JP3737150B2 - Secondary battery charging control method - Google Patents

Secondary battery charging control method Download PDF

Info

Publication number
JP3737150B2
JP3737150B2 JP02243595A JP2243595A JP3737150B2 JP 3737150 B2 JP3737150 B2 JP 3737150B2 JP 02243595 A JP02243595 A JP 02243595A JP 2243595 A JP2243595 A JP 2243595A JP 3737150 B2 JP3737150 B2 JP 3737150B2
Authority
JP
Japan
Prior art keywords
charge
battery
charging
secondary battery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02243595A
Other languages
Japanese (ja)
Other versions
JPH08222277A (en
Inventor
幸雄 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP02243595A priority Critical patent/JP3737150B2/en
Publication of JPH08222277A publication Critical patent/JPH08222277A/en
Application granted granted Critical
Publication of JP3737150B2 publication Critical patent/JP3737150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は二次電池の充電制御方法に係り、さらに詳しくは過充電を防止する二次電池の充電制御方法に関する。
【0002】
【従来の技術】
ニッケル−水素二次電池、あるいはニッケル−カドミウム二次電池などに代表される二次電池は、たとえば携帯用電話機や携帯型撮像機など各種の機器システムの作動電源として、広く実用化されている。つまり、この種の二次電池は、いわゆる充電操作による電力の確保もしくは貯蔵、前記確保もしくは貯蔵した電力を電源とし、負荷の駆動(放電)を繰り返し動作させることが可能なため、半永久的な電源として、各種の機器システムに組み込まれ実用されている。
【0003】
ところで、前記二次電池は、いずれの場合も充電および放電が主要な機能であり、また安全性の点から、充電の終止電圧、放電の終止電圧をそれぞれ限界とし、この限界範囲内の電圧で充電や放電を行っている。また、前記二次電池の充電は、図4にフローチャートで示すごとく、一般的に,定電流による急速充電法で行われている。すなわち、定電流による急速充電を開始した後、電池の残り容量(放電残余の電圧)に対応して、予め設定された時間内(充電保護タイマーの設定)において急速充電が行われる。そして、その急速充電の間に被充電電池の充電電圧を随時チェックし、所定の満充電状態に到達したと検出され、さらに、前記急速充電に伴う電池温度の変化,上昇に伴う単位時間当たりの温度上昇比(温度微分値)を随時チェックして、所定の満充電状態に到達したと検出した時点で、補充電に切り換えて満充電への到達,確保を図っている。つまり、急速充電過程で、被充電電池の充電電圧および温度微分値を随時チェックして満充電状態化を図っても、実際的に 100%の満充電を行うことが困難なため、前記温度微分方式の併用で満充電状態と判定した後も低い電流で補充電を続行して、 100%満充電を行う方式が採られている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記、従来の二次電池に対する充電制御方法(方式)は、実用上次ぎのような不都合がしばしば認められる。すなわち、被充電電池の残り容量が比較的少ないと急速充電量も大きくなるので、前記温度微分値の併用によって、急速充電の終了時点を検出することはそれ程問題にならない。しかし、被充電電池の残り容量が比較的大きいとき、もしくは 100%近い満充電状態にあるときは、急速充電量が少なく設定されることになる。つまり、被充電二次電池が 100%満充電に近い状態のときなどに、再充電を行うこともあり、この場合には、温度微分制御で満充電を検知してから通常のルーチンに乗って補充電を行うと、被充電電池にとってかなりの過充電となって、二次電池の破損・損傷などを起こし、寿命低下を招来するという問題がある。
【0005】
本発明は上記事情に対処してなされたもので、再充電量が比較的小さい二次電池に対して過充電を回避もしくは防止しながら、満充電状態の充電を容易に行い得る二次電池の充電制御方法の提供を目的とする。
【0006】
【課題を解決するための手段】
本発明に係る二次電池の充電制御方法は、二次電池に定電流で急速充電し、その充電進行に伴う電池温度の単位時間当たりの温度変化(温度微分値)によって過充電を検知して充電の停止ないし終了とする二次電池の充電制御方法であって、前記急速充電初期の予め設定された急速充電設定時間内に、電池温度の上昇が所定の温度微分値以上となったとき、満充電と判定し、その後は自己放電分を補充するトリクル充電に切り換え、前記急速充電設定時間を超えてから、電池温度の上昇が所定の温度微分値以上となったとき、前記急速充電より低い電流による補充電に切換えて満充電とした後、トリクル充電に切り換えることを特徴とする。
【0007】
すなわち、本発明は満充電に近い二次電池を被充電電池とし、この二次電池に再充電する形態を採ったときの充電制御方法である。そして、本発明は満充電に近い二次電池に再充電したとき、定電流での急速充電開始から温度微分制御により満充電を検知するまでの時間が短いことに着目してなされたものである。つまり、前記急速充電開始から 2〜 5分程度の時間内に温度微分制御によって満充電を検知した場合は、補充電を省略して二次電池の自己放電分だけを充電するトリクル充電に切り換え(移行)ると、被充電電池を過充電から容易に保護もしくは回避し得ることを確認し、本発明は達成されたものである。
【0008】
なお、本発明においては、充電用の電力源として、商用の交流電源を適切な電圧を持った直流に変換したものが使用されるが、その他に、たとえば燃料電池からなる電源を使用してもよいし、あるいはガソリンエンジンないしはディーゼルエンジンなどから発電される電力を用いてもよい。
【0009】
【作用】
本発明においては、被充電電池が満充電に近い状態にあると、急速充電開始後、短時間内に電池温度が急激に変化することを利用し、その温度変化を温度微分(単位時間当たりの温度変化)の形で把え、かつ温度微分値の増大傾向(もしくは増大勾配)を目安として、定電流での急速充電を停止(終了)する。つまり、 100%満充電直前の急激な電池温度の変化を温度微分値化し、満充電直前の充電度合いが、より高精度に検出,把握されることになる。そして、この時点で、直ちにトリクル充電に移行させるため、いわゆる補充電などに伴う過充電が、容易、かつ確実に回避され、前記過充電に起因する被充電電池の破損・損傷などの発生も防止もしくは解消されて、結果的には二次電池の長寿命化に大きく寄与することになる。
【0010】
【実施例】
以下、前記図1〜図3を参照して本発明の実施例を説明する。
【0011】
先ず図1は、本発明に係る二次電池の充電制御方法の実施態様における回路ブロック図であり、1は充電器で、入力電源1a、定電流制御回路1b、充電電圧測定手段や演算器 (CPU)を内蔵する充電制御回路1cおよび定電圧印加手段1dを具備した構成を採っている。また、2は二次電池パックで、前記充電器1の定電流制御回路1bの出力が印加される被充電用の二次電池(たとえばニッケル−水素二次電池)2a、および前記被充電用の二次電池2aの近傍に配置されて二次電池2aの充電時の温度を検出し、検出した温度情報を前記充電器1の充電制御回路1cに入力する温度検出センサ2bを具備した構成を採っている。
【0012】
なお、前記二次電池パック2の温度検出センサ2bからは、前記充電器1の定電圧印加手段1dとの分圧値として充電制御回路1cに入力される。そして、この充電制御回路1cは、前記温度検出センサ2bからの電池温度(充電温度)信号によって、定電流制御回路1bの出力を制御するもので、急速充電からトリクル充電への切り換え(移行)の指令を出力する。
【0013】
次に、前記図1に図示した回路構成による二次電池の充電制御方法を、図2に示すフローチャートおよび図3 (a), (b)に示す充電温度−充電時間関係図を参照して実施態様例を説明する。
【0014】
先ず、充電器1に被充電電池としての二次電池パック2を装着,接続し、定電流制御回路1bを介して被充電用の二次電池2aに、定電流を流して所要の急速充電を開始する。この急速充電を開始すると、前記二次電池2aの残りの充電容量を考慮して予め充電制御回路1cに設定されている急速充電保護タイマーが動作し、急速充電可能な時間がセットされ、保護タイマーがタイムアップしたか否かを判定する。ここで、タイムアップしていなければ被充電電池2aの電池電圧が、充電制御回路1cに内蔵されている充電電圧測定手段でチェックされ、電池電圧VB が規定値Vmin ≦VB ≦Vmax であれば電池温度のチェックが行われ、規定値外であれば充電を停止して電池異常として取り出す。
【0015】
前記電池温度のチェックで、電池温度TB が正常ならば(充電に伴う通常の温度変化状態)急速充電をそのまま続行し、満充電状態に起こる急激な電池温度変化を待ち、急激な電池温度変化が起こったら、充電制御回路1cに内蔵されている演算器で温度微分値の演算を行う。ここで、温度微分値が設定値trr以下であれば、再度、急速充電可能な時間がセットされる状態に戻され、急速充電など、前記操作が繰り返される。一方、前記温度微分値が設定値trr以上であると、急速充電での満充電と判定し、監視している急速充電時間(急速充電設定時間)tg 未満のときは、 100%満充電状態に急速充電されたものと判定し、二次電池2aの自己放電分のみを充電するトリクル充電モードに切り換える。つまり、図3 (a)に充電温度−充電時間関係を示すごとく、定電流による急速充電後、補充電を行わず直ちにトリクル充電モードに移行することによって、過充電を容易に、また確実に防止することが可能であった。
【0016】
また、前記急速充電での満充電と判定しながら、監視している急速充電時間(急速充電設定時間)tg を超えているときは、補充電モードに切り換えて 100%満充電状態とするように補充電を行う。すなわち、図3 (b)に充電温度−充電時間関係を示すごとく、定電流による急速充電後、補充電を行い 100%満充電状態化し、さらに二次電池2aの自己放電分のみを充電するトリクル充電モードに切り換える。なお、図3 (a), (b)において、横軸は充電時間、縦軸は電池電圧VB ,電池温度TB ,充電電流Iをそれぞれ示している。
【0017】
上記ではニッケル−水素電池を、被充電用二次電池とした実施例について説明したが、他の形式のニッケル−水素電池を始め、ニッケル−カドミウム二次電池などの場合も同様に適用し、同様な作用効果を得ることが可能である。
【0018】
【発明の効果】
以上実施例の説明などから分かるように、本発明に係る充電制御方法によれば、満充電に近い状態にある二次電池を被充電電池として再充電するとき、急速充電開始後、短時間内に起こる温度微分値の増大(もしくは増大勾配)を満充電として、定電流での急速充電を停止(終了)する。そして、この時点で、直ちにトリクル充電に移行させるため、いわゆる補充電に伴う過充電が、容易、かつ確実に回避される。したがって、前記過充電に起因する被充電電池の破損・損傷などの発生も防止もしくは解消されて、結果的には二次電池の長寿命化が図られことになり、二次電池の機能向上に大きく寄与するといえる。
【図面の簡単な説明】
【図1】本発明に係る二次電池の充電制御装置の要部構成例を示す回路図。
【図2】本発明に係る二次電池の充電制御方法の実施態様例を説明するためのフ…チャート図。
【図3】 (a)は本発明に係る二次電池の充電制御方法における充電時間と被充電電池の温度,電圧,充電電流の関係例を示す特性図、 (b)従来の二次電池の充電制御方法における充電時間と被充電電池の温度,電圧,充電電流の関係例を示す特性図。
【図4】従来の二次電池の充電制御方法の実施態様を説明するためのフ…チャート図。
【符号の説明】
1……充電器 1a……入力電源 1b……定電流制御回路 1c……充電制御回路 1d……定電圧印加手段 2……二次電池パック 2a……被充電二次電池 2b……温度検出センサ
[0001]
[Industrial application fields]
The present invention relates to a secondary battery charge control method, and more particularly, to a secondary battery charge control method for preventing overcharge.
[0002]
[Prior art]
Secondary batteries typified by nickel-hydrogen secondary batteries or nickel-cadmium secondary batteries have been widely put into practical use as operating power sources for various equipment systems such as portable telephones and portable imaging devices. In other words, this type of secondary battery is capable of securing or storing power by so-called charging operation, and using the secured or stored power as a power source and repeatedly driving (discharging) the load. As such, it is incorporated into various equipment systems and used.
[0003]
By the way, charging and discharging are the main functions of the secondary battery in any case, and from the viewpoint of safety, the end voltage of charging and the end voltage of discharging are set as limits, and the voltage within this limit range is used. Charging or discharging is in progress. Further, as shown in the flowchart in FIG. 4, the secondary battery is generally charged by a rapid charging method using a constant current. That is, after starting rapid charging with a constant current, rapid charging is performed within a preset time (setting of a charge protection timer) corresponding to the remaining capacity of the battery (discharge residual voltage). Then, the charging voltage of the battery to be charged is checked at any time during the rapid charging, and it is detected that the predetermined full charging state has been reached. The temperature rise ratio (temperature differential value) is checked at any time, and when it is detected that a predetermined full charge state has been reached, it is switched to auxiliary charge to reach and secure full charge. In other words, even if the charging voltage and temperature differential value of the battery to be charged are checked at any time during the quick charging process to achieve a fully charged state, it is difficult to actually fully charge the battery. Even after determining that the battery is fully charged with the combined use of the method, the method of continuing full charge at a low current and fully charging it is adopted.
[0004]
[Problems to be solved by the invention]
However, the charge control method (method) for the conventional secondary battery often has the following disadvantages in practice. That is, if the remaining capacity of the battery to be charged is relatively small, the amount of rapid charge also increases, so that it is not a problem to detect the end point of rapid charge by using the temperature differential value together. However, when the remaining capacity of the battery to be charged is relatively large, or when the battery is fully charged, the quick charge amount is set to be small. In other words, when the rechargeable secondary battery is nearly 100% fully charged, recharging may be performed. In this case, the full charge is detected by temperature differential control and then the normal routine is entered. When supplementary charging is performed, there is a problem that the battery to be charged becomes excessively overcharged, and the secondary battery is damaged or damaged, leading to a decrease in the life.
[0005]
The present invention has been made in view of the above circumstances, and a secondary battery that can easily be charged in a fully charged state while avoiding or preventing overcharging of a secondary battery with a relatively small recharge amount. An object is to provide a charge control method.
[0006]
[Means for Solving the Problems]
The secondary battery charge control method according to the present invention quickly charges a secondary battery with a constant current, detects overcharge by a temperature change (temperature differential value) per unit time of the battery temperature as the charging progresses. A charge control method for a secondary battery to stop or terminate charging , when the battery temperature rise is equal to or higher than a predetermined temperature differential value within a preset quick charge setting time in the initial stage of the quick charge , It is determined that the battery is fully charged, and then switches to trickle charging to replenish the self-discharge . When the battery temperature rises above a predetermined temperature differential value after the rapid charging set time is exceeded, it is lower than the rapid charging. after a full charge is switched to the supplementary charging by the current, and wherein the Rukoto switched to trickle charging.
[0007]
That is, the present invention is a charge control method when a secondary battery close to full charge is used as a battery to be charged and the secondary battery is recharged. And when this invention recharges to the secondary battery near full charge, it was made paying attention to short time from the rapid charge start by a constant current until full charge was detected by temperature differential control. . In other words, when full charge is detected by temperature differential control within a period of about 2 to 5 minutes from the start of the quick charge, the auxiliary charge is omitted and the charge is switched to trickle charge that charges only the self-discharge of the secondary battery ( The present invention has been achieved by confirming that the battery to be charged can be easily protected or avoided from overcharging.
[0008]
In the present invention, a commercial AC power source converted into a direct current having an appropriate voltage is used as a power source for charging. However, for example, a power source comprising a fuel cell may be used. Alternatively, electric power generated from a gasoline engine or a diesel engine may be used.
[0009]
[Action]
In the present invention, when the battery to be charged is in a fully charged state, the rapid change of the battery temperature is utilized within a short time after the start of the quick charge, and the temperature change is expressed as a temperature derivative (per unit time). It is grasped in the form of (temperature change), and rapid charging at a constant current is stopped (terminated) using the increasing tendency (or increasing gradient) of the temperature differential value as a guide. In other words, the rapid battery temperature change immediately before 100% full charge is converted into a temperature differential value, and the degree of charge immediately before full charge is detected and grasped with higher accuracy. At this time, since the transition to trickle charging is performed immediately, overcharging associated with so-called supplementary charging can be avoided easily and reliably, and the occurrence of breakage / damage of the battery to be charged due to the overcharging is also prevented. Alternatively, it is eliminated, and as a result, it greatly contributes to extending the life of the secondary battery.
[0010]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0011]
First, FIG. 1 is a circuit block diagram in an embodiment of a charge control method for a secondary battery according to the present invention. Reference numeral 1 denotes a charger, which includes an input power source 1a, a constant current control circuit 1b, a charge voltage measuring means and a computing unit ( CPU) and a charging control circuit 1c and a constant voltage applying means 1d. Reference numeral 2 denotes a secondary battery pack, a secondary battery for charging (for example, a nickel-hydrogen secondary battery) 2a to which the output of the constant current control circuit 1b of the charger 1 is applied, and the secondary battery pack. A structure is provided that includes a temperature detection sensor 2b that is disposed in the vicinity of the secondary battery 2a, detects the temperature at the time of charging the secondary battery 2a, and inputs the detected temperature information to the charge control circuit 1c of the charger 1. ing.
[0012]
The temperature detection sensor 2b of the secondary battery pack 2 is inputted to the charge control circuit 1c as a divided voltage value with respect to the constant voltage applying means 1d of the charger 1. The charge control circuit 1c controls the output of the constant current control circuit 1b according to the battery temperature (charge temperature) signal from the temperature detection sensor 2b, and switches (shifts) from quick charge to trickle charge. Outputs a command.
[0013]
Next, the secondary battery charge control method with the circuit configuration shown in FIG. 1 is implemented with reference to the flowchart shown in FIG. 2 and the charge temperature-charge time relationship diagrams shown in FIGS. 3 (a) and 3 (b). An exemplary embodiment will be described.
[0014]
First, a secondary battery pack 2 as a battery to be charged is attached and connected to the charger 1, and a constant current is supplied to the secondary battery 2a to be charged via the constant current control circuit 1b to perform the required quick charge. Start. When this quick charge is started, the quick charge protection timer set in advance in the charge control circuit 1c in consideration of the remaining charge capacity of the secondary battery 2a operates, the time for which quick charge is possible is set, and the protection timer It is determined whether or not the time is up. Here, if the time is not up, the battery voltage of the battery 2a to be charged is checked by the charging voltage measuring means built in the charge control circuit 1c, and the battery voltage V B is a specified value V min ≦ V B ≦ V max. If so, the battery temperature is checked, and if it is out of the specified value, charging is stopped and the battery is taken out as a battery abnormality.
[0015]
The check of the battery temperature, if normal battery temperature T B as it continues the (normal temperature change conditions associated with charging) fast charge, waits for rapid battery temperature changes that occur fully charged, sudden battery temperature change If this occurs, the temperature differential value is calculated by a calculator built in the charge control circuit 1c. Here, if the temperature differential value is less than or equal to the set value trr , the time for which quick charging can be performed is set again, and the operation such as quick charging is repeated. On the other hand, if the temperature differential value is greater than or equal to the set value t rr, it is determined that the battery is fully charged by rapid charging, and if it is less than the monitored rapid charging time (rapid charging setting time) t g , 100% fully charged It is determined that the battery has been rapidly charged, and the mode is switched to the trickle charge mode in which only the self-discharge of the secondary battery 2a is charged. In other words, as shown in Fig. 3 (a), the charging temperature-charging time relationship is followed by quick charging with a constant current, and then immediately switching to trickle charging mode without performing auxiliary charging, thereby preventing overcharging easily and reliably. It was possible to do.
[0016]
In addition, when it is determined that the full charge in the quick charge is over and the monitored quick charge time (fast charge set time) tg is exceeded, the mode is switched to the auxiliary charge mode so that the fully charged state is reached. Perform supplementary charging. That is, as shown in FIG. 3 (b), the charge temperature-charge time relationship, after rapid charging with constant current, supplementary charging is performed to bring the battery to 100% full charge, and only the self-discharge of the secondary battery 2a is charged. Switch to charge mode. 3A and 3B, the horizontal axis represents the charging time, and the vertical axis represents the battery voltage V B , the battery temperature T B , and the charging current I.
[0017]
In the above description, the nickel-hydrogen battery has been described as the secondary battery to be charged. It is possible to obtain various effects.
[0018]
【The invention's effect】
As can be seen from the description of the embodiments and the like, according to the charge control method of the present invention, when recharging a secondary battery in a state close to full charge as a charged battery, within a short time after the start of rapid charging. The rapid charging at a constant current is stopped (terminated) with the increase (or increasing gradient) of the temperature differential value occurring at the time of full charge. At this time, since the transition to trickle charging is performed immediately, overcharging associated with so-called supplementary charging is easily and reliably avoided. Therefore, the occurrence of breakage or damage of the battery to be charged due to the overcharge is prevented or eliminated, and as a result, the life of the secondary battery is extended and the function of the secondary battery is improved. It can be said that it contributes greatly.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a configuration example of a main part of a charge control device for a secondary battery according to the present invention.
FIG. 2 is a flowchart for explaining an example of an embodiment of a charge control method for a secondary battery according to the present invention.
3A is a characteristic diagram showing an example of the relationship between the charging time and the temperature, voltage, and charging current of a battery to be charged in the secondary battery charging control method according to the present invention, and FIG. 3B is a characteristic diagram of a conventional secondary battery. The characteristic view which shows the example of relationship between the charge time in the charge control method, the temperature of a to-be-charged battery, voltage, and charging current.
FIG. 4 is a chart for explaining an embodiment of a conventional secondary battery charge control method.
[Explanation of symbols]
1 …… Charger 1a …… Input power supply 1b …… Constant current control circuit 1c …… Charge control circuit 1d …… Constant voltage application means 2 …… Secondary battery pack 2a …… Rechargeable secondary battery 2b …… Temperature detection Sensor

Claims (1)

二次電池に定電流で急速充電し、その充電進行に伴う電池温度の単位時間当たりの温度変化(温度微分値)によって過充電を検知して充電の停止ないし終了とする二次電池の充電制御方法であって、
前記急速充電初期の予め設定された急速充電設定時間内に、電池温度の上昇が所定の温度微分値以上となったとき、満充電と判定し、その後は自己放電分を補充するトリクル充電に切り換え
前記急速充電設定時間を超えてから、電池温度の上昇が所定の温度微分値以上となったとき、前記急速充電より低い電流による補充電に切換えて満充電とした後、トリクル充電に切り換えることを特徴とする二次電池の充電制御方法。
Charge control of a secondary battery that quickly charges the secondary battery with a constant current and detects overcharge by temperature change per unit time (temperature differential value) of the battery temperature as charging progresses and stops or terminates charging. A method,
When the battery temperature rise exceeds a predetermined temperature differential value within the preset quick charge setting time at the initial stage of the quick charge , it is determined that the battery is fully charged, and thereafter, it is switched to trickle charge to replenish the self-discharge. ,
After exceeding the quick charge set time, when the rise of the battery temperature reaches a predetermined temperature differential value or more, after the full charge is switched to the supplementary charging by lower current than the quick charge, Rukoto switched to trickle charging A charge control method for a secondary battery.
JP02243595A 1995-02-10 1995-02-10 Secondary battery charging control method Expired - Fee Related JP3737150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02243595A JP3737150B2 (en) 1995-02-10 1995-02-10 Secondary battery charging control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02243595A JP3737150B2 (en) 1995-02-10 1995-02-10 Secondary battery charging control method

Publications (2)

Publication Number Publication Date
JPH08222277A JPH08222277A (en) 1996-08-30
JP3737150B2 true JP3737150B2 (en) 2006-01-18

Family

ID=12082624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02243595A Expired - Fee Related JP3737150B2 (en) 1995-02-10 1995-02-10 Secondary battery charging control method

Country Status (1)

Country Link
JP (1) JP3737150B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE212012000292U1 (en) * 2012-12-20 2015-07-23 Powergenix Systems, Inc. Control of battery charge levels in systems with separate power sources
US9337683B2 (en) * 2012-12-20 2016-05-10 Powergenix Systems, Inc. Controlling battery states of charge in systems having separate power sources

Also Published As

Publication number Publication date
JPH08222277A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
JP3869585B2 (en) Discharge method of multiple secondary batteries and assembled battery
US6850041B2 (en) Battery pack used as power source for portable device
EP0440756B1 (en) Battery assembly and charging system
EP1067654A1 (en) Electric car battery pack charging device and a method
US6310464B1 (en) Electric car battery charging device and method
JPH097641A (en) Charging method of secondary battery
JP3629791B2 (en) Charge control device for battery pack
KR20200021789A (en) Apparatus and method for charging control
JP3306188B2 (en) Rechargeable battery charging method
JP3737150B2 (en) Secondary battery charging control method
JP3177405B2 (en) Secondary battery charge / discharge control method and device
JP3409458B2 (en) Battery pack charging device
JP3419122B2 (en) Battery protection device
JP3638369B2 (en) Secondary battery charging control method
JP3421404B2 (en) Rechargeable battery charging method
JP3573495B2 (en) Rechargeable battery charging method
JP3402757B2 (en) Secondary battery charging method and secondary battery charging device
JP3707826B2 (en) Overcharge prevention charge control method
JPH0638392A (en) Battery charger
JP3390502B2 (en) Rechargeable battery charging method
JP3555989B2 (en) Rechargeable battery charging method
JP3144394B2 (en) Charging device and charging method
JPH07312228A (en) Charging method of secondary battery
JP3450676B2 (en) Secondary battery device
JP3432554B2 (en) Secondary battery charging method and secondary battery charging device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees