in FIG. 8 by separating the solid line from the solid line and the broken line, each projection 72 has an environmental vibration frequency that matches the resonance frequency of the projection 72. The other protrusion 72 that vibrates greatly and does not match the resonance frequency vibrates smaller than the resonating protrusion 72.
[0120]
When the solid conveyance device 70 according to the present embodiment is installed on a floor surface having a predetermined environmental vibration such as in a factory, the conveyance path forming member 71 vibrates in the direction indicated by the double arrow in FIG. The protrusion 72 vibrates due to the vibration of the transport path forming member 71, and the protrusion 72 having a resonance frequency that resonates with the environmental vibration resonates and vibrates greatly. When the solid 2 to be transported is placed on the protrusion 72 of the transport path forming member 71, the solid transport device 1 causes the solid 2 to move by the protrusion 72 that vibrates at different resonance frequencies in the transport direction and the counter-transport direction. Is transported in the transport direction.
[0121]
That is, the protrusion 72 protruding upward by a predetermined amount from the transport path forming member 71 has a friction coefficient different between the surface 72b on the downstream side in the transport direction and the surface 72c on the upstream side in the transport direction, with the apex portion of the tip end portion 72a as a boundary. In particular, the surface 72b on the downstream side in the transport direction is formed with a higher friction coefficient than the surface 72c on the upstream side in the transport direction, and the protrusions 72 of the groups having different resonance frequencies are arranged in a predetermined order in the transport direction. In this state, when the solid 2 is placed on the protrusion 72, the protrusion 72 that resonates with the environmental vibration due to the environmental vibration, for example, the protrusion indicated by a solid line in FIG. 72 vibrates greatly, and the protrusion 72 that does not resonate with the environmental vibration, for example, the protrusion 72 indicated by a broken line in FIG.
[0122]
Accordingly, there are protrusions 72 that resonate with the environmental vibration and protrusions 72 that do not resonate due to the environmental vibration, and the force in the transport direction and the magnitude of the protrusion 72 acting on the solid differ depending on the protrusion 72. The conveyance force and conveyance speed of the solid 2 can be further improved, and the protrusions 72 having different resonance frequencies are dispersed in the conveyance direction and disposed on the conveyance path forming member 71, so that the protrusions 72 are always solid 2. The solid 2 can be always transported at a constant speed.
[0123]
FIG. 9 is a diagram showing a ninth embodiment of the solid-state transport device of the present invention. In this embodiment, the protrusion is divided into two in the width direction of the transport path forming member, and each divided protrusion is transported. This is formed by shifting the position in the direction, and corresponds to claim 9.
[0124]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0125]
FIG. 9 is a front view of a solid transport device 80 to which the ninth embodiment of the solid transport device of the present invention is applied. The solid transport device 80 of the present embodiment is used in a factory or the like such as a cardboard box. Used to transport the solid 2.
[0126]
In FIG. 9, a solid conveyance device 80 has a conveyance path forming member 81 having a predetermined width extending in the conveyance direction of the solid 2 (in the direction of a single arrow in FIG. 9) and arranged long, and a predetermined environment such as a factory. Installed on the floor with vibration.
[0127]
The conveyance path forming member 81 is formed with projections 82 and projections 83 extending at a predetermined interval in the conveyance surface in a direction orthogonal to the conveyance direction (width direction of the conveyance path forming member 81). The protrusion 82 and the protrusion 83 are formed in a state of being shifted by a predetermined distance with respect to the transport direction. The protrusions 82 and the protrusions 83 are formed so as to protrude a predetermined amount upward from the surface of the conveyance path forming member 81, and are conveyed with the surfaces 82b and 83b on the downstream side in the conveyance direction with the apex portion of the tip portions 82a and 83a as a boundary. The upstream side surfaces 82c and 83c have different friction coefficients, and in particular, the downstream side surfaces 82b and 83b are formed with a higher friction coefficient than the upstream side surfaces 82c and 83c. .
[0128]
When the solid conveyance device 80 according to the present embodiment is installed on a floor surface having a predetermined environmental vibration such as in a factory, the conveyance path forming member 81 vibrates in the direction indicated by the double arrow in FIG. The protrusion 82 and the protrusion 83 vibrate due to the vibration of the conveyance path forming member 81. When the solid 2 to be transported is placed on the protrusions 82 and 83 of the transport path forming member 81, the solid transport device 1 is divided in the width direction of the transport path forming member 81, and a predetermined amount in the transport direction. The protrusions 82 and the protrusions 83 that are disposed so as to be displaced are vibrated in the transport direction and the counter-transport direction, and transport the solid 2 in the transport direction.
[0129]
That is, the upper surface of the conveyance path forming member 81 is divided into two in the width direction of the conveyance path forming member 81, and the protrusion 82 and the protrusion 83 are formed in a state where the position is shifted by a predetermined amount in the conveyance direction. The projection 82 and the projection 83 have different friction coefficients between the surfaces 82b and 83b on the downstream side in the transport direction and the surfaces 82c and 83c on the upstream side in the transport direction, respectively. In particular, the surfaces 82b and 83b on the downstream side in the transport direction are transported. It is formed in a state where the friction coefficient is larger than the surfaces 82c and 83c on the upstream side in the direction.
[0130]
Therefore, when the protrusion 82 and the protrusion 83 vibrate in the transport direction and the counter-transport direction due to environmental vibration, the solid 2 placed on the protrusion 82 and the protrusion 83 is displaced from the protrusion 82 formed in the transport direction. By the projection 83, a transport force with a small interval is applied and the transport is performed in the transport direction. As a result, the solid 2 can be smoothly transported, the transport force can be improved, and the solid 2 can be transported at a much faster transport speed.
[0131]
In this embodiment, the protrusion is divided into two in the width direction of the transport path forming member 81 and the protrusion 82 and the protrusion 83 are displaced from each other. However, the width direction of the transport path forming member 81 is The number of divisions is not limited to two, and may be divided into two or more. In this case, the divided projections are displaced from each other in the transport direction to form a so-called staggered pattern. It may be formed.
[0132]
FIG. 10 is a diagram showing a tenth embodiment of the solid-state transport device according to the present invention. This embodiment is formed by inclining a protrusion by a predetermined angle with respect to the transport direction. Corresponding.
[0133]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0134]
FIG. 10 is a front view of a solid transport device 90 to which the tenth embodiment of the solid transport device of the present invention is applied. The solid transport device 90 of the present embodiment is a cardboard box or the like in a factory or the like. Used to transport the solid 2.
[0135]
In FIG. 10, a solid conveyance device 90 has a conveyance path forming member 91 having a predetermined width extending in the conveyance direction of solid 2 (in the direction of a single arrow in FIG. 10) and arranged long, and a predetermined environment such as a factory. Installed on the floor with vibration.
[0136]
The conveyance path forming member 91 is formed with a protrusion 92 extending in the inclined direction at an angle inclined by a predetermined angle with respect to a direction orthogonal to the conveyance direction (width direction of the conveyance path forming member 91) on the conveyance surface. The protrusions 92 are formed at predetermined intervals in the transport direction. The protrusion 92 is formed so as to protrude upward by a predetermined amount from the surface of the transport path forming member 91, and a surface 92b on the downstream side in the transport direction and a surface 92c on the upstream side in the transport direction with the apex portion of the tip end portion 92a as a boundary. Thus, the surface 92b on the downstream side in the transport direction is formed with a larger friction coefficient than the surface 92c on the upstream side in the transport direction.
[0137]
When the solid conveyance device 90 according to the present embodiment is installed on a floor surface having a predetermined environmental vibration such as in a factory, the environmental path causes the conveyance path forming member 91 to move in the conveyance direction indicated by a double arrow in FIG. The projection 92 vibrates in a direction perpendicular to the transport direction, and the projection 92 vibrates due to the vibration of the transport path forming member 91. When the solid 2 to be transported is placed on the protrusion 92 of the transport path forming member 91, the solid transport device 1 is formed in a state inclined at a predetermined angle with respect to the width direction of the transport path forming member 91. The protrusion 92 vibrates in the conveyance direction and the counter conveyance direction, and also vibrates in a direction perpendicular to the conveyance direction, thereby conveying the solid 2 in the conveyance direction.
[0138]
That is, a protrusion 92 is formed on the upper surface of the conveyance path forming member 91 in a direction inclined by a predetermined angle with respect to the width direction of the conveyance path forming member 91, and the protrusion 92 is bordered on the apex portion of the tip end portion 92 a. In a state where the friction coefficient is different between the surface 92b on the downstream side in the transport direction and the surface 92c on the upstream side in the transport direction, in particular, the surface 92b on the downstream side in the transport direction has a larger friction coefficient than the surface 92c on the upstream side in the transport direction. Is formed.
[0139]
Therefore, when the protrusion 92 vibrates in the transport direction and the counter-transport direction due to environmental vibration, the protrusion 92 transports the solid 2 placed on the protrusion 92 in the transport direction by the same action as described above.
[0140]
Further, when the projection 92 vibrates in a direction perpendicular to the transport direction due to environmental vibration, the projection 92 is disposed at a predetermined angle with respect to the direction perpendicular to the transport direction. When the surface 92b having a large friction coefficient on the downstream side in the transport direction is caught by the solid 2, the solid 2 is transported in the transport direction by the component in the transport direction of the inclined protrusion 92 and vibrates in the reverse direction. Since the surface 11c is formed with a small friction coefficient, the solid 2 is not caught and slipping does not occur and the solid 2 is not pulled back. As a result, the solid 2 can be transported not only by vibration in the transport direction component of the environmental vibration but also by vibration in a direction perpendicular to the transport direction, improving the transport force and at an even faster transport speed. Solid 2 can be conveyed.
[0141]
FIG. 11 is a diagram showing an eleventh embodiment of the solid-state transport device of the present invention. In the present embodiment, the protrusion is divided into two in the width direction of the transport path forming member, and each divided protrusion is transported. It is formed by being inclined at a predetermined angle in the opposite direction in the direction, and corresponds to claim 11.
[0142]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0143]
FIG. 11 is a front view of a solid transport device 100 to which the eleventh embodiment of the solid transport device of the present invention is applied. The solid transport device 100 according to the present embodiment is a cardboard box or the like in a factory or the like. Used to transport the solid 2.
[0144]
In FIG. 11, the solid transport device 100 includes a transport path forming member 101 having a predetermined width extending in the transport direction of the solid 2 (in the direction of a single arrow in FIG. 11), and is disposed in a predetermined environment such as a factory. Installed on the floor with vibration.
[0145]
The conveyance path forming member 101 has a protrusion 102 and a protrusion 103 extending on the conveyance surface with a predetermined width in a direction orthogonal to the conveyance direction (width direction of the conveyance path forming member 101). Intersects at the center in the width direction of the conveyance path forming member 101 with respect to the direction orthogonal to the conveyance direction, and the surface 101b on the downstream side in the conveyance direction of the protrusion 102 and the surface 102b on the downstream side in the conveyance direction of the protrusion 103 face each other. It is formed to be inclined at a predetermined angle in the direction. Further, the protrusion 102 and the protrusion 103 are each formed to protrude upward by a predetermined amount from the surface of the conveyance path forming member 101, and the surface 102b on the downstream side in the conveyance direction with the apex portion of the tip portions 102a and 103a as a boundary. 103b and the surfaces 102c and 103c on the upstream side in the transport direction have different friction coefficients, and in particular, the surfaces 102b and 103b on the downstream side in the transport direction have a higher friction coefficient than the surfaces 102c and 103c on the upstream side in the transport direction. Has been.
[0146]
Therefore, the protrusion 102 and the protrusion 103 have different friction coefficients between the surfaces 102b and 103b on the downstream side in the transport direction and the surfaces 102c and 103c on the upstream side in the transport direction, and the tip portion 102a and the tip portion 103a are in the transport direction, respectively. Are facing each other at a predetermined angle.
[0147]
When the solid conveying apparatus 100 according to the present embodiment is installed on a floor surface having a predetermined environmental vibration such as in a factory, the conveying path forming member 101 vibrates in a direction indicated by a double arrow in FIG. 11 due to the environmental vibration. Then, by the vibration in the direction perpendicular to the conveying direction and the opposite conveying direction and the conveying direction of the conveying path forming member 101, it intersects the direction perpendicular to the conveying direction at the center in the width direction of the conveying path forming member 101, The protrusions 102 and the protrusions 103 that are inclined at a predetermined angle in the direction in which the conveyance direction surfaces 102a and 103b face each other vibrate. When the solid 2 to be transported is placed on the protrusions 102 and 103 of the transport path forming member 101, the protrusions 102 and the protrusions 103 are perpendicular to the extending directions of the protrusions 102 and the protrusions 103. An attempt is made to transport the solid 2, and the solid 2 is transported in the transport direction while being moved toward the center in the width direction of the transport path forming member 101.
[0148]
That is, on the upper surface of the transport path forming member 101, there are formed a protrusion 102 and a protrusion 103 formed at a central portion in the width direction of the transport path forming member 101 and inclined by a predetermined angle in the direction in which the transport direction faces each other. The protrusion 102 and the protrusion 103 have different friction coefficients between the surfaces 102b and 103b on the downstream side in the transport direction and the surfaces 102c and 103c on the upstream side in the transport direction, with the apex portions of the tip portions 102a and 103a as boundaries. The surfaces 102b and 103b on the downstream side in the transport direction are formed in a state where the friction coefficient is larger than the surfaces 102c and 103c on the upstream side in the transport direction.
[0149]
Therefore, when the protrusion 102 and the protrusion 103 vibrate in the transport direction and the counter-transport direction due to the environmental vibration in the transport direction and the counter-transport direction indicated by the double arrows in FIG. 11, the solid 2 placed on the protrusion 102 and the protrusion 103 is The solid 2 is transported in a direction perpendicular to the projections 102 and 103 by the projections 102 and the projections 103 in the same manner as described above. As a result, the solid 2 is transported in the transport direction while being moved toward the center of the transport path forming member 101 by the protrusions 102 and 103.
[0150]
Further, when the protrusion 102 and the protrusion 103 vibrate in a direction perpendicular to the transport direction due to environmental vibration, the protrusion 102 and the protrusion 103 are disposed at a predetermined angle with respect to the direction perpendicular to the transport direction. The solid 2 is caught on the surfaces 102b and 103c having a large friction coefficient on the downstream side of the inclined protrusion 102 and the protrusion 103 in the conveying direction, and the solid 2 is conveyed in the conveying direction by the conveying direction component of the inclined protrusion 102 and the protrusion 103. When vibrating in the opposite direction, the surfaces 102c and 103c having a small friction coefficient on the upstream side in the conveyance direction of the protrusion 102 and the protrusion 103 do not get caught by the solid 2, and slipping does not occur and the solid 2 is not pulled back.
[0151]
As a result, the solid 2 can be transported while approaching the central portion of the transport path forming member 101 not only by the vibration of the transport direction component of the environmental vibration but also by the vibration perpendicular to the transport direction. The force can be improved and the solid 2 can be transported at an even faster transport speed, and the solid 2 can be brought closer to the center of the transport path forming member 101.
[0152]
FIG. 12 is a diagram showing a twelfth embodiment of the solid-conveying device of the present invention. In this embodiment, the protrusion is formed in a curved shape in which the central portion in the width direction of the conveying path forming member is depressed downward. This corresponds to claim 12.
[0153]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0154]
FIG. 12 is a side view of a solid transport device 110 to which the twelfth embodiment of the solid transport device of the present invention is applied. The solid transport device 110 of the present embodiment is used in a factory or the like such as a cardboard box. Used to transport the solid 2.
[0155]
In FIG. 12, a solid conveyance device 110 has a conveyance path forming member 111 having a predetermined width extending in the conveyance direction of solid 2 (in the direction of a single arrow in FIG. 12) and arranged long, and a predetermined environment such as a factory. Installed on the floor with vibration.
[0156]
The conveyance path forming member 111 has projections 112 extending in a direction perpendicular to the conveyance direction (the width direction of the conveyance path forming member 111) at predetermined intervals on the conveyance surface. Similar to the embodiment, it is formed so as to project a predetermined amount upward from the surface of the transport path forming member 111, and the surface 112b on the downstream side in the transport direction and the upstream side in the transport direction with the apex portion of the tip 112a as a boundary. The surface 112c is formed in a state where the friction coefficient is different, particularly in a state where the surface 112b on the downstream side in the transport direction has a larger friction coefficient than the surface 112c on the upstream side in the transport direction.
[0157]
As shown in FIG. 12, the protrusion 112 is formed with curved protrusions 113a and 113b that protrude in a direction perpendicular to the conveyance direction, that is, both ends in the width direction of the conveyance path forming member 111 are curved upward. The central portion of the path forming member 111 is formed in a so-called bowl shape formed in a curved shape that is recessed downward.
[0158]
When the solid conveying device 110 according to the present embodiment is installed on a floor surface having a predetermined environmental vibration such as in a factory, the projection 112 causes the front and back directions of the paper surface of FIG. Vibrates in the transport direction. When the solid 2 to be transported is placed on the protrusion 112 of the transport path forming member 111, the solid transport device 1 transports the solid 2 in the transport direction by the protrusion 112 that vibrates in the transport direction and the counter-transport direction. .
[0159]
That is, the protrusion 112 protruding upward by a predetermined amount from the transport path forming member 111 has a friction coefficient different between the surface 112b on the downstream side in the transport direction and the surface 112c on the upstream side in the transport direction with the apex portion of the tip end portion 112a as a boundary. In particular, the surface 112b on the downstream side in the transport direction is formed with a larger friction coefficient than the surface 112c on the upstream side in the transport direction, and both end portions in the width direction of the transport path forming member 111 are curved upward and protrude. The curved protruding portions 113a and 113b are formed, and the central portion of the conveyance path forming member 111 is formed in a so-called bowl shape formed in a curved shape that is depressed downward.
[0160]
Therefore, when the solid 2 is placed on the protrusion 112 and the protrusion 112 vibrates in the transport direction due to environmental vibration, the surface 112b having a large friction coefficient on the downstream side in the transport direction from the tip 112a of the protrusion 112 appropriately The solid 2 is reliably moved in the transport direction toward the transport direction in the hooked state. Next, when the projection 112 vibrates in the anti-conveyance direction, the surface 112c on the upstream side in the conveyance direction with respect to the tip 112a of the projection 112 has a small friction coefficient. The solid 2 is not returned to the original state.
[0161]
Further, the protrusion 112 is formed in a bowl shape having curved projecting portions 113a and 113b in which directions perpendicular to the transport direction (both ends in the width direction of the transport path forming member 111) are curved upward. The solid 2 is sequentially transported in the transport direction while being moved toward the center of the transport path forming member 111 due to the hook shape of the protrusion 112 that vibrates in the transport direction and the counter-transport direction.
[0162]
Therefore, the solid conveyance device 110 of the present embodiment collects the solid 2 at the central portion of the conveyance path forming member 111 with the hook-shaped protrusion 112, and prevents the solid 2 from falling from the protrusion 112. It can be reliably transported.
[0163]
FIG. 13 is a view showing a thirteenth embodiment of the solid-state transport device of the present invention. In the present embodiment, the protrusion has a substantially V-shaped central portion in the width direction of the transport path forming member and is recessed downward in a square shape. It is formed in a letter shape and corresponds to claim 13.
[0164]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0165]
FIG. 13 is a side view of a solid conveyance device 120 to which the thirteenth embodiment of the solid conveyance device of the present invention is applied. The solid conveyance device 120 according to the present embodiment is used in a factory or the like such as a cardboard box. Used to transport the solid 2.
[0166]
In FIG. 13, the solid transport device 120 includes a transport path forming member 121 having a predetermined width extending in the transport direction of the solid 2 (in the direction of a single arrow in FIG. 13), and is disposed in a predetermined environment such as a factory. Installed on the floor with vibration.
[0167]
The conveyance path forming member 121 is formed with projections 122 extending on the conveyance surface in a direction orthogonal to the conveyance direction (width direction of the conveyance path forming member 121) at a predetermined interval. 121 is formed so as to protrude from the surface 121 by a predetermined amount, and the friction coefficient is different between the surface 122b on the downstream side in the transport direction and the surface 122c on the upstream side in the transport direction, with the apex portion of the tip 122a as a boundary. In particular, the surface 122b on the downstream side in the transport direction is formed in a state where the friction coefficient is larger than the surface 122c on the upstream side in the transport direction.
[0168]
Further, the protrusion 122 is formed in a V shape in which a central portion thereof is recessed downward in a square shape in the width direction of the transport path forming member 121.
[0169]
When the solid conveyance device 120 according to the present embodiment is installed on a floor surface having a predetermined environmental vibration such as in a factory, the projection 122 causes the conveyance direction and the opposite direction of the paper surface of FIG. Vibrates in the transport direction. And the protrusion 122 is formed in the V shape where the center part was depressed below in the width direction of the conveyance path formation member 121. On the protrusion 122 of this conveyance path formation member 121, for example, a rectangular box shape is formed. When the solid 2 (for example, a cardboard box) is placed, the corner of the solid 2 is placed in a state where the corner of the solid 2 is aligned with the V-shaped recessed corner of the V-shaped protrusion 122 as shown in FIG. . When the solid 2 is placed on the protrusion 122 in this state, the protrusion 122 is placed on the protrusion 122 in contact with the two surfaces of the box-shaped solid 2.
[0170]
In the solid transport device 1, environmental vibration is transmitted to the protrusion 122 via the transport path forming member 121, and the protrusion 122 vibrates in the transport direction and the counter-transport direction to transport the solid 2 placed on the protrusion 122. Transport in the direction.
[0171]
That is, the protrusion 122 protruding upward by a predetermined amount from the transport path forming member 121 has a friction coefficient different between the surface 122b on the downstream side in the transport direction and the surface 122c on the upstream side in the transport direction with the apex portion of the tip end portion 122a as a boundary. In particular, the surface 122b on the downstream side in the transport direction is formed with a larger coefficient of friction than the surface 122c on the upstream side in the transport direction, and is perpendicular to the width direction of the transport path forming member 122, that is, the transport direction. Since the solid portion 2 is placed on the protrusion 122 and the protrusion 122 vibrates in the transport direction due to environmental vibration, the center portion is transported from the tip end portion 122a of the protrusion 122. The surface 122b having a large friction coefficient on the downstream side in the direction reliably moves the solid 2 in the transport direction toward the transport direction in a state where the solid 2 is properly hooked. Next, when the protrusion 122 vibrates in the anti-conveying direction, the surface on the upstream side in the conveying direction from the tip 122a of the protrusion 122 is formed with a small coefficient of friction, so that the protrusion 122 does not get caught by the solid 2 and slips with the solid 2. The solid 2 is returned to the original state and the solid 2 is not returned to the original state.
[0172]
Since the protrusion 122 is formed in a V shape having a depressed central portion in a direction perpendicular to the conveying direction (both ends in the width direction of the conveying path forming member 121), the protrusion 122 contacts the two surfaces of the fixed 2. , The vibration of the projection 122 is more reliably transmitted to the solid 2, and the solid 2 can be transported with a larger transport force and at a higher speed, and the fixed 2 can be transported at a central portion perpendicular to the transport direction. The solid 2 can be appropriately transported in the transport direction while preventing the solid 2 from falling from the protrusion 122.
[0173]
FIG. 14 is a diagram showing a fourteenth embodiment of a solid-conveying device according to the present invention, and this embodiment is provided with a vibration transmitting member that transmits environmental vibration to a conveying path forming member. 14 corresponds.
[0174]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0175]
FIG. 14 is a front view of a solid conveyance device 130 to which the fourteenth embodiment of the solid conveyance device of the present invention is applied. The solid conveyance device 130 according to the present embodiment is a cardboard box or the like in a factory or the like. Used to transport the solid 2.
[0176]
In FIG. 14, a solid conveyance device 130 has a conveyance path forming member 3 having a predetermined width extending in the conveyance direction of solid 2 (in the direction of a single arrow in FIG. 14) and arranged long, and a predetermined environment such as a factory. Installed on the floor with vibration.
[0177]
The conveyance path forming member 3 is formed with projections 4 extending in a direction orthogonal to the conveyance direction (width direction of the conveyance path forming member 3) at predetermined intervals on the conveyance surface. Similar to the embodiment, it is formed so as to protrude upward by a predetermined amount from the surface of the transport path forming member 3, and with the apex portion of the tip 4a as a boundary, the surface 4b on the downstream side in the transport direction and the upstream side in the transport direction The surface 4c is formed in a state where the friction coefficient is different, particularly in a state where the surface 4b on the downstream side in the transport direction has a larger friction coefficient than the surface 4c on the upstream side in the transport direction.
[0178]
Further, a vibration transmission member 131 is attached to the conveyance path forming member 3, and the vibration transmission member 131 transmits the environmental vibration of the floor surface of a factory or the like to the conveyance path formation member 3 satisfactorily.
[0179]
When the solid conveyance device 130 according to the present embodiment is installed on a floor surface having predetermined environmental vibration such as in a factory, the vibration transmission member 131 transmits this environmental vibration to the conveyance path as indicated by a double arrow in FIG. Transmission to the forming member 3 causes the conveying path forming member 3 to vibrate, and the protrusion 4 vibrates at least in the conveying direction and the counter-conveying direction. When the solid 2 to be transported is placed on the protrusion 4 of the transport path forming member 3, the solid transport device 130 transports the solid 2 in the transport direction by the protrusion 4 that vibrates in the transport direction and the counter-transport direction. .
[0180]
That is, the vibration transmission member 131 transmits environmental vibration to the conveyance path forming member 3 satisfactorily, and the protrusion 4 vibrates due to the vibration of the conveyance path formation member 3. The protrusion 4 is in a state in which the coefficient of friction is different between the surface 4b on the downstream side in the transport direction and the surface 4c on the upstream side in the transport direction with the apex portion of the tip portion 4a as a boundary, in particular, the surface 4b on the downstream side in the transport direction is in the transport direction. Since the friction coefficient is larger than that of the upstream surface 4c, when the solid 2 is placed on the protrusion 4 and the protrusion 4 vibrates in the transport direction due to environmental vibration, the tip 4a of the protrusion 4 The solid 2 is reliably moved in the transport direction toward the transport direction in a state where the surface 4b having a large friction coefficient on the downstream side in the transport direction catches the solid 2. Next, when the protrusion 4 vibrates in the counter-conveying direction, the surface c on the upstream side in the conveying direction from the tip 4a of the protrusion 4 has a small coefficient of friction, so that the protrusion 4 does not get caught by the solid 2 and slides with the solid 2. There is no return and the solid 2 is not pulled back to its original state.
[0181]
When the vibration in the conveyance direction and the vibration in the anti-conveyance direction of the protrusion 4 are repeated by the environmental vibration, the solid 2 is sequentially conveyed in the conveyance direction.
[0182]
Therefore, the solid conveyance device 130 according to the present embodiment conveys the solid 2 more reliably because the vibration transmission member 131 appropriately transmits the environmental vibration to the conveyance path forming member 3 to vibrate the protrusions 4. The conveyance force can be increased and the conveyance speed can be improved.
[0183]
FIG. 15 is a diagram showing a fifteenth embodiment of the solid-state transport device of the present invention. In this embodiment, the vibration transmission member that transmits environmental vibration to the transport path transmission member is a vibration frequency range of environmental vibration. This corresponds to the fifteenth aspect.
[0184]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0185]
FIG. 15 is a front view of a solid conveying device 140 to which the fifteenth embodiment of the solid conveying device of the present invention is applied. The solid conveying device 140 according to the present embodiment is used in a factory or the like such as a cardboard box. Used to transport the solid 2.
[0186]
In FIG. 15, the solid transport device 140 has a transport path forming member 3 having a predetermined width extending in the transport direction of the solid 2 (in the direction of a single arrow in FIG. 15), and is disposed long. Installed on the floor with vibration.
[0187]
The conveyance path forming member 3 is formed with projections 4 extending in a direction orthogonal to the conveyance direction (width direction of the conveyance path forming member 3) at predetermined intervals on the conveyance surface. Similar to the embodiment, it is formed so as to protrude upward by a predetermined amount from the surface of the transport path forming member 3, and with the apex portion of the tip 4a as a boundary, the surface 4b on the downstream side in the transport direction and the upstream side in the transport direction The surface 4c is formed in a state where the friction coefficient is different, particularly in a state where the surface 4b on the downstream side in the transport direction has a larger friction coefficient than the surface 4c on the upstream side in the transport direction.
[0188]
Further, a vibration transmission member 141 is attached to the conveyance path forming member 3, and the vibration transmission member 141 transmits the environmental vibration of the floor surface of a factory or the like to the conveyance path formation member 3 satisfactorily.
[0189]
Further, a vibration transmission member 141 is attached to the conveyance path forming member 3, and the vibration transmission member 141 has a resonance frequency included in the frequency range of environmental vibration. Therefore, the vibration transmission member 141 resonates at a resonance frequency among the environmental vibrations on the floor surface of a factory or the like, and expands the environmental vibrations and transmits them to the conveyance path forming member 3.
[0190]
When the solid conveyance device 140 according to the present embodiment is installed on a floor surface having predetermined environmental vibration such as in a factory, the vibration transmission member 141 has a frequency range of environmental vibration as shown by a double-headed arrow in FIG. The environmental vibration is resonated at a specific resonance frequency contained therein, and the environmental vibration is magnified and transmitted to the conveyance path forming member 3. The conveyance path forming member 3 is caused by the enlarged environmental vibration transmitted from the vibration transmission member 141. Vibrates greatly. The protrusion 4 vibrates at least in the transport direction and the counter-transport direction by the vibration of the transport path forming member 3. When the solid 2 to be transported is placed on the protrusion 4 of the transport path forming member 3, the solid transport device 140 transports the solid 2 in the transport direction by the protrusion 4 that vibrates in the transport direction and the counter-transport direction. .
[0191]
That is, the protrusion 4 has a state in which the coefficient of friction is different between the surface 4b on the downstream side in the transport direction and the surface 4c on the upstream side in the transport direction with the apex portion of the tip portion 4a as a boundary. Since the friction coefficient is larger than the surface 4c on the upstream side in the transport direction, when the solid 2 is placed on the protrusion 4 and the protrusion 4 vibrates in the transport direction due to environmental vibration, the tip of the protrusion 4 The surface 4b having a large friction coefficient on the downstream side in the transport direction from 4a moves the solid 2 in the transport direction with certainty toward the transport direction with the solid 2 being hooked. Next, when the protrusion 4 vibrates in the counter-conveying direction, the surface c on the upstream side in the conveying direction from the tip 4a of the protrusion 4 has a small coefficient of friction, so that the protrusion 4 does not get caught by the solid 2 and slides with the solid 2. There is no return and the solid 2 is not pulled back to its original state.
[0192]
When the vibration in the conveyance direction and the vibration in the opposite conveyance direction of the protrusion 4 are repeated by the environmental vibration, the solid 2 of the conveyance path forming member 3 is sequentially conveyed in the conveyance direction.
[0193]
Therefore, in the solid transport device 140 of the present embodiment, the vibration transmission member 141 having a resonance frequency in the vibration frequency range of the environmental vibration expands the environmental vibration and transmits it to the transport path forming member 3 to enlarge the protrusion 4. Since it vibrates, the solid 2 can be more reliably transported, the transport force can be further increased, and the transport speed can be further improved.
[0194]
FIG. 16 is a view showing a sixteenth embodiment of the solid-conveying device of the present invention, and this embodiment is provided with a guide member for guiding the solid on the protrusion, and corresponds to claim 16. To do.
[0195]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0196]
FIG. 16 is a front view of a solid conveying device 150 to which the sixteenth embodiment of the solid conveying device of the present invention is applied. The solid conveying device 150 according to the present embodiment is used in a factory or the like such as a cardboard box. Used to transport the solid 2.
[0197]
In FIG. 16, the solid transport device 150 includes a transport path forming member 3 having a predetermined width extending in the transport direction of the solid 2 (in the direction of a single arrow in FIG. 16), and is disposed in a predetermined environment such as a factory. Installed on the floor with vibration.
[0198]
The conveyance path forming member 3 is formed with projections 4 extending in a direction orthogonal to the conveyance direction (width direction of the conveyance path forming member 3) at predetermined intervals on the conveyance surface. Similar to the embodiment, it is formed so as to protrude upward by a predetermined amount from the surface of the transport path forming member 3, and with the apex portion of the tip 4a as a boundary, the surface 4b on the downstream side in the transport direction and the upstream side in the transport direction The surface 4c is formed in a state where the friction coefficient is different, particularly in a state where the surface 4b on the downstream side in the transport direction has a larger friction coefficient than the surface 4c on the upstream side in the transport direction.
[0199]
The conveyance path forming member 3 is provided with guide plates (guide members) 151 and 152 at both ends in the width direction. The guide plate 151 and the guide plate 152 have a predetermined amount from the front end portion 4a of the protrusion 4. It is arranged in a state of protruding upward.
[0200]
When the solid conveyance device 150 according to the present embodiment is installed on a floor surface having predetermined environmental vibrations such as in a factory, the conveyance path forming member 3 vibrates due to the environmental vibrations as indicated by a double arrow in FIG. Thus, the protrusion 4 vibrates at least in the transport direction and the counter-transport direction due to the vibration of the transport path forming member 3. When the solid 2 to be transported is placed on the protrusion 4 of the transport path forming member 3, the solid transport device 150 guides the solid 2 by the guide plate 151 and the guide plate 152, while transporting in the transport direction and counter-transport. The solid 2 is transported in the transport direction by the protrusions 4 that vibrate in the direction.
[0201]
That is, the solid 2 transported in the transport direction by the protrusion 4 is guided by the guide plate 151 and the guide plate 152 disposed at both ends in the width direction of the transport path forming member 3, and the solid 2 falls from the top of the protrusion 4. To prevent it.
[0202]
Therefore, the solid transport device 150 according to the present embodiment can reliably hold the solid 2 on the projection 4 by the guide plate 151 and the guide plate 152 and prevent the solid 2 from falling from the projection 4.
[0203]
FIG. 17 is a view showing a seventeenth embodiment of a solid conveying device of the present invention, and this embodiment is one in which a cylindrical guide member is disposed on a protrusion, and corresponds to claim 17. Is.
[0204]
The present embodiment is applied to the same solid transport apparatus as in the first embodiment, and in the description of the present embodiment, it is the same as the solid transport apparatus in the first embodiment. The same reference numerals are given to the components, and detailed description thereof will be omitted.
[0205]
FIG. 17 is a front view of a solid transport device 160 to which the seventeenth embodiment of the solid transport device of the present invention is applied. The solid transport device 160 of the present embodiment is a cardboard box or the like in a factory or the like. Used to transport the solid 2.
[0206]
In FIG. 17, the solid transport device 160 has a transport path forming member 3 having a predetermined width extending in the transport direction of the solid 2 (in the direction of a single arrow in FIG. 17), and is disposed in a predetermined environment such as a factory. Installed on the floor with vibration.
[0207]
The conveyance path forming member 3 is formed with projections 4 extending in a direction orthogonal to the conveyance direction (width direction of the conveyance path forming member 3) at predetermined intervals on the conveyance surface. Similar to the embodiment, it is formed so as to protrude upward by a predetermined amount from the surface of the transport path forming member 3, and with the apex portion of the tip 4a as a boundary, the surface 4b on the downstream side in the transport direction and the upstream side in the transport direction The surface 4c is formed in a state where the friction coefficient is different, particularly in a state where the surface 4b on the downstream side in the transport direction has a larger friction coefficient than the surface 4c on the upstream side in the transport direction.
[0208]
Further, the conveyance path forming member 3 is provided with a cylindrical guide plate 161 covering the upper side from both ends in the width direction, and the guide plate 161 protrudes upward by a predetermined amount from the distal end portion 4 a of the protrusion 4. Both wall portions 161a and 161b and an upper wall portion 161c covering the upper portion are provided.
[0209]
When the solid conveyance device 160 of the present embodiment is installed on a floor surface having predetermined environmental vibrations such as in a factory, the conveyance path forming member 3 vibrates due to the environmental vibrations as shown by a double arrow in FIG. Thus, the protrusion 4 vibrates at least in the transport direction and the counter-transport direction due to the vibration of the transport path forming member 3. When the solid 2 to be transported is placed on the protrusion 4 of the transport path forming member 3, the solid transport device 160 guides the solid 2 by the cylindrical guide plate 161, while transporting and anti-transporting the solid 2. The solid 2 is transported in the transport direction by the protrusions 4 that vibrate at a distance.
[0210]
That is, the solid guide 2 that is transported in the transport direction by the protrusions 4 is guided by the cylindrical guide plates 161 that are disposed so as to cover the upper portions of the protrusions 4 from both ends in the width direction of the transport path forming member 3. 2 is prevented from dropping from above the protrusion 4.
[0211]
Therefore, the solid transport device 160 of the present embodiment can reliably hold the solid 2 on the protrusion 4 by the guide plate 161 and prevent the solid transport apparatus 160 from dropping from the protrusion 4.
[0212]
FIG. 18 is a view showing an eighteenth embodiment of the solid state transport device of the present invention, and this embodiment corresponds to claim 18.
[0213]
FIG. 18 is a front view of a main part of a solid transport device 170 to which an eighteenth embodiment of the solid transport device of the present invention is applied. The solid transport device 170 of the present embodiment is a cardboard box in a factory or the like. It is used to transport a solid 171 such as.
[0214]
In FIG. 18, the solid transport device 170 includes a transport member 172 having a predetermined width and a predetermined length sufficient to place the solid 171, and the transport member 172 has a predetermined direction (transport A plurality of protrusions 173 extending in a direction perpendicular to the direction) are formed at a predetermined interval. The protrusion 173 is formed to protrude downward from the lower end surface of the conveying member 172 by a predetermined amount. The protrusion 173 has a friction coefficient different between the surface 173b on the conveyance direction (arrow direction in FIG. 18) side and the surface 173c on the opposite side to the conveyance direction (counter conveyance direction side) with the apex portion of the tip portion 173a as a boundary. In particular, the surface 173c on the side opposite to the conveyance direction is formed with a larger coefficient of friction than the surface 173b on the conveyance direction side.
[0215]
Next, the operation of the present embodiment will be described. The solid transport device 1 is disposed on a floor surface 174 having a predetermined environmental vibration such as in a factory with the projection 173 facing the floor surface 174, the projection 173 is orthogonal, and the friction coefficient of the projection 173 is small. With the other surface 173c as the front side in the traveling direction, the solid 171 is disposed on the floor surface 171 in a direction (transport direction) in which it is desired to be transported. The solid 171 to be transported is placed on the flat surface of the transport member 172 of the solid transport device 1 installed on the floor surface 171.
[0216]
As described above, when the front side in the traveling direction is arranged on the floor surface 174 with the transport direction, the solid 171 is placed on the transport member 172, and the floor surface 174 is environmentally vibrated, among the environmental vibrations, The conveyance member 172 on which the solid 171 is placed by vibration is self-propelled in the conveyance direction and conveys the solid 171.
[0217]
That is, since the protrusion 173 is formed with a friction coefficient larger than that of the surface 173b on the counter-transport direction side than the surface 173b on the counter-transport direction side with the apex portion of the tip portion 173a as a boundary, the floor surface 174 is the environment surface. When vibrating in the transport direction due to the vibration, the surface having a large friction coefficient on the side opposite to the transport direction from the tip 173a of the protrusion 173 is in a state where the floor surface 174 is pulled, and the solid transport device 170 moves in the transport direction, The solid 2 is moved in the transport direction. Next, when the floor surface 174 vibrates in the anti-conveyance direction, the surface 173b on the conveyance direction side from the tip 173a of the protrusion 173 is formed with a small coefficient of friction, so that the surface 173b on the conveyance direction side is pulled by the floor surface 174. Therefore, the solid conveying device 170 is not pulled back due to a slipping state.
[0218]
When the vibration in the transport direction and the vibration in the counter-transport direction due to the environmental vibration of the floor surface 170 are repeated, the solid transport device 170 on which the solid 2 is placed sequentially moves in the transport direction and sequentially transports the solid 2 in the transport direction. To do.
[0219]
As described above, since the solid-state transport device 1 according to the present embodiment does not have a drive source itself, it is small and inexpensive, has high reliability, and exhibits predetermined environmental vibration. Just by installing in an environment, the solid 2 can be transported in the horizontal direction and the downward gradient direction and the solid 2 can be transported in the upward gradient direction by utilizing environmental vibration.
[0220]
The invention made by the present inventor has been specifically described based on the preferred embodiments. However, the present invention is not limited to the above, and various modifications can be made without departing from the scope of the invention. Needless to say.
[0221]
【The invention's effect】
According to the solid transport device of the first and second aspects of the present invention, the solid transport device itself does not have a drive source, the projection vibrates due to environmental vibration, and the solid on the projection is moved in the transport direction in the upward gradient direction. It can be transported appropriately, and the fixed transport device can be made small, light, inexpensive and reliable. In addition, since the protrusion has a sharpened tip with a half-moon shape and the tip is inclined at a predetermined angle in the anti-transport direction, the protrusion that vibrates in the transport direction due to environmental vibration to the solid By increasing the catching force, the solid can be transported with a larger transport force, and the transport speed can be improved.
[0222]
According to the solid conveying device of the third aspect of the present invention, the solid can be conveyed with a larger conveying force, and the projection is deformed by the environmental vibration that vibrates in the vertical direction of the conveying path forming member. Can be transported in the transport direction, and the transport speed can be further improved.
[0223]
According to the solid conveying device of the invention of claim 4, at least the protrusion can resonate with the environmental vibration and the protrusion can be vibrated greatly, and the solid can be conveyed with a larger conveying force to further improve the conveying speed. Can be made.
[0224]
According to the solid conveying device of the fifth aspect of the invention, it is possible to efficiently transmit the environmental vibration from the conveying path forming member to the protrusion, and to vibrate the protrusion more greatly, and to convey the solid with a larger conveying force. Thus, the conveyance speed can be further improved.
[0225]
According to the solid conveying device of the sixth aspect of the present invention, it is possible to suppress the vibration that inhibits the conveyance from being transmitted to the protrusion, and it is possible to convey the solid more appropriately.
[0226]
According to the solid conveying device of the seventh aspect of the invention, it is possible to impart a different conveying force to the solid on the protrusion by the protrusion having a different deformation amount, thereby further improving the solid conveying speed, Solids can be transported smoothly.
[0227]
According to the solid transport device of the eighth aspect of the present invention, it is possible to further improve the transport speed of the solid by applying a transport force of a different size to the solid on the protrusion by the protrusion having a different resonance frequency. , Solids can be transported smoothly.
[0228]
According to the solid conveying device of the ninth aspect of the present invention, the conveying force in the conveying direction with a short interval is applied to the solid by the divided and displaced protrusions, and the solid conveying speed can be further improved. In addition, the solid can be transported smoothly.
[0229]
According to the solid conveying device of the tenth aspect of the present invention, the solid can be safely conveyed in the conveying direction while collecting the solid in the direction in which the protrusions face each other.
[0230]
According to the solid transport device of the eleventh aspect of the present invention, the solid is collected in the central portion of the transport path forming member by forming a bowl shape and appropriately transported while preventing the solid from dropping from the protrusion. be able to.
[0231]
According to the solid transport device of the twelfth aspect of the invention, in addition to the effect of the tenth aspect, the effect of the first aspect can be achieved.
[0232]
According to the solid conveying device of the thirteenth aspect of the present invention, the environmental vibration can be transmitted to the conveying path forming member more efficiently, and the conveying force that the projection acts on the solid can be increased, and the conveying speed can be further increased. Can be improved.
[0233]
According to the solid conveying device of the fourteenth aspect of the present invention, it is possible to further efficiently and expand the environmental vibration and transmit it to the conveying path forming member, thereby further increasing the conveying force that the protrusion acts on the solid. The conveyance speed can be further improved.
[0234]
According to the solid transport device of the fifteenth aspect of the present invention, the course of the solid on the protrusion can be determined, and the solid can be prevented from falling from the protrusion.
[0235]
According to the solid transport device of the sixteenth aspect of the present invention, it is possible to determine the course of the solid on the protrusion, and more appropriately prevent the solid from falling from the protrusion.
[Brief description of the drawings]
FIG. 1 is a perspective view of a main part of a solid transport device to which a first embodiment of a solid transport device of the present invention is applied.
FIG. 2 is a front view of an essential part of a solid transport device to which a second embodiment of the solid transport device of the present invention is applied.
FIG. 3 is a front view of an essential part of a solid transport device to which a third embodiment of a solid transport device of the present invention is applied.
FIG. 4 is a front view of a main part of a solid transport device to which a fourth embodiment of the solid transport device of the present invention is applied.
FIG. 5 is a front view of an essential part of a solid transport device to which a fifth embodiment of a solid transport device of the present invention is applied.
FIG. 6 is a front view of an essential part of a solid transport device to which a sixth embodiment of a solid transport device of the present invention is applied.
FIG. 7 is a front view of an essential part of a solid transport device to which a seventh embodiment of a solid transport device of the present invention is applied.
FIG. 8 is a front view of a main part of a solid transport device to which an eighth embodiment of the solid transport device of the present invention is applied.
FIG. 9 is a perspective view of main parts of a solid transport device to which a ninth embodiment of a solid transport device of the present invention is applied.
FIG. 10 is a perspective view of a main part of a solid transport device to which a tenth embodiment of a solid transport device of the present invention is applied.
FIG. 11 is a perspective view of a main part of a solid transport device to which an eleventh embodiment of the solid transport device of the present invention is applied.
FIG. 12 is a side view of an essential part of a solid transport device to which a twelfth embodiment of a solid transport device of the present invention is applied.
FIG. 13 is a side view of a main part of a solid transport device to which a thirteenth embodiment of a solid transport device of the present invention is applied.
FIG. 14 is a perspective view of a main part of a solid conveyance device to which a fourteenth embodiment of a solid conveyance device of the present invention is applied.
FIG. 15 is a perspective view of a main part of a solid transport device to which a fifteenth embodiment of a solid transport device of the present invention is applied.
FIG. 16 is a perspective view of a main part of a solid conveyance device to which a sixteenth embodiment of a solid conveyance device of the present invention is applied.
FIG. 17 is a perspective view of main parts of a solid transport device to which a seventeenth embodiment of a solid transport device of the present invention is applied.
FIG. 18 is a front view of a solid conveyance device to which an eighteenth embodiment of the solid conveyance device of the present invention is applied.
[Explanation of symbols]
1 Solid conveying device
2 Solid
3 Transport path forming member
4 protrusions
4a Tip
4b, 4c surface
10 Solid conveying device
11 Protrusions
11a Tip
11b, 11c surface
20 Solid conveying device
21 Protrusions
21a Tip
21b, 21c surface
30 Solid conveying device
31 Conveying path forming member
32 Protrusions
32a Tip
32b, 32c surface
40 Solid conveying device
41 Conveying path forming member
42 Protrusions
42a Tip
42b, 42c surface
50 Solid conveying device
51 Conveying path forming member
52 Protrusions
52a Tip
52b, 52c surface
60 Solid conveying device
61 Conveying path forming member
62 Protrusion
62a Tip
62b, 62c surface
70 Solid conveying device
71 Conveying path forming member
72 Protrusions
72a Tip
72b, 72c surface
80 Solid conveying device
81 Conveying path forming member
82 projections
82a Tip
82b, 82c surface
83 projection
83a Tip
83b, 83c surface
90 Solid conveying device
91 Conveying path forming member
92 Protrusions
92a Tip
92b, 92c surface
100 Solid conveying device
101 Conveying path forming member
102 protrusion
102a tip
102b, 102c surface
103 protrusion
103a tip
103b, 103c surface
110 Solid conveying device
111 Conveying path forming member
112 protrusion
112a Tip
112b, 112c surface
113a, 113b curved protrusion
120 Solid conveying device
121 Conveying path forming member
122 Protrusions
122a Tip
122b, 122c surface
130 Solid Conveyor
131 Vibration transmission member
140 Solid conveying device
141 Vibration transmission member
150 Solid conveying device
151, 152 Guide plate
160 Solid conveying device
161 Guide plate
161a, 161b Wall
161c Upper wall part
170 Solid conveying device
171 solid
172 Conveying member
173 Protrusion
173a Tip
173b, 173c surface
174 Floor

Claims (16)

所定の振動環境中に設置され、当該環境振動を利用して、固体を所定の搬送方向に搬送する固体搬送装置であって、所定幅を有して前記搬送方向に所定距離にわたって前記振動環境中に配設され所定厚さの板状の搬送路形成部材と、前記搬送路形成部材の表面に当該表面から略上方に向かって突出するとともに前記搬送路形成部材の略幅方向に延在して複数形成された突起とを備え、前記突起は、前記搬送方向の断面が半月形状に尖りかつ前記搬送方向の上流側に傾斜した状態で形成され、前記環境振動により前記突起が前記搬送方向と反搬送方向に振動して、前記突起上に載置された前記固体を前記搬送方向に搬送することを特徴とする固体搬送装置。  A solid-state transport device that is installed in a predetermined vibration environment and transports a solid in a predetermined transport direction by using the environmental vibration, and has a predetermined width in the vibration environment over a predetermined distance in the transport direction. A plate-like conveyance path forming member having a predetermined thickness, and protruding substantially upward from the surface on the surface of the conveyance path forming member and extending in a substantially width direction of the conveyance path forming member. A plurality of protrusions formed, wherein the protrusions are formed in a state in which a cross section in the transport direction is pointed in a half-moon shape and is inclined upstream in the transport direction, and the protrusions are opposite to the transport direction by the environmental vibration. A solid conveying device characterized in that it vibrates in a conveying direction and conveys the solid placed on the protrusion in the conveying direction. 前記突起は、当該先端部を境にして前記搬送方向における下流側の面の摩擦係数が、前記搬送方向における上流側の面の摩擦係数よりも大きく形成されていることを特徴とする請求項1に記載の固体搬送装置。  2. The protrusion is characterized in that a friction coefficient of a downstream surface in the transport direction is larger than a friction coefficient of an upstream surface in the transport direction with the tip portion as a boundary. The solid conveying apparatus described in 1. 前記突起は、前記固体が載置された状態で、前記環境振動により前記搬送方向及び反搬送方向に所定量変形可能に形成されていることを特徴とする請求項2に記載の固体搬送装置。  3. The solid transport device according to claim 2, wherein the protrusion is formed to be deformable by a predetermined amount in the transport direction and the counter-transport direction by the environmental vibration in a state where the solid is placed. 前記突起の共振振動数が、環境振動数範囲に含まれていることを特徴とする請求項3に記載の固体搬送装置。  4. The solid conveying device according to claim 3, wherein a resonance frequency of the protrusion is included in an environmental frequency range. 前記搬送路形成部材が、振動伝達率の良好な部材で形成されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の固体搬送装置。  The solid conveyance device according to any one of claims 1 to 4, wherein the conveyance path forming member is formed of a member having a good vibration transmissibility. 前記搬送路形成部材が、所定の振動吸収部材で形成されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の固体搬送装置。  The solid transport device according to claim 1, wherein the transport path forming member is formed of a predetermined vibration absorbing member. 前記突起の変形量が搬送方向に順次異ならされていることを特徴とする請求項1乃至請求項6のいずれか1項に記載の固体搬送装置。  The solid conveyance device according to any one of claims 1 to 6, wherein the deformation amount of the protrusion is sequentially changed in a conveyance direction. 前記突起の共振振動数が、搬送方向に順次異ならされていることを特徴とする請求項1乃至請求項7のいずれか1項に記載の固体搬送装置。  The solid conveyance device according to any one of claims 1 to 7, wherein a resonance frequency of the protrusion is sequentially changed in a conveyance direction. 前記突起は、前記搬送路形成部材の幅方向に複数に分割されているとともに、当該分割された各突起が前記搬送方向に所定量位置ずれした状態で形成されていることを特徴とする請求項1乃至請求項8のいずれか1項に記載の固体搬送装置。  The projection is divided into a plurality in the width direction of the conveyance path forming member, and each of the divided projections is formed in a state where the projection is displaced by a predetermined amount in the conveyance direction. The solid conveying device according to any one of claims 1 to 8. 前記複数個の突起は、前記搬送路形成部材の幅方向に2分割されていると共に、当該分割された各突起が相対向する方向に所定角度傾斜して形成されていることを特徴とする請求項1乃至請求項8のいずれか1項に記載の固体搬送装置。  The plurality of protrusions are divided into two in the width direction of the transport path forming member, and each of the divided protrusions is formed to be inclined at a predetermined angle in the opposing direction. The solid conveyance device according to any one of claims 1 to 8. 所定の振動環境中に設置され、当該環境振動を利用して、固体を所定の搬送方向に搬送する固体搬送装置であって、所定幅を有して前記搬送方向に所定距離にわたって前記振動環境中に配設され所定厚さの板状の搬送路形成部材と、前記搬送路形成部材の表面に当該表面から略上方に向かって突出するとともに前記搬送路形成部材の略幅方向に延在して複数形成された突起とを備え、
前記突起は、前記搬送路形成部材の幅方向両端部が上方に湾曲して突出した樋形状に形成され、前記環境振動により前記突起が前記搬送方向と反搬送方向に振動して、前記突起上に載置された前記固体を前記搬送方向に搬送することを特徴とする固体搬送装置。
A solid-state transport device that is installed in a predetermined vibration environment and transports a solid in a predetermined transport direction by using the environmental vibration, and has a predetermined width in the vibration environment over a predetermined distance in the transport direction. A plate-like conveyance path forming member having a predetermined thickness, and protruding substantially upward from the surface to the surface of the conveyance path forming member and extending in a substantially width direction of the conveyance path forming member. A plurality of formed protrusions,
The protrusion is formed in a bowl shape in which both ends in the width direction of the transport path forming member are curved upward and protruded, and the protrusion vibrates in the transport direction and the counter-transport direction due to the environmental vibration, and A solid transport device for transporting the solid placed on the substrate in the transport direction.
前記突起は所定の鋭角状に尖った先端部を有し、当該先端部が前記反搬送方向に所定角度傾いた状態で形成され、前記搬送方向側の面の摩擦係数と前記反搬送方向側の面の摩擦係数とが当該先端部を境にして異なっていることを特徴とする請求項11に記載の固体搬送装置。  The protrusion has a tip portion that is sharpened at a predetermined acute angle, and the tip portion is formed in a state inclined at a predetermined angle in the anti-transport direction, and the friction coefficient of the surface on the transport direction side and the anti-transport direction side The solid conveyance device according to claim 11, wherein the coefficient of friction of the surface is different from the tip portion. さらに、前記環境振動を前記搬送路形成部材に伝達する振動伝達部材を備えていることを特徴とする請求項1乃至請求項12のいずれか1項に記載の固体搬送装置。  The solid conveyance device according to any one of claims 1 to 12, further comprising a vibration transmission member that transmits the environmental vibration to the conveyance path forming member. 前記振動伝達部材は、前記環境振動の振動数範囲に含まれる共振振動数を有していることを特徴とする請求項13に記載の固体搬送装置。  The solid conveyance device according to claim 13, wherein the vibration transmission member has a resonance frequency included in a frequency range of the environmental vibration. さらに、前記搬送方向に延在され、前記固体を前記搬送方向に案内するガイド部材を備えていることを特徴とする請求項1乃至請求項14のいずれか1項に記載の固体搬送装置。  The solid transport device according to claim 1, further comprising a guide member that extends in the transport direction and guides the solid in the transport direction. 前記ガイド部材は、前記搬送路形成部材の幅方向両端部で前記突起から所定量上方に突出するとともに、前記突起の上部に前記固体を搬送可能な空間を開けて当該突起の上部を覆う筒形状に形成されていることを特徴とする請求項15に記載の固体搬送装置。  The guide member protrudes upward from the protrusion by a predetermined amount at both ends in the width direction of the transport path forming member, and has a cylindrical shape that opens a space capable of transporting the solid above the protrusion and covers the top of the protrusion The solid transport device according to claim 15, wherein the solid transport device is formed as follows.
JP09839198A 1998-03-26 1998-03-26 Solid conveying device Expired - Fee Related JP3737631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09839198A JP3737631B2 (en) 1998-03-26 1998-03-26 Solid conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09839198A JP3737631B2 (en) 1998-03-26 1998-03-26 Solid conveying device

Publications (2)

Publication Number Publication Date
JPH11278635A JPH11278635A (en) 1999-10-12
JP3737631B2 true JP3737631B2 (en) 2006-01-18

Family

ID=14218557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09839198A Expired - Fee Related JP3737631B2 (en) 1998-03-26 1998-03-26 Solid conveying device

Country Status (1)

Country Link
JP (1) JP3737631B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4527380B2 (en) * 2003-10-29 2010-08-18 株式会社リコー Transport device
KR200446479Y1 (en) * 2007-10-09 2009-11-04 (주)마스타에프에이 Reciprocating vibratory type conveyor
JP7019867B2 (en) * 2019-04-19 2022-02-15 三菱電機株式会社 Ultrasonic transmitter / receiver

Also Published As

Publication number Publication date
JPH11278635A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US6231039B1 (en) Sheet post-processing apparatus
EP2332732B1 (en) Image forming apparatus capable of effectively damping vibration
US3948506A (en) Tuned card weight
JP3737631B2 (en) Solid conveying device
US5207417A (en) Active copy sheet catch and stacking device
JP4447518B2 (en) Paper post-processing device
JP5395015B2 (en) Sheet feeding device
US7722027B2 (en) Vacuum belt conveyor
JP2900288B2 (en) Sheet-like stacking device
US7490827B2 (en) Image forming apparatus
JPH0617806Y2 (en) Plate material laminating device
US7896332B2 (en) Belt driving mechanism, image forming apparatus including the same, and method for driving belt
JPH11130228A (en) Solid body conveying device
JP2002193424A (en) Solid carrier device
JP2006272792A (en) Connection retaining device between carriage conveying belt and carriage, recording device, and liquid ejection device
US7837189B2 (en) Elastomer gripping belt loop for a disc stacker system
JPH07215523A (en) Paper sheet conveyor
US8657103B2 (en) Media transport system with vibratory edge registration function
JP4076321B2 (en) Paper processing device
JP4436035B2 (en) Sheet punching scrap removal device
JP2000302229A (en) Solid carrying device
JP3717204B2 (en) Paper discharge device of image forming apparatus
JP2000118674A (en) Solid carrying device
JP2006224210A (en) Sheet post-processing device and image forming device using the same
JP2987135B1 (en) Sheet alignment and stacking method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees