JP3737207B2 - How to mix powder - Google Patents

How to mix powder Download PDF

Info

Publication number
JP3737207B2
JP3737207B2 JP21205296A JP21205296A JP3737207B2 JP 3737207 B2 JP3737207 B2 JP 3737207B2 JP 21205296 A JP21205296 A JP 21205296A JP 21205296 A JP21205296 A JP 21205296A JP 3737207 B2 JP3737207 B2 JP 3737207B2
Authority
JP
Japan
Prior art keywords
particles
mixing
container
small particles
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21205296A
Other languages
Japanese (ja)
Other versions
JPH1033963A (en
Inventor
正純 小田
寿彦 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP21205296A priority Critical patent/JP3737207B2/en
Publication of JPH1033963A publication Critical patent/JPH1033963A/en
Application granted granted Critical
Publication of JP3737207B2 publication Critical patent/JP3737207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Glanulating (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、母体粒子と小粒子とを均一かつ迅速に処理することができる粉粒体の混合方法に関し、電子写真用現像トナーなどの製造に適用される。
【0002】
【従来の技術】
母体粒子と小粒子を混合して、小粒子を母体粒子の表面に付着させその表面を改質する粉粒体技術としては、例えば、電子写真用現像トナーに流動性を持たせるために、トナー粒子にシリカ粉末等の無機粉末や有機粉末を添加し付着させることが一般に採用されている。
【0003】
従来における、母体粒子と小粒子を混合して母体粒子の表面を改質する粉粒体の混合方法は、母体粒子と小粒子を密閉容器内に入れ振とう攪拌する方法や、母体粒子と小粒子をプロペラで高速攪拌する方法、粉砕機を利用して混合攪拌する方法等が使用されてきた。これらの方法では、均一付着や混合ができにくい場合があり、また、配合された母体粒子や小粒子が熱溶融性である場合は、プロペラ回転時に発生する熱によりブレードに付着したり、粒子同士の凝集が起こるという問題があった。
【0004】
【発明が解決しようとする課題】
しかしながら、熱可塑性樹脂を主成分とするトナー母体粒子にシリカ粉末等を混合した場合、プロペラによる高速攪拌を長時間続けると、母体粒子であるトナーがプロペラに溶融付着する。それを防止するため、間隔を置きながら短時間高速攪拌を繰り返す方法が採られており、非常に生産効率が悪い欠点があった。また、母体粒子と小粒子を密閉容器に入れ、この容器を円運動させるとともに自転させて混合・付着を行う方法が提案されているが、母体粒子と小粒子との比重が異なる場合は混合が不十分であったり、比重の大きい粒子が容器の底に溜まり圧縮される欠点があった。
【0005】
本発明の目的は、上記の欠点を解消するためになされたもので、母体粒子と小粒子とが迅速に、かつ均一に混合でき、また、混合時のブレード等による母体粒子及び小粒子付着層の損傷や汚染がなく、また容器底における母体粒子等の溜り・圧縮がなくなり、作業性に優れた粉粒体の混合方法を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明者らは、上記の目的を達成しようと鋭意研究を重ねた結果、混合する母体粒子と小粒子に球状媒体を添加して特定回転の容器内混合をすることによって、上記の目的を達成することができることを見いだし、本発明を完成したものである。
【0007】
即ち、本発明は、
母体粒子と小粒子とを混合して、小粒子を母体粒子の表面に付着させる粉粒体の混合方法において、母体粒子、小粒子および球状媒体を混合容器に入れ、この混合容器を円運動させるとともに自転させながら振とうして混合し、しかる後に小粒子を母体粒子の表面に付着させた粉粒体をふるい分けなどにより上記球状媒体から分離することを特徴とする粉粒体の混合方法である。また、母体粒子の直径が小粒子の直径の10倍以上であり、母体粒子が電子写真用現像トナーである粉粒体の混合方法である。
【0008】
以下、本発明を詳細に説明する。
【0009】
本発明に用いる母体粒子としては、平均粒径が 1μm〜数百μmであればよく、粒度分布や粒子の形状や粒子の材質等に限定されるものではなく広く使用することができる。
【0010】
本発明に用いる小粒子は、母体粒子と比較して粒径の小さい粒子であって、平均粒径が 0.001μm〜数十μmであればよく、粒度分布や粒子の形状や粒子の材質等に限定されるものではなく、広く使用することができる。また、混合する小粒子は 1種の小粒子でもよくまた 2種以上の小粒子を同時に混合することができる。
【0011】
本発明に用いる球状媒体としては、直径が 0.1mm〜数cmと母体粒子と比較して非常に大きいことが望ましい。これらは混合能力の向上や、混合後の製品と球状媒体とのふるい分けの作業性向上のためである。球状媒体の材質としては、特に制限されることはなく 1種又は 2種以上の材質のものを使用することができる。具体的な球状媒体としては、例えば、ガラスビーズ、プラスチックビーズ、セラミックビーズ、金属ビーズ等が挙げられ、これらは単独又は 2種以上混合して使用することができる。
【0012】
次に図面を用いて、本発明の混合方法と混合容器を説明する。図1において、1は混合容器であって、円筒状で密封できることが望ましい。容器に母体粒子と小粒子を所定量計り込み、さらに球状媒体を投入して密封する。図1に示すように混合容器1は、容器物体外の一点鎖線Aで示される回転軸の周りに円運動aをさせながら容器物体内の一転鎖線Bで示される回転軸の周りに自転bをさせ、さらに回転軸Bを回転軸Aに対してB′、B″のように振り混合容器1に振とうcをさせて粒子を混合させることができる。
【0013】
すなわち、混合容器1を矢印a方向に円運動させ、その回転を続けながら混合容器1をb方向に自転の回転をさせれば、自転における遠心力の方向と円運動における遠心力の方向が異なりある場合には逆方向になるため、具合よく混合することができる。また、球状媒体添加により母体粒子と小粒子が均一に分散され、さらにc方向へ振とうさせるため表面改質された粉粒体も容器内や容器底に圧縮されることがない。得られた粉粒体をふるい等で球状媒体を除去して、表面が改質された粉粒体が得られる。この方法では高速で混合を行ってもプロペラ等の攪拌と比較して温度上昇が起こりにくく、また、攪拌能力も同等もしくはそれ以上の効果を得ることができる。
【0014】
【発明の実施形態】
次に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例よって限定されるものではない。
【0015】
実施例1
熱可塑性樹脂に顔料を分散させて顔料分散体を調製した。得られた顔料分散体を粉砕・分球して平均粒径10μmのトナーを調製した。これは混合における母体粒子である。添加する小粒子としては負帯電シリカであるR−972(日本エアロジル社製、商品名 1nm)を使用した。
【0016】
母体粒子20gをプラスチック容器に計り採り小粒子を 0.2gを添加して密封した。さらに球状媒体としてガラスビーズ(直径 2mm)を 2g添加した後、図1に示した装置で30秒間、攪拌混合を行った。混合後の容器中のトナーは容器底に圧縮されていなかった。得られたトナーを 100メッシュのふるいを通してガラスビーズを除去した。トナーを走査型電子顕微鏡で観察を行ったところ、負帯電シリカが均一に付着されており、また、トナーの凝集がないことが確認された。
【0017】
実施例2
実施例1と同量のトナー及び負帯電シリカを密封容器に投入し球状媒体として直径 1cmの球状媒体のプラスチックを 5g添加した。添加後、実施例1と同様の方法で混合した。混合後得られたトナーは容器内に圧縮されておらず、また、負帯電シリカはトナー表面に均一に分散されていた。
【0018】
実施例3
平均粒径20μmの球状ポリエチレンを母体粒子として20gをプラスチック容器に計り採り、小粒子として平均粒径 0.3μmの酸化チタン 1gを添加し密封した。その後、実施例1と同様の方法で混合を行った。混合後、容器内には母体粒子であるポリエチレンの圧縮は見られなかった。得られた表面改質粒子を走査型電子顕微鏡で観察を行ったところ、母体粒子に酸化チタンが均一に被覆されているのが観察された。
【0019】
実施例4
平均粒径 100μmのフェライト球を母体粒子として50gをプラスチック容器に計り採り、小粒子として平均粒径 5μmのナイロン球 1gを添加し密封した。その後、実施例1と同様の方法で混合を行った。混合後、容器内には母体粒子であるフェライト球の圧縮は見られなかった。得られた表面改質粒子を走査型電子顕微鏡で観察を行ったところ、母体粒子にナイロン球が均一に被覆されているのが観察された。
【0020】
比較例1
実施例1で用いた母体粒子と小粒子を同量計り込みプロペラ式ミキサーで 9000 rpmで30秒間混合を行った。混合後、混合物を走査型電子顕微鏡で観察を行ったところ、母体粒子の熱による母体粒子の凝集が観察され、また、プロペラにも樹脂の付着が見られた。
【0021】
比較例2
実施例1で用いた母体粒子と小粒子を同量計り込み、球状媒体を添加せずに容器の振とうを行わずに混合を行った。得られた表面にはシリカが均一に被覆されているものの、容器の底にはトナーが圧縮されていた。
【0022】
比較例3
実施例3で用いた母体粒子と小粒子を同量計り込み、プロペラ式ミキサーで 9000 rpmで30秒間混合を行った。混合後、混合物を走査型電子顕微鏡で観察を行ったところ、母体粒子の熱による凝集が観察され、また、プロペラにも樹脂の付着が見られた。
【0023】
比較例4
実施例4で用いた母体粒子と小粒子を同量計り込み、プロペラ式ミキサーで 9000 rpmで30秒間混合を行った。混合後、混合物を走査型電子顕微鏡で観察を行ったところ、母体粒子の凝集は見られなかったが、フェライト球によりプロペラ式ミキサーのブレードが摩耗していた。
【0024】
【発明の効果】
以上の説明から明らかなように、本発明の粉粒体の混合方法によれば、母体粒子と小粒子が迅速かつ均一に分散でき、攪拌媒体による母体粒子や小粒子付着層の損傷や汚染がなくなり、また、容器内の母体粒子等の圧縮がなくなり作業性を向上させることができた。
【図面の簡単な説明】
【図1】本発明の粉粒体の混合方法説明する概略図である。
【符号の説明】
1 混合容器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a powder mixing method capable of uniformly and rapidly treating base particles and small particles, and is applied to the production of electrophotographic developer toners and the like.
[0002]
[Prior art]
As a powder technology that mixes base particles and small particles, adheres the small particles to the surface of the base particles, and modifies the surface, for example, in order to make the developing toner for electrophotography have fluidity, toner It is generally employed to add and adhere inorganic particles such as silica powder or organic powder to the particles.
[0003]
Conventional methods for mixing powder particles in which the base particles and small particles are mixed to modify the surface of the base particles include a method in which the base particles and small particles are placed in an airtight container and shaken, or A method of stirring particles at high speed with a propeller, a method of mixing and stirring using a pulverizer, and the like have been used. In these methods, uniform adhesion and mixing may be difficult, and if the blended base particles or small particles are heat-meltable, they may adhere to the blade due to heat generated during propeller rotation, There was a problem that aggregation occurred.
[0004]
[Problems to be solved by the invention]
However, when silica powder or the like is mixed with toner base particles mainly composed of a thermoplastic resin, if the high-speed stirring by the propeller is continued for a long time, the toner as the base particles melts and adheres to the propeller. In order to prevent this, a method in which high-speed stirring is repeated for a short time while taking an interval has been adopted, which has the disadvantage that the production efficiency is very poor. In addition, a method has been proposed in which mother particles and small particles are placed in a closed container, and the container is circularly moved and rotated and mixed and adhered, but if the specific gravity of the mother particles and small particles is different, mixing is performed. There is a drawback that particles with insufficient or high specific gravity accumulate on the bottom of the container and are compressed.
[0005]
The object of the present invention is to solve the above-mentioned drawbacks, and the base particles and the small particles can be mixed rapidly and uniformly, and the base particles and the small particle adhesion layer by a blade or the like at the time of mixing. Therefore, it is intended to provide a mixing method of powder and granule which is excellent in workability without causing damage and contamination of the container, and no accumulation and compression of base particles and the like at the bottom of the container.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors achieved the above object by adding a spherical medium to the base particles and small particles to be mixed and mixing them in a specific rotation container. The present invention has been completed by finding out what can be done.
[0007]
That is, the present invention
In a method of mixing powder particles in which mother particles and small particles are mixed and the small particles adhere to the surface of the mother particles, the mother particles, small particles, and spherical medium are placed in a mixing container and the mixing container is moved circularly. And mixing with shaking while rotating, and then separating the granular material with small particles attached to the surface of the base particle from the spherical medium by sieving or the like. . Further, it is a method for mixing powders in which the diameter of the base particles is 10 times or more the diameter of the small particles, and the base particles are electrophotographic developer toner.
[0008]
Hereinafter, the present invention will be described in detail.
[0009]
The base particles used in the present invention may have an average particle size of 1 μm to several hundreds of μm, and are not limited to particle size distribution, particle shape, particle material, and the like, and can be widely used.
[0010]
The small particles used in the present invention are particles having a smaller particle size than the base particles, and the average particle size may be 0.001 μm to several tens of μm. The particle size distribution, particle shape, particle material, etc. It is not limited and can be used widely. The small particles to be mixed may be one kind of small particles, or two or more kinds of small particles can be mixed at the same time.
[0011]
The spherical medium used in the present invention preferably has a diameter of 0.1 mm to several centimeters, which is very large compared to the base particles. These are for improving the mixing ability and improving workability of sieving the mixed product and the spherical medium. The material of the spherical medium is not particularly limited, and one or more materials can be used. Specific examples of the spherical medium include glass beads, plastic beads, ceramic beads, metal beads and the like, and these can be used alone or in combination of two or more.
[0012]
Next, the mixing method and the mixing container of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 denotes a mixing container, which is preferably cylindrical and can be sealed. A predetermined amount of base particles and small particles are weighed into a container, and then a spherical medium is added and sealed. As shown in FIG. 1, the mixing container 1 rotates around the rotation axis indicated by the one-dot chain line B inside the container object while causing a circular motion a around the rotation axis indicated by the one-dot chain line A outside the container object. Furthermore, the rotating shaft B is swung with respect to the rotating shaft A like B ′ and B ″, and the mixing container 1 is shaken c to mix the particles.
[0013]
That is, if the mixing container 1 is circularly moved in the direction of arrow a and the mixing container 1 is rotated in the direction of b while continuing its rotation, the direction of the centrifugal force in the rotation and the direction of the centrifugal force in the circular movement are different. In some cases, the direction is reversed, so mixing can be done well. Further, the base particles and the small particles are uniformly dispersed by addition of the spherical medium, and the powder whose surface has been modified to be shaken in the c direction is not compressed in the container or the container bottom. The spherical medium is removed by sieving the obtained granular material to obtain a granular material having a modified surface. In this method, even if mixing is performed at a high speed, the temperature does not easily rise as compared with stirring by a propeller or the like, and the stirring ability can be equal or higher.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.
[0015]
Example 1
A pigment dispersion was prepared by dispersing a pigment in a thermoplastic resin. The obtained pigment dispersion was pulverized and spheroidized to prepare a toner having an average particle size of 10 μm. This is the base particle in mixing. As small particles to be added, R-972 (trade name: 1 nm, manufactured by Nippon Aerosil Co., Ltd.), which is negatively charged silica, was used.
[0016]
20 g of base particles were weighed into a plastic container, and 0.2 g of small particles were added and sealed. Further, 2 g of glass beads (diameter 2 mm) were added as a spherical medium, and then the mixture was stirred and mixed for 30 seconds using the apparatus shown in FIG. The toner in the container after mixing was not compressed on the bottom of the container. Glass beads were removed from the obtained toner through a 100-mesh sieve. When the toner was observed with a scanning electron microscope, it was confirmed that the negatively-charged silica was uniformly adhered and there was no aggregation of the toner.
[0017]
Example 2
The same amount of toner and negatively charged silica as in Example 1 were put into a sealed container, and 5 g of spherical medium plastic having a diameter of 1 cm was added as a spherical medium. After the addition, the mixture was mixed in the same manner as in Example 1. The toner obtained after mixing was not compressed in the container, and the negatively charged silica was uniformly dispersed on the toner surface.
[0018]
Example 3
20 g of spherical polyethylene having an average particle diameter of 20 μm was measured as a base particle in a plastic container, and 1 g of titanium oxide having an average particle diameter of 0.3 μm was added as a small particle and sealed. Thereafter, mixing was performed in the same manner as in Example 1. After mixing, compression of polyethylene as a base particle was not observed in the container. When the obtained surface modified particles were observed with a scanning electron microscope, it was observed that the base particles were uniformly coated with titanium oxide.
[0019]
Example 4
50 g of ferrite spheres having an average particle diameter of 100 μm as base particles were weighed in a plastic container, and 1 g of nylon spheres having an average particle diameter of 5 μm were added and sealed as small particles. Thereafter, mixing was performed in the same manner as in Example 1. After mixing, compression of the ferrite spheres as the base particles was not observed in the container. When the obtained surface modified particles were observed with a scanning electron microscope, it was observed that the base particles were uniformly coated with nylon spheres.
[0020]
Comparative Example 1
The base particles and small particles used in Example 1 were weighed in the same amount and mixed with a propeller mixer at 9000 rpm for 30 seconds. When the mixture was observed with a scanning electron microscope after mixing, aggregation of the mother particles due to the heat of the mother particles was observed, and adhesion of the resin was also observed on the propeller.
[0021]
Comparative Example 2
The same amount of base particles and small particles used in Example 1 were weighed and mixed without adding a spherical medium and without shaking the container. Although the obtained surface was uniformly coated with silica, the toner was compressed at the bottom of the container.
[0022]
Comparative Example 3
The same amount of base particles and small particles used in Example 3 were weighed and mixed with a propeller mixer at 9000 rpm for 30 seconds. After mixing, the mixture was observed with a scanning electron microscope. As a result, aggregation of the base particles due to heat was observed, and adhesion of the resin was also observed on the propeller.
[0023]
Comparative Example 4
The same amount of base particles and small particles used in Example 4 were weighed and mixed with a propeller mixer at 9000 rpm for 30 seconds. When the mixture was observed with a scanning electron microscope after mixing, no aggregation of the base particles was observed, but the blades of the propeller mixer were worn by the ferrite spheres.
[0024]
【The invention's effect】
As is clear from the above explanation, according to the method for mixing granular materials of the present invention, the base particles and the small particles can be quickly and uniformly dispersed, and the base particles and the small particle adhesion layer are damaged or contaminated by the stirring medium. In addition, there was no compression of the base particles in the container, and workability could be improved.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic diagram for explaining a method of mixing powder particles of the present invention.
[Explanation of symbols]
1 Mixing container

Claims (3)

母体粒子と小粒子とを混合して、小粒子を母体粒子の表面に付着させる粉粒体の混合方法において、母体粒子、小粒子および球状媒体を混合容器に入れ、この混合容器を円運動させるとともに自転させながら、前記混合容器の自転軸を前記円運動の軸に対して振とうして混合し、しかる後に小粒子を母体粒子の表面に付着させた粉粒体を上記球状媒体から分離することを特徴とする粉粒体の混合方法。In a method of mixing powder particles in which mother particles and small particles are mixed and the small particles adhere to the surface of the mother particles, the mother particles, small particles, and spherical medium are placed in a mixing container and the mixing container is moved circularly. While rotating together , the mixing vessel is mixed by shaking the rotation axis of the mixing vessel with respect to the axis of the circular motion , and thereafter, the granular material having small particles attached to the surface of the base particle is separated from the spherical medium. A method for mixing granular materials. 母体粒子の直径が小粒子の直径の10倍以上である請求項1記載の粉粒体の混合方法。The method for mixing powder particles according to claim 1, wherein the diameter of the base particles is at least 10 times the diameter of the small particles. 母体粒子が電子写真用現像トナーである請求項1又は請求項2記載の粉粒体の混合方法。3. The method for mixing powder particles according to claim 1, wherein the base particle is an electrophotographic developing toner.
JP21205296A 1996-07-23 1996-07-23 How to mix powder Expired - Fee Related JP3737207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21205296A JP3737207B2 (en) 1996-07-23 1996-07-23 How to mix powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21205296A JP3737207B2 (en) 1996-07-23 1996-07-23 How to mix powder

Publications (2)

Publication Number Publication Date
JPH1033963A JPH1033963A (en) 1998-02-10
JP3737207B2 true JP3737207B2 (en) 2006-01-18

Family

ID=16616075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21205296A Expired - Fee Related JP3737207B2 (en) 1996-07-23 1996-07-23 How to mix powder

Country Status (1)

Country Link
JP (1) JP3737207B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE516248C2 (en) * 2000-03-17 2001-12-10 Fallenius Ivar Process for mixing a liquid in a largely liquid-filled container which has a top partially closed opening and containers for carrying out the process
JP2007222861A (en) * 2006-02-21 2007-09-06 Sumitomo Chemical Co Ltd Manufacturing method of wet powder
JP6304803B2 (en) * 2014-01-20 2018-04-04 日本化薬株式会社 Method for producing resin composition

Also Published As

Publication number Publication date
JPH1033963A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
CN104508566B (en) Toner
JPH1094734A (en) Device and method for treating surface of solid particle, and production of toner
JPH0751288B2 (en) Particle composite method
JP3737207B2 (en) How to mix powder
CN1021887C (en) Device for continuously mixing powder and process for producing toner for developing electrostatic image
JP2004077593A (en) Method for manufacturing electrophotographic toner
JP3584582B2 (en) Powder mixing apparatus and toner manufacturing method
JPH0540367A (en) Electromagnetic latent image developing carrier
JPH05265253A (en) Toner manufacturing method
JPH1033964A (en) Powder granule mixing method
JPH11216347A (en) Powder treating device
JPH11216348A (en) Powder treating device
US5364730A (en) Toner for developing electrostatic images and method for manufacturing thereof
CN101782729A (en) Resin coated carrier, two-component developer, developing device and image forming apparatus
JPH04226476A (en) Toner for electrophotography and production thereof
JP2566804B2 (en) Method of manufacturing magnetic toner
US5178460A (en) Device for continuously mixing powder and process for producing toner for developing electrostatic image
JPH02289859A (en) Production of nonmagnetic one-component developer
JP2007302824A (en) Method of conglobation for resin particle
JPH11109678A (en) Method for classifying toner
JP2786658B2 (en) Method for producing toner for developing electrostatic images
JPH05100497A (en) Method and apparatus for production of two component developer carrier for dry processing
JPH07152208A (en) Electrostatic image developing carrier and its production
JPS63228171A (en) Low-temperature fixable toner
JP4047773B2 (en) Method for producing toner for developing electrostatic image, toner for developing electrostatic image, and developer for electrostatic image

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees