JP3736650B2 - Lightweight embedding material for civil engineering - Google Patents

Lightweight embedding material for civil engineering Download PDF

Info

Publication number
JP3736650B2
JP3736650B2 JP00606796A JP606796A JP3736650B2 JP 3736650 B2 JP3736650 B2 JP 3736650B2 JP 00606796 A JP00606796 A JP 00606796A JP 606796 A JP606796 A JP 606796A JP 3736650 B2 JP3736650 B2 JP 3736650B2
Authority
JP
Japan
Prior art keywords
embedding
bag
filler
filling
embedding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00606796A
Other languages
Japanese (ja)
Other versions
JPH09195277A (en
Inventor
傅可志 濱野
佳奈代 濱野
哲夫 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP00606796A priority Critical patent/JP3736650B2/en
Publication of JPH09195277A publication Critical patent/JPH09195277A/en
Application granted granted Critical
Publication of JP3736650B2 publication Critical patent/JP3736650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、土木用の埋込材に関し、更に詳しくは、軽量で、かつ透水性、通気性に優れた土木用の埋込材に関するものである。
【0002】
【従来の技術】
軟弱地盤や埋立地などでは、地盤の沈下を防止し、安定化するための対策工法として、埋込材、盛土材として合成樹脂発泡体などの超軽量材料が用いられている。例えば、前記合成樹脂発泡体として、発泡ポリスチレン(EPS)製のブロック体を用いた工法は、EPS工法として広く知られている。このEPSブロック体は、土砂に較べるとその単位体積重量が約1/100と極めて軽いことから、軟弱地盤や地すべり地など地盤強度が小さいところの地盤の沈下防止や安定化に極めて有効であるだけでなく、軽量のため施工が容易であるという利点がある。このため、このEPS工法によって、例えば、図1に示すような拡幅盛土や、図2に示すような公園盛土などが構築されている。前記EPSブロック体は、図3に示すように、例えば巾が約1000mm、長さが約2000mm、高さが約500mm程度の大型のブロック状に成形され、これを地盤上に積み重ねることで、図1、図2に示すような拡幅盛土や公園盛土をはじめとし、その他、擁壁、橋台などの裏込材、建物の基礎など、土木工法の全般にわたって広く用いられている。
【0003】
ところで、図1に示すEPS工法による拡幅盛土の場合、EPSブロック体と背後の壁面との間は、透水性を確保するために、通常、バラス、砕石などが埋め込まれる。しかし、これらのバラスや砕石の埋め込み作業は、人が一輪車などでバラスや砕石を運んで行っているため、作業の効率が悪いという問題がある。
【0004】
また、図2に示す公園盛土の場合には、EPSブロック体の熱容量が大きく、しかも、通気性が悪いために、昼間の日照によりEPS内に滞留した熱が夜になっても冷めず、盛土上に植えた樹木などが根腐れを起こす、といった問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、このような背景に鑑みてなされたものであって、軽量で施工時の作業性がよく、また、透水性、通気性に優れた土木用の埋込材及びこの埋込材を用いた構築体や工法を提供せんとするものである。
【0006】
【課題を解決するための手段】
本発明に係る土木用埋込材は、上記の目的を達成するために、発泡性ポリスチレンを、直径40〜200mmでほぼ球形に成形してなる発泡成形充填材を、透水性を有する袋状体に充填した直径が300〜1000mm、長さが400〜3000mmの円筒形状である軽量な埋込材である。この埋込材は、例えば、EPS工法において、合成樹脂発泡体からなるブロック体を積層し、この積層したブロック体周囲の少なくとも一部に埋め込んで、拡幅盛土、道路盛土、公園盛土などの構築体を構築したり、擁壁や橋台の裏込め、建物の基礎などに用いることができる。さらに、地中、または地中に埋設した合成樹脂発泡体からなるブロック体に埋設管の埋込用溝を設けて該溝内に埋設管を配設し、その周囲をこの埋込材で埋め戻すことにより、埋設管の埋設の埋設に用いることもできる。
【0007】
【作用及び発明の効果】
上記のように、本発明に係る土木用埋込材は、透水性を有する袋状体に合成樹脂発泡成形体からなる充填材を充填してなるから、バラスや砕石の場合と較べて極めて軽量で、かつ袋状体により所定の形状に保持されているため取り扱いが容易で、従来のバラスや砕石の場合に較べて施工時の作業性が格段に向上する。ところで、この充填材として、発泡合成樹脂、例えばEPS製の漁函などをリサイクルのために粉砕した粉砕物を用いたりすると、充填材の形状が不揃いなため充填性が充分でないことに加え、強度が小さいために埋込施工後に、充填材が盛土等の重量により変形したりへたったりして、埋込地盤が沈下するといった問題がある。また、このような細かい粉砕品であると、目詰まりして透水性、通気性が低下するおそれもある。また、発泡成形品を粉砕後、加熱により減容したものを充填材として使用する場合には、前記の粉砕品と同様に形状が不揃いで充填性が良好でなく、しかも軽量性が低下するなどの問題があった。さらに、このような従来のリサイクル品では、難燃剤を含有するものばかりではないため、埋込材の難燃性のコントロールが不充分であった。これに対し、本発明では、前記充填材として、合成樹脂発泡体の成形品で、平均径が40〜200mmと大きく、しかもほぼ球形に成形したものを用いたことから、充填材の強度が大きく、変形やへたりがなく、埋込材として土壌中に埋込後に地盤が沈下するといった問題がない。しかも、充填材はほぼ球形であることから、袋状体内に充填された各充填材間には常に一定の空隙が確実に形成され、透水性、通気性が確保される。また、EPSなどの合成樹脂発泡体は、化学的に極めて安定であることから、土木・建築材料としての長期間にわたる使用にも充分に耐えうる。さらに、成形の際に難燃剤の添加や、その添加量が自由に選択できるので、用途に応じた難燃性のコントロールも自由に行うことができるのである。
【0008】
【発明の実施の形態】
図4は、本発明に係る土木用埋込材1の1例を示すものである。この埋込材1は、透水性を有する袋状体2の内部に、発泡性合成樹脂を成形してなる充填材3を充填したものである。
【0009】
この埋込材1の形状、すなわち袋状体2の大きさは、使用目的により適宜設定できるが、一般的には、図例のような円筒形状で、その直径Dが300〜1000mm程度、好ましくは350〜400mm、また、長さLが400〜3000mm程度、好ましくは500〜2000mm程度で、人が一人で持つことができる程度の大きさが、作業性などの観点から好ましい。
【0010】
前記袋状体2への充填材3の充填率は特に限定はないが、施工場所に対する形状追随性などを考慮すると、あまり詰め込むことは好ましくなく、変形が可能な程度、つまり、袋状体2の容量に対して90〜95%程度の充填率とすることが好ましい。この袋状体2の材質については、透水性を有し、また、内部に充填される充填材3がこぼれないようなものであれば、特に限定はない。例えば、麻などの天然繊維、ポリプロピレン、ナイロン、ポリ塩化ビニル、ポリエステルなどの合成繊維、さらには、それらを混紡したものなどの各種繊維からなる編織布、不織布などの布状物、あるいは網状物により作成することができる。また、アルミ、鉄などの針金などよりなる金網も使用でき、従来から砕石などを入れて使用されている金網なども好ましい。このうち、例えば、麻袋または麻製の網状物の場合には、施工の際、積み上げた埋込材1の上に土をかぶせる場合などに、袋が滑って位置ずれしたりすることがないので好ましい。また、ポリプロピレンなどの合成樹脂で袋状物または網状物を作成した場合には、化学的に極めて安定であることから、長期間の使用に充分耐えることができる。例えば、一般に玉ネギなどを入れて運搬、保管するのに使用されている合成繊維製の網状物からなる袋状体や、より太い素材の網状物を用いた袋状体なども好ましい。さらに、麻などの天然繊維とポリプロピレンなどの合成繊維とを組み合わせたり、あるいは金網などを組み合わせることで、前記のようなスベリ防止と、耐久性との両方を兼ね備えたものとすることもできる。
【0011】
さらに、前記の袋のスベリ対策として、例えば図5に示すように、袋状体2の周囲に、麻紐、ロープ、その他の紐状体4、あるいは帯状体をスベリ止めとして巻回するようにしてもよい。この場合、紐状体4を、図例の如く袋状体2に縫い込むように巻回しておけば、紐状体4の位置がズレて袋状体2から外れたりすることを防止できる。
【0012】
前記袋状体2を作成するには、例えば網状体を連続した長尺の筒状に形成したものを、適宜長さに切断し、内部に充填材3を充填して両端開口部を紐5などで縛っても封止してもよいし、図6(イ)に示すように、開口部に、あらかじめ締め紐5を設けておいたり、図6(ロ)に示すように、充填材3を充填する前に一方の開口部をあらかじめ逢着しておいてもよい。
【0013】
さらに、この埋込材1の内部に、図7に示すように塩化ビニル樹脂などで作成したパイプ6を内装しておけば、透水性をより確実に確保できる。
【0014】
次に、上記のような袋状体2内に充填される充填材3について説明する。この充填材3は、発泡性合成樹脂を所定の形状に成形した合成樹脂の発泡体からなる。この樹脂の種類については特に限定はないが、従来から合成樹脂発泡体の原料として一般に使用されている、ポリスチレン、ポリエチレンもしくはポリプロピレンなどのポリオフィン、ABS、MBS、ポリエチレンテレフタレートなど、各種のものが使用できるが、このなかでも、圧縮強度が大きく、成形が容易なポリスチレンが好ましい。また、酸、アルカリ、溶剤等の耐薬品性が必要な場合はポリオレフィンが好ましい。この充填材3は、前記のような合成樹脂の発泡性ビーズを原料として型内発泡成形法により所定の形状、大きさに成形される。
【0015】
この場合、充填材成形用の発泡性ビーズには、難燃剤を含有させておくことが、難燃性付与の観点から好ましい。何故なら、EPS工法に用いられているブロック体は、保管時などの安全性から、通常、難燃性が付与されており、本願の埋込材の場合にも、火災などの危険を考慮すると、同様の配慮が望まれるからである。記述のとおり、従来使用されていた再生、リサイクル品では、この難燃性の確保が充分でないことが指摘できる。
【0016】
本発明で使用される難燃剤は、ハロゲン系難燃剤、リン系難燃剤、無機系難燃剤等が例示される。ハロゲン系難燃剤としては、例えば塩素化パラフィン、塩素化ポリエチレンパークロロペンタシクロデカン、ヘキサブロモベンゼン、デカブロモジフェニルオキサイド、テトラブロモビスフェノールA、ヘキサブロモシクロドデカン等が挙げられる。リン系難燃剤としては、例えばトリフェニルホスフェート、トリクレジルホスフェート、トリクレジルジフェニルホスフェート等の非含ハロゲン系;トリス(ハロプロピル)ホスフェート、トリス(ハロエチル)ホスフェート等の含ハロゲン系等が挙げられる。無機系難燃剤としては、例えばアンモニウムブロマイド等の含ハロゲン系;三酸化アンチモン、アンチモン酸塩メタ硼酸バリウム、硼酸亜鉛、硼砂、酸化ジルコニウム、水酸化アルミニウム等の非含ハロゲン系等があげられる。
これらの中でも、難燃効果が高いハロゲン系難燃剤が好ましく、ヘキサブロモベンゼン、デカブロモジフェニルオキサイド、テトラブロモビスフェノールA、ヘキサブロモシクロドデカン等の臭素系難燃剤が特に好ましい。
【0017】
上記難燃剤の含有量は、発泡性合成樹脂中、好ましくは0.5〜3重量%、より好ましくは0.7〜1.5重量%である。難燃剤の含有量が0.5重量%未満の場合、発泡性合成樹脂に充分な難燃効果を持たせることができず、逆に3重量%を超える場合、難燃剤の分解による発泡性合成樹脂の劣化を充分に防止できない。
【0018】
本発明の発泡性合成樹脂中には、さらに着色剤、紫外線防止剤等、他の通常の添加剤を適宜含有させることができる。
【0019】
この合成樹脂成形体からなる充填材3は、通常、図8に示すように、その直径Dが40〜200mm程度でほぼ球形に成形される。充填材3は、直径40mm以上の大きさに成形することで、袋状体2内に充填して埋込材1とした場合に、透水性、通気性を確保しうる充分な間隙率と強度を得ることができる。充填材3の直径の上限については特に制限はないものの、あまり大きい場合には袋状体2内に充填した場合に袋状体2表面の凹凸が大きくなり、また、充填材を発泡成形した際の冷却効率も低下することから、200mm程度に止めることが好ましい。この充填材3の直径は、より好ましくは50〜110mm程度であり、さらに型内発泡成形の際の生産性などを考慮した場合、70mm程度とすることが好ましい。また、充填材3の発泡倍率は、使用目的により要求される強度が異なるので一概にはいえないが、通常の場合、30〜80倍程度の範囲で、適宜設定される。例えば公園盛土のような緑化用に用いる場合には、それほど大きな強度は要求されないことから、50〜80倍程度の比較的高い倍率で発泡成形され、その際の圧縮強度は0.5〜1.3kgf/cm2 程度、また成形品密度は0.02〜0.012g/cc程度が好ましい。一方、高い強度を要求される道路盛土などに用いられる場合には、30〜50倍程度の比較的低発泡倍率とされ、その場合の圧縮強度は1.3〜2.4kgf/cm2 程度、成形品密度は0.033〜0.020g/cc程度が好ましく、このような発泡倍率のものを用いることで、土木用重機などの重量物が走行するような過酷な条件下でも充分に使用に耐えることができるので好適である。
【0020】
前記のように、充填材3は通常は球形に成形されるが、例えば、図9に示すように、その周面に単または複数の溝7を形成しておけば、この充填材3を袋状体2内に充填した場合に、袋状体2内に透水、通気のための空間を充分に確保することができる。また、図10に示すように、充填材3を貫通して単または複数の貫通孔8を設けておけば、前記溝7の場合と同様に、袋状体2内に透水、通気のための空間を確実に確保することができるだけでなく、充填材3を発泡成形する際の冷却効率がよく、生産性が向上するので好ましい。さらに、図11に示すように、充填材3の周面を、多面体状に形成することで、埋込材1の透水性、通気性を確保することもできる。また、図示しないが、前記の透水性、通気性の観点から、充填材3の表面に各種の凹凸を設けておいてもよい。なお、前記のような溝7、貫通孔8、あるいは多面体形状などを適宜組み合わせた充填材3としてもよいことは勿論である。
【0021】
次に、上記のような本発明に係る埋込材1を用いた土木工法の例を示す。
まず、図12に示すものは、この埋込材1を用いた拡幅盛土の例を示すものであり、壁面にそって積み上げたEPSブロック体10の背後に、本発明の埋込材1を埋め込んだものである。従来では、この埋め込みには、バラスや砕石などを、人が一輪車などで運んで埋め込んで施工していたが、本発明に係る埋込材1の場合には、バラスや砕石の場合に較べて極めて軽量で、しかも袋状体2に充填されているので取り扱いが容易で、施工時の作業効率が格段に向上する。また、この拡幅盛土は、極めて軽量なEPSブロック体10を積み上げたものであるから、軟弱な地盤の上に構築した場合にも、地盤が沈下するといったことがないだけでなく、埋込材1の透水性が極めて良好なことから、盛土中の水は埋込材1を通して速やかに排水され、盛土中に雨水等が溜まって崩れたりするといったことがない。なお、図中11は、拡幅盛土上に施工されたアスフェルト舗装、あるいはコンクリート舗装である。
【0022】
次に、図13に示すものは、擁壁の構築例であり、擁壁12の裏込材としてEPSブロック体10を用いるとともに、その背後に本発明の埋込材1を埋め込んだものであり、前記の拡幅盛土の場合と同様に、軽量で、かつ、排水性の良好な擁壁を構築することができる。
【0023】
図14に示すものは、道路盛土の構築例であり、地盤上にEPSブロック体10を積み上げ、その周囲に本発明の埋込材1を積み上げ、さらに、埋込材1のうえから盛土12を積み上げて構築されている。
【0024】
さらに、図15は公園盛土の例を示すものであり、前記の道路盛土の場合と同様に、地盤上にEPSブロック体10を積み上げ、その周囲に本発明に係る埋込材1を積み上げ、さらに、埋込材1のうえから盛土12を積み上げて構築されている。この公園盛土の場合には、内部に超軽量のEPSブロック体10を積み上げて構築してなるので、軟弱地盤上や、あるいは地下駐車場の上などにも構築することができる。また、EPSブロック体10は、熱がこもりやすく、しかも、EPSの通気性が悪いために、従来のようにブロック体10の上に、直接、盛土12を積み上げたものでは、昼間の日照による熱がEPSブロックにこもって夜になっても冷めず、植木などが根腐れを起こす、といった問題があった。この点、本施工例の場合には、EPSブロック体10の周囲に、通気性に優れた埋込材1を積み上げたことで、盛土中のEPSブロック体10表面の通気性が良好となり、EPSブロック体10の冷却効率が改善され、盛土内に熱がこもって植木などが根腐れを起こすといったことがない。
【0025】
また、図16に示すものは、埋設管の施工例を示すものである。これは、地中、あるいは図例の如く地中に埋め込んだEPSブロック体10に埋設用の溝13を形成し、この溝13内に埋設管14を配設するとともに、その周囲の溝13内に本発明に係る埋込材1を埋め込んで構築されている。この埋設構造では、埋込材1により埋設管14が保護されるとともに、その周囲の透水性、通気性を改善することができる。
【図面の簡単な説明】
【図1】 従来の拡幅盛土の構築例を示す断面図。
【図2】 従来の公園盛土の構築例を示す断面図。
【図3】 合成樹脂発泡体ブロックの斜視図。
【図4】 本発明に係る埋込材の1例を示す一部を破断した斜視図。
【図5】 埋込材の他例を示す斜視図。
【図6】 (イ)、(ロ)ともに、埋込材の袋状体の端部開口部の封止例を示す斜視図。
【図7】 埋込材のさらに他例を示す断面図。
【図8】 埋込材の袋状体内に充填される充填材の1例を示す斜視図。
【図9】 充填材の他例を示す斜視図。
【図10】 充填材の他例を示す斜視図。
【図11】 充填材の他例を示す斜視図。
【図12】 本発明に係る埋込材を用いた拡幅盛土の構築例を示す断面図。
【図13】 本発明に係る埋込材を用いた擁壁の構築例を示す断面図。
【図14】 本発明に係る埋込材を用いた道路盛土の構築例を示す断面図。
【図15】 本発明に係る埋込材を用いた公園盛土の構築例を示す断面図。
【図16】 本発明に係る埋込材を用いた埋設管の施工例を示す断面図。
【符号の説明】
1 埋込材
2 袋状体
3 充填材
4 紐状体
5 紐
6 パイプ
7 溝
8 貫通孔
10 EPSブロック体
11 舗装
12 擁壁
13 配管用溝
14 埋設管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a filler material for civil engineering, more particularly, a lightweight, and water permeability, it relates to filler material for civil engineering highly breathable.
[0002]
[Prior art]
In soft ground and landfills, ultralight materials such as synthetic resin foam are used as embedding materials and embankment materials as countermeasures to prevent and stabilize the settlement of the ground. For example, a construction method using a foamed polystyrene (EPS) block as the synthetic resin foam is widely known as an EPS construction method. This EPS block body has an extremely light unit volume weight of about 1/100 compared to earth and sand, so it is extremely effective in preventing settlement and stabilization of ground where the ground strength is low, such as soft ground and landslide land. In addition, there is an advantage that the construction is easy because of the light weight. For this reason, for example, a widening embankment as shown in FIG. 1 or a park embankment as shown in FIG. 2 is constructed by this EPS method. As shown in FIG. 3, the EPS block body is formed into a large block shape having a width of about 1000 mm, a length of about 2000 mm, and a height of about 500 mm, for example, and is stacked on the ground. 1. Widely used for wide-ranging embankment and park embankment as shown in Fig. 2, and also widely used in civil engineering methods such as retaining walls, backing materials such as abutments, and foundations of buildings.
[0003]
By the way, in the case of the widening embankment by the EPS construction method shown in FIG. 1, in order to ensure water permeability between the EPS block body and the wall surface behind, normally, a ballast, crushed stone, etc. are embedded. However, these ballasts and crushed stones have a problem that the efficiency of the work is low because a person carries the ballasts and crushed stones with a unicycle.
[0004]
In the case of the park embankment shown in FIG. 2, since the heat capacity of the EPS block body is large and the air permeability is poor, the heat accumulated in the EPS due to daytime sunshine does not cool even at night, There was a problem that the trees planted above caused root rot.
[0005]
[Problems to be solved by the invention]
The present invention was made in view of such background, lightweight good workability during construction, also, permeability, the filler material and the filler material for excellent civil engineering for breathability The construction and method used will be provided.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, an embedding material for civil engineering according to the present invention is a bag-like body having a water permeability formed from a foam-molded filler formed by molding foamable polystyrene into a substantially spherical shape with a diameter of 40 to 200 mm. Is a lightweight embedding material having a cylindrical shape with a diameter of 300 to 1000 mm and a length of 400 to 3000 mm . This embedding material is, for example, an EPS construction method in which a block body made of a synthetic resin foam is laminated, and is embedded in at least a part of the periphery of the laminated block body to construct a wide body embankment, road embankment, park embankment, etc. Can be used for building walls, backfilling of retaining walls and abutments, building foundations, etc. Furthermore, an embedding groove for an embedding pipe is provided in the underground or a block body made of a synthetic resin foam embedded in the earth, and the embedding pipe is disposed in the groove, and the periphery thereof is filled with the embedding material. By returning, it can also be used for embedding buried pipes.
[0007]
[Operation and effect of the invention]
As described above, since the civil engineering embedding material according to the present invention is formed by filling a water-permeable bag-like material with a filler made of a synthetic resin foamed molded product, it is extremely light compared to the case of ballast or crushed stone. In addition, since it is held in a predetermined shape by the bag-like body, it is easy to handle, and the workability at the time of construction is greatly improved as compared with the case of conventional ballast or crushed stone. By the way, as this filler, if a foamed synthetic resin, for example, a pulverized product obtained by pulverizing an EPS fishing box for recycling, is used, the shape of the filler is not uniform and the filling property is not sufficient. Therefore, there is a problem that, after the embedding work, the embedding ground sinks due to deformation of the filler due to the weight of embankment or the like. In addition, such finely pulverized products may be clogged and the water permeability and air permeability may be reduced. In addition, when a foamed product is pulverized and then reduced in volume by heating is used as a filler, the shape is not uniform and the filling property is not good as in the case of the pulverized product, and the lightness is reduced. There was a problem. Furthermore, since such conventional recycled products are not limited to those containing a flame retardant, the flame retardancy control of the embedded material has been insufficient. In contrast, in the present invention, as the filler, a synthetic resin foam molded article having a large average diameter of 40 to 200 mm and a substantially spherical shape is used, so the strength of the filler is large. There is no deformation or sag, and there is no problem that the ground sinks after being embedded in the soil as an embedded material. In addition, since the filler is substantially spherical, a certain gap is always reliably formed between the fillers filled in the bag-like body, and water permeability and air permeability are ensured. Moreover, since synthetic resin foams such as EPS are extremely chemically stable, they can sufficiently withstand long-term use as civil engineering and building materials. Furthermore, since the addition of a flame retardant and the amount of the flame retardant can be freely selected at the time of molding, the flame retardancy can be controlled freely according to the application.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 4 shows an example of the civil engineering embedding material 1 according to the present invention. The embedding material 1 is obtained by filling a water-permeable bag-like body 2 with a filler 3 formed by molding a foamable synthetic resin.
[0009]
The shape of the embedding material 1, that is, the size of the bag-like body 2 can be appropriately set depending on the purpose of use, but is generally cylindrical as shown in the figure, and its diameter D is preferably about 300 to 1000 mm. Is 350 to 400 mm, and the length L is about 400 to 3000 mm, preferably about 500 to 2000 mm. A size that can be held by one person is preferable from the viewpoint of workability.
[0010]
Although the filling rate of the filler 3 into the bag-like body 2 is not particularly limited, it is not preferable to pack the bag-like body 2 in consideration of the shape followability with respect to the construction place. The filling rate is preferably about 90 to 95% with respect to the volume of The material of the bag-like body 2 is not particularly limited as long as it has water permeability and does not spill the filler 3 filled therein. For example, natural fibers such as hemp, synthetic fibers such as polypropylene, nylon, polyvinyl chloride, and polyester, and further, woven fabrics made of various fibers such as those blended with them, cloths such as nonwoven fabrics, or nets Can be created. Further, a wire mesh made of a wire such as aluminum or iron can be used, and a wire mesh that has been conventionally used by putting crushed stone or the like is also preferable. Of these, for example, in the case of hemp bags or hemp nets, the bag will not slip and be displaced when covering the embedded material 1 that has been piled up during construction. preferable. Moreover, when a bag-like object or a net-like object is made of a synthetic resin such as polypropylene, it is extremely chemically stable and can sufficiently withstand long-term use. For example, a bag-like body made of a synthetic fiber net-like material that is generally used for carrying and storing an onion or the like, or a bag-like body using a net-like material made of a thicker material is also preferable. Furthermore, by combining a natural fiber such as hemp and a synthetic fiber such as polypropylene, or a combination of a wire mesh or the like, it is possible to combine both the prevention of slipping as described above and durability.
[0011]
Further, as a measure against slipping of the bag, for example, as shown in FIG. 5, a hemp string, rope, other string-like body 4 or belt-like body is wound around the bag-like body 2 as a slip stopper. May be. In this case, if the string-like body 4 is wound so as to be sewn into the bag-like body 2 as shown in the figure, it is possible to prevent the position of the string-like body 4 from being displaced and coming off the bag-like body 2.
[0012]
In order to create the bag-like body 2, for example, a net-like body formed in a continuous long cylindrical shape is appropriately cut into lengths, filled with a filler 3 inside, and the openings at both ends are connected to the string 5 It may be tied or sealed with, for example, as shown in FIG. 6 (a), a fastening string 5 is provided in the opening in advance, or as shown in FIG. 6 (b), the filler 3 One of the openings may be attached in advance before filling.
[0013]
Furthermore, if the pipe 6 made of vinyl chloride resin or the like is provided inside the embedding material 1 as shown in FIG. 7, water permeability can be ensured more reliably.
[0014]
Next, the filler 3 filled in the bag-like body 2 will be described. The filler 3 is made of a synthetic resin foam obtained by molding a foamable synthetic resin into a predetermined shape. There are no particular restrictions on the type of this resin, but various types such as polyolefins such as polystyrene, polyethylene, and polypropylene, ABS, MBS, and polyethylene terephthalate, which have been conventionally used as raw materials for synthetic resin foams, are used. Of these, polystyrene is preferred because of its high compressive strength and easy molding. In addition, polyolefin is preferred when chemical resistance such as acid, alkali and solvent is required. The filler 3 is molded into a predetermined shape and size by an in-mold foam molding method using the synthetic resin foam beads as described above.
[0015]
In this case, it is preferable from the viewpoint of imparting flame retardancy that the foamable beads for forming the filler contain a flame retardant. This is because the block body used in the EPS construction method is usually provided with flame retardancy for safety during storage, etc., and in the case of the embedded material of the present application, considering the risk of fire and the like This is because the same consideration is desired. As described, it can be pointed out that recycled and recycled products that have been used in the past are not sufficient to ensure the flame retardancy.
[0016]
Examples of the flame retardant used in the present invention include halogen flame retardants, phosphorus flame retardants, and inorganic flame retardants. Examples of the halogen flame retardant include chlorinated paraffin, chlorinated polyethylene perchloropentacyclodecane, hexabromobenzene, decabromodiphenyl oxide, tetrabromobisphenol A, hexabromocyclododecane, and the like. Examples of the phosphorus-based flame retardant include non-halogen-containing systems such as triphenyl phosphate, tricresyl phosphate, tricresyl diphenyl phosphate; halogen-containing systems such as tris (halopropyl) phosphate and tris (haloethyl) phosphate. . Examples of the inorganic flame retardant include halogen-containing systems such as ammonium bromide; non-halogen-containing systems such as antimony trioxide, antimonate barium metaborate, zinc borate, borax, zirconium oxide, and aluminum hydroxide.
Among these, halogen-based flame retardants having a high flame-retardant effect are preferable, and brominated flame retardants such as hexabromobenzene, decabromodiphenyl oxide, tetrabromobisphenol A, and hexabromocyclododecane are particularly preferable.
[0017]
The content of the flame retardant is preferably 0.5 to 3% by weight, more preferably 0.7 to 1.5% by weight in the foamable synthetic resin. When the flame retardant content is less than 0.5% by weight, the foamable synthetic resin cannot have a sufficient flame retardant effect. Conversely, when the flame retardant content exceeds 3% by weight, the foaming synthesis by decomposition of the flame retardant is not possible. Deterioration of the resin cannot be sufficiently prevented.
[0018]
The foamable synthetic resin of the present invention may further contain other ordinary additives such as a colorant and an ultraviolet ray inhibitor as appropriate.
[0019]
As shown in FIG. 8, the filler 3 made of this synthetic resin molded body is usually formed into a substantially spherical shape with a diameter D of about 40 to 200 mm. The filler 3 is molded to a size of 40 mm or more in diameter, so that when the bag-like body 2 is filled into the embedding material 1, a sufficient porosity and strength that can ensure water permeability and air permeability. Can be obtained. The upper limit of the diameter of the filler 3 is not particularly limited, but if it is too large, when the bag 2 is filled, the irregularities on the surface of the bag 2 become large, and when the filler is foam-molded It is preferable to stop at about 200 mm because the cooling efficiency of the steel also decreases. The diameter of the filler 3 is more preferably about 50 to 110 mm, and further about 70 mm is preferable in consideration of productivity in the in-mold foam molding. In addition, the expansion ratio of the filler 3 cannot be generally specified because the required strength varies depending on the purpose of use, but is usually set appropriately within a range of about 30 to 80 times. For example, when it is used for greening such as park embankment, it is not required to have such a large strength, so it is foam-molded at a relatively high magnification of about 50 to 80 times, and the compression strength at that time is 0.5 to 1. About 3 kgf / cm 2 and the density of the molded product are preferably about 0.02 to 0.012 g / cc. On the other hand, when used for road embankments that require high strength, the foaming ratio is relatively low, about 30 to 50 times, and the compressive strength in that case is about 1.3 to 2.4 kgf / cm 2 . The density of the molded product is preferably about 0.033 to 0.020 g / cc, and by using such a foaming ratio, it can be used sufficiently even under severe conditions such as heavy equipment for civil engineering travel. Since it can endure, it is suitable.
[0020]
As described above, the filler 3 is usually formed into a spherical shape. For example, as shown in FIG. 9, if a single groove or a plurality of grooves 7 are formed on the peripheral surface, the filler 3 is formed into a bag. When the inside of the body 2 is filled, a sufficient space for water permeation and ventilation can be secured in the bag 2. Further, as shown in FIG. 10, if one or a plurality of through holes 8 are provided through the filler 3, as in the case of the groove 7, the bag 2 has water permeability and ventilation. Not only can the space be ensured reliably, but the cooling efficiency when foaming the filler 3 is good and productivity is improved, which is preferable. Furthermore, as shown in FIG. 11, by forming the peripheral surface of the filler 3 into a polyhedral shape, the water permeability and air permeability of the embedding material 1 can be ensured. Although not shown, various irregularities may be provided on the surface of the filler 3 from the viewpoint of water permeability and air permeability. Needless to say, the filler 3 may be formed by appropriately combining the grooves 7, the through holes 8, or the polyhedron shape as described above.
[0021]
Next, an example of a civil engineering method using the above-described embedding material 1 according to the present invention will be shown.
First, what is shown in FIG. 12 shows an example of a widening embankment using the embedding material 1, and the embedding material 1 of the present invention is embedded behind the EPS block body 10 stacked along the wall surface. It is a thing. Conventionally, in this embedding, a ballast or crushed stone was carried and carried by a person carrying a unicycle or the like. However, in the case of the embedding material 1 according to the present invention, compared to the case of ballast or crushed stone. It is extremely lightweight and is easy to handle because it is filled in the bag-like body 2, and the work efficiency during construction is remarkably improved. In addition, since this widened embankment is a stack of extremely lightweight EPS block bodies 10, not only does the ground sink, even when constructed on soft ground, but also the embedded material 1 Since the water permeability of the embankment is extremely good, the water in the embankment is quickly drained through the embedding material 1, and rainwater or the like does not accumulate and collapse in the embankment. In the figure, reference numeral 11 denotes asphalt pavement or concrete pavement constructed on the widening embankment.
[0022]
Next, what is shown in FIG. 13 is a construction example of the retaining wall, in which the EPS block body 10 is used as the backing material of the retaining wall 12 and the embedding material 1 of the present invention is embedded behind the EPS block body 10. As in the case of the above-mentioned widening embankment, it is possible to construct a retaining wall that is lightweight and has good drainage.
[0023]
FIG. 14 shows an example of construction of road embankment, in which EPS block bodies 10 are stacked on the ground, the embedding material 1 of the present invention is stacked around the embedding material 1, and the embankment 12 is placed on the embedding material 1. It is built up.
[0024]
Further, FIG. 15 shows an example of a park embankment, and, as in the case of the above-mentioned road embankment, the EPS block bodies 10 are stacked on the ground, and the embedding material 1 according to the present invention is stacked around it, It is constructed by stacking the embankment 12 on the embedding material 1. In the case of this park embankment, since it is constructed by stacking ultra-light EPS block bodies 10 inside, it can be constructed on soft ground or on an underground parking lot. In addition, since the EPS block body 10 is likely to accumulate heat and the air permeability of the EPS is poor, the embankment 12 directly stacked on the block body 10 as in the prior art is heated by daylight sunshine. However, there was a problem that the plant was not rooted in the EPS block and it did not cool down at night, and roots were rotted. In this case, in the case of this construction example, by stacking the embedding material 1 having excellent air permeability around the EPS block body 10, the air permeability of the surface of the EPS block body 10 in the embankment becomes good, and the EPS. The cooling efficiency of the block body 10 is improved, so that heat does not accumulate in the embankment and the planted trees do not cause root rot.
[0025]
Moreover, what is shown in FIG. 16 shows the construction example of a buried pipe. This is because an embedding groove 13 is formed in the EPS block body 10 buried in the ground or in the ground as shown in the figure, and a buried pipe 14 is disposed in the groove 13 and the surrounding groove 13 It is constructed by embedding the embedding material 1 according to the present invention. In this embedded structure, the embedded pipe 14 is protected by the embedded material 1 and the water permeability and air permeability around it can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a construction example of a conventional widening embankment.
FIG. 2 is a cross-sectional view showing a construction example of a conventional park embankment.
FIG. 3 is a perspective view of a synthetic resin foam block.
FIG. 4 is a perspective view with a part broken away showing an example of an embedding material according to the present invention.
FIG. 5 is a perspective view showing another example of an embedding material.
6 (a) and 6 (b) are perspective views showing an example of sealing an end opening of a bag-like body of an embedding material.
FIG. 7 is a cross-sectional view showing still another example of the embedding material.
FIG. 8 is a perspective view showing an example of a filling material filled in a bag-like body of an embedding material.
FIG. 9 is a perspective view showing another example of the filler.
FIG. 10 is a perspective view showing another example of the filler.
FIG. 11 is a perspective view showing another example of the filler.
FIG. 12 is a cross-sectional view showing a construction example of a widening embankment using an embedding material according to the present invention.
FIG. 13 is a cross-sectional view showing a construction example of a retaining wall using an embedding material according to the present invention.
FIG. 14 is a cross-sectional view showing a construction example of road embankment using the embedding material according to the present invention.
FIG. 15 is a sectional view showing a construction example of a park embankment using the embedding material according to the present invention.
FIG. 16 is a cross-sectional view showing a construction example of a buried pipe using the filling material according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Embedding material 2 Bag-shaped body 3 Filling material 4 String-shaped body 5 String 6 Pipe 7 Groove 8 Through-hole
10 EPS block body
11 Paving
12 Retaining wall
13 Piping groove
14 Buried pipe.

Claims (11)

発泡性ポリスチレンを、直径40〜200mmでほぼ球形に成形してなる発泡成形充填材を、透水性を有する袋状体に充填してなる直径が300〜1000mm、長さが400〜3000mmの円筒形状である土木用軽量埋込材。 Cylindrical shape having a diameter of 300 to 1000 mm and a length of 400 to 3000 mm, which is obtained by filling a foam-shaped filling material formed by foaming polystyrene into a substantially spherical shape with a diameter of 40 to 200 mm in a bag-like body having water permeability. for civil engineering lightweight filler material it is. 前記充填材の直径が50〜110mmである請求項1記載の埋込材。  The implant material according to claim 1, wherein the filler has a diameter of 50 to 110 mm. 前記充填材の周面に溝を設けてなる請求項1記載の埋込材。  The embedding material according to claim 1, wherein a groove is provided on a peripheral surface of the filling material. 前記充填材の周面に凹凸を形成してなる請求項1記載の埋込材。  The embedding material according to claim 1, wherein irregularities are formed on a peripheral surface of the filling material. 前記充填材に貫通孔を設けてなる請求項1記載の埋込材。  The embedding material according to claim 1, wherein a through hole is provided in the filling material. 前記充填材の表面を多面体状に形成してなる請求項1記載の埋込材。  The embedding material according to claim 1, wherein the surface of the filling material is formed in a polyhedral shape. 前記袋状体への充填材の充填率が、袋状体の容量に対して90〜95%である請求項1記載の埋込材。  The embedding material according to claim 1, wherein a filling rate of the filling material into the bag-like body is 90 to 95% with respect to a capacity of the bag-like body. 前記袋状体の表面に滑り止め用の紐状体または帯状体を巻回してなる請求項1記載の埋込材。  The embedding material according to claim 1, wherein a non-slip string or band is wound around the surface of the bag. 袋状体の内部に、透水用管状体を内装してなる請求項1記載の埋込材。  The embedding material according to claim 1, wherein a tubular body for water permeability is provided inside the bag-like body. 合成樹脂発泡体からなるブロック体を積層し、この積層したブロック体周囲の少なくとも一部に発泡性ポリスチレンを、直径40〜200mmでほぼ球形に成形してなる発泡成形充填材を、透水性を有する袋状体に充填してなる埋込材を埋め込んでなる構築体。A block body made of a synthetic resin foam is laminated, and a foam molding filler formed by molding foam polystyrene into a substantially spherical shape with a diameter of 40 to 200 mm around at least part of the circumference of the laminated block body has water permeability. A structure in which an embedding material formed by filling a bag-like body is embedded. 地中、または地中に埋設した合成樹脂発泡体からなるブロック体に埋設管の埋込用溝を設け、該溝内に埋設管を配設し、その周囲を発泡性ポリスチレンを、直径40〜200mmでほぼ球形に成形してなる発泡成形充填材を、透水性を有する袋状体に充填してなる埋込材で埋め戻してなる埋設管の埋設法。An embedding groove for an embedding pipe is provided in a block made of a synthetic resin foam embedded in the ground or in the ground, the embedding pipe is disposed in the groove, and the periphery thereof is made of expandable polystyrene with a diameter of 40 to A method of embedding a buried pipe in which a foam molded filler formed into a substantially spherical shape at 200 mm is backfilled with a filling material filled in a water-permeable bag-like body .
JP00606796A 1996-01-17 1996-01-17 Lightweight embedding material for civil engineering Expired - Fee Related JP3736650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00606796A JP3736650B2 (en) 1996-01-17 1996-01-17 Lightweight embedding material for civil engineering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00606796A JP3736650B2 (en) 1996-01-17 1996-01-17 Lightweight embedding material for civil engineering

Publications (2)

Publication Number Publication Date
JPH09195277A JPH09195277A (en) 1997-07-29
JP3736650B2 true JP3736650B2 (en) 2006-01-18

Family

ID=11628242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00606796A Expired - Fee Related JP3736650B2 (en) 1996-01-17 1996-01-17 Lightweight embedding material for civil engineering

Country Status (1)

Country Link
JP (1) JP3736650B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7262855B1 (en) 2022-01-25 2023-04-24 日本建設技術株式会社 embankment construction

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388077B1 (en) * 2001-02-28 2003-06-18 주식회사 한진중공업 Underground concrete structure drainage of groundwater and earth pressure reduction system using EPS block
JP2003261936A (en) * 2002-03-11 2003-09-19 Doro Hozen Gijutsu Center Empty hole filling method
JP4268503B2 (en) * 2003-11-14 2009-05-27 ダウ化工株式会社 Lightweight embankment with retaining walls
JP5207758B2 (en) * 2008-02-06 2013-06-12 東京インキ株式会社 Honeycomb solid reinforcement
JP2010281111A (en) * 2009-06-04 2010-12-16 Nippon Kensetsu Gijutsu Kk Building material and banking construction method
JP6048954B2 (en) * 2012-10-12 2016-12-21 株式会社グレイプ Foundation structure and foundation construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7262855B1 (en) 2022-01-25 2023-04-24 日本建設技術株式会社 embankment construction
JP2023108187A (en) * 2022-01-25 2023-08-04 日本建設技術株式会社 Banking preparation structure

Also Published As

Publication number Publication date
JPH09195277A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
CA2864152C (en) Geocell for moderate and low load applications
JP3736650B2 (en) Lightweight embedding material for civil engineering
US20060099033A1 (en) Fluid fillable multi-compartment bladder for flow and flood control
KR101583664B1 (en) Vegetation unit and slope greening method using vegetation unit
EP1175532B1 (en) Geotextile fabric
ES2664858T3 (en) A building element
SK3422000A3 (en) Method and device for processing tires
US6991408B2 (en) Soil replacement product
JP5207758B2 (en) Honeycomb solid reinforcement
JPH10136786A (en) Soil embedding material
KR20210094210A (en) The combined turf mat made of pe uni-material
JPS61155516A (en) Slope stabilization work and reinforcement therefor
JP3497955B2 (en) Drainage structure
EP1431695B1 (en) Water storage container
JPH10227033A (en) Impervious vegetation block material
JPH10159102A (en) Protection structure of slope face, wall face and the like
KR101841433B1 (en) Eco-friendly high strength gravity retaining wall block using plastic waste and inorganic powder waste
JPH0853873A (en) Permeable basin or permeable trench
JPH09328743A (en) Conducting unit for civil engineering formed by connecting light-weighted buried materials to each other
JP3394074B2 (en) Expanded molded body made by molding in-mold thermoplastic resin expanded particles
JPH08120656A (en) Drainage material for construction work
Dedrick Storage systems for harvested water
JPH10110442A (en) Spring water draining material for basement, water storage tank and underground wall
JP3493419B2 (en) Embankment using lightweight civil engineering drainage material
JPH09137422A (en) Connectable sandbag and sandbag connector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees