JP3735728B2 - Modified cellulose regenerated fiber - Google Patents

Modified cellulose regenerated fiber Download PDF

Info

Publication number
JP3735728B2
JP3735728B2 JP33012599A JP33012599A JP3735728B2 JP 3735728 B2 JP3735728 B2 JP 3735728B2 JP 33012599 A JP33012599 A JP 33012599A JP 33012599 A JP33012599 A JP 33012599A JP 3735728 B2 JP3735728 B2 JP 3735728B2
Authority
JP
Japan
Prior art keywords
cellulose
fiber
condensate
sample
dyeing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33012599A
Other languages
Japanese (ja)
Other versions
JP2001146628A (en
Inventor
五男 倉橋
博昭 谷邊
喜久男 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujibo Holdins Inc
Original Assignee
Fujibo Holdins Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujibo Holdins Inc filed Critical Fujibo Holdins Inc
Priority to JP33012599A priority Critical patent/JP3735728B2/en
Publication of JP2001146628A publication Critical patent/JP2001146628A/en
Application granted granted Critical
Publication of JP3735728B2 publication Critical patent/JP3735728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coloring (AREA)
  • Artificial Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、実用に耐える強度を有し、且つカチオン染料に対し優れた染色性と堅牢度を具備した改質セルロース再生繊維に関し、特に濃色染色物の洗濯堅牢度における洗濯液汚染を改良する技術に関するものである。得られる改質セルロース再生繊維は単独またはアクリル繊維等のカチオン染料可染性の繊維と混紡、交編織して使用してもカチオン染料で染色したとき、同色且つ均一に染色される。また、他のセルロース系繊維、例えばカチオン染料に対する染色性がほとんどない通常のセルロース再生繊維、綿、麻等と混紡あるいは交編織して使用すれば、本発明の繊維とこれらの繊維とは、明確に染め分けができる。従って、糸,編織物,不織布,製紙等の分野にも広く利用することができる繊維を提供するものである。
【0002】
【従来の技術】
一般に、セルロース再生繊維は、直接染料あるいは反応性染料等に対しては良好な染色性を示すが、カチオン染料に対してはほとんど染色性を示さない。カチオン染料はその色相が鮮明なことからセルロース系繊維に適用しようとする試みは古くからなされている。例えば、繊維学会誌(Vol.34、No.1、1978、71〜77頁)にはビスコースレーヨンにメタ過ヨウ素酸ナトリウムを作用させてセルロースを酸化させ、ジアルデヒドセルロースとした後、亜硫酸水素ナトリウムを付加させることによりスルホン酸基を導入し、さらに、残存水酸基を各種のイソシアネートによりウレタン化して疎水基を導入する研究が報告されている。しかし、この方法で用いられる疎水基は直鎖性アルキル基であるため疎水基の導入としては不十分であり、またセルロース繊維のセルロース分子を直接化学修飾するものであるため、操作が煩雑であるばかりでなく、セルロース繊維が本来具備している風合いや吸湿性を損なう欠点がある。
【0003】
また、特公昭57−19207号公報には、芳香族カルボン酸または芳香族スルホン酸を用いて、セルロース繊維の表面部分だけに芳香族アシル基又は芳香族スルホン酸基を導入し、次いで硫酸エステル基またはスルホン酸基を持った陰イオン界面活性剤の存在下でカチオン染料で染色する方法が開示されている。しかしながら、この方法では芳香族化合物を用いてはいるが、いずれも親水性の高い化合物であり、疎水基の作用としては不十分である。また、セルロース繊維の表面のみを化学修飾するものであるため、セルロース繊維が本来具備している風合いや吸湿性を損なうとともに、濃色に染色した場合、堅牢度の面で問題がある等の欠点がある。
【0004】
また、繊維自体を改質する方法以外に染色方法により染色性や堅牢度を改善する方法も報告されている。例えば、特公平5−4474号公報にはポリスチレンスルホン酸塩を紡糸直前の紡糸原液に添加混合し再生セルロース繊維とした後にカチオン染料で染色し、さらに高濃度のタンニン酸で処理して、堅牢度を向上させる方法が開示されているが、この方法によっても黒、紺等の濃色染色物の洗濯堅牢度は液汚染に問題があった。
【0005】
さらに、特開平10−121383号公報、特開平10−121384号公報には、ジヒドロキシジフェニルスルホンのスルホン酸塩縮合物を分子中に少なくとも2個以上のグリシジル基を有する架橋剤で処理して得られた不溶性重合物を紡糸直前に紡糸原液に添加混合して紡糸した再生セルロースをカチオン染料で染色する方法、あるいはカチオン染料で染色した後にさらに低濃度のタンニン/吐酒石で処理することにより洗濯堅牢度を初めとする湿潤堅牢度を向上させる方法が開示されている。
【0006】
しかし、これらの方法によれば、中,濃色程度までは洗濯堅牢度における液汚染においても実用上充分な堅牢度を有しているが、さらに染料濃度を高くした極濃色の黒,紺等に染色した場合には未だ問題が大きく、その改善が強く望まれている。
【0007】
【発明が解決しようとする課題】
本発明は、上記した従来の技術の欠点を克服し、セルロース再生繊維が本来具備している風合いや吸水性を損なうことなく、実用に耐える充分な強度を有するとともに、カチオン染料に対して優れた染色性と堅牢度を具備し、さらには、黒,紺等の極濃色染色物においても優れた堅牢度を具備したセルロース再生繊維を提供するものである。
【0008】
本発明者らは、セルロース再生繊維を改質する改質剤とカチオン染料との親和性に着目して鋭意検討した結果、両者の親和性は単に改質剤のスルホン酸基等の酸性基を増大させるのみでは向上せず、スルホン酸基等の親水基と芳香族性疎水基のバランスが極めて重要であることを見出した。この知見に基づきさらに検討を重ね、カチオン染料と改質剤の親和性を高め洗濯堅牢度における液汚染を更に減少せしめるために、静電的親和性のみではなく、疎水的親和性および水素結合等も考慮に入れて改質剤の設計を行った。その結果、分子中心に電子求引性の強いスルホン基を有する芳香族化合物であって適度な疎水性を有するジヒドロキシジフェニルスルホンと、親水性の酸性基を有するp−フェノールスルホン酸塩を用いることが上述した課題を解決するためには優れていることを見出し本発明に至った。
【0009】
【課題を解決するための手段】
すなわち本発明の改質セルロース再生繊維は、セルロース再生繊維中に、ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩からなる、アルカリ可溶性でありかつ酸不溶性であるホルマリン縮合物を含有している改質セルロース再生繊維であり、その縮合物がセルロースに対して2.5〜20重量%含有された改質セルロース再生繊維であり、その縮合物を構成するジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩とのモル比が1:0.05〜1である改質セルロース再生繊維である。
【0010】
【発明の実施の形態】
本発明では、分子中に親水性の酸性基を有するp−フェノールスルホン酸塩を用い、また分子中に芳香族疎水基を有するジヒドロキシジフェニルスルホンを用いて、両者をホルマリンにより縮合させて縮合物とする。このときの反応方法及び反応条件は通常用いられるもので良く、特に制限されるものではないが得られる縮合物の直鎖性、分子量等を考慮して用いるホルマリンの量あるいは反応温度等の条件を選定することが好ましい。即ち、ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩の縮合物は、用いる2種類のモノマーのモル比によってその性質が大きく異なる。ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のモル比が1:1であるよりもp−フェノールスルホン酸塩の割合が大きくなると、得られる縮合物の親水性が増大するため、改質剤として用いても得られる改質セルロース再生繊維をカチオン染料で染色したときに洗濯堅牢度を低下させるため好ましくない。また、ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のモル比が1:0.05であるよりもp−フェノールスルホン酸塩のモル比が小さくなると酸性基が減少するとともに疎水性が増加するため、改質剤として用いても得られる改質セルロース再生繊維をカチオン染料で染色したときに染着性および発色性を低下させるので好ましくない。
従って、ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のモル比は、1:0.05〜1とすることが好ましく、さらに好ましくは、1:0.07〜0.5である。
【0011】
また、本発明においては、得られる縮合物の分子量は5000以上であることが望ましく、このときの該縮合物はアルカリ性水溶液に対して可溶であり、かつ酸性水溶液に対して不溶である。これによりセルロース再生繊維の製造工程において浴中に溶出してしまうなどの不都合を生じることなく、セルロース再生繊維中に均一に含有させることができる。
【0012】
上述の如くして得た縮合物を、紡糸直前にセルロースビスコース溶液に所定量添加混合して紡糸すれば本発明の改質セルロース再生繊維を得ることができる。すなわち、縮合物の水分散液をそのままか、またはアルカリ水溶液あるいは添加させる適量のセルロースビスコース溶液と予め混合して紡糸用のセルロースビスコース溶液に添加混合して紡糸すればよい。このときの紡糸条件は通常のセルロースビスコース溶液からセルロース再生繊維を得るときの条件が適用される。
【0013】
セルロースビスコース溶液に添加する該縮合物の添加量は、該セルロースビスコース溶液のセルロースに対して2.5〜20重量%であり、より好ましくは3.5〜15重量%である。該縮合物のセルロースに対する添加量が2.5重量%より少なくなるとカチオン染料の染着座席が少なくなり、充分な染着性を得ることができないため好ましくない。濃色染色に対応するためのカチオン染料の染着座席としては飽和染着量であらわすとき、少なくとも1.5%以上であることが好ましい。また、該縮合物の添加量が20重量%を越えると得られる改質セルロース再生繊維の繊維物性あるいは風合いに影響し、強度の低下やセルロース再生繊維が本来具備している柔軟性を損なうため好ましくない。
【0014】
また、本発明で用いられるセルロースビスコース溶液とは、通常レーヨンビスコース溶液やポリノジックビスコース溶液であり、本発明の改質セルロース再生繊維は、ステープル,フィラメント等の如何なる形状でも良く、また、ダル化等のため酸化チタン等の無機顔料を用いることもできる。
本発明の改質セルロース再生繊維はビスコース法に好適に適用されるものであるが、銅アンモニア法,溶剤法,アセテート法等に応用することも当然可能である。そして、本発明の改質セルロース再生繊維をカチオン染料で染色する方法は、従来の方法を用いればよいが、染色堅牢度をより向上させる種々の染色仕上方法を併用して染色することももちろん可能である。
【0015】
【実施例】
以下、本発明について、実施例により具体的に説明するが、本発明はこの範囲に限定されるものではない。尚、実施例中の繊度,乾強度,湿強度,結節強度,伸度,洗濯堅牢度,飽和染着量,発色性は以下の方法により測定した。
【0016】
〈繊度、乾強度、湿強度、結節強度、伸度〉
JIS L 1015「化学繊維のステープル試験法」により測定した。
【0017】
〈洗濯堅牢度〉
JIS L 0844「洗濯に対する染色堅ろう度試験方法」A−2法(添付布は綿と絹を使用)により、添付布汚染、変退色を測定した。また、液汚染は、洗濯終了後の洗濯液を内径13mm、長さ15cmの試験管に採取し、別に試料を入れないで同様に処理したブランク液と比較し、添付布汚染用と同じグレースケールにより等級判定を行った。
【0018】
〈飽和染着量〉
試料の10%のマラカイトグリーン(和光純薬工業(株)製、試薬特級)と1g/Lの酢酸(純度90%)と0.5g/Lの酢酸ナトリウムを含む染色液100ml中に2gの試料を入れて、100℃にて2時間染色し、染色前後の波長617nmにおける吸光度から次式により飽和染着量を求めた。
【数1】

Figure 0003735728
【0019】
〈発色性〉
5人の検査員により官能検査で調べ、次の基準により判定した。
◎;5人全員良い
○;3〜4人良い
△;1〜2人良い
×;全員悪い
【0020】
〔実施例1〕
ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のモル比をそれぞれ1:0.03、1:0.05、1:0.07、1:0.1、1:0.5、1:1、1:1.5とし、平均分子量7000〜30000のアルカリ可溶性でありかつ酸不溶性であるジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のホルマリン縮合物7水準をそれぞれ30重量%となるように水酸化ナトリウム水溶液に溶解させ、pH8〜9の7種類の改質剤溶液を調製した。通常の方法で得られるポリノジックビスコース溶液(セルロース5.0%、全アルカリ3.5%、全硫黄3.0%)のセルロースに対して、該縮合物が5.0重量%となるようにそれぞれの改質剤溶液をポリノジックビスコース溶液に添加し、均一に混合して直ちに、0.07mm×500Hのノズルを使用し、紡糸速度30m/分で、硫酸22g/L、硫酸ナトリウム65g/L、硫酸亜鉛0.5g/Lの温度35℃の紡糸浴中に紡糸した。次いで、硫酸2g/L、硫酸亜鉛0.05g/Lの温度25℃の浴中で2倍に延伸し、繊維長38mmとなるように切断し、炭酸ナトリウム1g/L、硫酸ナトリウム2g/Lの温度60℃の浴中で処理を行った後、再度硫酸5g/Lの温度65℃の浴中で処理した。さらに、通常の精練乾燥処理を行って、およそ1.39デシテックスのポリノジックの改質セルロース再生繊維を糸切れすることなく製造し、各水準ともおよそ700gの試料を得、それぞれを試料No.2〜No.8とした。
【0021】
尚、比較試料として、改質剤を添加しない以外は上述と同様の方法でセルロース再生繊維を製造し、およそ700gの試料を得、試料No.1とした。
【0022】
次に、試料No.1〜No.8の各試料10gを、過酸化水素(有効成分35%)5g/L、ノニオン系界面活性剤の商品名;クリーンN−15(一方社油脂工業(株)製)1g/L、液体水酸化ナトリウム(有効成分48%)1.5g/L、過酸化水素の安定剤の商品名;トライポンA−74(一方社油脂工業(株)製)1g/L、金属イオン封鎖剤の商品名;クレワットDP−80(帝国化学産業(株)製)0.5g/Lからなる漂白液4L中に入れ、90℃で30分間処理した。続いて、水洗、脱液し、酢酸(有効成分90%)1g/Lを含む中和液4L中に入れ50℃で10分間処理し、水洗、乾燥した。
【0023】
次に、8種類の漂白した各試料2gをそれぞれ正確に秤量し、黒色カチオン染料(商品名;Astrazon Black SW 200%、ダイスタージャパン(株)製)2.5%(owf)、均染剤の商品名;NS−3(日華化学(株)製)2.0%(owf)、金属イオン封鎖剤の商品名;セキュロンFF−100(ヘンケルジャパン(株)製)1.0%(owf)、酢酸(有効成分90%)1g/L、酢酸ナトリウム0.5g/Lを含む染色液100ml中に入れ、100℃で30分間染色処理し、水洗した。続いてセレッシュ400(花王(株)製)2g/Lを含む処理液100ml中に入れ、60℃で15分間ソーピングした後、水洗した。さらに、タンニン酸(大日本製薬(株)製)3.0%(owf)を含む処理液100ml中に入れ、60℃で15分間処理し、排液した後、引き続き吐酒石1.5%(owf)を含む処理液100ml中で60℃で15分間処理した。最後に水洗し乾燥して、試料No.1〜No.8を染色した各試料をそれぞれ得た。
【0024】
染色したそれぞれの試料について、洗濯堅牢度及び発色性を測定し、結果を表1に示した。また、漂白後染色していないそれぞれの試料について、飽和染着量を測定し、結果を表1にあわせて示した。
【0025】
【表1】
Figure 0003735728
【0026】
表1から明らかなように、ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩とのモル比が1:1であるよりもp−フェノールスルホン酸塩のモル比が大きい試料No.8は、飽和染着量と発色性には優れているものの洗濯堅牢度の液汚染が著しく劣るため好ましくない。また、ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のモル比が1:0.05であるよりもp−フェノールスルホン酸塩のモル比が小さい試料No.2は、洗濯堅牢度は優れているものの繊維中の酸性基が少ないため飽和染着量に劣っており、濃色に対応するための十分な染着性が得られず、発色性も不十分であるため濃黒色としての品位が劣り好ましくない。ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のモル比が1:0.05〜1である本発明の試料No.3〜No.7は、染着性にも優れ、洗濯堅牢度、発色性ともに優れていることが明らかである。
【0027】
〔実施例2〕
ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のモル比を1:0.1とし、平均分子量20000のジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のホルマリン縮合物を30重量%となるように水酸化ナトリウム水溶液に溶解させ、pH8〜9の改質剤溶液を調製した。通常の方法で得られるポリノジックビスコース溶液(セルロース5.0%、全アルカリ3.5%、全硫黄3.0%)のセルロースに対して該縮合物が0、1、2.5、5、10、20、30重量%となるように改質剤溶液を添加し、均一に混合して改質剤を添加したポリノジックビスコース溶液7種類を得た。それぞれのポリノジックビスコース溶液を実施例1と同様の紡糸条件にて紡糸し、各水準約700gのポリノジックの改質セルロース再生繊維を製造し、それぞれ試料No.9〜No.15とした。得られた各試料の繊度、乾強度、湿強度、結節強度、伸度を測定し、結果を表2に示した。
【0028】
また、試料No.9〜No.15の各試料を実施例1と同様の方法で漂白し、乾燥後、各試料2gを正確に秤量して飽和染着量を測定し、結果を表2にあわせて示した。
【0029】
【表2】
Figure 0003735728
【0030】
表2から明らかなように、ポリノジックレーヨンにジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のホルマリン縮合物を含有させた改質セルロース再生繊維は、該縮合物の添加量が少ない試料No.10は酸性基が減少するため飽和染着量が低下しており、濃色等に対応するための十分な染着性が得られないため好ましくない。また、該縮合物の添加量が多い試料No.15は飽和染着量は優れているものの、繊維物性の低下が大きいため好ましくない。該縮合物の添加量が本発明の範囲である試料No.11〜No.14は飽和染着量、繊維物性ともに十分な性能を有していることが明らかである。なお、該縮合物の添加量が本発明の範囲であっても添加量の増加に伴い繊維物性は低下するが、実用上問題になる程度ではない。
【0031】
〔実施例3〕
実施例1と同様にジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のモル比が異なる7水準のホルマリン縮合物をそれぞれ30重量%となるように水酸化ナトリウム水溶液に溶解させてpH8〜9の7種類の改質剤溶液を調製し、従来法によって得られたレーヨンビスコース溶液(セルロース9.0%、全アルカリ6.0%、全硫黄2.5%)のセルロースに対して、該縮合物が5.0重量%となるようにそれぞれの改質剤溶液をレーヨンビスコースに添加し、均一に混合して直ちに、0.09mm×100Hのノズルを使用し、紡糸速度55m/分で、硫酸110g/L、硫酸ナトリウム30g/L、硫酸亜鉛15g/Lの温度50℃の紡糸浴中に紡糸した。通常の二浴緊張紡糸法により延伸し、38mmに切断した後、通常の精練乾燥処理を行って、およそ3.33デシテックスのレーヨンの改質セルロース再生繊維を糸切れすることなく製造し、各水準ともおよそ700gの試料を得、それぞれを試料No.17〜No.23とした。
【0032】
尚、比較試料として、改質剤を添加しない以外は上述と同様の方法でセルロース再生繊維を製造し、およそ700gの試料を得、試料No.16とした。
【0033】
次いで、各試料を実施例1と同様の方法で漂白処理し、漂白処理した各試料から正確に2gずつを秤量し、カチオン染料を紺色染料(商品名;Aizen Cathilon Navy Blue GRLH 200%、保土谷化学工業(株)製)3.0%(owf)とする以外は実施例1と同様の方法で染色し、試料No.16〜No.23を染色した各試料をそれぞれ得た。得られた各染色試料について、洗濯堅牢度及び発色性の測定を行い、結果を表3に示した。
また、漂白処理した各試料から2gを正確に秤量し、飽和染着量を測定し、結果を表3にあわせて示した。
【0034】
【表3】
Figure 0003735728
【0035】
表3から明らかなように、ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩とのモル比が1:1であるよりもp−フェノールスルホン酸塩のモル比が大きい試料No.23は、飽和染着量と発色性には優れているものの洗濯堅牢度の液汚染が著しく劣るため好ましくない。また、ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のモル比が1:0.05であるよりもp−フェノールスルホン酸塩のモル比が小さい試料No.17は、洗濯堅牢度は優れているものの繊維中の酸性基が少ないため飽和染着量に劣っており、濃色に対応するための十分な染着性が得られず、発色性も不十分であるため濃紺色としての品位が劣り好ましくない。ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のモル比が1:0.05〜1である本発明の試料No.18〜No.22は、染着性にも優れ、洗濯堅牢度、発色性ともに優れていることが明らかである。
【0036】
〔実施例4〕
実施例2と同様にしてジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のモル比を1:0.1とし、平均分子量20000のホルマリン縮合物を30重量%となるように水酸化ナトリウム水溶液に溶解させてpH8〜9の改質剤溶液を調製した。通常の方法で得られるレーヨンビスコース溶液(セルロース9.0%、全アルカリ6.0%、全硫黄2.5%)のセルロースに対して該縮合物が0、1、2.5、5、10、20、30重量%となるように改質剤溶液をレーヨンビスコース溶液に添加し、それぞれ均一に混合し、実施例3と同様に紡糸しておよそ3.33デシテックスのレーヨンの改質セルロース再生繊維を糸切れすることなく製造し、各水準ともおよそ700gの試料を得、それぞれを試料No.24〜No.30とした。得られた各試料の繊度、乾強度、湿強度、結節強度、伸度を測定し、結果を表4に示した。
【0037】
また、試料No.24〜No.30の各試料を実施例1と同様の方法で漂白し、乾燥後、各試料とも2gを正確に秤量して飽和染着量を測定し、結果を表4にあわせて示した。
【0038】
【表4】
Figure 0003735728
【0039】
表4から明らかなように、普通レーヨンにジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のホルマリン縮合物を含有させた改質セルロース再生繊維は、該縮合物の添加量が少ない試料No.25は酸性基が減少するため飽和染着量が低下しており、濃色等に対応するための十分な染着性が得られないため好ましくない。また、該縮合物の添加量が多い試料No.30は飽和染着量は優れているものの、繊維物性の低下が大きいため好ましくない。該縮合物の添加量が本発明の範囲である試料No.26〜No.29は飽和染着量、繊維物性ともに十分な性能を有していることが明らかである。なお、該縮合物の添加量が本発明の範囲であっても添加量の増加に伴い繊維物性は低下するが、実用上問題になる程度ではない。
【0040】
【発明の効果】
以上説明したとおり、本発明によれば、セルロース再生繊維中にジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のモル比が1:0.05〜1であるホルマリン縮合物をセルロース再生繊維のセルロースに対して2.5〜20重量%含有させることにより、実用に耐える十分な強度を有し、カチオン染料で黒,紺等の極濃色に染色したときの洗濯堅牢度、特に液汚染においても優れた堅牢度を具備したセルロース再生繊維を得ることができる。本発明の改質セルロース再生繊維は、綿,麻等と混紡あるいは交編織して使用しても染め分けることができる。また、アクリル繊維等のカチオン染料可染性の繊維と混紡,交編織して使用しても同色且つ均一に染色されるので、これらの性能を発揮する糸、編織物,不織布,製紙等の分野にも広く利用することができる。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a modified cellulose regenerated fiber having strength that can withstand practical use and having excellent dyeability and fastness to cationic dyes, and in particular, improves washing liquid contamination in the wash fastness of dark-colored dyeings. It is about technology. Even if the modified cellulose regenerated fiber obtained is used alone or mixed with a cationic dye-dyeable fiber such as an acrylic fiber and used in a cross knitted fabric, it is dyed in the same color and uniformly when dyed with the cationic dye. In addition, the fibers of the present invention and these fibers are clear if they are used by blending or knitting with other cellulosic fibers, such as ordinary cellulose regenerated fibers that have little dyeability to cationic dyes, cotton, hemp, etc. Can be dyed separately. Therefore, the present invention provides a fiber that can be widely used in the fields of yarn, knitted fabric, nonwoven fabric, papermaking, and the like.
[0002]
[Prior art]
In general, the regenerated cellulose fiber shows good dyeability for direct dyes or reactive dyes, but hardly shows dyeability for cationic dyes. Attempts to apply cationic dyes to cellulosic fibers have been made for a long time because of their clear hues. For example, according to the Journal of Textile Society of Japan (Vol. 34, No. 1, 1978, pages 71-77), sodium metaperiodate is allowed to act on viscose rayon to oxidize cellulose to dialdehyde cellulose, and then bisulfite. Studies have been reported in which sulfonic acid groups are introduced by adding sodium, and the remaining hydroxyl groups are urethanized with various isocyanates to introduce hydrophobic groups. However, since the hydrophobic group used in this method is a linear alkyl group, introduction of the hydrophobic group is insufficient, and the cellulose molecule of the cellulose fiber is directly chemically modified, so that the operation is complicated. In addition to this, there is a drawback that the texture and hygroscopicity inherent to cellulose fibers are impaired.
[0003]
Japanese Patent Publication No. 57-19207 discloses the introduction of an aromatic acyl group or an aromatic sulfonic acid group only on the surface portion of a cellulose fiber using an aromatic carboxylic acid or an aromatic sulfonic acid, and then a sulfate group. Alternatively, a method of dyeing with a cationic dye in the presence of an anionic surfactant having a sulfonic acid group is disclosed. However, although this method uses an aromatic compound, all of them are highly hydrophilic compounds, and the action of the hydrophobic group is insufficient. In addition, since only the surface of the cellulose fiber is chemically modified, the texture and moisture absorption inherent to the cellulose fiber is impaired, and when it is dyed in a dark color, there is a problem in terms of fastness. There is.
[0004]
In addition to the method for modifying the fiber itself, a method for improving dyeability and fastness by a dyeing method has also been reported. For example, in Japanese Patent Publication No. 5-4474, polystyrene sulfonate is added to and mixed with a spinning stock solution just before spinning to obtain a regenerated cellulose fiber, which is then dyed with a cationic dye and further treated with a high concentration of tannic acid. However, even with this method, the fastness to washing of dark-colored dyeings such as black and wrinkles has a problem with liquid contamination.
[0005]
Furthermore, JP-A-10-121383 and JP-A-10-121384 are obtained by treating a sulfonate condensate of dihydroxydiphenylsulfone with a crosslinking agent having at least two glycidyl groups in the molecule. Washing fastness by adding the insoluble polymer added to the spinning dope immediately before spinning and dyeing the spun regenerated cellulose with a cationic dye, or treating it with a cationic dye and then treating it with a lower concentration of tannin / tartar A method for improving wet fastness, including the degree, is disclosed.
[0006]
However, according to these methods, although it is practically sufficiently fast even in liquid contamination in the wash fastness up to the middle and dark colors, the extremely dark black and dark blue having a higher dye concentration. However, there is still a great problem in the case of dyeing, etc., and the improvement is strongly desired.
[0007]
[Problems to be solved by the invention]
The present invention overcomes the above-mentioned drawbacks of the prior art and has sufficient strength to withstand practical use without impairing the texture and water absorption inherent in the cellulose regenerated fiber and is superior to cationic dyes. The present invention provides a regenerated cellulose fiber having dyeability and fastness, and also having excellent fastness even in extremely dark dyed products such as black and wrinkles.
[0008]
As a result of diligent investigation focusing on the affinity between the modifier for modifying the cellulose regenerated fiber and the cationic dye, the present inventors have determined that the affinity between the two is simply an acidic group such as a sulfonic acid group of the modifier. It has been found that the balance between a hydrophilic group such as a sulfonic acid group and an aromatic hydrophobic group is extremely important. Based on this finding, in order to further increase the affinity between cationic dyes and modifiers and further reduce liquid contamination in washing fastness, not only electrostatic affinity but also hydrophobic affinity and hydrogen bonding, etc. The modifier was also designed in consideration of the above. As a result, it is possible to use an aromatic compound having a strong electron-withdrawing sulfone group at the center of the molecule and a suitable hydrophobicity of dihydroxydiphenyl sulfone and a p-phenolsulfonic acid salt having a hydrophilic acidic group. In order to solve the above-described problems, the present inventors have found that the present invention is excellent and have reached the present invention.
[0009]
[Means for Solving the Problems]
That is, the modified cellulose regenerated fiber of the present invention contains a modified cellulose containing an alkali-soluble and acid-insoluble formalin condensate composed of dihydroxydiphenyl sulfone and p-phenol sulfonate in the cellulose regenerated fiber. Regenerated fiber, a modified cellulose regenerated fiber containing 2.5 to 20% by weight of the condensate based on cellulose, and the moles of dihydroxydiphenyl sulfone and p-phenol sulfonate constituting the condensate This is a modified cellulose regenerated fiber having a ratio of 1: 0.05-1.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, p-phenol sulfonate having a hydrophilic acidic group in the molecule is used, and dihydroxydiphenyl sulfone having an aromatic hydrophobic group is used in the molecule, and both are condensed with formalin to form a condensate. To do. The reaction method and reaction conditions at this time may be those usually used, and are not particularly limited, but the conditions such as the amount of formalin used or the reaction temperature are taken into consideration in consideration of the linearity and molecular weight of the resulting condensate. It is preferable to select. That is, the nature of the condensate of dihydroxydiphenyl sulfone and p-phenol sulfonate varies greatly depending on the molar ratio of the two types of monomers used. Since the hydrophilicity of the resulting condensate increases when the ratio of p-phenol sulfonate is larger than the molar ratio of dihydroxydiphenyl sulfone and p-phenol sulfonate is 1: 1, it is used as a modifier. However, when the modified cellulose regenerated fiber obtained is dyed with a cationic dye, the fastness to washing is lowered, which is not preferable. Further, when the molar ratio of p-phenolsulfonic acid salt is smaller than the molar ratio of dihydroxydiphenylsulfone and p-phenolsulfonic acid salt is 1: 0.05, the acidic group is decreased and the hydrophobicity is increased. When the modified cellulose regenerated fiber obtained by using as a modifier is dyed with a cationic dye, the dyeability and color developability are lowered, which is not preferable.
Accordingly, the molar ratio of dihydroxydiphenyl sulfone to p-phenol sulfonate is preferably 1: 0.05 to 1, more preferably 1: 0.07 to 0.5.
[0011]
In the present invention, the molecular weight of the resulting condensate is desirably 5000 or more. At this time, the condensate is soluble in an alkaline aqueous solution and insoluble in an acidic aqueous solution. Thereby, it can be made to contain uniformly in a cellulose regenerated fiber, without producing inconveniences, such as eluting in a bath, in a manufacturing process of a cellulose regenerated fiber.
[0012]
A modified cellulose regenerated fiber of the present invention can be obtained by spinning the condensate obtained as described above by adding a predetermined amount to the cellulose viscose solution and spinning immediately before spinning. That is, the aqueous dispersion of the condensate may be used as it is, or mixed in advance with an alkaline aqueous solution or an appropriate amount of a cellulose viscose solution to be added, and added to the spinning cellulose viscose solution for mixing and spinning. As spinning conditions at this time, conditions for obtaining cellulose regenerated fibers from a normal cellulose viscose solution are applied.
[0013]
The amount of the condensate added to the cellulose viscose solution is 2.5 to 20% by weight, more preferably 3.5 to 15% by weight, based on the cellulose in the cellulose viscose solution. When the amount of the condensate added to the cellulose is less than 2.5% by weight, the amount of cationic dyes to be dyed is reduced, and sufficient dyeability cannot be obtained. As the dyeing seat of the cationic dye for coping with the dark dyeing, it is preferably at least 1.5% or more when expressed by the saturated dyeing amount. Further, if the addition amount of the condensate exceeds 20% by weight, it may affect the fiber properties or texture of the obtained modified cellulose regenerated fiber, and it is preferable because the strength is lowered and the inherent flexibility of the cellulose regenerated fiber is impaired. Absent.
[0014]
The cellulose viscose solution used in the present invention is usually a rayon viscose solution or a polynosic viscose solution, and the modified cellulose regenerated fiber of the present invention may have any shape such as staple, filament, etc. Inorganic pigments such as titanium oxide can also be used for conversion.
The modified cellulose regenerated fiber of the present invention is suitably applied to the viscose method, but can naturally be applied to the copper ammonia method, the solvent method, the acetate method, and the like. The method for dyeing the modified cellulose regenerated fiber of the present invention with a cationic dye may be a conventional method, but of course, various dyeing finishing methods that further improve dyeing fastness can be used in combination. It is.
[0015]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to this range. In addition, the fineness, dry strength, wet strength, knot strength, elongation, wash fastness, saturated dyeing amount, and color developability in the examples were measured by the following methods.
[0016]
<Fineness, dry strength, wet strength, knot strength, elongation>
It was measured according to JIS L 1015 “Chemical fiber staple test method”.
[0017]
<Washing fastness>
JIS L 0844 “Testing method for dyeing fastness to washing” A-2 method (attached fabric using cotton and silk) was used to measure attached fabric contamination and discoloration. In addition, the liquid contamination is the same gray scale as that used for contamination of the attached cloth, compared with a blank liquid that was collected in a test tube having an inner diameter of 13 mm and a length of 15 cm after washing and compared with a blank liquid that was treated in the same way without any additional sample. The grade was determined by
[0018]
<Saturated dyeing amount>
2 g of sample in 100 ml of staining solution containing 10% of malachite green (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade), 1 g / L acetic acid (purity 90%) and 0.5 g / L sodium acetate And dyed at 100 ° C. for 2 hours, and the saturated dyeing amount was determined from the absorbance at a wavelength of 617 nm before and after the dyeing by the following formula.
[Expression 1]
Figure 0003735728
[0019]
<Color development>
It was examined by sensory inspection by five inspectors and judged according to the following criteria.
◎: All 5 people are good ○; 3-4 people are good △; 1-2 people are good X;
[Example 1]
The molar ratios of dihydroxydiphenylsulfone and p-phenolsulfonate are 1: 0.03, 1: 0.05, 1: 0.07, 1: 0.1, 1: 0.5, 1: 1, 1 Sodium hydroxide aqueous solution so that the 7 levels of the formalin condensate of dihydroxydiphenylsulfone and p-phenolsulfonate having an average molecular weight of 7000 to 30000 and having an average molecular weight of 7000 to 30000 are 30% by weight, respectively. 7 kinds of modifier solutions having a pH of 8-9 were prepared. The condensate is 5.0% by weight with respect to the cellulose of the polynosic viscose solution (cellulose 5.0%, total alkali 3.5%, total sulfur 3.0%) obtained by a usual method. Each modifier solution was added to the polynosic viscose solution, mixed uniformly and immediately, using a 0.07 mm × 500 H nozzle, spinning speed 30 m / min, sulfuric acid 22 g / L, sodium sulfate 65 g / L Spinning was performed in a spinning bath having a temperature of 35 ° C. and zinc sulfate of 0.5 g / L. Next, it was stretched twice in a bath of 2 g / L of sulfuric acid and 0.05 g / L of zinc sulfate at a temperature of 25 ° C. and cut to a fiber length of 38 mm, and 1 g / L of sodium carbonate and 2 g / L of sodium sulfate. After treatment in a bath at a temperature of 60 ° C., the treatment was again carried out in a bath at a temperature of 65 ° C. with 5 g / L of sulfuric acid. Further, a normal scouring and drying treatment was performed to produce approximately 1.39 dtex polynosic modified cellulose regenerated fiber without breaking the yarn, and approximately 700 g of samples were obtained at each level. 2-No. It was set to 8.
[0021]
As a comparative sample, a cellulose regenerated fiber was produced in the same manner as described above except that no modifier was added, and approximately 700 g of a sample was obtained. It was set to 1.
[0022]
Next, sample No. 1-No. 8 g of each sample, hydrogen peroxide (active ingredient 35%) 5 g / L, trade name of nonionic surfactant; clean N-15 (manufactured by Yushi Co., Ltd.) 1 g / L, liquid hydroxylation Sodium (active ingredient 48%) 1.5 g / L, trade name of hydrogen peroxide stabilizer; Trypon A-74 (manufactured by Yushi Kogyo Co., Ltd.) 1 g / L, trade name of sequestering agent; DP-80 (manufactured by Teikoku Chemical Industry Co., Ltd.) was placed in 4 L of a bleaching solution consisting of 0.5 g / L and treated at 90 ° C. for 30 minutes. Subsequently, the mixture was washed with water, drained, placed in 4 L of a neutralized solution containing 1 g / L of acetic acid (active ingredient 90%), treated at 50 ° C. for 10 minutes, washed with water and dried.
[0023]
Next, 2 g of each of the 8 types of bleached samples were accurately weighed, and the black cationic dye (trade name: Astrazon Black SW 200%, manufactured by Dystar Japan Co., Ltd.) 2.5% (owf), leveling agent NS-3 (Nikka Chemical Co., Ltd.) 2.0% (owf), metal ion sequestering agent name: Securon FF-100 (Henkel Japan Co., Ltd.) 1.0% (owf) ), Acetic acid (active ingredient 90%) 1 g / L, placed in 100 ml of staining solution containing sodium acetate 0.5 g / L, dyed at 100 ° C. for 30 minutes, and washed with water. Subsequently, the solution was placed in 100 ml of a processing solution containing 2 g / L of Celesh 400 (manufactured by Kao Corporation), soaped at 60 ° C. for 15 minutes, and then washed with water. Furthermore, after putting in 100 ml of treatment liquid containing 3.0% (owf) of tannic acid (Dainippon Pharmaceutical Co., Ltd.), treating at 60 ° C. for 15 minutes, draining, followed by 1.5% of tartarite. Treatment was performed at 60 ° C. for 15 minutes in 100 ml of a treatment solution containing (owf). Finally, it was washed with water and dried. 1-No. Each sample stained 8 was obtained.
[0024]
About each dye | stained sample, the wash fastness and coloring property were measured, and the result was shown in Table 1. Further, the saturation dyeing amount was measured for each sample not dyed after bleaching, and the results are shown in Table 1.
[0025]
[Table 1]
Figure 0003735728
[0026]
As can be seen from Table 1, sample No. 1 has a larger molar ratio of p-phenolsulfonic acid salt than the molar ratio of dihydroxydiphenylsulfone and p-phenolsulfonic acid salt is 1: 1. No. 8 is not preferable because it is excellent in saturated dyeing amount and color developability, but the liquid stain of the fastness to washing is remarkably inferior. In addition, sample No. 1 in which the molar ratio of p-phenolsulfonic acid salt is smaller than the molar ratio of dihydroxydiphenylsulfone and p-phenolsulfonic acid salt is 1: 0.05. 2 is excellent in fastness to washing, but has a low amount of saturated dyes due to few acidic groups in the fiber, and does not provide sufficient dyeing properties to cope with dark colors, and color development is also insufficient. Therefore, the quality as dark black is inferior and is not preferable. Sample No. of the present invention in which the molar ratio of dihydroxydiphenyl sulfone to p-phenol sulfonate is 1: 0.05-1. 3-No. It is clear that No. 7 is excellent in dyeing property and excellent in fastness to washing and coloring property.
[0027]
[Example 2]
Sodium hydroxide so that the molar ratio of dihydroxydiphenylsulfone and p-phenolsulfonate is 1: 0.1, and the formalin condensate of dihydroxydiphenylsulfone and p-phenolsulfonate having an average molecular weight of 20000 is 30% by weight. A modifier solution having a pH of 8-9 was prepared by dissolving in an aqueous solution. The condensate is 0, 1, 2.5, 5, with respect to cellulose of a polynosic viscose solution (cellulose 5.0%, total alkali 3.5%, total sulfur 3.0%) obtained by a usual method. The modifier solution was added so that it might become 10, 20, 30 weight%, and it mixed uniformly and obtained the polynosic viscose solution 7 type which added the modifier. The respective polynosic viscose solutions were spun under the same spinning conditions as in Example 1 to produce polynosic modified cellulose regenerated fibers having a level of about 700 g. 9-No. It was set to 15. The fineness, dry strength, wet strength, knot strength and elongation of each sample obtained were measured, and the results are shown in Table 2.
[0028]
Sample No. 9-No. Each of the 15 samples was bleached in the same manner as in Example 1, and after drying, 2 g of each sample was accurately weighed to measure the saturated dyeing amount. The results are shown in Table 2.
[0029]
[Table 2]
Figure 0003735728
[0030]
As can be seen from Table 2, the modified cellulose regenerated fiber in which polynosic rayon contains a formalin condensate of dihydroxydiphenyl sulfone and p-phenol sulfonate is the sample No. 1 with a small amount of the condensate added. No. 10 is not preferred because the amount of saturated dyeing is reduced due to the decrease in acidic groups, and sufficient dyeing properties for dealing with dark colors cannot be obtained. In addition, Sample No. with a large amount of the condensate added. No. 15 is not preferred because the amount of saturated dyeing is excellent, but the fiber properties are greatly lowered. Sample No. in which the amount of the condensate added is within the scope of the present invention. 11-No. It is clear that No. 14 has sufficient performance in both the saturation dyeing amount and the fiber physical properties. In addition, even if the addition amount of the condensate is within the range of the present invention, the physical properties of the fiber are lowered as the addition amount is increased, but this is not a practical problem.
[0031]
Example 3
Seven kinds of formalin condensates having different molar ratios of dihydroxydiphenyl sulfone and p-phenol sulfonate as in Example 1 were dissolved in an aqueous solution of sodium hydroxide so as to be 30% by weight, respectively. And the condensate was added to the cellulose of the rayon viscose solution (cellulose 9.0%, total alkali 6.0%, total sulfur 2.5%) obtained by the conventional method. Each modifier solution was added to the rayon viscose so as to be 5.0% by weight, mixed uniformly, and immediately using a 0.09 mm × 100 H nozzle, spinning speed of 55 m / min, 110 g of sulfuric acid. / L, sodium sulfate 30 g / L, zinc sulfate 15 g / L in a spinning bath at a temperature of 50 ° C. Stretched by the usual two-bath tension spinning method, cut to 38 mm, and then subjected to ordinary scouring and drying treatment to produce a modified cellulose regenerated fiber of approximately 3.33 dtex rayon without breaking the yarn. Approximately 700 g of samples were obtained. 17-No. 23.
[0032]
As a comparative sample, a cellulose regenerated fiber was produced in the same manner as described above except that no modifier was added, and approximately 700 g of a sample was obtained. It was set to 16.
[0033]
Next, each sample was bleached in the same manner as in Example 1, and exactly 2 g of each bleached sample was weighed, and the cationic dye was an amber dye (trade name; Aizen Cathil Navy Blue GRLH 200%, Hodogaya. The sample was stained in the same manner as in Example 1 except that it was 3.0% (owf). 16-No. Each sample stained 23 was obtained. About each obtained dyeing | staining sample, the wash fastness and coloring property were measured, and the result was shown in Table 3.
Further, 2 g from each bleached sample was accurately weighed and the amount of saturated dyeing was measured. The results are shown in Table 3.
[0034]
[Table 3]
Figure 0003735728
[0035]
As is apparent from Table 3, the sample No. 1 had a larger molar ratio of p-phenolsulfonic acid salt than that of the molar ratio of dihydroxydiphenylsulfone and p-phenolsulfonic acid salt was 1: 1. No. 23 is not preferred because it is excellent in saturated dyeing amount and color developability, but the liquid contamination of the fastness to washing is remarkably inferior. In addition, sample No. 1 in which the molar ratio of p-phenolsulfonic acid salt is smaller than the molar ratio of dihydroxydiphenylsulfone and p-phenolsulfonic acid salt is 1: 0.05. No. 17 is excellent in fastness to washing, but is inferior in saturated dyeing amount due to a small amount of acidic groups in the fiber, and does not have sufficient dyeing property to cope with dark colors, and has insufficient color development. Therefore, the quality of the dark blue color is inferior, which is not preferable. Sample No. of the present invention in which the molar ratio of dihydroxydiphenyl sulfone to p-phenol sulfonate is 1: 0.05-1. 18-No. It is apparent that No. 22 is excellent in dyeing property and excellent in fastness to washing and coloring property.
[0036]
Example 4
In the same manner as in Example 2, the molar ratio of dihydroxydiphenyl sulfone to p-phenol sulfonate was 1: 0.1, and a formalin condensate having an average molecular weight of 20000 was dissolved in an aqueous sodium hydroxide solution at 30% by weight. Then, a modifier solution having a pH of 8 to 9 was prepared. The condensate is 0, 1, 2.5, 5, with respect to cellulose of a rayon viscose solution (cellulose 9.0%, total alkali 6.0%, total sulfur 2.5%) obtained by a usual method. The modifier solution was added to the rayon viscose solution so as to be 10, 20, and 30% by weight, respectively, mixed uniformly, and spun in the same manner as in Example 3 to obtain a modified cellulose of rayon of about 3.33 dtex. Remanufactured fibers were produced without breakage, and approximately 700 g of samples were obtained at each level. 24-No. 30. The fineness, dry strength, wet strength, knot strength, and elongation of each sample obtained were measured, and the results are shown in Table 4.
[0037]
Sample No. 24-No. Each of the 30 samples was bleached in the same manner as in Example 1, and after drying, 2 g of each sample was accurately weighed to determine the saturated dyeing amount. The results are shown in Table 4.
[0038]
[Table 4]
Figure 0003735728
[0039]
As is apparent from Table 4, the modified cellulose regenerated fiber in which the formalin condensate of dihydroxydiphenyl sulfone and p-phenol sulfonate is added to normal rayon has the sample No. 1 with a small amount of the condensate added. No. 25 is not preferable because the amount of saturated dyeing is reduced due to a decrease in acidic groups, and sufficient dyeing properties for dealing with dark colors cannot be obtained. In addition, Sample No. with a large amount of the condensate added. No. 30 is not preferred because the amount of saturated dyeing is excellent, but the fiber properties are greatly lowered. Sample No. in which the amount of the condensate added is within the scope of the present invention. 26-No. It is apparent that No. 29 has sufficient performance for both the saturated dyeing amount and the fiber physical properties. In addition, even if the addition amount of the condensate is within the range of the present invention, the physical properties of the fiber are lowered as the addition amount is increased, but this is not a practical problem.
[0040]
【The invention's effect】
As described above, according to the present invention, a formalin condensate having a molar ratio of dihydroxydiphenyl sulfone and p-phenol sulfonate of 1: 0.05 to 1 in the cellulose regenerated fiber is obtained with respect to the cellulose of the cellulose regenerated fiber. 2.5 to 20% by weight, it has sufficient strength to withstand practical use, and is excellent in fastness to washing when dyed in a very dark color such as black or wrinkle with a cationic dye, especially in liquid contamination Cellulose regenerated fibers having fastness can be obtained. The modified cellulose regenerated fiber of the present invention can be dyed separately even if used by blending or knitting with cotton, hemp or the like. In addition, even if mixed with a cationic dye-dyeable fiber such as acrylic fiber, it is dyed in the same color and even when used in cross knitting, so the fields of yarns, knitted fabrics, non-woven fabrics, paper making, etc. that exhibit these performances It can also be used widely.

Claims (3)

セルロース再生繊維中に、ジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩からなる、アルカリ可溶性でありかつ酸不溶性であるホルマリン縮合物を含有していることを特徴とする改質セルロース再生繊維。A modified cellulose regenerated fiber comprising an alkali-soluble and acid-insoluble formalin condensate composed of dihydroxydiphenyl sulfone and p-phenol sulfonate in the regenerated cellulose fiber. 該縮合物の含有量が、セルロースに対して2.5〜20重量%であることを特徴とする請求項1記載の改質セルロース再生繊維。The modified cellulose regenerated fiber according to claim 1, wherein the content of the condensate is 2.5 to 20% by weight based on cellulose. 該縮合物のジヒドロキシジフェニルスルホンとp−フェノールスルホン酸塩のモル比が1:0.05〜1であることを特徴とする請求項1または請求項2記載の改質セルロース再生繊維。The modified cellulose regenerated fiber according to claim 1 or 2, wherein the condensate has a molar ratio of dihydroxydiphenylsulfone to p-phenolsulfonate of 1: 0.05-1.
JP33012599A 1999-11-19 1999-11-19 Modified cellulose regenerated fiber Expired - Fee Related JP3735728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33012599A JP3735728B2 (en) 1999-11-19 1999-11-19 Modified cellulose regenerated fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33012599A JP3735728B2 (en) 1999-11-19 1999-11-19 Modified cellulose regenerated fiber

Publications (2)

Publication Number Publication Date
JP2001146628A JP2001146628A (en) 2001-05-29
JP3735728B2 true JP3735728B2 (en) 2006-01-18

Family

ID=18229095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33012599A Expired - Fee Related JP3735728B2 (en) 1999-11-19 1999-11-19 Modified cellulose regenerated fiber

Country Status (1)

Country Link
JP (1) JP3735728B2 (en)

Also Published As

Publication number Publication date
JP2001146628A (en) 2001-05-29

Similar Documents

Publication Publication Date Title
DE69233075T2 (en) fiber treatment
PL174026B1 (en) Fibre processing method
EP0854215B1 (en) Cellulose multifilament yarns and woven fabrics produced therefrom
US20010004495A1 (en) Method for manufacturing improved regenerated cellulose fiber
AU721876B2 (en) Process for treatment of cellulose fibres and of assemblies made from these fibres
JP3735729B2 (en) Modified cellulose regenerated fiber
JP3735728B2 (en) Modified cellulose regenerated fiber
Goldthwait Reaction of formaldehyde with cotton
JP3769155B2 (en) Cationic dye dyeable viscose rayon
TW573097B (en) Improved regenerated cellulose fiber and fiber product thereof
US5902355A (en) Method for pattern dyeing of textile fabrics containing blends of cellulose regenerated fiber
JP2863894B2 (en) Modified cellulose regenerated fiber
AU722711B2 (en) Method for pattern dyeing of textile fabrics containing blends of cellulose regenerated fiber
KR101794125B1 (en) Fibre blends, yarns and fabrics made thereof
JP2863893B2 (en) Processing of cellulosic fabrics
JP3915056B2 (en) Cellulose fiber processing method
JP3270923B2 (en) Dyeing method for modified cellulose regenerated fiber structure
Waghmare et al. Influence of dye pickup on different functionalized regenerated cellulosic fibres
US6042767A (en) Method of producing a cellulosic yarn
US6235063B1 (en) Fiber treating composition
JP2852495B2 (en) Morphologically stable processing of cellulosic fabrics
ABE et al. Improving dyeability of cotton fabric for vat dyes
JPH10158921A (en) Anti-pilling solvent-spun cellulosic fiber, its fiber structure and production
JPH0860543A (en) Method for processing cellulosic woven fabric
Mahall Chemical Damage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees