JP3735933B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP3735933B2
JP3735933B2 JP07191796A JP7191796A JP3735933B2 JP 3735933 B2 JP3735933 B2 JP 3735933B2 JP 07191796 A JP07191796 A JP 07191796A JP 7191796 A JP7191796 A JP 7191796A JP 3735933 B2 JP3735933 B2 JP 3735933B2
Authority
JP
Japan
Prior art keywords
fuel injection
cylinder
injection
engine
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07191796A
Other languages
Japanese (ja)
Other versions
JPH09264172A (en
Inventor
大羽  拓
岩野  浩
祐樹 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP07191796A priority Critical patent/JP3735933B2/en
Publication of JPH09264172A publication Critical patent/JPH09264172A/en
Application granted granted Critical
Publication of JP3735933B2 publication Critical patent/JP3735933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の燃料噴射制御装置、より具体的には多気筒エンジンの各気筒の吸気系に燃料噴射装置を備えた内燃機関に関する。
【0002】
【従来の技術】
従来の始動時燃料噴射制御技術としては、例えば特開平5−332177等にあるように、エンジンの運転状態と燃料噴射パルス幅に応じて、噴射終わり時期が常に同一のクランク角となるように噴射開始時期を決定するものや、始動時のみクランク角の基準信号に同期して全気筒同時に噴射を開始するものがあった(通常点火時期同期で噴射開始)。
【0003】
【発明が解決しようとする課題】
しかしながら、このような従来の制御技術にあっては、燃料噴射タイミング決定時のエンジン回転数と、燃料噴射終了時のエンジン回転数が大きく異なる場合(初爆が発生し、回転上昇する場合など)、特に始動時のように燃料噴射パルス幅が長く、回転変化が大きい場合(図15参照)、燃料噴射が吸気行程中に終了せず、所定の燃料量が吸入されない場合があった。
【0004】
また、全気筒同時に噴射を開始した場合、燃料噴射弁に供給される燃料の圧力が低下して開弁時間に対する所定の噴射量を確保できなくなる場合があった。
【0005】
そのため、エンジンの安定度やエミッションが悪化する可能性があった。
【0006】
本発明はこのような従来技術の問題点を解消し、始動時の燃料噴射パルス幅が所定値よりも長い場合、特定の気筒に対してのみ通常の燃料噴射タイミングではなく、一つ前の燃料噴射タイミング気筒と同時にインジェクタを駆動することにより、所定の燃料量を吸入させつつ、全気筒同時噴射を行なわないので燃圧の低下を発生させ難くして、正確な噴射量を確保することのできる内燃機関の燃料噴射制御装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明は、このような従来の内燃機関の燃料噴射制御装置の問題点に着目してなされたもので、多気筒エンジンの各気筒の吸気系に燃料噴射装置を備えた内燃機関において、エンジンのクランク角度を検出するクランク角度検出手段と、各気筒を判別する気筒判別手段と、エンジンの運転状態を検出するエンジン運転状態検出手段と、始動時からの燃料噴射回数を検出する燃料噴射回数検出手段と、少なくともエンジン運転状態検出手段の結果を用いてインジェクタの開弁時間を演算する燃料噴射パルス幅算出手段と、クランク角度検出手段、気筒判別手段、エンジン運転状態検出手段、燃料噴射回数検出手段および燃料噴射パルス幅算出手段からの出力結果を用いてインジェクタの開弁開始時期を求める燃料噴射タイミング算出手段とを有し、前記燃料噴射タイミング算出手段は、エンジンの始動から所定の噴射順序に従って各気筒に噴射を行うようにインジェクタの開弁開始時期を求める一方、エンジンの始動からの噴射が所定回数目にあたる特定気筒の燃料噴射パルス幅が所定値以上のときは、前記特定気筒におけるインジェクタの開弁開始時期を、該特定気筒よりも噴射順序が前の他の気筒におけるインジェクタの開弁開始時期と同時期に設定することを特徴とする。なお、3気筒以上の気筒におけるインジェクタの開弁開始時期を同時期に設定するようにしてもよい。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
【0009】
図1は、本発明の燃料噴射制御装置の実施の形態の構成を示したブロック図である。
【0010】
まず構成を説明すると、エンジンのクランク角度を検出するクランク角度検出手段Aと、各気筒を判別する気筒判別手段Bと、各種のエンジン状態(水温、回転数、St/Sw信号、吸入空気量等)を検出するエンジン運転状態検出手段Cと、エンジン運転状態検出手段Cの結果から燃料噴射回数を求める燃料噴射回数検出手段Dと、エンジン運転状態検出手段Cの結果から燃料噴射パルス幅を演算する燃料噴射パルス幅算出手段Eと、各手段A〜Eの出力をもとにインジェクタ駆動開始タイミングを演算する燃料噴射タイミング算出手段Fを有する構成としている。
【0011】
このように本実施の形態によれば、エンジンの始動時より、設定された噴射タイミング及び噴射パルス幅に応じて、通常のシーケンシャル噴射を行なうが、特定の気筒の噴射タイミングのみを前の気筒の噴射タイミングと同一にすることにより、先の気筒の燃料噴射が吸気行程をまたぐことを防止することが可能となる。
【0012】
図2は本実施の形態におけるパターンでの噴射を示している。図15と比較して明らかなように、燃料噴射が吸気弁の閉弁期間にかかることが無い。
【0013】
次に本実施の形態をより詳細に説明するためにその作用を図3〜図5の制御フローチャートに基づいて説明する。
【0014】
先ず図3のフローについて説明する。このルーチンは、時間同期または角度同期で行なわれており、ステップS1の燃料噴射パルス幅(詳細は図4のステップS10〜S13に示す)、ステップS2の燃料噴射気筒・タイミング(詳細は図5のステップS20〜S23に示す)で演算されている結果を用いてステップS3で燃料噴射を行なうタイミングか否かを判定する。
【0015】
ステップS4では、前回同時噴射が行なわれたか否かを判定し、同時噴射フラグがセットされていれば、それをクリヤし終了する。セットされていなければステップS5に進む。
【0016】
ステップS5では同時噴射を行なう可能性がある気筒か否かを判定するため、現時点までに何回目の噴射を終了しているかを確認する(4気筒の場合3回目の噴射を同時噴射にするか否かを判定する(INJ=2か判定))。
【0017】
ステップS6では同時噴射を行なう必要性があるか否かを判定する。噴射パルス幅が所定値よりも短い場合には、ステップS8の通常通り噴射を開始しても吸気弁開弁中に噴射を終了するため、特に問題がないためである。
【0018】
ここまでの判定で同時噴射となった場合、ステップS7で本来そのタイミングで噴射すべき気筒の次の噴射順序の気筒に対しても噴射を行なう(噴射順序#1−#3−#4−#2の4気筒の場合、#1の噴射タイミングのときに#3にも噴射)。
【0019】
同時噴射が行なわれた場合、次の燃料噴射が行なわれないようにステップS10で同時噴射を行なった事を示すフラグをセットする。ステップS12ではカウンタ(INJ)を2インクリメントし、噴射回数をカウントしておく。ステップS4で前回同時噴射が行なわれたと判断された場合は、このタイミングでは噴射を行なう必要が無いのでステップS11で同時噴射フラグをクリヤして次回の噴射に備える。
【0020】
ステップS9はステップS7、S8との対比のために記載しただけであり、特別な処理は行なわない。
【0021】
図4では、燃料噴射パルス幅演算の一例を示す。図4においてステップS10では図9のようにテーブルで割つけられた値を読出すことでパルス幅の基本値(TCST)を水温(Tw)から求め、ステップS11では図10のテーブルから回転補正率(TCSN)をエンジン回転数(Ne)から求め、ステップS12では図11のテーブルから時間補正率(TKCS)をSt/Sw ON時間から求める。ステップS13ではステップS10〜S12で得られた結果を用いて始動時燃料噴射パルス幅(TIST)を下記式で演算する。尚、TSはバッテリ電圧補正分である。
【0022】
TIST=TCST×TCSN×TKCS+TS
図5では、燃料噴射気筒・タイミング演算の一例として噴き終り管理の場合を示す。図5においてステップS20では燃料を噴射する気筒を決定し(気筒判別はRef同期、ADV同期等で実行されているのでその結果を用いる)、ステップS21以降で噴射するタイミングを決定する。ステップS21で噴き終り角度(TITM)をエンジン回転数(Ne)より算出する。尚、噴き終り角度(TITM)を一定のクランク角度としてもよい。ステップS22では噴射パルス幅(TIST)の角度換算値(MTIA)をエンジン回転数(Ne)から求める。ステップS23では燃料噴射開始タイミング(TITM−MTIA)を求める。
【0023】
以下、図6に4気筒の場合のシステム図を、図7に6気筒の場合の始動時よりシーケンシャル噴射の一例を、図8に6気筒の場合の始動時に全気筒同時噴射を行なう場合の一例を示す。
【0024】
次に本発明のその他の実施の形態を説明する。
【0025】
4気筒エンジンの場合で、パルス幅が長く、回転上昇が大きいような場合には、次の1気筒だけでなく、2気筒同時噴射を行なう(3気筒同時噴射)ことを特徴とする。
【0026】
燃料噴射パルス幅が長くなった場合(低水温時)には、1気筒同時噴射しただけでは燃料の供給が間に合わないため、2気筒同時噴射を行なう。この場合、同時に駆動するインジェクタの数が多くなり、燃圧の低下が発生しやすい状況であるが、2サイクル目であるので燃圧が充分に立ち上がっていると考えられ、早期の初爆と安定した燃料供給を期待出来る。
【0027】
図12は今回のパターンでの噴射を、図16では従来の噴き終わり管理での噴射をそれぞれ示している。
【0028】
6気筒エンジンの場合は、回転上昇発生後に初回の燃料噴射を迎える気筒が4気筒の場合よりも多いため、始動から3〜6番目の燃料噴射気筒に対して同時噴射を行ないうるようにする。
【0029】
その結果、吸気弁開(IVO)の間には燃料噴射を終了することが可能になり、また、同時に駆動するインジェクタの数も少ないので燃圧の低下の可能性も少ない。その結果、正確な燃料噴射量を確保することが期待出来るので、安定した燃焼を期待出来る。
【0030】
図13は今回のパターンでの噴射を、図17では従来の噴き終わり管理での噴射をそれぞれ示している。
【0031】
6気筒エンジンの場合で、回転上昇が大きいような場合や、燃料噴射パルス幅が長い場合には、2〜6番目の燃料噴射気筒に対して同時噴射を行ないうるようにすることにより、上記と同様の効果を期待出来る。
【0032】
図14は今回のパターンでの噴射を、図18では従来の噴き終わり管理での噴射をそれぞれ示している。
【0033】
【発明の効果】
以上説明してきたように、本発明によれば、特定の気筒に対してのみ通常の燃料噴射タイミングではなく、一つ前の燃料噴射タイミングの気筒と同時にインジェクタを駆動することにより、燃料噴射を吸気弁開の直前、または開中に終了させられるので、所定の燃料量を吸入させることを期待できる。
【0034】
また、全気筒同時噴射を行なわないので燃圧の低下を発生させ難くするため、シーケンシャル噴射のメリットである各気筒に対して正確な噴射量を確保する効果も期待できる。
【図面の簡単な説明】
【図1】本発明の実施の形態における燃料噴射制御装置の構成を示したブロック図である。
【図2】本発明の実施の形態におけるパターンでの噴射を示した図である。
【図3】本発明の実施の形態における燃料噴射の制御を説明するフローチャートである。
【図4】本発明の実施の形態における始動時燃料噴射パルス幅TISTを説明するフローチャートである。
【図5】本発明の実施の形態における燃料噴射タイミングを説明するフローチャートである。
【図6】本発明の実施の形態における4気筒の場合のシステム図である。
【図7】本発明の実施の形態における6気筒の場合の始動時よりシーケンシャル噴射の一例を示した図である。
【図8】本発明の実施の形態における6気筒の始動時に全気筒同時噴射を行なう場合の一例を示した図である。
【図9】本発明の実施の形態におけるパルス幅の基本値(TCST)S水温(Tw)との関係を示した図である。
【図10】本発明の実施の形態における回転補正率(TCSN)とエンジン回転数(Ne)との関係を示した図である。
【図11】本発明の実施の形態における時間補正率(TKCS)とSt/Sw ON時間との関係を示した図である。
【図12】本発明の他の実施の形態におけるパターンでの噴射を示した図である。
【図13】本発明の他の実施の形態におけるパターンでの噴射(6気筒)を示した図である。
【図14】本発明の他の実施の形態におけるパターンでの噴射(6気筒)を示した図である。
【図15】従来の噴き終り管理での噴射を示した図である。
【図16】従来の噴き終り管理での噴射を示した図である。
【図17】従来の噴き終り管理での噴射(6気筒)を示した図である。
【図18】従来の噴き終り管理での噴射(6気筒)を示した図である。
【符号の説明】
A クランク角度検出手段
B 気筒判別手段
C エンジン運転状態検出手段
D 燃料噴射回数検出手段
E 燃料噴射パルス幅算出手段
F 燃料噴射タイミング算出手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection control device for an internal combustion engine, and more specifically to an internal combustion engine provided with a fuel injection device in an intake system of each cylinder of a multi-cylinder engine.
[0002]
[Prior art]
As a conventional fuel injection control technology at start-up, for example, as disclosed in Japanese Patent Laid-Open No. 5-332177, the injection end timing is always in the same crank angle in accordance with the engine operating state and the fuel injection pulse width. There are those that determine the start time, and those that start injection at the same time for all the cylinders in synchronization with the reference signal of the crank angle only at the start (normal injection start synchronized with the ignition timing).
[0003]
[Problems to be solved by the invention]
However, in such a conventional control technique, when the engine speed at the time of determining the fuel injection and the engine speed at the end of the fuel injection are greatly different (when an initial explosion occurs and the speed increases, etc.) In particular, when the fuel injection pulse width is long and the rotational change is large (see FIG. 15) as at the start, the fuel injection does not end during the intake stroke, and a predetermined amount of fuel may not be sucked.
[0004]
In addition, when injection is started simultaneously for all cylinders, the pressure of the fuel supplied to the fuel injection valve may drop, and a predetermined injection amount for the valve opening time may not be ensured.
[0005]
As a result, engine stability and emissions may deteriorate.
[0006]
The present invention solves such a problem of the prior art, and when the fuel injection pulse width at the start is longer than a predetermined value, it is not the normal fuel injection timing only for a specific cylinder, but the previous fuel. By driving the injector at the same time as the injection timing cylinder, an internal combustion engine capable of ensuring a precise injection amount by making it difficult to cause a drop in fuel pressure because all the cylinders are not simultaneously injected while sucking a predetermined amount of fuel. It aims at providing the fuel-injection control apparatus of an engine.
[0007]
[Means for Solving the Problems]
The present invention has been made paying attention to the problems of such a conventional fuel injection control device for an internal combustion engine. In an internal combustion engine having a fuel injection device in the intake system of each cylinder of a multi-cylinder engine, Crank angle detecting means for detecting the crank angle, cylinder determining means for determining each cylinder, engine operating state detecting means for detecting the operating state of the engine, and fuel injection number detecting means for detecting the number of fuel injections from the start A fuel injection pulse width calculating means for calculating the valve opening time of the injector using at least the result of the engine operating state detecting means, a crank angle detecting means, a cylinder determining means, an engine operating state detecting means, a fuel injection number detecting means, have a fuel injection timing calculating means for calculating a valve opening start timing of the injector by using the output of the fuel injection pulse width calculating means The fuel injection timing calculating means obtains the valve opening start timing of the injector so as to inject into each cylinder in accordance with a predetermined injection sequence from the start of the engine, while the specific cylinder in which the injection from the engine start corresponds to the predetermined number of times. When the fuel injection pulse width is greater than or equal to a predetermined value, the valve opening start timing of the injector in the specific cylinder is set at the same time as the valve opening start timing of the injector in another cylinder whose injection order is earlier than the specific cylinder. It is characterized by that. In addition, the valve opening start timing of injectors in three or more cylinders may be set at the same time.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0009]
FIG. 1 is a block diagram showing a configuration of an embodiment of a fuel injection control device of the present invention.
[0010]
First, the configuration will be described. Crank angle detection means A for detecting the crank angle of the engine, cylinder determination means B for determining each cylinder, various engine states (water temperature, rotation speed, St / Sw signal, intake air amount, etc.) ) To detect the fuel injection frequency from the result of the engine operation state detection means C, and the fuel injection pulse width is calculated from the result of the engine operation state detection means C. The fuel injection pulse width calculating means E and the fuel injection timing calculating means F for calculating the injector drive start timing based on the outputs of the means A to E are used.
[0011]
As described above, according to the present embodiment, normal sequential injection is performed in accordance with the set injection timing and injection pulse width from the start of the engine, but only the injection timing of a specific cylinder is set to that of the previous cylinder. By making it the same as the injection timing, it becomes possible to prevent the fuel injection of the previous cylinder from straddling the intake stroke.
[0012]
FIG. 2 shows injection in a pattern in the present embodiment. As apparent from the comparison with FIG. 15, the fuel injection does not take the closing period of the intake valve.
[0013]
Next, in order to describe the present embodiment in more detail, the operation will be described based on the control flowcharts of FIGS.
[0014]
First, the flow of FIG. 3 will be described. This routine is performed in time synchronization or angle synchronization, the fuel injection pulse width in step S1 (details are shown in steps S10 to S13 in FIG. 4), and the fuel injection cylinder timing in step S2 (details in FIG. 5). It is determined whether or not it is time to perform fuel injection in step S3 using the result calculated in steps S20 to S23.
[0015]
In step S4, it is determined whether or not the previous simultaneous injection has been performed. If the simultaneous injection flag is set, it is cleared and the process ends. If not set, the process proceeds to step S5.
[0016]
In step S5, in order to determine whether or not there is a possibility of simultaneous injection, it is confirmed how many injections have been completed up to the present time. (Determining whether INJ = 2)).
[0017]
In step S6, it is determined whether or not simultaneous injection is necessary. This is because when the injection pulse width is shorter than the predetermined value, there is no particular problem because the injection is terminated while the intake valve is opened even if the injection is started as usual in step S8.
[0018]
If simultaneous injection is determined in the determination so far, injection is performed also to the cylinders in the injection order next to the cylinders that should be injected at that timing in Step S7 (injection order # 1- # 3- # 4- #). In the case of the 2-cylinder No. 2, the fuel is also injected into # 3 at the injection timing of # 1).
[0019]
If simultaneous injection is performed, a flag indicating that simultaneous injection has been performed is set in step S10 so that the next fuel injection is not performed. In step S12, the counter (INJ) is incremented by 2 and the number of injections is counted. If it is determined in step S4 that the previous simultaneous injection has been performed, it is not necessary to perform the injection at this timing, so the simultaneous injection flag is cleared in step S11 to prepare for the next injection.
[0020]
Step S9 is only described for comparison with steps S7 and S8, and no special processing is performed.
[0021]
FIG. 4 shows an example of fuel injection pulse width calculation. In FIG. 4, in step S10, the basic value (TCST) of the pulse width is obtained from the water temperature (Tw) by reading the value assigned in the table as shown in FIG. 9, and in step S11, the rotation correction factor is obtained from the table in FIG. (TCSN) is obtained from the engine speed (Ne), and in step S12, the time correction factor (TKCS) is obtained from the St / Sw ON time from the table of FIG. In step S13, the starting fuel injection pulse width (TIST) is calculated by the following equation using the results obtained in steps S10 to S12. TS is a battery voltage correction amount.
[0022]
TIST = TCST × TCSN × TKCS + TS
FIG. 5 shows the case of injection end management as an example of the fuel injection cylinder / timing calculation. In FIG. 5, in step S20, the cylinder to inject fuel is determined (cylinder discrimination is executed in Ref synchronization, ADV synchronization, etc., and the result is used), and the injection timing is determined in step S21 and thereafter. In step S21, the injection end angle (TITM) is calculated from the engine speed (Ne). The end angle of spraying (TITM) may be a constant crank angle. In step S22, an angle converted value (MTIA) of the injection pulse width (TIST) is obtained from the engine speed (Ne). In step S23, the fuel injection start timing (TITM-MTIA) is obtained.
[0023]
FIG. 6 shows a system diagram in the case of 4 cylinders, FIG. 7 shows an example of sequential injection from the start in the case of 6 cylinders, and FIG. 8 shows an example of simultaneous injection in all the cylinders at the start in the case of 6 cylinders. Indicates.
[0024]
Next, other embodiments of the present invention will be described.
[0025]
In the case of a four-cylinder engine, when the pulse width is long and the rotation increase is large, not only the next one cylinder but also two-cylinder simultaneous injection is performed (three-cylinder simultaneous injection).
[0026]
When the fuel injection pulse width becomes long (when the water temperature is low), the fuel supply is not in time just by the simultaneous injection of one cylinder, so the two cylinders are simultaneously injected. In this case, the number of injectors driven at the same time increases and the fuel pressure is likely to decrease. However, since the second cycle, the fuel pressure is considered to have risen sufficiently. We can expect supply.
[0027]
FIG. 12 shows the injection in this pattern, and FIG. 16 shows the injection in the conventional spray end management.
[0028]
In the case of a six-cylinder engine, since the number of cylinders that will receive the first fuel injection after the occurrence of the rotation increase is larger than that in the case of four cylinders, simultaneous injection can be performed on the third to sixth fuel injection cylinders from the start.
[0029]
As a result, fuel injection can be terminated while the intake valve is open (IVO), and the number of injectors that are simultaneously driven is small, so there is little possibility of a decrease in fuel pressure. As a result, it can be expected to secure an accurate fuel injection amount, so that stable combustion can be expected.
[0030]
FIG. 13 shows injection in this pattern, and FIG. 17 shows injection in conventional spray end management.
[0031]
In the case of a six-cylinder engine, when the rotational increase is large or when the fuel injection pulse width is long, simultaneous injection can be performed on the second to sixth fuel injection cylinders. A similar effect can be expected.
[0032]
FIG. 14 shows injection in this pattern, and FIG. 18 shows injection in conventional spray end management.
[0033]
【The invention's effect】
As described above, according to the present invention, the fuel injection is taken into the intake by driving the injector at the same time as the cylinder at the previous fuel injection timing instead of the normal fuel injection timing only for a specific cylinder. Since it is terminated immediately before or during valve opening, it can be expected that a predetermined amount of fuel is inhaled.
[0034]
Further, since the simultaneous injection of all cylinders is not performed, it is difficult to reduce the fuel pressure. Therefore, an effect of ensuring an accurate injection amount for each cylinder, which is a merit of sequential injection, can be expected.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a fuel injection control device according to an embodiment of the present invention.
FIG. 2 is a diagram showing injection in a pattern according to the embodiment of the present invention.
FIG. 3 is a flowchart illustrating control of fuel injection in the embodiment of the present invention.
FIG. 4 is a flowchart illustrating start-time fuel injection pulse width TIST according to the embodiment of the present invention.
FIG. 5 is a flowchart illustrating fuel injection timing in the embodiment of the present invention.
FIG. 6 is a system diagram in the case of four cylinders in the embodiment of the present invention.
FIG. 7 is a diagram showing an example of sequential injection from the start in the case of 6 cylinders in the embodiment of the present invention.
FIG. 8 is a diagram showing an example in which all cylinders are simultaneously injected at the start of the six cylinders in the embodiment of the present invention.
FIG. 9 is a diagram showing a relationship between a basic value of pulse width (TCST) and S water temperature (Tw) in the embodiment of the present invention.
FIG. 10 is a diagram showing a relationship between a rotation correction factor (TCSN) and an engine speed (Ne) in the embodiment of the present invention.
FIG. 11 is a diagram showing a relationship between time correction factor (TKCS) and St / Sw ON time according to the embodiment of the present invention.
FIG. 12 is a diagram showing injection in a pattern according to another embodiment of the present invention.
FIG. 13 is a diagram showing injection (6 cylinders) in a pattern according to another embodiment of the present invention.
FIG. 14 is a diagram showing injection (6 cylinders) in a pattern according to another embodiment of the present invention.
FIG. 15 is a diagram showing injection in conventional spray end management.
FIG. 16 is a view showing injection in conventional spray end management.
FIG. 17 is a diagram showing injection (6-cylinder) in conventional injection end management.
FIG. 18 is a view showing injection (6 cylinders) in conventional spray end management.
[Explanation of symbols]
A Crank angle detection means B Cylinder discrimination means C Engine operating state detection means D Fuel injection number detection means E Fuel injection pulse width calculation means F Fuel injection timing calculation means

Claims (2)

多気筒エンジンの各気筒の吸気系に燃料噴射装置を備えた内燃機関において、
エンジンのクランク角度を検出するクランク角度検出手段と、
各気筒を判別する気筒判別手段と、
エンジンの運転状態を検出するエンジン運転状態検出手段と、
始動時からの燃料噴射回数を検出する燃料噴射回数検出手段と、少なくとも前記エンジン運転状態検出手段の結果を用いてインジェクタの開弁時間を演算する燃料噴射パルス幅算出手段と、
前記クランク角度検出手段、気筒判別手段、エンジン運転状態検出手段、燃料噴射回数検出手段および燃料噴射パルス幅算出手段からの出力結果を用いてインジェクタの開弁開始時期を求める燃料噴射タイミング算出手段と、を有し、
前記燃料噴射タイミング算出手段は、エンジンの始動から所定の噴射順序に従って各気筒に噴射を行うようにインジェクタの開弁開始時期を求める一方、
エンジンの始動からの噴射が所定回数目にあたる特定気筒の燃料噴射パルス幅が所定値以上のときは、前記特定気筒におけるインジェクタの開弁開始時期を、該特定気筒よりも噴射順序が前の他の気筒におけるインジェクタの開弁開始時期と同時期に設定することを特徴とする内燃機関の燃料噴射制御装置。
In an internal combustion engine provided with a fuel injection device in the intake system of each cylinder of a multi-cylinder engine,
Crank angle detecting means for detecting the crank angle of the engine;
Cylinder discriminating means for discriminating each cylinder;
Engine operating state detecting means for detecting the operating state of the engine;
Fuel injection number detecting means for detecting the number of fuel injections from the start time, fuel injection pulse width calculating means for calculating the valve opening time of the injector using at least the result of the engine operating state detecting means,
Fuel injection timing calculating means for obtaining the valve opening start timing of the injector using output results from the crank angle detecting means, cylinder determining means, engine operating state detecting means, fuel injection number detecting means and fuel injection pulse width calculating means; have a,
The fuel injection timing calculation means obtains the valve opening start timing of the injector so as to inject into each cylinder according to a predetermined injection sequence from the start of the engine,
When the fuel injection pulse width of a specific cylinder that has been injected a predetermined number of times since the start of the engine is greater than or equal to a predetermined value, the opening timing of the injector in the specific cylinder A fuel injection control device for an internal combustion engine, wherein the fuel injection control device is set at the same time as a valve opening start timing of an injector in a cylinder .
前記燃料噴射タイミング算出手段が、3気筒以上の気筒におけるインジェクタの開弁開始時期を同時期に設定することを特徴とする請求項1記載の内燃機関の燃料噴射制御装置。2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the fuel injection timing calculation means sets the valve opening start timing of the injectors in three or more cylinders at the same time.
JP07191796A 1996-03-27 1996-03-27 Fuel injection control device for internal combustion engine Expired - Fee Related JP3735933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07191796A JP3735933B2 (en) 1996-03-27 1996-03-27 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07191796A JP3735933B2 (en) 1996-03-27 1996-03-27 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09264172A JPH09264172A (en) 1997-10-07
JP3735933B2 true JP3735933B2 (en) 2006-01-18

Family

ID=13474374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07191796A Expired - Fee Related JP3735933B2 (en) 1996-03-27 1996-03-27 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3735933B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325224B1 (en) * 1999-06-11 2002-03-04 이계안 Device for preventing unbalance engine cylinder of vehicle

Also Published As

Publication number Publication date
JPH09264172A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
JP3839119B2 (en) 4-cycle engine stroke discrimination device
US7373928B2 (en) Method for starting a direct injection engine
US5735241A (en) Start up control system for direct fuel injection engine and the method thereof
US5881694A (en) Fuel injection control system for in-cylinder direct injection, spark-ignition internal combustion engines
US6880531B2 (en) Method for injecting fuel during the starting phase of an internal combustion engine
JP3856100B2 (en) Fuel injection control device for internal combustion engine
JPS60240875A (en) Cylinder discriminator for multi-cylinder internal-combustion engine
JP3735933B2 (en) Fuel injection control device for internal combustion engine
JPH0783093A (en) Engine control device
US8397692B2 (en) Method for synchronizing injection with the engine phase in an electric injector controlled engine
JPH0953499A (en) Control device of four-cycle internal combustion engine
US6571775B2 (en) Fuel injection control for start-up of internal combustion engine
JP3849126B2 (en) Fuel injection control device for internal combustion engine
JP3856091B2 (en) Fuel injection control device for multi-cylinder engine
JP4722676B2 (en) Fuel injection control device for multi-cylinder engine
JPH07158482A (en) Fuel injection control device for multiple cylinder internal combustion engine
JP3348690B2 (en) Cylinder discriminator for multi-cylinder internal combustion engine
JP3280741B2 (en) Fuel injection device for internal combustion engine
JPH09250380A (en) Fuel injection device at start-up of internal combustion engine
JP3735957B2 (en) Fuel injection control device for internal combustion engine
JPH06185387A (en) Fuel injection controller for internal combustion engine
JP3675052B2 (en) Engine fuel injection control device
JP3715109B2 (en) Fuel injection control method for internal combustion engine
JPH0526281Y2 (en)
JP2005030294A (en) Fuel injection control device of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees