JP3737162B2 - Method and apparatus for producing activated carbon - Google Patents

Method and apparatus for producing activated carbon Download PDF

Info

Publication number
JP3737162B2
JP3737162B2 JP18779295A JP18779295A JP3737162B2 JP 3737162 B2 JP3737162 B2 JP 3737162B2 JP 18779295 A JP18779295 A JP 18779295A JP 18779295 A JP18779295 A JP 18779295A JP 3737162 B2 JP3737162 B2 JP 3737162B2
Authority
JP
Japan
Prior art keywords
exhaust gas
pyrolysis furnace
activated carbon
steam
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18779295A
Other languages
Japanese (ja)
Other versions
JPH0920511A (en
Inventor
正和 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP18779295A priority Critical patent/JP3737162B2/en
Publication of JPH0920511A publication Critical patent/JPH0920511A/en
Application granted granted Critical
Publication of JP3737162B2 publication Critical patent/JP3737162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、活性炭の製造方法及びこの方法を実施する製造装置に関するものである。
【0002】
【従来の技術】
従来、粉末活性炭を製造する場合、600〜1000℃の賦活温度を維持するために、燃焼用空気を供給するか、又はバーナ使用などによる燃焼熱を利用している。
また、特開昭49−128897号公報には、賦活用ガス・燃焼ガス室の上側に連設された流動層式賦活室の内部を、水平方向に直列し、かつ、連通孔により底部を順次連通された複数段の室に区画し、これらの複数段の室の第1番目の(上側の)室に原料炭供給機を接続し、最後段の(下側の)室に活性炭排出管を接続して炭化と賦活とを同時に行なうようにした活性炭製造装置が記載されている。
【0003】
【発明が解決しようとする課題】
上記のように、従来の活性炭製造方法及び装置においては、賦活炉が用いられ、補助燃料又は活性炭原料の熱分解ガスの燃焼炉内に水蒸気を供給する方法で、活性炭が製造されていた。
これらの従来方法では、燃焼排ガスにより水蒸気濃度が希釈されるため、賦活反応速度が遅く、滞留時間を長く必要とする大きな賦活炉が必要であった。
【0004】
本発明は上記の点に鑑みなされたもので、本発明の目的は、賦活用水蒸気を希釈することなく100%濃度で賦活を行なうことにより、高速で賦活反応を進行させ、滞留時間を短かくして賦活反応器のコンパクト化を図ることにある。
また、本発明の他の目的は、縦型円筒状の本体内に熱分解炉(炭化炉)と賦活反応器とを一体に組み込み、炭化材料の搬送装置及び賦活反応ガスの搬送装置を省略することにある。
【0005】
【課題を解決するための手段及び作用】
上記の目的を達成するために、本発明の活性炭の製造方法は、粉粒状石炭を熱分解炉において理論燃焼空気量以下の1次空気で燃焼させて石炭の固定炭素を残留させた灰とし、この灰を賦活反応器にそのまま落下させ水蒸気で賦活して粉粒状活性炭とし、熱分解炉排ガスの保有する熱量を回収した後、排ガスの一部を熱分解炉へ循環することを特徴としている。
上記の方法において、灰を賦活する水蒸気として、熱分解炉排ガスで加熱された後、電熱ヒーターでさらに加熱された水蒸気を用いることが好ましい。また、熱分解炉排ガスで灰を賦活する水蒸気を加熱した後、この排ガスに2次空気を供給して未燃分を燃焼させつつ水蒸気を発生させることが好ましい。
【0006】
1次空気供給量は、石炭の理論燃焼空気量の30〜70%である。この値が30%未満の場合は、石炭の燃焼量が少なく、熱分解炉内温度を600℃以上に維持できなくなる傾向があり、一方、70%を超える場合は、石炭中の固定炭素まで燃焼するため、賦活すべき炭素が減少する傾向がある。
また、1次空気と2次空気とを合わせた総合空気比が1.0〜1.4になるように、又は排ガス中の酸素濃度が2〜5%になるように、2次空気供給量を制御する。
総合空気比又は酸素濃度が上記の範囲未満の場合は、排ガス中に未燃成分が残留し、公害対策上問題となる傾向があり、一方、総合空気比又は酸素濃度が上記の範囲を超える場合は、過剰な燃焼空気量が増えて、熱効率が悪化し不経済となる傾向がある。
【0007】
また、熱分解炉内温度が600〜1000℃になるように、排ガス循環量を制御する。この値が600℃未満の場合は、熱分解速度が著しく低下し、運転不能となる傾向があり、一方、この値が1000℃を超える場合は、石炭中の固定炭素が溶融し、賦活が不能となる傾向がある。
さらに、賦活反応器内温度が600〜1000℃に保たれるように、賦活反応器へ供給する水蒸気の量を制御する。賦活反応器内温度が600℃未満の場合は、賦活反応速度が著しく低下し、吸着能力が小さい活性炭となる傾向があり、一方、1000℃を超える場合は、石炭中の固定炭素が溶融し、賦活反応が起らない傾向がある。
【0008】
本発明の活性炭の製造装置は、縦型円筒状の本体と、この本体の側部の略中央部に粉粒状石炭と理論燃焼空気量以下の1次空気とを供給して石炭を熱分解させるための、本体内の略中央部に設けられた熱分解炉と、
この熱分解炉で生成した固定炭素を残留させた灰を落下させ、水蒸気を供給して賦活させるための、本体内の下部に設けられた賦活反応器と、
前記熱分解炉の上側の本体内に設けられ、熱分解炉排ガスで賦活反応器へ供給する水蒸気を加熱するための蒸気加熱器と、
この蒸気加熱器の上側の本体内に設けられ、2次空気を供給して排ガス中の未燃分を燃焼させつつ水蒸気を発生させるボイラと、
このボイラからの排ガス煙道と前記熱分解炉とを接続する排ガス循環導管と、
前記蒸気加熱器と前記賦活反応器とを接続する賦活用蒸気供給管に設けられた電熱ヒーターと、
からなることを特徴としている。上記の熱分解炉において、1次空気及び粉粒状石炭の混合流が本体の接線方向に供給されて旋回流となるように構成することが好ましい。
【0009】
【実施例】
以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記実施例に何ら限定されるものではなく、適宜変更して実施することが可能なものである。
実施例1
図1は本実施例における活性炭の製造方法のフローを示し、図2は本実施例における活性炭の製造装置の構成を示している。10は縦型円筒状の本体で、この本体10内に下部から、賦活反応器12、熱分解炉14、蒸気加熱器16、ボイラ18が直列に形成されて活性炭の製造装置が構成される。熱分解炉14は本体10内の略中央部に設けられ、本体10の側部の略中央部に粉粒状石炭と理論燃焼空気量以下の1次空気とを供給して、石炭を熱分解させるためのものである。図2では、粉粒状石炭を1次空気により本体10の接線方向に供給して旋回流とするサイクロン式の熱分解炉を示している。20は粉粒状石炭と1次空気とを混合するための混合部である。
【0010】
この熱分解炉14で生成した固定炭素を残留させた灰をそのまま落下させ、この灰を、蒸気加熱器16と電熱ヒーター22とで加熱された低圧水蒸気を供給して賦活させるための賦活反応器12が本体10内の下部に設けられる。24は粉粒状活性炭排出機である。
熱分解炉14の上側の本体10内には、熱分解炉排ガスで賦活反応器へ供給する低圧水蒸気を加熱するための蒸気加熱器16が設けられ、この蒸気加熱器16の上側の本体10内に、2次空気を供給して排ガス中の未燃分を燃焼させつつ高圧水蒸気を発生させるボイラ18が設けられる。
このボイラ18の排ガス煙道26の排ガスファン28出口と熱分解炉14の上部とは排ガス循環導管30を介して接続され、また、蒸気加熱器16と賦活反応器12とは賦活用蒸気供給管32を介して接続され、この賦活用蒸気供給管32に電熱ヒーター22が設けられている。
【0011】
図3は、図2に示す活性炭製造装置における各部の制御機構を示す構成図である。
以下、本実施例における作用を図1〜図3に基づいて説明する。粉粒状石炭と理論燃焼空気量の50±20%の1次空気とを熱分解炉(炭化炉)14に供給し、石炭を600〜1000℃で部分燃焼させて石炭中の固定炭素を残留させた灰とし、この灰をそのまま落下させて賦活反応器12内に回収する。熱分解炉14内の温度は600〜1000℃となるように、温度指示制御器34により排ガス循環導管30に設けられた循環排ガス流量制御弁36を開閉して制御できるように構成されている。なお、循環排ガスの温度は200℃前後である。
【0012】
賦活反応器12内の固定炭素を残留させた灰を、加熱された低圧水蒸気で賦活して粉粒状活性炭とする。すなわち、0.1〜0.5kg/cm2 G、150〜200℃程度の低圧水蒸気を蒸気加熱器16に供給して熱分解炉排ガスで600℃前後に間接加熱した後、さらに、電熱ヒーターで700〜1100℃に加熱し、この加熱低圧水蒸気を賦活反応器12に導入する。そして、賦活反応器12内の温度が800±200℃の範囲に維持されるように、温度指示制御器38により加熱低圧水蒸気流量制御弁40を開閉して制御できるように構成されている。
【0013】
ボイラ18には2次空気が供給されて排ガス中の未燃分が燃焼し、高温の燃焼排ガスとなる。そして、ボイラ18に導入されたボイラ水と間接熱交換して20〜50kg/cm2 Gの高圧水蒸気を発生させる。この高圧水蒸気は、例えば、蒸気タービン(図示略)に送られ、抽気された低圧水蒸気が蒸気加熱器16へ送られる。2次空気の一部は蒸気加熱器16へ供給されることもあるが、これは必ずしも必要なものではない。
ボイラ18へ供給される2次空気の量は、1次空気と合わせた総合空気比が1.2±0.2になるように調節される。この代わりに、排ガス煙道26にO2 計42を設けて、排ガス中のO2 濃度が2〜6%になるように、2次空気流量制御弁44を開閉して制御するように構成することも可能である。
【0014】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) 賦活用水蒸気を希釈することなく100%濃度で賦活を行なうことにより、高速で賦活反応を進行させることができ、賦活反応器内における粉粒状体の滞留時間が短かくなり賦活反応器をコンパクトにすることができる。
(2) 従来は、熱分解炉(炭化炉)と賦活炉とは別設又は別室に分けられていたが、本発明の装置は、縦型円筒状の本体内の略中央部を熱分解炉とし、下部を賦活反応器としているので、炭化と賦活の工程を一体型の活性炭製造炉で行なうことができる。このため、炭化材料と賦活反応ガスの搬送装置を省略することができる。
【図面の簡単な説明】
【図1】本発明の活性炭の製造方法の一実施例を示す系統図である。
【図2】本発明の活性炭の製造装置の一実施例を示す構成図である。
【図3】図2に示す装置に各部の制御機構を付加した活性炭製造装置の構成図である。
【符号の説明】
10 本体
12 賦活反応器
14 熱分解炉
16 蒸気加熱器
18 ボイラ
20 混合部
22 電熱ヒーター
24 粉粒状活性炭排出機
26 排ガス煙道
28 排ガスファン
30 排ガス循環導管
32 賦活用水蒸気供給管
34 温度指示制御器
36 制御弁
38 温度指示制御器
40 制御弁
42 O2
44 制御弁
[0001]
[Industrial application fields]
The present invention relates to a method for producing activated carbon and a production apparatus for carrying out this method.
[0002]
[Prior art]
Conventionally, when powdered activated carbon is manufactured, in order to maintain an activation temperature of 600 to 1000 ° C., combustion air is supplied or combustion heat due to the use of a burner or the like is used.
Japanese Patent Laid-Open No. 49-128897 discloses that the inside of a fluidized bed type activation chamber connected to the upper side of the working gas / combustion gas chamber is connected in series in the horizontal direction, and the bottom is sequentially formed through the communication hole. It is divided into a plurality of connected chambers, a coking coal feeder is connected to the first (upper) chamber of these multi-stage chambers, and an activated carbon discharge pipe is connected to the last (lower) chamber. An activated carbon production apparatus is described which is connected to perform carbonization and activation simultaneously.
[0003]
[Problems to be solved by the invention]
As described above, in the conventional activated carbon production method and apparatus, an activation furnace is used, and activated carbon is produced by a method of supplying water vapor into a combustion furnace of a pyrolysis gas of auxiliary fuel or activated carbon raw material.
In these conventional methods, since the water vapor concentration is diluted by the combustion exhaust gas, a large activation furnace requiring a slow activation reaction rate and a long residence time is required.
[0004]
The present invention has been made in view of the above points, and the object of the present invention is to activate at a high concentration of 100% without diluting the utilized water vapor so as to advance the activation reaction at high speed and shorten the residence time. The purpose is to make the activation reactor compact.
Another object of the present invention is to integrate a pyrolysis furnace (carbonization furnace) and an activation reactor into a vertical cylindrical main body, and omit a carbonized material transport device and an activated reaction gas transport device. There is.
[0005]
[Means and Actions for Solving the Problems]
In order to achieve the above object, the method for producing activated carbon according to the present invention is a ash in which granular coal is burned with primary air having a theoretical combustion air amount or less in a pyrolysis furnace to leave fixed carbon of the coal, The ash is dropped into an activation reactor as it is, activated with water vapor to form granular activated carbon, and after recovering the amount of heat held in the pyrolysis furnace exhaust gas, a part of the exhaust gas is circulated to the pyrolysis furnace.
In the above method, it is preferable to use water vapor that is heated by a pyrolysis furnace exhaust gas and then further heated by an electric heater as water vapor that activates ash. Moreover, it is preferable to heat the steam that activates the ash with the pyrolysis furnace exhaust gas, and then supply the secondary air to the exhaust gas to generate the steam while burning the unburned components.
[0006]
The primary air supply amount is 30 to 70% of the theoretical combustion air amount of coal. If this value is less than 30%, the amount of combustion of coal is small and the temperature in the pyrolysis furnace tends to be unable to be maintained at 600 ° C. or higher. On the other hand, if it exceeds 70%, combustion to fixed carbon in the coal occurs. Therefore, the carbon to be activated tends to decrease.
Also, the secondary air supply amount so that the total air ratio of the primary air and the secondary air is 1.0 to 1.4, or the oxygen concentration in the exhaust gas is 2 to 5%. To control.
When the total air ratio or oxygen concentration is less than the above range, unburned components remain in the exhaust gas, which tends to be a problem for pollution control. On the other hand, when the total air ratio or oxygen concentration exceeds the above range Tends to be uneconomical due to an increase in the amount of excess combustion air, resulting in poor thermal efficiency.
[0007]
Further, the exhaust gas circulation amount is controlled so that the temperature in the pyrolysis furnace becomes 600 to 1000 ° C. When this value is less than 600 ° C., the thermal decomposition rate is remarkably reduced and operation tends to become impossible. On the other hand, when this value exceeds 1000 ° C., the fixed carbon in the coal melts and cannot be activated. Tend to be.
Furthermore, the amount of water vapor supplied to the activation reactor is controlled so that the temperature in the activation reactor is maintained at 600 to 1000 ° C. When the temperature in the activation reactor is less than 600 ° C, the activation reaction rate is remarkably reduced and the adsorption capacity tends to be small activated carbon. On the other hand, when the temperature exceeds 1000 ° C, the fixed carbon in the coal is melted, There is a tendency that activation reaction does not occur.
[0008]
The activated carbon production apparatus of the present invention supplies a granular cylindrical coal and primary air having a theoretical combustion air amount or less to a vertical cylindrical main body and a substantially central portion of a side portion of the main body to thermally decompose the coal. A pyrolysis furnace provided at a substantially central portion in the main body,
An activation reactor provided at the lower part in the main body for activating the ash with the fixed carbon generated in the pyrolysis furnace dropped, supplying steam and activating,
A steam heater provided in the upper body of the pyrolysis furnace, for heating the steam supplied to the activation reactor with the pyrolysis furnace exhaust gas;
A boiler that is provided in the upper body of the steam heater and generates steam while supplying the secondary air and burning unburned components in the exhaust gas;
An exhaust gas circulation conduit connecting the flue gas flue from the boiler and the pyrolysis furnace;
An electric heater provided in an activated steam supply pipe connecting the steam heater and the activation reactor;
It is characterized by consisting of. In the above-described pyrolysis furnace, it is preferable that the mixed flow of primary air and granular coal is supplied in the tangential direction of the main body to form a swirling flow.
[0009]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to the following Example at all, It can change suitably and can implement.
Example 1
FIG. 1 shows a flow of a method for producing activated carbon in the present embodiment, and FIG. 2 shows a configuration of an apparatus for producing activated carbon in the present embodiment. Reference numeral 10 denotes a vertical cylindrical main body. An activation reactor 12, a pyrolysis furnace 14, a steam heater 16, and a boiler 18 are formed in series in the main body 10 from below to constitute an apparatus for producing activated carbon. The pyrolysis furnace 14 is provided at a substantially central portion in the main body 10 and supplies granular coal and primary air below the theoretical combustion air amount to a substantially central portion of the side portion of the main body 10 to thermally decompose the coal. Is for. FIG. 2 shows a cyclone-type pyrolysis furnace in which granular coal is supplied in the tangential direction of the main body 10 by primary air to form a swirl flow. Reference numeral 20 denotes a mixing unit for mixing granular coal and primary air.
[0010]
An activation reactor for dropping the ash remaining in the fixed carbon produced in the pyrolysis furnace 14 as it is and supplying the low-pressure steam heated by the steam heater 16 and the electric heater 22 to activate the ash. 12 is provided in the lower part in the main body 10. 24 is a granular activated carbon discharge machine.
A steam heater 16 for heating the low-pressure steam supplied to the activation reactor with the pyrolysis furnace exhaust gas is provided in the main body 10 on the upper side of the pyrolysis furnace 14. In addition, a boiler 18 is provided that generates high-pressure steam while supplying secondary air and burning unburned components in the exhaust gas.
The outlet of the exhaust gas fan 28 of the exhaust gas flue 26 of the boiler 18 and the upper part of the pyrolysis furnace 14 are connected via an exhaust gas circulation conduit 30, and the steam heater 16 and the activation reactor 12 are used for an effective steam supply pipe. The electric heater 22 is provided in the utilization steam supply pipe 32.
[0011]
FIG. 3 is a configuration diagram showing a control mechanism of each part in the activated carbon production apparatus shown in FIG.
Hereinafter, the operation of the present embodiment will be described with reference to FIGS. Powdered coal and primary air of 50 ± 20% of the theoretical combustion air amount are supplied to the pyrolysis furnace (carbonization furnace) 14, and the coal is partially burned at 600 to 1000 ° C. to leave fixed carbon in the coal. This ash is dropped as it is and collected in the activation reactor 12. The temperature in the pyrolysis furnace 14 is configured to be controlled by opening and closing the circulating exhaust gas flow rate control valve 36 provided in the exhaust gas circulation conduit 30 by the temperature indication controller 34 so that the temperature in the pyrolysis furnace 14 becomes 600 to 1000 ° C. The temperature of the circulating exhaust gas is around 200 ° C.
[0012]
The ash in which the fixed carbon in the activation reactor 12 remains is activated with heated low-pressure steam to form granular activated carbon. That is, after low pressure steam of about 0.1 to 0.5 kg / cm 2 G and about 150 to 200 ° C. is supplied to the steam heater 16 and indirectly heated to about 600 ° C. in the pyrolysis furnace exhaust gas, Heat to 700 to 1100 ° C. and introduce the heated low pressure steam into the activation reactor 12. And it is comprised so that it can control by opening and closing the heating low pressure steam flow control valve 40 by the temperature instruction | indication controller 38 so that the temperature in the activation reactor 12 may be maintained in the range of 800 +/- 200 degreeC.
[0013]
Secondary air is supplied to the boiler 18 so that the unburned portion in the exhaust gas burns, and becomes high-temperature combustion exhaust gas. And it heat-exchanges with the boiler water introduce | transduced into the boiler 18, and 20-50 kg / cm < 2 > G high pressure steam is generated. The high-pressure steam is sent to, for example, a steam turbine (not shown), and the extracted low-pressure steam is sent to the steam heater 16. A portion of the secondary air may be supplied to the steam heater 16, but this is not necessary.
The amount of secondary air supplied to the boiler 18 is adjusted so that the total air ratio combined with the primary air is 1.2 ± 0.2. Instead, an O 2 meter 42 is provided in the exhaust gas flue 26 so that the secondary air flow rate control valve 44 is opened and closed so that the O 2 concentration in the exhaust gas becomes 2 to 6%. It is also possible.
[0014]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
(1) By activating at 100% concentration without diluting the activated water vapor, the activation reaction can be advanced at high speed, and the residence time of the granular material in the activation reactor is shortened and the activation reactor. Can be made compact.
(2) Conventionally, the pyrolysis furnace (carbonization furnace) and the activation furnace have been separately provided or separated into separate chambers. However, the apparatus of the present invention has a substantially central portion in a vertical cylindrical body as a pyrolysis furnace. Since the lower part is an activation reactor, the carbonization and activation steps can be performed in an integrated activated carbon production furnace. For this reason, the conveyance apparatus of a carbonization material and activation reaction gas can be abbreviate | omitted.
[Brief description of the drawings]
FIG. 1 is a system diagram showing one embodiment of a method for producing activated carbon according to the present invention.
FIG. 2 is a configuration diagram showing an embodiment of an apparatus for producing activated carbon according to the present invention.
3 is a configuration diagram of an activated carbon manufacturing apparatus in which a control mechanism of each part is added to the apparatus shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Main body 12 Activation reactor 14 Pyrolysis furnace 16 Steam heater 18 Boiler 20 Mixing part 22 Electric heater 24 Powdered activated carbon discharge machine 26 Exhaust gas flue 28 Exhaust gas fan 30 Exhaust gas circulation conduit 32 Utilization water vapor supply pipe 34 Temperature indication controller 36 Control valve 38 Temperature indicating controller 40 Control valve 42 O 2 meter 44 Control valve

Claims (7)

粉粒状石炭を熱分解炉において理論燃焼空気量以下の1次空気で燃焼させて石炭の固定炭素を残留させた灰とし、この灰を賦活反応器に落下させ、熱分解炉排ガスで加熱された後に電熱ヒーターでさらに加熱された水蒸気で賦活して粉粒状活性炭とし、熱分解炉排ガスの保有する熱量を回収した後、灰を賦活する水蒸気を加熱した後の排ガスに2次空気を供給して未燃分を燃焼させつつ水蒸気を発生させるとともに、排ガスの一部を熱分解炉へ循環することを特徴とする活性炭の製造方法 The particulate coal is burned at the stoichiometric combustion air amount less primary air and ash leaving a fixed carbon of the coal in the pyrolysis furnace, the ash was Do drop in activation reactor, it is heated in the pyrolysis furnace exhaust gas After that , the activated carbon is further activated with steam heated by an electric heater to form granular activated carbon. After recovering the amount of heat held in the pyrolysis furnace exhaust gas, secondary air is supplied to the exhaust gas after heating the steam that activates ash. A method for producing activated carbon characterized in that water vapor is generated while burning unburned components, and part of the exhaust gas is circulated to a pyrolysis furnace . 1次空気供給量が、石炭の理論燃焼空気量の30〜70%である請求項記載の活性炭の製造方法。Primary air supply amount, method for producing the activated carbon according to claim 1, wherein 30 to 70% of the theoretical amount of combustion air for coal. 総合空気比が1.0〜1.4になるように、又は排ガス中の酸素濃度が2〜6%になるように、2次空気供給量を制御する請求項記載の活性炭の製造方法。As total air ratio is 1.0 to 1.4, or as oxygen concentration in the exhaust gas is 2-6%, the manufacturing method of the activated carbon according to claim 1, wherein for controlling the secondary air supply. 熱分解炉内温度が600〜1000℃になるように、排ガス循環量を制御する請求項1、2又は3記載の活性炭の製造方法。The method for producing activated carbon according to claim 1 , 2 or 3 , wherein the exhaust gas circulation amount is controlled so that the temperature in the pyrolysis furnace is 600 to 1000 ° C. 賦活反応器内温度が600〜1000℃に保たれるように、賦活反応器へ供給する水蒸気の量を制御する請求項1〜4のいずれかに記載の活性炭の製造方法。The manufacturing method of the activated carbon in any one of Claims 1-4 which controls the quantity of the water vapor | steam supplied to an activation reactor so that the temperature in an activation reactor may be maintained at 600-1000 degreeC. 縦型円筒状の本体と、この本体の側部の略中央部に粉粒状石炭と理論燃焼空気量以下の1次空気とを供給して石炭を熱分解させるための、本体内の略中央部に設けられた熱分解炉と、この熱分解炉で生成した固定炭素を残留させた灰を落下させ、水蒸気を供給して賦活させるための、本体内の下部に設けられた賦活反応器と、前記熱分解炉の上側の本体内に設けられ、熱分解炉排ガスで賦活反応器へ供給する水蒸気を加熱するための蒸気加熱器と、この蒸気加熱器の上側の本体内に設けられ、2次空気を供給して排ガス中の未燃分を燃焼させつつ水蒸気を発生させるボイラと、このボイラからの排ガス煙道と前記熱分解炉とを接続する排ガス循環導管と、前記蒸気加熱器と前記賦活反応器とを接続する賦活用蒸気供給管に設けられた電熱ヒーターと、からなることを特徴とする活性炭の製造装置。  A substantially central portion in the main body for thermally decomposing coal by supplying granular coal and primary air below the theoretical combustion air amount to a vertical cylindrical main body and a substantially central portion of a side portion of the main body. An activation reactor provided in the lower part of the main body for dropping the ash in which the fixed carbon produced in the pyrolysis furnace is left and supplying steam to activate the pyrolysis furnace provided in A steam heater provided in the main body on the upper side of the pyrolysis furnace, for heating the steam supplied to the activation reactor with the exhaust gas from the pyrolysis furnace, and a secondary body provided in the main body on the upper side of the steam heater A boiler for supplying steam to generate steam while burning unburned components in the exhaust gas, an exhaust gas circulation conduit connecting the exhaust gas flue from the boiler and the pyrolysis furnace, the steam heater, and the activation Electric heat heater installed in the steam supply pipe to connect the reactor Activated carbon production apparatus, wherein the chromatography, in that it consists of. 熱分解炉において、1次空気及び粉粒状石炭の混合流が本体の接線方向に供給されて旋回流となるようにした請求項記載の活性炭の製造装置。The apparatus for producing activated carbon according to claim 6 , wherein in the pyrolysis furnace, a mixed flow of primary air and granular coal is supplied in a tangential direction of the main body to form a swirling flow.
JP18779295A 1995-06-30 1995-06-30 Method and apparatus for producing activated carbon Expired - Fee Related JP3737162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18779295A JP3737162B2 (en) 1995-06-30 1995-06-30 Method and apparatus for producing activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18779295A JP3737162B2 (en) 1995-06-30 1995-06-30 Method and apparatus for producing activated carbon

Publications (2)

Publication Number Publication Date
JPH0920511A JPH0920511A (en) 1997-01-21
JP3737162B2 true JP3737162B2 (en) 2006-01-18

Family

ID=16212313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18779295A Expired - Fee Related JP3737162B2 (en) 1995-06-30 1995-06-30 Method and apparatus for producing activated carbon

Country Status (1)

Country Link
JP (1) JP3737162B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156103A (en) 1999-11-30 2001-06-08 Shinkawa Ltd Wire bonder
JP2002066541A (en) * 2000-08-31 2002-03-05 Fuairudo Kk Supplementary water for cleaning water for cultivating aquarium fishes or fishes and shellfishes
JP5114719B2 (en) * 2001-07-25 2013-01-09 地方独立行政法人青森県産業技術センター Production method and system of porous carbon material
CN109368641B (en) * 2018-12-12 2024-02-20 宁夏尼西活性炭有限公司 Device for recycling combustible gas prepared from activated carbon

Also Published As

Publication number Publication date
JPH0920511A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
JP3203255B2 (en) Method and apparatus for utilizing biofuel or waste material for energy production
JP6366679B2 (en) Operation method of cement production plant
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
WO2014079283A1 (en) External bed type double-fluidized bed system for preventing boiler contamination
CN104487550B (en) Improvement in waste process
JP6653862B2 (en) Method and ignition device for combustion management in an ignition device
CN106995708A (en) A kind of biomass charcoal making system and method
CN102449395B (en) oxygen fired steam generator
CN106244175A (en) The reduction denitration of fume high-temperature carbon and heat-energy recovering apparatus
CN109735371A (en) A kind of biomass circulating fluidized bed direct-combustion boiler and its with gasification furnace coupled electricity-generation co-producing active carbon system
US20190047911A1 (en) Plant for production of cement with reduced emission of pollutant gasses
CN104891489B (en) A kind of fluidization produces the equipment of activated carbon
PL180643B1 (en) System for and method of secondary feeding industrial or municipal circulating fluidised bed furnace boilers capable to reduce sox and nox emission form such boilers
CN114034028A (en) Low-calorific-value coal circulating fluidized bed staged combustion system
JP3737162B2 (en) Method and apparatus for producing activated carbon
CN104891490B (en) A kind of method that fluidization produces activated carbon
CN109502555A (en) The system and technique of calcium sulfate Recovered sulphur and calcium oxide are decomposed in a kind of charcoal sulphur collaboration
CN105650618A (en) Water gas production and combustion integrated combustion method and equipment
CN107739630A (en) A kind of Biomass Gasification in Circulating Fluidized Bed device
CN205328935U (en) System for pyrolysis living beings
CN105135422B (en) Biomass molding fuel and offal multi-fuel fired boiler and its pollutant catabolic gene method
CN210485672U (en) Biomass charcoal gas co-production system
CN208136183U (en) A kind of low-grade fuel gasification system
CN103013573A (en) System for supplying high temperature air for fluidized bed coal gasification furnace
CN205527775U (en) System for preparation carbide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees