JP3735614B2 - Transmission electron microscope observation base sample, transmission electron microscope measurement method, and transmission electron microscope apparatus - Google Patents

Transmission electron microscope observation base sample, transmission electron microscope measurement method, and transmission electron microscope apparatus Download PDF

Info

Publication number
JP3735614B2
JP3735614B2 JP2003076357A JP2003076357A JP3735614B2 JP 3735614 B2 JP3735614 B2 JP 3735614B2 JP 2003076357 A JP2003076357 A JP 2003076357A JP 2003076357 A JP2003076357 A JP 2003076357A JP 3735614 B2 JP3735614 B2 JP 3735614B2
Authority
JP
Japan
Prior art keywords
electron microscope
transmission electron
sample
observation
tem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003076357A
Other languages
Japanese (ja)
Other versions
JP2004286486A (en
Inventor
田 善 己 鎌
島 章 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003076357A priority Critical patent/JP3735614B2/en
Publication of JP2004286486A publication Critical patent/JP2004286486A/en
Application granted granted Critical
Publication of JP3735614B2 publication Critical patent/JP3735614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透過電子顕微鏡観測用下地試料、透過電子顕微鏡測定方法、および透過電子顕微鏡装置に関する。
【0002】
【従来の技術】
一般に、透過電子顕微鏡(以下、TEM(Transmission Electron Microscope)とも云う)を用いて測定を行う各種の透過電子顕微鏡測定用試料(以下、TEM測定用試料とも云う) の作成方法およびTEM測定用試料を用いたTEM観察方法が知られている。例えば、TEM測定試料の作成方法としてFIB(Focused Ion Beam)法およびイオンミリング法が広く知られている。
【0003】
FIB法は、ダイシングソーで観察対象となる薄膜や半導体パターンを有する観察対象領域を約0.2mm×1.5mm角の大きさに切り出し、試料を保持するための冶具に固定した後、加速電圧5 keV〜30keVのGaイオンビームを集束させてスパッタリングすることにより、上記観察対象となる薄膜もしくは半導体パターンを100nm程度に薄片化することでTEM試料を作製する方法である。
【0004】
イオンミリング法は、試料とダミー基板を接着剤(のり, Glue)で張り合わせ、断面方向に機械的に数μm厚まで研磨後、加速電圧2 keV〜5keVのArイオンでスパッタリングして観察箇所を数nm〜数10nm程度まで薄片化することでTEM試料を作製する方法である(例えば、非特許文献1参照)。
【0005】
また、リソグラフィー工程とプラズマを用いた反応性イオンエッチング(以下RIE(Reactive Ion Etching)とも云う)を用いてマスク直下を残しマスクと同等の幅をもつ薄片化部を形成することでTEM試料を作製する方法(以下RIE法とも云う)もある(例えば、非特許文献2参照)。
【0006】
上記作成方法を用いて作成された試料を用いてTEM観察が行われている。また、近年、ナノテクノロジーの研究が盛んであり、処理を行いながら同時にTEM観察するという所謂、その場(in-situ) TEM観察が量子物性の研究に利用されている。
【0007】
例えばTEM装置内に走査型トンネル顕微鏡(Scanning Tunneling Microscope)を併設し、原子像と量子化コンダクタンスを同時測定することなどが行われている(例えば、非特許文献3参照)。
【0008】
【非特許文献1】
平坂雅男・朝倉健太郎 共偏、「FIB・イオンミリング技法Q&A」、P.42〜47(2002)
【非特許文献2】
Hyun-Jin Cho, Peter B, Griffin, and James D. Plummer, Mat. Res. Soc. Symp. Proc. Vol.480, 217(1997)
【非特許文献3】
Quantized conductance through individual rows of suspended gold atoms, H. Ohnishi, Y. Kondo, K. Takayanagi, Nature, 395, 780-783 (1998)
【0009】
【発明が解決しようとする課題】
上記方法によりTEM観察用試料を作成しTEM観察することが可能であるが、簡便に高精度なTEM観察を行うことは困難である。例えば、FIB法は高加速のGaイオンビームを用いるので、Gaや観察試料に含まれる元素を含んだアモルファス層を電子線が透過する観察領域に形成されてしまう。そして、この形成されたアモルファス層の厚さは20nm程度もありTEM観察像を不鮮明なものとしてしまう。更にこの形成されたアモルファス層に様々な元素が含まれることからEnergy Dispersive X-ray Spectrometer (EDX)や、Electron Energy Loss Spectroscopy (EELS)を困難なものとする。
【0010】
また、イオンミリング法はTEM観察用試料を約10nm程度まで薄膜化でき、アモルファス層の形成も5nm程度に抑えられることからFIB法よりもコントラストの高い像を得ることが可能である。しかし、試料が曲がり易く、観察対象物の欠陥や応力評価を困難なものとする。
【0011】
一方、RIE法は、一般にリソグラフィーの解像度がレジストの下地、つまり観察対象物の膜種および膜厚によって異なるため、TEM 観察用試料をRIE法で作成する場合に、その都度リソグラフィーのフォーカスとドーズの条件出しを行う必要がある。また、RIE工程においてもRIEで削る対象、つまりTEM 観察試料の種類によってガスなどRIE条件を変える必要があり、TEM 観察試料を作成するための時間を多く必要とする。
【0012】
また、これらTEM試料の作成方法によって作成されたTEM試料を用いて、密着性の悪い微粒子をTEM観察する場合、TEM試料の作成に特に注意をする必要がある。例えば、金ターゲットを用いて窒素プラズマを用いたスパッタ(所謂、金コート)により金微粒子を形成後に上記試料をTEM観察する場合、試料作成途中にダイシングソーを用いると、金微粒子が下地と密着性が悪いため金微粒子が剥がれてしまうことが頻発する。このように、金微粒子の粒径評価など行う際、困難を伴う。
【0013】
また、一度作成されたTEM観察試料は、ある処理後に再びTEM観察を行うということが困難である。FIB法、イオンミリング法で作成された場合、のりの領域をエッチングすることが必要であることが多い。また、RIE法で形成されたTEM観察試料はRIE加工側壁部からの反応が避けがたい場合が多い。
【0014】
更に、TEM観察ではこれまで上記方法によりTEM観察用試料を作成する必要があったため、上記の文献に挙げた金の量子化コンダクタンス測定のような1次元系のTEM観察と異なり、2次元系の反応、特に反応初期過程のTEM観察は事実上不可能であった。
【0015】
本発明は、上記事項を考慮してなされたものであって、簡便に高精度なTEM観察を行うことのできる透過電子顕微鏡観測用下地試料、透過電子顕微鏡測定方法、および透過電子顕微鏡装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明の第1の態様による透過電子顕微鏡観測用下地試料は、幅が約300nm以下の一部領域を備える柱状の突起部を有することを特徴とする。ここで、「約」は、加工精度上の誤差を含む趣旨であり、または、電子線の透過可能幅のゆらぎを含む趣旨である。
【0017】
また、本発明の第2の態様による透過電子顕微鏡観察方法は、柱状の突起部に形成された透過電子顕微鏡の電子線が透過可能となる幅を有する一部領域に透過電子顕微鏡測定対象物を形成した透過電子顕微鏡観察試料を透過電子顕微鏡のホルダーに収まるよう加工し、この加工された透過電子顕微鏡観察試料を透過電子顕微鏡の筐体内に導入し、透過電子顕微鏡観察試料の一部領域の側部方向から電子線を入射させて透過電子顕微鏡像を得ることを特徴とする。
【0018】
また、本発明の第3の態様による透過電子顕微鏡観察方法は、柱状の突起部に形成された透過電子顕微鏡の電子線が透過可能となる幅を有する一部領域を備えた透過電子顕微鏡観測用下地試料を透過電子顕微鏡のホルダーに収まるよう加工し、この加工された透過電子顕微鏡観測用下地試料の一部領域に透過電子顕微鏡測定対象物を形成して透過電子顕微鏡観察試料を作成し、この透過電子顕微鏡観察試料を透過電子顕微鏡の筐体内に導入し、透過電子顕微鏡観察試料の一部領域の側部方向から電子線を入射させて透過電子顕微鏡像を得ることを特徴とする。
【0019】
なお、透過電子顕微鏡像が得られた透過電子顕微鏡観察試料に所定の処理を行い、この所定の処理が行われた透過電子顕微鏡観察試料を透過電子顕微鏡の筐体内に導入し、透過電子顕微鏡観察試料の柱状の突起部の側部方向から電子線を入射させて透過電子顕微鏡像を得るように構成しても良い。
【0020】
なお、一部領域は結晶領域であっても良い。
【0022】
【発明の実施の形態】
以下に本発明の実施形態を、図面を参照して詳細に説明する。
【0023】
(第1実施形態)
本発明の第1実施形態を、図1乃至図9を参照して説明する。
まず、本実施形態による透過電子顕微鏡観測用下地試料の作成を説明する。図1に示すように、結晶方位{100}を面方位とするシリコン単結晶基板2上に、反射防止膜40を形成し、この反射防止膜40上にレジスト50を塗布する。その後、図2に示すように、KrFを光源とする光リソグラフィー工程によりレジスト50をパターニングし、細線パターン50aを形成する。続いて図3に示すように、上記細線パターン50aをマスクとして、プラズマを用いた反応性イオンエッチング(RIE)により反射防止膜40をエッチングし細線パターン40aを形成した後、更にシリコン基板1を深さ200nm程度エッチングし、幅が薄い(140nm)単結晶突起領域を有するシリコン基板2Aを形成する。その後、細線パターン40a、50aを剥離し、希フッ酸処理により自然酸化膜を除去することにより、幅が140nmの清浄なシリコン単結晶突起領域を有する透過電子顕微鏡観測用下地試料1が形成される。この透過電子顕微鏡観測用下地試料1の突起領域上面2aの結晶面方位は{100}で側面2bの結晶面方位は{011}である。
【0024】
次に、図5に示すように、上記単結晶突起領域を覆うように化学気相堆積方法によりHfシリケート膜12を45nm堆積させる。その後、図6に示すように、Hfシリケート膜12が堆積されたシリコン単結晶突起領域を含むように、透過電子顕微鏡観測用下地試料1をダイシングソーで、幅250μmに加工し、TEM観察用試料10を形成する。
【0025】
次に、TEM観察用試料10をTEM用試料ホルダー(図示せず)に載せTEM の筐体内に導入する。そして、図7に示すように、上記シリコン単結晶突起領域の側面の<011>方向からTEM観察用試料10に電子線を照射し、TEM観察用試料10の後方に、電子線を結像させ、図8に示すTEM観察像を得る。
【0026】
TEM観察用試料10が導入されたTEMの筐体内は、真空であるため、図8に示すTEM観察像からわかるように、Hfシリケート膜12の表面の同定が容易であり、Hfシリケート膜12の膜厚を高精度に算出可能である。
【0027】
また、図4に示す透過電子顕微鏡観測用下地試料1の単結晶突起領域を覆うように、膜厚が10nmのHfシリケート膜を堆積後、酸化雰囲気のもと1000℃で10分熱処理を行い、TEM用試料ホルダーに収まるようダイシング加工して、TEM観察試料を作成し、TEM観察を行うと、図9に示すようなTEM観察像が得られる。図9は、シリコン基板上に、ほぼアモルファス状態のSiO2からなる界面層が形成され、この界面層上にHfシリケート膜が形成されていることを示している。
【0028】
この図9からわかるように、Hfシリケート膜の膜厚の算出、シリコン基板2AとHfシリケート膜との界面の界面層増加の情報が得られるばかりでなく、シリコン基板2Aの単結晶突起領域の上部2aに形成されたHfシリケート膜に結晶縞が認められ、Hfシリケート膜の結晶化判断を行うことができる。すなわち、通常の断面TEM観察と同等以上の評価が可能となる。
【0029】
また、図9に示すように、シリコン基板2Aの単結晶突起領域の側面2bに形成されたHfシリケート膜の領域において、Hfシリケート膜の結晶化に起因した縞模様が下地のシリコン単結晶の格子縞とモアレ縞を形成するので、膜の結晶化の判断を敏感に行うことが可能となる。つまり、通常の平面TEM観察と同等以上の評価が可能である。
【0030】
なお、膜厚評価、基板界面層の評価を行う場合には、本実施形態のように、堆積させる膜厚をT、RIEでエッチングしたシリコン基板2Aの深さDとの間にT<Dの関係が必要である。
【0031】
シリコン基板の各面方位は上記面方位に限るものではなく、例えば基板鉛直方向の面方位が{100}で側面の面方位が{010}である場合なども含むものとする。特にこの場合のように鉛直方向と側面の面方位が同一である場合、通常のエピタキシャル膜の結晶性判断と同等の評価、つまり、断面TEM評価と、平面TEM評価を一度に行うことが可能である。通常、断面TEM評価と、平面TEM評価について別々にTEM観察試料を作成していた場合と比較してTEM観察試料作成の手間が半分で済みTEM観察コストが低減される利点がある。
【0032】
以上説明したように、本実施形態によれば、簡便に高精度なTEM観察を行うことが可能な透過電子顕微鏡観測用下地試料、および透過電子顕微鏡観測用下地試料を用いた透過電子顕微鏡測定方法を得ることができる。
【0033】
(第2実施形態)
次に、本発明の第2実施形態を、図10乃至図12を参照して説明する。
まず、本実施形態による透過電子顕微鏡観測用下地試料の作成について説明する。図10に示すように、結晶方位{100}を面方位とするシリコン単結晶基板2上に酸化膜を0.6nm形成し、この酸化膜をプラズマ窒化し酸窒化膜4を形成する。その後、酸窒化膜4上にポリシリコン5を200nm堆積させ、このポリシリコン5上に反射防止膜40を形成し、この反射防止膜40上にレジスト50を塗布する(図10参照)。
【0034】
次に、KrFを光源とする光リソグラフィー工程によりレジスト50をパターニングし、細線パターン50aを形成する。そして、この細線パターン50aをマスクとして、プラズマを用いた反応性イオンエッチングを行い、反射防止膜40、ポリシリコン5、酸窒化膜4、およびシリコン基板2を、シリコン基板2が深さ200nm程度掘り込まれるまでエッチングする(図11参照)。その後、レジスト剥離工程および自然酸化膜除去工程により、幅の薄い(60nm)の単結晶突起領域を有するシリコン基板2Aと、この単結晶突起領域上に積層された酸窒化膜4aおよびポリシリコン5aからなる積層膜とを有する透過電子顕微鏡観測用下地試料1Aが形成される(図11参照)。この透過電子顕微鏡観測用下地試料1Aの側面2bの結晶面方位は{011}である。
【0035】
次に、透過電子顕微鏡観測用下地試料1Aをダイシングソーで、幅250μmに加工する。そして、図12に示すように、加工された透過電子顕微鏡観測用下地試料1A上に窒素プラズマを用いた物理スパッタ方法によって金の微粒子13を形成し、TEM観察用試料10Aを作成する。
【0036】
このTEM観察用試料10AをTEM用試料ホルダーに載せ透過電子顕微鏡筐体内に導入し、TEM観察用試料10Aの側面すなわちシリコン基板2Aのシリコン単結晶突起領域の側面方向(結晶方位<011>の方向)から電子線を照射し、TEM観察用試料10Aの後方に電子線を結像させ、図13に示すようなTEM観察像を得る。図13に示す、薄く黒ずんだ部分は金の微粒子13を示し、シリコン基板領域の白い点は、Si原子で囲まれた領域(所謂、格子像)を示している。そして、結晶領域内のSi原子は規則正しく配列されているため、この白い点の間隔から得られたTEM像の絶対尺度を算出でき、薄く黒ずんだ部分すなわち金の微粒子の粒径を測定することができる。
【0037】
ダイシングの際用いる水により、剥がれてしまうような下地試料と密着性の悪いTEM評価用試料や、水と反応してしまうような試料をTEM評価する場合、本実施形態のように、TEM評価対象物(本実施形態の場合は金の微粒子13)を形成する前にTEM用試料ホルダーに導入できる大きさにTEM観測用下地試料1Aを加工しておき、それからTEM評価対象物を形成すると良い。
【0038】
また、密着性の悪い金の微粒子をTEM評価する際、FIBやイオンミリング等を用いて行う従来のTEM測定方法では、予め試料を加工する前に、試料をある一定の大きさにダイシングソーで加工する必要が有った。このため、従来の方法では、TEM評価前のダイシング加工時に金の微粒子が剥がれたりすることが起こり、TEM評価試料を再作成する必要があった。
【0039】
以上説明したように、本実施形態によれば、簡便に高精度なTEM観察を行うことが可能な透過電子顕微鏡観測用下地試料、および透過電子顕微鏡観測用下地試料を用いた透過電子顕微鏡測定方法を得ることができる。
【0040】
また、一般に、物質Aと複数の物質B1, B2, ….との反応性を調べる際、本実施形態のように、まず物質B1, B2, ….からなる積層膜をシリコン基板2Aの単結晶突起領域上に形成し、RIEを施した上で物質Aと反応させることで、各物質との反応性を一度に調べることが可能となる。例えば、SiとGeからなるSixGe1-x層が複数からなる突起領域にシリサイド化反応する物質Ti、 CoまたはNiを堆積させ熱処理を施しシリサイドを形成させた後、TEM観察することで、各組成SixGe1-x毎のシリサイド化反応の詳細を調べることが可能である。また、この組成は傾斜的に変化させてあっても良い。
【0041】
(第3実施形態)
次に、本発明の第3実施形態を、図14および図15を参照して説明する。
まず、本実施形態による透過電子顕微鏡観測用下地試料は、結晶面方位{100}を基板表面の面方位とするシリコン単結晶から形成された、形状が図4に示す第1実施形態の透過電子顕微鏡観測用下地試料2Aであって、清浄なシリコン単結晶突起領域の幅が60nmのものである。したがって、シリコン単結晶突起領域の上面の結晶面方位は{100}で側面の結晶面方位は{011}である。
【0042】
そして、透過電子顕微鏡観測用下地試料2Aを1000℃酸化雰囲気でアニールすることでシリコン単結晶突起物の表面を酸化し、図14に示すように、表面にシリコン酸化膜14を形成する。そして、シリコン単結晶突起領域を含むようにダイシングソーで幅250μmに加工することにより、TEM用観察試料10Bが得られる。
【0043】
このTEM用観察試料10BをTEM用試料ホルダーに載せて透過電子顕微鏡筐体内に導入し、図15に示すように、上記シリコン単結晶突起領域の側面の{011}方向からTEM用観察試料10Bに電子線を照射し、TEM用観察試料10Bの後方に電子線を結像させることにより、シリコン酸化膜14のTEM観察像を得る。これにより、第1および第2実施形態と同様に、シリコン酸化膜の膜厚評価を精密に行うことができる。
【0044】
なお、膜厚評価を行う場合には、図14に示すように、堆積させる膜厚をT、RIEでエッチングした基板深さDとすれば、T<Dの関係が必要である。
【0045】
以上説明したように、本実施形態によれば、簡便に高精度なTEM観察を行うことが可能な透過電子顕微鏡観測用下地試料、および透過電子顕微鏡観測用下地試料を用いた透過電子顕微鏡測定方法を得ることができる。
【0046】
なお、第3実施形態においては、透過電子顕微鏡観測用下地試料2Aのシリコン単結晶突起領域の表面を酸化して、表面にシリコン酸化膜14を形成した後に、ダイシングソーで幅250μmに加工することにより、TEM用観察試料10Bを得たが、シリコン酸化膜14を形成する前に、ダイシングソーで幅250μmに加工し、その後、シリコン単結晶領域の表面を酸化し、表面にシリコン酸化膜を形成しても良い。
【0047】
(第4実施形態)
次に、本発明の第4実施形態を、図16および図17を参照して説明する。 まず、本実施形態による透過電子顕微鏡観測用下地試料は、結晶面方位{100}を基板表面の面方位とするシリコン単結晶から形成された、形状が図4に示す第1実施形態の透過電子顕微鏡観測用下地試料2Aであって、清浄なシリコン単結晶突起領域の幅が60nmのものである。このシリコン単結晶突起領域の上面の結晶面方位は{100}で側面の結晶面方位は{011}である。
【0048】
この透過電子顕微鏡観測用下地試料2Aの単結晶突起領域に化学気相堆積方法でSiH4(シラン)ガスを用いて600℃でアモルファスシリコン膜を堆積させた後、シランガスを止め、Nガス中で600℃のアニールを行い、図16に示すように、基板単結晶シリコンを種としたアモルファスシリコン膜のエピタキシャル成長を促進させ、図16に示すように、シリコン単結晶突起領域上にエピタキシャル成長膜15を形成する。そして、シリコン単結晶突起領域を含むようにダイシングソーで厚さ250ミクロンに加工することにより、図16に示すようなTEM用観察試料10Cが得られる。
【0049】
このTEM用観察試料10CをTEM用試料ホルダーに載せ透過電子顕微鏡筐体内に導入し、図17に示すように、シリコン単結晶突起領域の側面の<011>方向からTEM用観察試料10Cに電子線を照射し、TEM用観察試料10Cの後方に電子線を結像させTEM観察像を得る。これにより、第1および第2実施形態と同様に、エピタキシャル成長膜15の膜厚評価、結晶性評価および基板との界面層の評価を精密に行うことができる。
【0050】
上記エピタキシャル成長の膜評価は上記のような固相エピタキシャル成長膜に対してだけでなく気相エピタキシャル成長膜などにも適用可能である。
【0051】
膜厚評価、基板界面層の評価を行う場合には、図16に示すように、堆積させる膜厚をT、RIEでエッチングした基板深さDとすれば、T<Dの関係が必要である。
【0052】
以上説明したように、本実施形態によれば、簡便に高精度なTEM観察を行うことが可能な透過電子顕微鏡観測用下地試料、および透過電子顕微鏡観測用下地試料を用いた透過電子顕微鏡測定方法を得ることができる。
【0053】
なお、基板の各面方位は上記面方位に限るものではなく、他に一例として、基板鉛直方向の面方位が(100)で側面の面方位が(010)である場合なども含むものとする。特にこの場合のように鉛直方向と側面の面方位が同一である場合、通常のエピタキシャル膜の結晶性判断と同等の評価、つまり、断面TEM評価と平面TEM評価を一度に行うことが可能である。通常、断面TEM評価と平面TEM評価について別々にTEM試料を作成していたのと比較してTEM試料作成の手間が半分で済みTEM観察コストが低減される利点がある。
【0054】
(第5実施形態)
本発明の第5実施形態を図18乃至図24を参照して説明する。
まず、本実施形態による透過電子顕微鏡観測用下地試料の作成を説明する。図18にしめすように、表面のミラー指数が{100}であるシリコン{100}基板2上にシリコン窒化膜6を堆積する。その後、シリコン窒化膜6上に反射防止膜40を形成し、この反射防止膜40上にレジスト50を塗布する。
【0055】
次に、図19に示すように、KrFを光源とするリソグラフィー工程により、レジスト50をパターニングし、細線パターン50aを形成する。この細線パターン50aをマスクとして、プラズマを用いた反応性イオンエッチング工程により反射防止膜40およびシリコン窒化膜6をパターニングして細線パターン40aおよび窒化膜6aを形成するとともにシリコン基板2を加工し、幅60nm程度の柱状部を有するシリコン基板2Aを形成する(図20参照)。なお、柱状部を形成するためにシリコン基板を掘り込む深さは200nm程度とする。
【0056】
次に、Oプラズマによるレジスト灰化処理および硫酸と過酸化水素の混合液によりレジスト50aおよび反射防止膜40aを剥離した後、1000℃酸化雰囲気においてシリコン基板2Aの表面を酸化し、図21に示すように、柱状部の側面にシリコン酸化膜7を形成する。このとき、柱状部の上面には窒化膜6aが形成されているため、柱状部の上面は酸化されない。
【0057】
その後、酸化の際のマスクとなった窒化膜6aを熱燐酸を用いて剥離し(図22参照)、シリコン基板2Aの柱状部の上面を露出させた後、800℃の減圧下でシランガスを流しシリコン基板2Aの柱状部の露出面を種としてシリコンをエピタキシャル成長させて柱状部の上面にエピタキシャル成長膜16が形成されたTEM観察用試料10Dを形成する(図23参照)。
【0058】
このTEM観察用試料10DをTEM観察用ホルダーに入る大きさにダイシングソーを用いて加工し、図24に示すように、上記柱状部の横方向から電子線を透過させTEM観察を行う。
【0059】
本実施形態によれば、エピタキシャル成長はシリコン基板2Aの柱状部の上面に限られ、柱状シリコン領域の側壁部および角部の領域はエピタキシャル成長を抑制できるため、シリコン基板表面の面指数のエピタキシャル成長の様子を限定してTEM観察可能である。また、酸化膜7上へ乗り上げて横方向にエピタキシャル成長する場合の結晶性についても観察可能となる。上記実施例のシリコン基板の面指数は{100}に限るものではなく、一般の面指数が可能である。また、下地基板はシリコン単結晶に限るものでは無く、SiGeやSiGeCを含めGaAs、GaN、InGaNなど一般の化合物半導体の単結晶および多結晶基板を含むものとすることが可能となる。
【0060】
以上説明したように、本実施形態によれば、簡便に高精度なTEM観察を行うことが可能な透過電子顕微鏡観測用下地試料、および透過電子顕微鏡観測用下地試料を用いた透過電子顕微鏡測定方法を得ることができる。
【0061】
(第6実施形態)
本発明の第6実施形態を図25乃至図31を参照して説明する。
まず、本実施形態による透過電子顕微鏡観測用下地試料の作成を説明する。表面のミラー指数が{100}であるシリコン基板上に反射防止膜形成し、この反射防止膜上にレジストを塗布し、KrFを光源とするリソグラフィー工程およびプラズマを用いた反応性イオンエッチング工程によりシリコン基板を加工し、厚さ60nm程度の柱状部を有するシリコン基板2Aを形成する。なお、シリコン基板を掘り込む深さは200nm程度とする。Oプラズマによるレジスト灰化処理および硫酸と過酸化水素の混合液によりレジストおよび反射防止膜を剥離した後、1000℃酸化雰囲気においてシリコン基板全面を酸化し、シリコン酸化膜7を形成する(図25参照)。
【0062】
続いて、図26に示すようにシリコン酸化膜7上にシリコン窒化膜8を堆積させ、その後、プラズマを用いた反応性イオンエッチングでシリコン窒化膜8をエッチングし、柱状部の側部にのみシリコン窒化膜8aを残置する(図27参照)。そして、シリコン基板2Aの表面を希フッ酸で処理し、柱状部の側部にのみシリコン酸化膜7aおよびシリコン窒化膜8aからなる側壁を形成し、透過電子顕微鏡測定用試料1Cを得る。(図28参照)。
【0063】
その後、この透過電子顕微鏡測定用試料1Cを800℃の減圧下でシランガスを流し、シリコン基板2Aの露出表面を種としてシリコンをエピタキシャル成長させ、エピタキシャル成長膜16を形成し、TEM観察用試料10Eを形成する(図29参照)。
【0064】
TEM観察用試料10EをTEM観察用ホルダーに入る大きさにダイシングソーを用いて加工し(図30参照)、TEM観察用試料10Eの柱状部の横方向から電子線を透過させTEM観察を行う(図31参照)。
【0065】
本実施形態によれば、観察されるエピタキシャル成長は柱状部の上面に限られ、柱状部の側壁部および角部の領域のエピタキシャル成長を抑制できるため、シリコンの表面の面指数のエピタキシャル成長の様子を限定してTEM観察可能である。また、酸化膜7a上へ乗り上げて横方向にエピタキシャル成長する場合の結晶性についても観察可能となる。
【0066】
なお、シリコン基板の面指数は{100}に限るものではなく、一般の面指数が可能である。また、下地基板はシリコン単結晶に限るものでは無く、SiGeやSiGeCを含めGaAs、GaN、InGaNなど一般の化合物半導体の単結晶および多結晶基板を含むものとする。
【0067】
以上説明したように、本実施形態によれば、簡便に高精度なTEM観察を行うことが可能な透過電子顕微鏡観測用下地試料、および透過電子顕微鏡観測用下地試料を用いた透過電子顕微鏡測定方法を得ることができる。
【0068】
(第7実施形態)
本発明の第7実施形態を図32乃至図34を参照して説明する。
まず、本実施形態による透過電子顕微鏡観測用下地試料の作成を説明する。結晶方位が{100}を面方位とするシリコン単結晶基板上にシリコン窒化膜を形成し、リソグラフィー工程を用いて、シリコン窒化膜およびシリコン単結晶基板をエッチングすることにより、図32に示すように上面の面方位が{100}で側面の面方位が{011}である柱状部を有するシリコン基板2Aと、上記柱状部の上面に形成されたシリコン窒化膜6aを有する透過電子顕微鏡観測用下地試料1Dを得る。
【0069】
次に、透過電子顕微鏡観測用下地試料1D上にHfシリケート膜を4nm堆積し、TEM観察用ホルダーに入る大きさにダイサーを用いて加工し、TEM観察用試料10Fを得る(図10F参照)。このTEM観察用試料10Fの柱状部の横方向から電子線を透過させTEM観察を行う。
【0070】
一般に、シリコン基板に直接Hfシリケート膜を堆積する場合は、シリコン基板とHfシリケート膜の界面に界面層が形成されてしまうが、本実施形態のようにシリコン窒化膜のように耐酸化性膜上へ堆積することでHfシリケート膜本来の耐熱性を評価できる。
【0071】
以上説明したように、本実施形態によれば、簡便に高精度なTEM観察を行うことが可能な透過電子顕微鏡観測用下地試料、および透過電子顕微鏡観測用下地試料を用いた透過電子顕微鏡測定方法を得ることができる。
【0072】
(第8実施形態)
本発明の第8実施形態を図35乃至図36を参照して説明する。
まず、本実施形態による透過電子顕微鏡観測用下地試料の作成を説明する。結晶方位が{100}を面方位とするシリコン単結晶基板上にシリコン窒化膜を4nm 体積し、リソグラフィー工程を用いて、シリコン窒化膜をパターニングすることにより、シリコン基板2上にパターニングされたシリコン窒化膜6aが形成された透過電子顕微鏡観測用下地試料1Eを得る(図35参照)。
【0073】
この透過電子顕微鏡観測用下地試料1E上にHfシリケート膜12を4nm堆積し、その後、TEM観察用ホルダーに入る大きさにダイサーを用いて加工し、TEM観察試料10Gを形成する(図35参照)。このTEM観察試料10Gの柱状部の横方向から電子線を透過させTEM観察を行う。
【0074】
一般に、シリコン窒化膜とシリコンを加工する装置は通常異なることが多いが、本実施形態のように透過電子顕微鏡観測用下地試料を形成すれば、加工の手間を省くことができる。
【0075】
本実施形態は、膜厚評価よりも膜の耐熱性などの結晶性評価を簡便に行いたい場合に用いることが出来る。
【0076】
以上説明したように、本実施形態によれば、簡便に高精度なTEM観察を行うことが可能な透過電子顕微鏡観測用下地試料、および透過電子顕微鏡観測用下地試料を用いた透過電子顕微鏡測定方法を得ることができる。
【0077】
(第9実施形態)
次に、本発明の第9実施形態を、図37および図38を参照して説明する。 まず、シリコン基板をリソグラフィー工程およびRIE法により加工し、最大幅100nm, 高さ200nmの三角柱状部を有するシリコン基板2Aからなる透過電子顕微鏡観測用下地試料1Fを形成する(図37参照)。
【0078】
その後、シリコン基板2Aの表面希フッ酸処理により、三角柱状上のシリコン領域を清浄にした後、Hfシリケート膜12をCVD法により4nm堆積し、TEM観察用試料10Hを得る(図38参照)。このTEM観察用試料10Hを、ダイシングソーを用いてTEMホルダーに収まる大きさに加工し、TEM観察を行う(図38参照)。その後、TEM観察用試料10Hを酸化雰囲気で1000℃、10分熱処理した後、再びTEM観察する。
【0079】
一般に、Hfシリケート膜の堆積後にRIE法により基板まで掘り込んでTEM観察試料を作成した場合、Hfシリケート膜は楔酸化されてしまうことが知られている。
【0080】
本実施形態はシリコン基板をRIE工程後、全面にHfシリケート膜12を堆積しているため、Hfシリケート膜12が楔酸化されることなくHfシリケート膜12を熱処理することが可能である。更に同試料を複数回熱処理とTEM観察を繰り返すことが出来るため、TEM観察試料作成の手間を省くことが可能となる。 また、同一試料をTEM観察可能なためサンプル間のバラツキも無く、低コストで高精度のTEM評価を行うことが可能である。
【0081】
本実施形態は熱処理に限るものではなく、希フッ酸処理などウェット処理に対する膜の耐性を評価する場合などにも用いることが可能である。また、これら異なる処理を適宜組み合わせた評価も可能である。
【0082】
以上説明したように、本実施形態によれば、簡便に高精度なTEM観察を行うことが可能な透過電子顕微鏡観測用下地試料、および透過電子顕微鏡観測用下地試料を用いた透過電子顕微鏡測定方法を得ることができる。
【0083】
なお、上記第1乃至第9実施形態における透過電子顕微鏡観測用下地試料は、図37に示す形状のものに限られず、図39に示すように、円柱形状の柱状部を備えている透過電子顕微鏡観測用下地試料1Gであっても良い。この場合も、透過電子顕微鏡観測用下地試料1Gの全面に、Hfシリケート膜12を堆積することにより、図40に示すようなTEM観察試料10Iを得ることができる。また、RIEは条件によって側壁が角度を持った形状(テーパー)になる場合があり、このことを利用して図41に示すような形状の透過電子顕微鏡観測用下地試料1Hを作成可能である。この透過電子顕微鏡観測用下地試料1Hの全面に、Hfシリケート膜12を堆積することにより、図42に示すようなTEM観察試料10Jを得ることができる。これら透過電子顕微鏡観測用下地試料を用いれば、図37、39、41に示すように極端に薄い領域が存在するが、TEM像は電子線透過厚さが薄い程、高分解能像が得られるため、薄い領域において高分解能なTEM観察像を得られるという利点がある。
【0084】
なお、上記第1乃至第9実施形態における、突起領域を有する透過電子顕微鏡観察用下地試料は、反応性イオンエッチングを用いて形成したが、反応性イオンエッチングに限るものではない。例えば、図43に示すように、シリコン基板2上にマスク60を形成し、フッ酸、硝酸の混合液によりウェットエッチングすることにより、図44に示す形状のシリコン基板2Eからなる透過電子顕微鏡観察用下地試料下地を作成できる。また、図43に示すように、シリコン基板2上にマスク60を形成し、エチレンジアミンとピロカテコールの水溶液を用いることにより、図45に示すように異方的にエッチングし、図45に示す形状のシリコン基板からなる透過電子顕微鏡観察用下地試料を作成できる。また、図46に示すように、シリコン基板2上の所定の領域にのみマスク62を形成し、マスク62で覆われていない領域にエピタキシャル成長を利用して突起部20形成することもできる。
【0085】
また、上記実施形態における下地基板作成時にエッチングまたは酸化を繰り返し行うことも有効である。例えば、図47に示すようなシリコン突起領域を有するシリコン基板2AをRIE法で形成後、図48に示すように、シリコン基板2Aの全面を酸化して酸化膜22を形成し、更に希フッ酸処理を行うことで図49に示すような形状の突起領域を有するシリコン基板2Gからなる透過電子顕微鏡観察用下地試料を作成できる。この突起領域の電子線が透過する幅はリソグラフィー工程で製作することのできる限界幅以下にすることが可能である。このため、この透過電子顕微鏡観察用下地試料上に観察対象を形成し、TEM観察することで、より高分解能のTEM観察像を得ることができる。
【0086】
ところで、上記第1乃至第9実施形態においては、TEM観察用試料は、図50に示すように、複数の突起部を有すRシリコン基板2A上に、観察膜(図示せず)を形成し、その後、透過電子顕微鏡のTEMホルダーに収まるような大きさにダイシングソー70によって加工することによって形成される。現在、最も薄いダイシングソー70の厚さLdsは、5μmである。したがって、突起部と突起部との間隔Lsは、ダイシングソー70の厚さLdsよりも大きいことが必要となる。また、突起部の幅Llは電子線が透過する程度に薄くする必要があり、Ll≦300nmとなる。すなわち、突起部の幅Llは、約300nm以下である。ここで、「約」は、加工精度上の誤差を含む趣旨であり、または、電子線の透過可能幅のゆらぎを含む趣旨である。
【0087】
TEMホルダーに収まるように加工するダイシング以外の方法として追加でRIEやwetエッチングで加工する方法や、シリコン単結晶基板が{111}面で壁開され易い特性を活かして単に壁開によって加工する方法、特に適当な曲率を持ったガイドラインを引いて微小幅に壁開する方法なども有効である。
【0088】
(第10実施形態)
次に、本発明の第10実施形態による透過電子顕微鏡を、図51を参照して説明する。図51は、本実施形態による透過電子顕微鏡装置100の構成を示すブロック図である。
【0089】
この実施形態による透過電子顕微鏡装置は、透過電子顕微鏡110と、エピタキシャル膜成膜装置140と、ロードロック150とを備えている。透過電子顕微鏡110は、電子銃112と、集束レンズ114と、対物レンズ116と、制限視野絞り118と、中間レンズ120と、投影レンズ122と、蛍光板124とを備えており、これらの構成要素は、筐体内に設けられている。
【0090】
エピタキシャル膜成膜装置140は、超高真空状態(1×10−6Pa程度)において透過電子顕微鏡観察用下地試料(図示せず)に、エピタキシャル膜を堆積する装置であって、ロードロック150を介して透過電子顕微鏡110に接続されている。エピタキシャル膜成膜装置140内に、第5実施形態または第6実施形態における、突起部を有する透過電子顕微鏡観察用下地試料を導入する。800℃の超高真空下で還元性ガスである水素ガスをエピタキシャル膜成膜装置140内に導入し、透過電子顕微鏡観察用下地試料の表面に形成されている自然酸化膜を除去する。続いて、シラン(SiH4)ガスを導入し、剥き出しになったシリコン領域を種としてシリコンの気相エピタキシャル成長を行い、エピタキシャル膜が形成されたTEM観察試料10を作成する。
【0091】
次に、この作成されたTEM観察試料10は、ロードロック150に搬送される。ロードロック150は、透過電子顕微鏡110や、エピタキシャル膜成膜装置140に比べて、減圧状態(1×10−4Pa程度)にあり、透過電子顕微鏡110およびエピタキシャル膜成膜装置140との間の境界にそれぞれ弁(図示せず)が設けられた構成となっている。また、ロードロック140には、TEM観察試料10をエピタキシャル膜成膜装置140から搬入する際や透過電子顕微鏡110に搬出する際に、ロードロック140内の圧力を超高真空状態にする超高真空ポンプ(図示せず)が設けられた構成となっている。
【0092】
ロードロック150から透過電子顕微鏡110に搬出されたTEM観察試料10は、集束レンズ114と対物レンズ116の間に配置される。そして、電子銃112から放出された電子線は集束レンズ114によって集束され、TEM観察試料10を透過する。TEM観察試料10を透過した電子線は、対物レンズ116、限視野絞り118、中間レンズ120、および投影レンズ122を介して蛍光板124に入射し、TEM観察試料10の電子顕微鏡像が蛍光板124に形成され、TEM観察が行われる。
【0093】
一般に、エピタキシャル膜は、その結晶性が重要であり、エピタキシャル膜中の欠陥評価をTEMで行うことが多い。従来は、エピタキシャル膜は、一旦室温に戻されTEM内に配置されるが、800℃という高温のエピタキシャル温度から室温に温度を下げる際に、エピタキシャル膜には熱応力が印加される。エピタキシャル膜に欠陥の存在が認められる場合、この欠陥がエピタキシャル膜の成長時によるものなのか降温時の熱応力によるものなのか通常判断し難い。
【0094】
しかし、本実施形態の透過電子顕微鏡装置100を用いれば、エピタキシャル膜の成長時の“その場(in-situ)”観察が可能であるため、良質なエピタキシャル膜形成のための温度やガス流量などの条件を決めることが可能となる。
【0095】
なお、本実施形態においては、透過電子顕微鏡110およびエピタキシャル膜成膜装置140は、ロードロック150を介して接続されていたが、同一の真空炉内にあるように構成しても良い。
【0096】
上記第10実施形態においては、エピタキシャル膜成膜装置140が透過電子顕微鏡と併設されていたが、超高真空化学気相堆積装置等が併設されていても良い。結晶性、膜厚、粒子の粒径などのin-situ TEM観察を行うことができる。
【0097】
なお、TEM観察は、実像の撮影だけでなく、EELS、EDX、電子線回折など一般にTEM観察に付随する様々な観察手法に適用可能であることは言うまでもない。
【0098】
以上説明したように、本発明の第1乃至第9実施形態のいずれかによる透過電子顕微鏡観察用下地試料を用いれば、TEM観察を行うには、TEM観察対象物を透過電子顕微鏡観察用下地試料に形成し、TEM観察試料とし、TEM観察用ホルダーに入る大きさに上記TEM観察試料を加工するだけで済み、TEM観察までの時間を短縮できる。
【0099】
また、本発明の第10実施形態によれば、成膜直後にTEM観察を行うことができ、TEM観察像を得るまでの時間を更に短縮することができる。なお、下地のクリーン度がTEM観察対象物を形成するための装置のクリーン度のスペックを満たさない場合は、第1乃至第9実施形態によるTEM観察試料を作成し、TEM観察を行う必要がある。一般に、クリーンルーム内の製品を流品する装置は、その装置に入れるウエハに対するクリーン度の要求が高く、この様なクリーンルーム内の成膜装置の膜質、膜厚をTEM観察する場合は、第1乃至第9実施形態を用いると良い。
【0100】
また、透過電子顕微鏡観察用下地試料を一般のリソグラフィー装置およびRIEで形成することで、第1乃至第9実施形態の透過電子顕微鏡観察用下地試料を大量に形成可能である。例えば、透過電子顕微鏡観察用下地試料を個々のチップに壁開後、各々のチップ上へ成膜可能な場合に、各下地試料上に別々にTEM観察対象物を形成すれば、TEM観察試料一つあたりの試料作成単価を下げられるメリットがある。
【0101】
本発明の一実施形態によれば、原子の表面拡散や重合など反応の初期状態をTEM観察することが可能で、これまで難しかった膜成長などの様子をその場観察することができる。
【0102】
また、本発明の一実施形態によれば、下地領域の結晶の格子間隔からTEM観察像の長さの校正を容易に行うことが可能で、TEM観察対象の膜厚や粒径などを精度良く同定可能である。
【0103】
なお、従来は通常、TEM観察試料の表面には、TEM観察試料の強度の補強などの理由で、のり(Glue)や金属などを付着させるが、これらはTEM観察対象の膜厚を不明確なものとする場合があり、また、観察対象物と反応してしまう場合もある。例えば、シリコン酸化膜の膜厚を評価する場合、表面に形成されたのりの層との境界が不明瞭であり、正確な膜厚を計測するのを困難なものとする。一般にこの表面に形成した層を、TEM観察時前に取り除くことは困難である。
【0104】
これに対して、本発明の各実施形態によれば、TEM観察試料の強度の補強のために、のり(Glue)や金属などを付着させる必要がなく、正確な膜厚を計測することができる。
【0105】
また、本発明の各実施形態によれば、TEM観察時のTEM観察試料の表面は、透過電子顕微鏡の筐体内が真空であるため、同定することが容易であり、TEM観察を簡便に精度良く遂行可能である。
【0106】
また、下地は、下地作成時に下地表面に形成されたTEM観察阻害領域を適当な処理を行うことで取り除くことが比較的容易で、精度の高いTEM観察を行うことができる。例えば、シリコン基板を酸素雰囲気の下、RIEで削り50nm程度の厚さを持つ柱上の領域を形成しレジスト剥離を行った場合、削った側壁にはRIEの削り屑が付着し、また、レジスト直下のシリコン基板表面には自然酸化膜が形成されてしまい、このままではTEM観察の擾乱要因となってしまうが、これら酸化膜領域はTEM観察対象物形成前に下地の特性を損なうことなく下地のシリコン基板と選択性良く希フッ酸処理で取り除くことが容易に可能である。よって本発明の各実施形態による下地を用いればTEM観察対象物以外の観察擾乱要因を極力取り除いた上でTEM観察を行えるため高精度なTEM像を得ることが可能である。また、下地の幅をリソグラフィーによって規定できるため、TEM観察領域で電子線が透過する厚さを揃えることが容易で、厚さに起因した不確定要因を極力避けることが可能となる。このため、高精度なTEM観察を行うことができる。
【0107】
また、上記下地に酸化およびエッチングを施すことでリソグラフィー限界以下の突起領域を比較的容易に形成可能であり、高分解能TEM像を容易に得ることが可能である。
【0108】
リソグラフィー工程に用いる光源は上記のようなKrFに限るものではなく、ArF、 F2を始め、電子線、X線など光源一般を含むものとする。また、パターニングされたステンシルマスクをエッチング対象物に密着または非密着させて下地試料をエッチングして作成しても良い。
【0109】
【発明の効果】
以上述べたように、本発明によれば、簡便に高精度なTEM観察を行うことのできる。
【図面の簡単な説明】
【図1】本発明の第1実施形態による透過電子顕微鏡観察用下地試料の製造工程を示す工程断面図。
【図2】本発明の第1実施形態による透過電子顕微鏡観察用下地試料の製造工程を示す工程断面図。
【図3】本発明の第1実施形態による透過電子顕微鏡観察用下地試料の製造工程を示す工程断面図。
【図4】本発明の第1実施形態による透過電子顕微鏡観察用下地試料の構成を示す断面図。
【図5】本発明の第1実施形態によるTEM観察試料の製造工程を示す工程断面図。
【図6】本発明の第1実施形態によるTEM観察試料の製造工程を示す平面図。
【図7】本発明の第1実施形態による透過電子顕微鏡観察方法を説明する斜視図。
【図8】本発明の第1実施形態による透過電子顕微鏡観察方法によって観察されたTEM観察像を示す写真。
【図9】本発明の第1実施形態による透過電子顕微鏡観察方法によって観察されたTEM観察像を示す写真。
【図10】本発明の第2実施形態による透過電子顕微鏡観察用下地試料の製造工程を示す工程断面図。
【図11】本発明の第2実施形態による透過電子顕微鏡観察用下地試料の製造工程を示す工程断面図。
【図12】本発明の第2実施形態による透過電子顕微鏡観察方法を示す断面図。
【図13】本発明の第2実施形態による透過電子顕微鏡観察方法によって観察されたTEM観察像を示す写真。
【図14】第3実施形態によるTEM観察試料の構成を示す断面図。
【図15】第3実施形態による透過電子顕微鏡観察方法を示す斜視図。
【図16】第4実施形態によるTEM観察試料の構成を示す断面図。
【図17】第4実施形態による透過電子顕微鏡観察方法を示す斜視図。
【図18】第5実施形態による透過電子顕微鏡観察用下地試料の製造工程を示す工程断面図。
【図19】第5実施形態による透過電子顕微鏡観察用下地試料の製造工程を示す工程断面図。
【図20】第5実施形態による透過電子顕微鏡観察用下地試料の製造工程を示す工程断面図。
【図21】第5実施形態による透過電子顕微鏡観察用下地試料の構成を示す断面図。
【図22】第5実施形態によるTEM観察試料の製造工程を示す断面図。
【図23】第5実施形態によるTEM観察試料の構成を示す断面図。
【図24】第5実施形態による透過電子顕微鏡観察方法を説明する斜視図。
【図25】第6実施形態による透過電子顕微鏡観察用下地試料の製造工程を示す工程断面図。
【図26】第6実施形態による透過電子顕微鏡観察用下地試料の製造工程を示す工程断面図。
【図27】第6実施形態による透過電子顕微鏡観察用下地試料の製造工程を示す工程断面図。
【図28】第6実施形態による透過電子顕微鏡観察用下地試料の構成を示す断面図。
【図29】第6実施形態によるTEM観察試料の構成を示す断面図。
【図30】第6実施形態によるTEM観察試料の製造工程を示す平面図。
【図31】第6実施形態による透過電子顕微鏡観察方法を説明する斜視図。
【図32】第7実施形態による透過電子顕微鏡観察用下地試料の構成を示す断面図。
【図33】第7実施形態によるTEM観察試料の構成を示す断面図。
【図34】第7実施形態による透過電子顕微鏡観察方法を説明する斜視図。
【図35】第8実施形態によるTEM観察試料の構成を示す断面図。
【図36】第8実施形態による透過電子顕微鏡観察方法を説明する斜視図。
【図37】第9実施形態による透過電子顕微鏡観察用下地試料の構成を示す断面図。
【図38】第9実施形態による透過電子顕微鏡観察方法を説明する斜視図。
【図39】第9実施形態の一変形例による透過電子顕微鏡観察用下地試料の構成を示す断面図。
【図40】第9実施形態の一変形例による透過電子顕微鏡観察方法を説明する斜視図。
【図41】第9実施形態の他の変形例による透過電子顕微鏡観察用下地試料の構成を示す断面図。
【図42】第9実施形態の他の変形例による透過電子顕微鏡観察方法を説明する斜視図。
【図43】本発明の一実施形態による透過電子顕微鏡観察用下地試料の製造工程を説明する断面図。
【図44】本発明の一実施形態による透過電子顕微鏡観察用下地試料の製造工程を説明する断面図。
【図45】本発明の一実施形態による透過電子顕微鏡観察用下地試料の製造工程を説明する断面図。
【図46】本発明の一実施形態による透過電子顕微鏡観察用下地試料の製造工程を説明する断面図。
【図47】本発明の一実施形態による透過電子顕微鏡観察用下地試料の製造工程を説明する断面図。
【図48】本発明の一実施形態による透過電子顕微鏡観察用下地試料の製造工程を説明する断面図。
【図49】本発明の一実施形態による透過電子顕微鏡観察用下地試料の構成を示す断面図。
【図50】本発明の一実施形態による透過電子顕微鏡観察用下地試料の突起部の幅と、突起部間の間隔の限界を説明する図。
【図51】本発明の第10実施形態による透過電子顕微鏡装置の構成を示しブロック図。
【符号の説明】
1 透過電子顕微鏡観察用下地試料
2 シリコン基板
4 シリコン酸窒化膜
5 ポリシリコン膜
6 シリコン窒化膜
7 シリコン酸化膜
8 シリコン窒化膜
10 TEM観察試料
12 Hfシリケート膜
13 金の微粒子
14 シリコン酸化膜
15 エピタキシャル成長膜
16 エピタキシャル成長膜
40 反射防止膜
50 レジスト
60 マスク
70 ダイシングソー
100 透過電子顕微鏡装置
110 透過電子顕微鏡
112 電子銃
114 集束レンズ
116 対物レンズ
118 制限視野絞り
120 中間レンズ
122 投影レンズ
124 蛍光板
140 エピタキシャル膜成膜装置
150 ロードロック
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transmission electron microscope observation base sample, a transmission electron microscope measurement method, and a transmission electron microscope apparatus.
[0002]
[Prior art]
In general, various types of transmission electron microscope measurement samples (hereinafter also referred to as TEM measurement samples) for measurement using a transmission electron microscope (hereinafter also referred to as TEM (Transmission Electron Microscope)) and TEM measurement samples are prepared. The TEM observation method used is known. For example, a FIB (Focused Ion Beam) method and an ion milling method are widely known as methods for preparing a TEM measurement sample.
[0003]
In the FIB method, an observation target region having a thin film or a semiconductor pattern to be observed with a dicing saw is cut into a size of about 0.2 mm × 1.5 mm square, fixed to a jig for holding a sample, and then an acceleration voltage of 5 keV. This is a method for producing a TEM sample by thinning the thin film or semiconductor pattern to be observed to about 100 nm by focusing and sputtering a Ga ion beam of ˜30 keV.
[0004]
In the ion milling method, a sample and a dummy substrate are bonded to each other with an adhesive (glue), mechanically polished to a thickness of several μm in the cross-sectional direction, and then sputtered with Ar ions having an acceleration voltage of 2 keV to 5 keV to obtain a number of observation points. This is a method for producing a TEM sample by slicing from nm to several tens of nm (see, for example, Non-Patent Document 1).
[0005]
Also, a TEM sample is prepared by forming a thinned portion with the same width as the mask, leaving the area directly under the mask using lithography and reactive ion etching (hereinafter also referred to as RIE (Reactive Ion Etching)) using plasma. There is also a method (hereinafter also referred to as RIE method) (see, for example, Non-Patent Document 2).
[0006]
TEM observation is performed using the sample created using the above production method. In recent years, research on nanotechnology has been actively conducted, and so-called in-situ TEM observation, in which TEM observation is performed simultaneously with processing, is used for research on quantum properties.
[0007]
For example, a scanning tunneling microscope (Scanning Tunneling Microscope) is provided in the TEM device, and atomic images and quantized conductance are measured simultaneously (for example, see Non-Patent Document 3).
[0008]
[Non-Patent Document 1]
Masao Hirasaka, Kentaro Asakura, “FIB / Ion Milling Technique Q & A”, P.42-47 (2002)
[Non-Patent Document 2]
Hyun-Jin Cho, Peter B, Griffin, and James D. Plummer, Mat. Res. Soc. Symp. Proc. Vol. 480, 217 (1997)
[Non-Patent Document 3]
Quantized conductance through individual rows of suspended gold atoms, H. Ohnishi, Y. Kondo, K. Takayanagi, Nature, 395, 780-783 (1998)
[0009]
[Problems to be solved by the invention]
Although it is possible to prepare a sample for TEM observation and perform TEM observation by the above method, it is difficult to simply perform high-precision TEM observation. For example, since the FIB method uses a highly accelerated Ga ion beam, an amorphous layer containing Ga or an element contained in the observation sample is formed in the observation region where the electron beam is transmitted. The formed amorphous layer has a thickness of about 20 nm, which makes the TEM observation image unclear. Furthermore, since various elements are included in the formed amorphous layer, Energy Dispersive X-ray Spectrometer (EDX) and Electron Energy Loss Spectroscopy (EELS) are made difficult.
[0010]
In addition, the ion milling method can reduce the thickness of a TEM observation sample to about 10 nm, and the formation of an amorphous layer can be suppressed to about 5 nm. Therefore, an image with higher contrast than the FIB method can be obtained. However, the sample is easily bent, and it is difficult to evaluate defects and stress of the observation object.
[0011]
On the other hand, in the RIE method, since the resolution of lithography generally differs depending on the resist substrate, that is, the film type and film thickness of the object to be observed, each time a TEM observation sample is prepared by the RIE method, the focus and dose of the lithography are changed. It is necessary to make a condition. Also, in the RIE process, it is necessary to change the RIE conditions such as gas depending on the object to be shaved by RIE, that is, the type of TEM observation sample, and it takes a lot of time to prepare the TEM observation sample.
[0012]
In addition, when TEM observation is performed on fine particles having poor adhesion using a TEM sample prepared by these TEM sample preparation methods, it is necessary to pay particular attention to the preparation of the TEM sample. For example, when the above sample is observed by TEM after forming gold fine particles by sputtering (so-called gold coating) using a nitrogen target using a gold target, if a dicing saw is used during the preparation of the sample, the gold fine particles adhere to the substrate. The gold fine particles are often peeled off due to the poor quality. As described above, it is difficult to evaluate the particle size of the gold fine particles.
[0013]
Moreover, it is difficult for the once prepared TEM observation sample to perform TEM observation again after a certain process. In the case of being produced by the FIB method or ion milling method, it is often necessary to etch the paste region. Further, in many cases, the TEM observation sample formed by the RIE method cannot avoid the reaction from the side wall of the RIE process.
[0014]
Furthermore, since the TEM observation has so far required to prepare a sample for TEM observation by the above method, unlike the one-dimensional TEM observation such as the gold quantized conductance measurement mentioned in the above-mentioned literature, Reaction, especially TEM observation of the initial reaction process was virtually impossible.
[0015]
The present invention has been made in consideration of the above-described matters, and provides a transmission electron microscope observation ground sample, a transmission electron microscope measurement method, and a transmission electron microscope apparatus that can easily and accurately perform TEM observation. The purpose is to do.
[0016]
[Means for Solving the Problems]
The ground sample for transmission electron microscope observation according to the first aspect of the present invention is characterized by having a columnar protrusion having a partial region with a width of about 300 nm or less. Here, “about” means that an error in processing accuracy is included, or a fluctuation in the transmissive width of the electron beam is included.
[0017]
In the transmission electron microscope observation method according to the second aspect of the present invention, the transmission electron microscope measurement object is applied to a partial region having a width that allows transmission of the electron beam of the transmission electron microscope formed on the columnar protrusion. The formed transmission electron microscope observation sample is processed so as to fit in the holder of the transmission electron microscope, and the processed transmission electron microscope observation sample is introduced into the housing of the transmission electron microscope, and a part of the transmission electron microscope observation sample side A transmission electron microscope image is obtained by making an electron beam incident from a partial direction.
[0018]
Further, the transmission electron microscope observation method according to the third aspect of the present invention is for transmission electron microscope observation having a partial region having a width that allows transmission of an electron beam of a transmission electron microscope formed on a columnar protrusion. The base sample is processed so that it fits in the holder of the transmission electron microscope, and a transmission electron microscope observation sample is formed by forming a transmission electron microscope measurement object in a part of the processed base sample for transmission electron microscope observation. A transmission electron microscope observation sample is introduced into a housing of a transmission electron microscope, and an electron beam is incident from a side direction of a partial region of the transmission electron microscope observation sample to obtain a transmission electron microscope image.
[0019]
The transmission electron microscope observation sample from which the transmission electron microscope image was obtained was subjected to a predetermined treatment, and the transmission electron microscope observation sample subjected to the predetermined treatment was introduced into the transmission electron microscope housing, and the transmission electron microscope observation was performed. You may comprise so that an electron beam may be incident from the side part direction of the columnar projection part of a sample, and a transmission electron microscope image may be obtained.
[0020]
Note that the partial region may be a crystal region.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0023]
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS.
First, the creation of a base sample for transmission electron microscope observation according to the present embodiment will be described. As shown in FIG. 1, an antireflection film 40 is formed on a silicon single crystal substrate 2 having a crystal orientation {100} as a plane orientation, and a resist 50 is applied on the antireflection film 40. Thereafter, as shown in FIG. 2, the resist 50 is patterned by an optical lithography process using KrF as a light source to form a fine line pattern 50a. Subsequently, as shown in FIG. 3, the antireflection film 40 is etched by reactive ion etching (RIE) using plasma with the fine line pattern 50a as a mask to form the fine line pattern 40a, and then the silicon substrate 1 is further deepened. The silicon substrate 2A having a single crystal projection region with a thin width (140 nm) is formed by etching about 200 nm. Thereafter, the fine line patterns 40a and 50a are peeled off, and the natural oxide film is removed by dilute hydrofluoric acid treatment, thereby forming the transmission electron microscope observation base sample 1 having a clean silicon single crystal projection region having a width of 140 nm. . The crystal plane orientation of the projection region upper surface 2a of the transmission electron microscope observation base sample 1 is {100}, and the crystal plane orientation of the side surface 2b is {011}.
[0024]
Next, as shown in FIG. 5, a 45 nm Hf silicate film 12 is deposited by a chemical vapor deposition method so as to cover the single crystal projection region. Thereafter, as shown in FIG. 6, the transmission electron microscope observation base sample 1 is processed with a dicing saw to a width of 250 μm so as to include the silicon single crystal protrusion region on which the Hf silicate film 12 is deposited, and the TEM observation sample is obtained. 10 is formed.
[0025]
Next, the TEM observation sample 10 is placed on a TEM sample holder (not shown) and introduced into the TEM casing. Then, as shown in FIG. 7, the electron beam is irradiated onto the TEM observation sample 10 from the <011> direction of the side surface of the silicon single crystal projection region, and an electron beam is imaged behind the TEM observation sample 10. A TEM observation image shown in FIG. 8 is obtained.
[0026]
Since the inside of the TEM housing into which the TEM observation sample 10 is introduced is a vacuum, as can be seen from the TEM observation image shown in FIG. 8, the surface of the Hf silicate film 12 can be easily identified. The film thickness can be calculated with high accuracy.
[0027]
Further, after depositing a 10 nm thick Hf silicate film so as to cover the single crystal protrusion region of the transmission electron microscope observation base sample 1 shown in FIG. 4, heat treatment was performed at 1000 ° C. for 10 minutes in an oxidizing atmosphere, When a TEM observation sample is prepared by performing dicing processing so as to fit in the TEM sample holder, and TEM observation is performed, a TEM observation image as shown in FIG. 9 is obtained. FIG. 9 shows that an interface layer made of substantially amorphous SiO2 is formed on a silicon substrate, and an Hf silicate film is formed on the interface layer.
[0028]
As can be seen from FIG. 9, not only the calculation of the thickness of the Hf silicate film and the information on the increase in the interface layer at the interface between the silicon substrate 2A and the Hf silicate film can be obtained, but also the upper part of the single crystal projection region of the silicon substrate 2A. Crystal fringes are observed in the Hf silicate film formed in 2a, and the crystallization of the Hf silicate film can be determined. That is, it is possible to evaluate at least as much as normal cross-sectional TEM observation.
[0029]
Further, as shown in FIG. 9, in the region of the Hf silicate film formed on the side surface 2b of the single crystal projection region of the silicon substrate 2A, the stripe pattern resulting from the crystallization of the Hf silicate film is the lattice stripe of the underlying silicon single crystal. Therefore, it is possible to make a sensitive determination of the crystallization of the film. That is, it is possible to evaluate at least as much as normal planar TEM observation.
[0030]
In the case of evaluating the film thickness and the substrate interface layer, as in this embodiment, the film thickness to be deposited is T, and T <D between the depth D of the silicon substrate 2A etched by RIE. A relationship is necessary.
[0031]
Each surface orientation of the silicon substrate is not limited to the above surface orientation, and includes, for example, the case where the surface orientation in the vertical direction of the substrate is {100} and the surface orientation of the side surface is {010}. In particular, when the vertical and side surface orientations are the same as in this case, it is possible to perform evaluation equivalent to the normal crystallinity evaluation of the epitaxial film, that is, cross-sectional TEM evaluation and planar TEM evaluation at once. is there. Usually, compared with the case where the TEM observation sample is separately prepared for the cross-sectional TEM evaluation and the planar TEM evaluation, the labor for preparing the TEM observation sample is reduced by half, and there is an advantage that the TEM observation cost is reduced.
[0032]
As described above, according to the present embodiment, a transmission electron microscope observation ground sample capable of easily performing highly accurate TEM observation, and a transmission electron microscope measurement method using the transmission electron microscope observation ground sample Can be obtained.
[0033]
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS.
First, the creation of a transmission electron microscope observation base sample according to the present embodiment will be described. As shown in FIG. 10, an oxide film is formed to a thickness of 0.6 nm on the silicon single crystal substrate 2 having the crystal orientation {100} as the plane orientation, and this oxide film is plasma-nitrided to form an oxynitride film 4. Thereafter, polysilicon 5 is deposited to a thickness of 200 nm on the oxynitride film 4, an antireflection film 40 is formed on the polysilicon 5, and a resist 50 is applied on the antireflection film 40 (see FIG. 10).
[0034]
Next, the resist 50 is patterned by an optical lithography process using KrF as a light source to form a fine line pattern 50a. Then, reactive ion etching using plasma is performed by using the fine line pattern 50a as a mask, and the antireflection film 40, the polysilicon 5, the oxynitride film 4, and the silicon substrate 2 are dug to a depth of about 200 nm. Etching is performed until it is filled (see FIG. 11). Thereafter, by a resist stripping step and a natural oxide film removing step, the silicon substrate 2A having a single crystal projection region with a thin width (60 nm), and the oxynitride film 4a and the polysilicon 5a laminated on the single crystal projection region are used. A transmission electron microscope observation base sample 1A having the laminated film is formed (see FIG. 11). The crystal plane orientation of the side surface 2b of the transmission electron microscope observation base sample 1A is {011}.
[0035]
Next, the transmission electron microscope observation ground sample 1A is processed with a dicing saw to a width of 250 μm. Then, as shown in FIG. 12, gold fine particles 13 are formed on a processed transmission electron microscope observation base sample 1A by a physical sputtering method using nitrogen plasma, thereby producing a TEM observation sample 10A.
[0036]
This TEM observation sample 10A is placed on the TEM sample holder and introduced into the transmission electron microscope casing, and the side surface of the TEM observation sample 10A, that is, the side surface direction of the silicon single crystal protrusion region of the silicon substrate 2A (the direction of the crystal orientation <011>) ) Is irradiated with an electron beam to form an image of the electron beam behind the TEM observation sample 10A to obtain a TEM observation image as shown in FIG. In FIG. 13, the thin and dark portions indicate gold fine particles 13, and the white dots in the silicon substrate region indicate regions (so-called lattice images) surrounded by Si atoms. And since the Si atoms in the crystal region are regularly arranged, the absolute scale of the TEM image obtained from the spacing of the white dots can be calculated, and the particle size of the thin blackened portion, that is, the gold fine particles can be measured. it can.
[0037]
When TEM evaluation is performed on a TEM evaluation sample that has poor adhesion to the ground sample that may be peeled off by water used during dicing, or a sample that reacts with water, as in this embodiment, the TEM evaluation target Before forming the object (gold fine particles 13 in this embodiment), the TEM observation ground sample 1A is processed to a size that can be introduced into the TEM sample holder, and then the TEM evaluation object is formed.
[0038]
In addition, when TEM evaluation of gold fine particles with poor adhesion is performed, the conventional TEM measurement method using FIB, ion milling, etc., uses a dicing saw to squeeze the sample to a certain size before processing the sample in advance. It was necessary to process. For this reason, in the conventional method, gold fine particles may be peeled off during dicing before TEM evaluation, and it is necessary to recreate a TEM evaluation sample.
[0039]
As described above, according to the present embodiment, a transmission electron microscope observation ground sample capable of easily performing highly accurate TEM observation, and a transmission electron microscope measurement method using the transmission electron microscope observation ground sample Can be obtained.
[0040]
In general, substance A and substances B 1 , B 2 ,…., When examining the reactivity with the substance B first, as in this embodiment 1 , B 2 , ... are formed on the single crystal protrusion region of the silicon substrate 2A, reacted with the substance A after being subjected to RIE, and the reactivity with each substance can be examined at once. . For example, Si consisting of Si and Ge x Ge 1-x After depositing Ti, Co, or Ni, which forms a silicidation reaction, on the projection area consisting of multiple layers and applying heat treatment to form silicide, each composition Si x Ge 1-x The details of each silicidation reaction can be examined. Further, this composition may be changed in an inclined manner.
[0041]
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIGS.
First, the transmission electron microscope observation base sample according to the present embodiment is formed of a silicon single crystal whose crystal plane orientation {100} is the plane orientation of the substrate surface, and the shape of the transmission electron of the first embodiment shown in FIG. A ground sample 2A for microscopic observation, in which the width of a clean silicon single crystal protrusion region is 60 nm. Therefore, the crystal plane orientation of the upper surface of the silicon single crystal protrusion region is {100} and the side crystal plane orientation is {011}.
[0042]
Then, the surface of the silicon single crystal projection is oxidized by annealing the transmission electron microscope observation base sample 2A in a 1000 ° C. oxidizing atmosphere, and a silicon oxide film 14 is formed on the surface as shown in FIG. Then, a TEM observation sample 10B is obtained by processing the dicing saw to a width of 250 μm so as to include the silicon single crystal protrusion region.
[0043]
The TEM observation sample 10B is placed on the TEM sample holder and introduced into the transmission electron microscope casing, and as shown in FIG. 15, the TEM observation sample 10B is applied to the TEM observation sample 10B from the {011} direction of the side surface of the silicon single crystal projection region. An electron beam is irradiated and an electron beam is imaged behind the TEM observation sample 10B, whereby a TEM observation image of the silicon oxide film 14 is obtained. Thereby, as in the first and second embodiments, the film thickness of the silicon oxide film can be accurately evaluated.
[0044]
When the film thickness is evaluated, as shown in FIG. 14, if the film thickness to be deposited is T and the substrate depth D etched by RIE, the relationship of T <D is necessary.
[0045]
As described above, according to the present embodiment, a transmission electron microscope observation ground sample capable of easily performing highly accurate TEM observation, and a transmission electron microscope measurement method using the transmission electron microscope observation ground sample Can be obtained.
[0046]
In the third embodiment, the surface of the silicon single crystal protrusion region of the transmission electron microscope observation base sample 2A is oxidized to form the silicon oxide film 14 on the surface, and then processed to a width of 250 μm with a dicing saw. In this way, the TEM observation sample 10B was obtained. Before forming the silicon oxide film 14, it was processed to a width of 250 μm with a dicing saw, and then the surface of the silicon single crystal region was oxidized to form a silicon oxide film on the surface. You may do it.
[0047]
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described with reference to FIGS. First, the transmission electron microscope observation base sample according to the present embodiment is formed of a silicon single crystal whose crystal plane orientation {100} is the plane orientation of the substrate surface, and the shape of the transmission electron of the first embodiment shown in FIG. A ground sample 2A for microscopic observation, in which the width of a clean silicon single crystal protrusion region is 60 nm. The crystal plane orientation of the upper surface of this silicon single crystal projection region is {100} and the side crystal plane orientation is {011}.
[0048]
SiH is deposited by chemical vapor deposition on the single-crystal projection area of the ground sample 2A for transmission electron microscope observation. Four After depositing an amorphous silicon film at 600 ° C. using (silane) gas, the silane gas was stopped and N 2 As shown in FIG. 16, the epitaxial growth of the amorphous silicon film using the substrate single crystal silicon as a seed is promoted, and the epitaxial growth film is formed on the silicon single crystal protrusion region as shown in FIG. 15 is formed. Then, by processing to a thickness of 250 microns with a dicing saw so as to include the silicon single crystal projection region, an observation sample for TEM 10C as shown in FIG. 16 is obtained.
[0049]
This TEM observation sample 10C was placed on a TEM sample holder and introduced into the transmission electron microscope casing, and as shown in FIG. 17, an electron beam was applied to the TEM observation sample 10C from the <011> direction of the side surface of the silicon single crystal projection region. Is irradiated to form an electron beam behind the TEM observation sample 10C to obtain a TEM observation image. As a result, as in the first and second embodiments, the film thickness evaluation, crystallinity evaluation, and evaluation of the interface layer with the substrate can be performed precisely.
[0050]
The film evaluation of the epitaxial growth can be applied not only to the solid phase epitaxial growth film as described above but also to a vapor phase epitaxial growth film.
[0051]
In the case of evaluating the film thickness and the substrate interface layer, as shown in FIG. 16, if the film thickness to be deposited is T and the substrate depth D etched by RIE, the relationship of T <D is necessary. .
[0052]
As described above, according to the present embodiment, a transmission electron microscope observation ground sample capable of easily performing highly accurate TEM observation, and a transmission electron microscope measurement method using the transmission electron microscope observation ground sample Can be obtained.
[0053]
Note that the surface orientations of the substrate are not limited to the above-mentioned surface orientations. Other examples include the case where the surface orientation in the vertical direction of the substrate is (100) and the surface orientation of the side surface is (010). In particular, when the vertical and side surface orientations are the same as in this case, it is possible to perform evaluation equivalent to the crystallinity judgment of a normal epitaxial film, that is, cross-sectional TEM evaluation and planar TEM evaluation at a time. . Usually, compared with the case where the TEM sample is separately prepared for the cross-sectional TEM evaluation and the planar TEM evaluation, the labor for preparing the TEM sample is reduced by half, and there is an advantage that the TEM observation cost is reduced.
[0054]
(Fifth embodiment)
A fifth embodiment of the present invention will be described with reference to FIGS.
First, the creation of a base sample for transmission electron microscope observation according to the present embodiment will be described. As shown in FIG. 18, a silicon nitride film 6 is deposited on a silicon {100} substrate 2 having a surface Miller index of {100}. Thereafter, an antireflection film 40 is formed on the silicon nitride film 6, and a resist 50 is applied on the antireflection film 40.
[0055]
Next, as shown in FIG. 19, the resist 50 is patterned by a lithography process using KrF as a light source to form a fine line pattern 50a. Using the fine line pattern 50a as a mask, the antireflection film 40 and the silicon nitride film 6 are patterned by a reactive ion etching process using plasma to form the fine line pattern 40a and the nitride film 6a, and the silicon substrate 2 is processed to obtain a width. A silicon substrate 2A having a columnar portion of about 60 nm is formed (see FIG. 20). Note that the depth of digging the silicon substrate to form the columnar portion is about 200 nm.
[0056]
Then O 2 After the resist ashing treatment by plasma and the resist 50a and the antireflection film 40a are peeled off by a mixed solution of sulfuric acid and hydrogen peroxide, the surface of the silicon substrate 2A is oxidized in an oxidizing atmosphere at 1000 ° C. As shown in FIG. A silicon oxide film 7 is formed on the side surface of the part. At this time, since the nitride film 6a is formed on the upper surface of the columnar portion, the upper surface of the columnar portion is not oxidized.
[0057]
Thereafter, the nitride film 6a that became a mask for oxidation is peeled off using hot phosphoric acid (see FIG. 22), the upper surface of the columnar portion of the silicon substrate 2A is exposed, and then silane gas is allowed to flow under a reduced pressure of 800 ° C. Silicon is epitaxially grown using the exposed surface of the columnar portion of the silicon substrate 2A as a seed to form a TEM observation sample 10D in which an epitaxial growth film 16 is formed on the upper surface of the columnar portion (see FIG. 23).
[0058]
This TEM observation sample 10D is processed into a size that can be accommodated in a TEM observation holder by using a dicing saw, and as shown in FIG. 24, TEM observation is performed by transmitting an electron beam from the lateral direction of the columnar portion.
[0059]
According to the present embodiment, the epitaxial growth is limited to the upper surface of the columnar portion of the silicon substrate 2A, and the side wall portion and the corner portion of the columnar silicon region can suppress the epitaxial growth. Limited TEM observation is possible. It is also possible to observe the crystallinity in the case where the oxide film 7 is grown on the oxide film 7 and epitaxially grown laterally. The plane index of the silicon substrate of the above embodiment is not limited to {100}, and a general plane index is possible. Further, the base substrate is not limited to a silicon single crystal, but can include single crystal and polycrystalline substrates of general compound semiconductors such as GaAs, GaN, and InGaN including SiGe and SiGeC.
[0060]
As described above, according to the present embodiment, a transmission electron microscope observation ground sample capable of easily performing highly accurate TEM observation, and a transmission electron microscope measurement method using the transmission electron microscope observation ground sample Can be obtained.
[0061]
(Sixth embodiment)
A sixth embodiment of the present invention will be described with reference to FIGS.
First, the creation of a base sample for transmission electron microscope observation according to the present embodiment will be described. An antireflection film is formed on a silicon substrate having a mirror index of {100} on the surface, a resist is applied on the antireflection film, and silicon is formed by a lithography process using KrF as a light source and a reactive ion etching process using plasma. The substrate is processed to form a silicon substrate 2A having a columnar portion with a thickness of about 60 nm. Note that the depth of digging the silicon substrate is about 200 nm. O 2 After the resist ashing treatment by plasma and the resist and the antireflection film are peeled off by a mixed solution of sulfuric acid and hydrogen peroxide, the entire surface of the silicon substrate is oxidized in an oxidizing atmosphere at 1000 ° C. to form a silicon oxide film 7 (see FIG. 25). .
[0062]
Subsequently, as shown in FIG. 26, a silicon nitride film 8 is deposited on the silicon oxide film 7, and then the silicon nitride film 8 is etched by reactive ion etching using plasma, and silicon is formed only on the side of the columnar portion. The nitride film 8a is left (see FIG. 27). Then, the surface of the silicon substrate 2A is treated with dilute hydrofluoric acid to form side walls made of the silicon oxide film 7a and the silicon nitride film 8a only on the side portions of the columnar portion, thereby obtaining a transmission electron microscope measurement sample 1C. (See FIG. 28).
[0063]
Thereafter, a silane gas is allowed to flow through the transmission electron microscope measurement sample 1C under a reduced pressure of 800 ° C., silicon is epitaxially grown using the exposed surface of the silicon substrate 2A as a seed, an epitaxial growth film 16 is formed, and a TEM observation sample 10E is formed. (See FIG. 29).
[0064]
The TEM observation sample 10E is processed into a size that fits into the TEM observation holder using a dicing saw (see FIG. 30), and TEM observation is performed by transmitting an electron beam from the lateral direction of the columnar portion of the TEM observation sample 10E ( (See FIG. 31).
[0065]
According to the present embodiment, the observed epitaxial growth is limited to the upper surface of the columnar part, and the epitaxial growth of the side wall part and the corner part of the columnar part can be suppressed. TEM observation is possible. In addition, it is possible to observe the crystallinity when the oxide film 7a is grown on the oxide film 7a and epitaxially grown laterally.
[0066]
The plane index of the silicon substrate is not limited to {100}, and a general plane index is possible. The base substrate is not limited to a silicon single crystal, but includes single crystal and polycrystalline substrates of general compound semiconductors such as GaAs, GaN, and InGaN including SiGe and SiGeC.
[0067]
As described above, according to the present embodiment, a transmission electron microscope observation ground sample capable of easily performing highly accurate TEM observation, and a transmission electron microscope measurement method using the transmission electron microscope observation ground sample Can be obtained.
[0068]
(Seventh embodiment)
A seventh embodiment of the present invention will be described with reference to FIGS.
First, the creation of a base sample for transmission electron microscope observation according to the present embodiment will be described. As shown in FIG. 32, a silicon nitride film is formed on a silicon single crystal substrate having a crystal orientation of {100} as a plane orientation, and the silicon nitride film and the silicon single crystal substrate are etched using a lithography process. Transmission electron microscope observation base sample having a silicon substrate 2A having a columnar portion with a top surface orientation of {100} and a side surface orientation of {011}, and a silicon nitride film 6a formed on the top surface of the columnar portion Get 1D.
[0069]
Next, an Hf silicate film having a thickness of 4 nm is deposited on the transmission electron microscope observation base sample 1D, and is processed into a size that can be accommodated in a TEM observation holder by using a dicer to obtain a TEM observation sample 10F (see FIG. 10F). TEM observation is performed by transmitting an electron beam from the lateral direction of the columnar portion of the TEM observation sample 10F.
[0070]
In general, when an Hf silicate film is directly deposited on a silicon substrate, an interface layer is formed at the interface between the silicon substrate and the Hf silicate film. However, as in the present embodiment, an oxide resistant film is formed on the silicon substrate. The original heat resistance of the Hf silicate film can be evaluated by depositing it on the surface.
[0071]
As described above, according to the present embodiment, a transmission electron microscope observation ground sample capable of easily performing highly accurate TEM observation, and a transmission electron microscope measurement method using the transmission electron microscope observation ground sample Can be obtained.
[0072]
(Eighth embodiment)
An eighth embodiment of the present invention will be described with reference to FIGS.
First, the creation of a base sample for transmission electron microscope observation according to the present embodiment will be described. Silicon nitride film patterned on the silicon substrate 2 by patterning the silicon nitride film on the silicon single crystal substrate having a crystal orientation of {100} in a 4 nm volume and patterning the silicon nitride film using a lithography process A ground sample 1E for transmission electron microscope observation on which the film 6a is formed is obtained (see FIG. 35).
[0073]
A 4 nm thick Hf silicate film 12 is deposited on the transmission electron microscope observation base sample 1E, and then processed into a size that can be accommodated in a TEM observation holder using a dicer to form a TEM observation sample 10G (see FIG. 35). . TEM observation is performed by transmitting an electron beam from the lateral direction of the columnar portion of the TEM observation sample 10G.
[0074]
Generally, the silicon nitride film and the apparatus for processing silicon are usually different, but if a base sample for transmission electron microscope observation is formed as in the present embodiment, the labor of processing can be saved.
[0075]
This embodiment can be used when it is desired to easily perform crystallinity evaluation such as heat resistance of a film rather than film thickness evaluation.
[0076]
As described above, according to the present embodiment, a transmission electron microscope observation ground sample capable of easily performing highly accurate TEM observation, and a transmission electron microscope measurement method using the transmission electron microscope observation ground sample Can be obtained.
[0077]
(Ninth embodiment)
Next, a ninth embodiment of the present invention will be described with reference to FIGS. First, a silicon substrate is processed by a lithography process and an RIE method to form a transmission electron microscope observation base sample 1F composed of a silicon substrate 2A having a triangular columnar portion having a maximum width of 100 nm and a height of 200 nm (see FIG. 37).
[0078]
Thereafter, the silicon region on the triangular prism shape is cleaned by dilute hydrofluoric acid treatment of the silicon substrate 2A, and then the Hf silicate film 12 is deposited by 4 nm by the CVD method to obtain a TEM observation sample 10H (see FIG. 38). This TEM observation sample 10H is processed into a size that can be accommodated in a TEM holder using a dicing saw, and TEM observation is performed (see FIG. 38). Thereafter, the sample 10H for TEM observation is heat-treated in an oxidizing atmosphere at 1000 ° C. for 10 minutes, and then TEM observation is performed again.
[0079]
In general, it is known that when a TEM observation sample is made by digging up a substrate by RIE after deposition of an Hf silicate film, the Hf silicate film is wedge-oxidized.
[0080]
In the present embodiment, since the Hf silicate film 12 is deposited on the entire surface after the RIE process of the silicon substrate, it is possible to heat-treat the Hf silicate film 12 without the Hf silicate film 12 being wedge-oxidized. Furthermore, since the heat treatment and TEM observation can be repeated a plurality of times for the same sample, it is possible to save the trouble of preparing the TEM observation sample. Further, since the same sample can be observed by TEM, there is no variation between samples, and high-precision TEM evaluation can be performed at low cost.
[0081]
The present embodiment is not limited to heat treatment, and can be used for evaluating the resistance of a film to wet treatment such as dilute hydrofluoric acid treatment. In addition, an evaluation in which these different processes are appropriately combined is also possible.
[0082]
As described above, according to the present embodiment, a transmission electron microscope observation ground sample capable of easily performing highly accurate TEM observation, and a transmission electron microscope measurement method using the transmission electron microscope observation ground sample Can be obtained.
[0083]
Note that the transmission electron microscope observation base sample in the first to ninth embodiments is not limited to the shape shown in FIG. 37, and as shown in FIG. 39, a transmission electron microscope having a columnar columnar portion. The observation ground sample 1G may be used. Also in this case, the TEM observation sample 10I as shown in FIG. 40 can be obtained by depositing the Hf silicate film 12 on the entire surface of the transmission electron microscope observation base sample 1G. In addition, the RIE may have a shape (taper) with a side wall having an angle depending on conditions. By using this, it is possible to create a transmission electron microscope observation base sample 1H having a shape as shown in FIG. By depositing the Hf silicate film 12 on the entire surface of the transmission electron microscope observation base sample 1H, a TEM observation sample 10J as shown in FIG. 42 can be obtained. When these transmission electron microscope observation base samples are used, there are extremely thin regions as shown in FIGS. 37, 39, and 41. However, the higher the electron beam transmission thickness, the higher the resolution of the TEM image. There is an advantage that a high-resolution TEM observation image can be obtained in a thin region.
[0084]
In the first to ninth embodiments, the transmission electron microscope observation base sample having the projection region is formed using reactive ion etching, but is not limited to reactive ion etching. For example, as shown in FIG. 43, a mask 60 is formed on the silicon substrate 2, and wet etching is performed with a mixed solution of hydrofluoric acid and nitric acid, thereby observing a transmission electron microscope made of the silicon substrate 2E having the shape shown in FIG. A base sample base can be created. Further, as shown in FIG. 43, a mask 60 is formed on the silicon substrate 2, and an aqueous solution of ethylenediamine and pyrocatechol is used to anisotropically etch as shown in FIG. A base sample for transmission electron microscope observation made of a silicon substrate can be prepared. As shown in FIG. 46, it is also possible to form the mask 62 only in a predetermined region on the silicon substrate 2 and form the protrusion 20 in the region not covered with the mask 62 by using epitaxial growth.
[0085]
It is also effective to repeatedly perform etching or oxidation when forming the base substrate in the above embodiment. For example, after a silicon substrate 2A having a silicon protrusion region as shown in FIG. 47 is formed by the RIE method, as shown in FIG. 48, the entire surface of the silicon substrate 2A is oxidized to form an oxide film 22, and further diluted hydrofluoric acid. By performing the processing, a transmission electron microscope observation base sample made of the silicon substrate 2G having a protruding region having a shape as shown in FIG. 49 can be created. The width of the protruding region through which the electron beam is transmitted can be made equal to or smaller than a limit width that can be manufactured by a lithography process. Therefore, by forming an observation object on the transmission electron microscope observation base sample and performing TEM observation, a higher-resolution TEM observation image can be obtained.
[0086]
By the way, in the first to ninth embodiments, as shown in FIG. 50, the sample for TEM observation forms an observation film (not shown) on the R silicon substrate 2A having a plurality of protrusions. After that, it is formed by processing with a dicing saw 70 so as to fit in a TEM holder of a transmission electron microscope. Currently, the thickness Lds of the thinnest dicing saw 70 is 5 μm. Therefore, the distance Ls between the protrusions needs to be larger than the thickness Lds of the dicing saw 70. Further, the width Ll of the protrusion needs to be thin enough to transmit the electron beam, and Ll ≦ 300 nm. That is, the width Ll of the protrusion is about 300 nm or less. Here, “about” means that an error in processing accuracy is included, or a fluctuation in the transmissive width of the electron beam is included.
[0087]
In addition to dicing that fits in the TEM holder, additional RIE or wet etching methods, or simply by opening the walls, taking advantage of the characteristics of the silicon single crystal substrate being easily opened on the {111} plane In particular, it is also effective to draw a guide line having an appropriate curvature and open the wall to a very small width.
[0088]
(10th embodiment)
Next, a transmission electron microscope according to the tenth embodiment of the invention is illustrated. 51 Will be described with reference to FIG. Figure 51 These are block diagrams which show the structure of the transmission electron microscope apparatus 100 by this embodiment.
[0089]
The transmission electron microscope apparatus according to this embodiment includes a transmission electron microscope 110, an epitaxial film forming apparatus 140, and a load lock 150. The transmission electron microscope 110 includes an electron gun 112, a focusing lens 114, an objective lens 116, a limited field stop 118, an intermediate lens 120, a projection lens 122, and a fluorescent plate 124. Is provided in the housing.
[0090]
The epitaxial film forming apparatus 140 is in an ultra-high vacuum state (1 × 10 -6 An apparatus for depositing an epitaxial film on a base sample for transmission electron microscope observation (not shown) at about Pa), and is connected to the transmission electron microscope 110 via a load lock 150. In the epitaxial film forming apparatus 140, the ground sample for observation with a transmission electron microscope having the protrusions in the fifth embodiment or the sixth embodiment is introduced. Hydrogen gas, which is a reducing gas, is introduced into the epitaxial film forming apparatus 140 under an ultrahigh vacuum of 800 ° C., and the natural oxide film formed on the surface of the base sample for transmission electron microscope observation is removed. Subsequently, silane (SiH Four ) Gas is introduced, and vapor phase epitaxial growth of silicon is performed by using the exposed silicon region as a seed, thereby producing a TEM observation sample 10 on which an epitaxial film is formed.
[0091]
Next, the created TEM observation sample 10 is conveyed to the load lock 150. The load lock 150 has a reduced pressure (1 × 10 10) compared to the transmission electron microscope 110 and the epitaxial film forming apparatus 140. -4 And a valve (not shown) is provided at the boundary between the transmission electron microscope 110 and the epitaxial film forming apparatus 140. In addition, when the TEM observation sample 10 is carried into the load lock 140 from the epitaxial film forming apparatus 140 or carried out to the transmission electron microscope 110, the pressure inside the load lock 140 is set to an ultra high vacuum state. A pump (not shown) is provided.
[0092]
The TEM observation sample 10 carried out from the load lock 150 to the transmission electron microscope 110 is disposed between the focusing lens 114 and the objective lens 116. The electron beam emitted from the electron gun 112 is focused by the focusing lens 114 and passes through the TEM observation sample 10. The electron beam transmitted through the TEM observation sample 10 enters the fluorescent plate 124 through the objective lens 116, the limited field stop 118, the intermediate lens 120, and the projection lens 122, and an electron microscope image of the TEM observation sample 10 is formed on the fluorescent plate 124. TEM observation is performed.
[0093]
In general, the crystallinity of an epitaxial film is important, and defects in the epitaxial film are often evaluated by TEM. Conventionally, the epitaxial film is once returned to room temperature and placed in the TEM. However, when the temperature is lowered from the high epitaxial temperature of 800 ° C. to room temperature, thermal stress is applied to the epitaxial film. When the existence of a defect is recognized in the epitaxial film, it is usually difficult to judge whether the defect is due to the growth of the epitaxial film or the thermal stress when the temperature is lowered.
[0094]
However, if the transmission electron microscope apparatus 100 of this embodiment is used, it is possible to observe “in-situ” during the growth of the epitaxial film. It is possible to determine the conditions.
[0095]
In the present embodiment, the transmission electron microscope 110 and the epitaxial film forming apparatus 140 are connected via the load lock 150, but may be configured to be in the same vacuum furnace.
[0096]
In the tenth embodiment, the epitaxial film forming apparatus 140 is provided with the transmission electron microscope. However, an ultrahigh vacuum chemical vapor deposition apparatus or the like may be provided. In-situ TEM observation such as crystallinity, film thickness, and particle size can be performed.
[0097]
Needless to say, TEM observation can be applied not only to taking a real image but also to various observation methods generally associated with TEM observation such as EELS, EDX, and electron diffraction.
[0098]
As described above, using the transmission electron microscope observation ground sample according to any one of the first to ninth embodiments of the present invention, the TEM observation target is the transmission electron microscope observation ground sample. The TEM observation sample is formed into a TEM observation sample, and the TEM observation sample only needs to be processed into a size that can be accommodated in the TEM observation holder.
[0099]
Further, according to the tenth embodiment of the present invention, TEM observation can be performed immediately after film formation, and the time required to obtain a TEM observation image can be further shortened. If the cleanness of the base does not satisfy the specifications of the cleanliness of the apparatus for forming the TEM observation object, it is necessary to prepare the TEM observation sample according to the first to ninth embodiments and perform the TEM observation. . In general, an apparatus for flowing a product in a clean room requires a high degree of cleanliness for a wafer to be put in the apparatus. When TEM observation is performed on the film quality and film thickness of a film forming apparatus in such a clean room, the first through The ninth embodiment may be used.
[0100]
Further, by forming the transmission electron microscope observation base sample with a general lithography apparatus and RIE, a large number of transmission electron microscope observation base samples of the first to ninth embodiments can be formed. For example, when a base sample for transmission electron microscope observation can be formed on each chip after opening a wall on each chip, if a TEM observation target is separately formed on each base sample, the TEM observation sample There is an advantage that the unit cost for sample preparation per unit can be lowered.
[0101]
According to an embodiment of the present invention, the initial state of reaction such as atomic surface diffusion and polymerization can be observed by TEM, and film growth and the like, which have been difficult until now, can be observed in situ.
[0102]
Further, according to one embodiment of the present invention, it is possible to easily calibrate the length of the TEM observation image from the crystal lattice spacing of the base region, and to accurately adjust the film thickness, grain size, etc. of the TEM observation target. Can be identified.
[0103]
Conventionally, glue or metal is usually attached to the surface of a TEM observation sample for the purpose of reinforcing the strength of the TEM observation sample. In some cases, it may react with the observation object. For example, when evaluating the thickness of the silicon oxide film, the boundary with the paste layer formed on the surface is unclear, and it is difficult to measure the accurate thickness. In general, it is difficult to remove the layer formed on this surface before TEM observation.
[0104]
On the other hand, according to each embodiment of the present invention, it is not necessary to attach glue or metal to reinforce the strength of the TEM observation sample, and an accurate film thickness can be measured. .
[0105]
Further, according to each embodiment of the present invention, the surface of the TEM observation sample at the time of TEM observation is easy to identify because the inside of the case of the transmission electron microscope is vacuum, and the TEM observation is easily and accurately performed. It is feasible.
[0106]
In addition, it is relatively easy to remove the TEM observation inhibition region formed on the surface of the base at the time of base preparation by performing appropriate processing, and high-precision TEM observation can be performed. For example, when a silicon substrate is etched by RIE in an oxygen atmosphere to form a region on a pillar having a thickness of about 50 nm and the resist is peeled off, RIE shavings adhere to the shaved sidewall, A natural oxide film is formed on the surface of the silicon substrate directly underneath, and this causes disturbance of TEM observation. However, these oxide film regions are not affected by the characteristics of the substrate before the TEM observation object is formed. It can be easily removed by dilute hydrofluoric acid treatment with high selectivity to the silicon substrate. Therefore, if the base according to each embodiment of the present invention is used, TEM observation can be performed after removing the disturbance factors other than the TEM observation object as much as possible, so that a highly accurate TEM image can be obtained. In addition, since the width of the base can be defined by lithography, it is easy to make the thickness of the electron beam transmitted in the TEM observation region, and it becomes possible to avoid uncertain factors due to the thickness as much as possible. For this reason, highly accurate TEM observation can be performed.
[0107]
Further, by subjecting the base to oxidation and etching, it is possible to relatively easily form a projection region below the lithography limit, and a high-resolution TEM image can be easily obtained.
[0108]
The light source used in the lithography process is not limited to KrF as described above. ArF, F 2 And general light sources such as electron beams and X-rays. Alternatively, the patterned stencil mask may be made to adhere to or non-contact with the object to be etched and the base sample may be etched.
[0109]
【The invention's effect】
As described above, according to the present invention, high-accuracy TEM observation can be easily performed.
[Brief description of the drawings]
FIG. 1 is a process cross-sectional view illustrating a manufacturing process of a transmission electron microscope observation base sample according to a first embodiment of the present invention.
FIG. 2 is a process cross-sectional view illustrating a manufacturing process of a transmission electron microscope observation base sample according to the first embodiment of the present invention.
FIG. 3 is a process cross-sectional view illustrating a manufacturing process of a transmission electron microscope observation base sample according to the first embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a configuration of a base sample for transmission electron microscope observation according to the first embodiment of the present invention.
FIG. 5 is a process cross-sectional view showing a TEM observation sample manufacturing process according to the first embodiment of the present invention.
FIG. 6 is a plan view showing a manufacturing process of a TEM observation sample according to the first embodiment of the present invention.
FIG. 7 is a perspective view for explaining a transmission electron microscope observation method according to the first embodiment of the present invention.
FIG. 8 is a photograph showing a TEM observation image observed by the transmission electron microscope observation method according to the first embodiment of the present invention.
FIG. 9 is a photograph showing a TEM observation image observed by the transmission electron microscope observation method according to the first embodiment of the present invention.
FIG. 10 is a process cross-sectional view showing a manufacturing process of a transmission electron microscope observation base sample according to a second embodiment of the present invention.
FIG. 11 is a process cross-sectional view illustrating a manufacturing process of a transmission electron microscope observation ground sample according to a second embodiment of the present invention.
FIG. 12 is a sectional view showing a transmission electron microscope observation method according to a second embodiment of the present invention.
FIG. 13 is a photograph showing a TEM observation image observed by a transmission electron microscope observation method according to the second embodiment of the present invention.
FIG. 14 is a cross-sectional view showing a configuration of a TEM observation sample according to a third embodiment.
FIG. 15 is a perspective view showing a transmission electron microscope observation method according to a third embodiment.
FIG. 16 is a cross-sectional view showing a configuration of a TEM observation sample according to a fourth embodiment.
FIG. 17 is a perspective view showing a transmission electron microscope observation method according to a fourth embodiment.
FIG. 18 is a process cross-sectional view illustrating a manufacturing process of a transmission electron microscope observation base sample according to a fifth embodiment.
FIG. 19 is a process cross-sectional view illustrating a manufacturing process of a transmission electron microscope observation base sample according to a fifth embodiment.
FIG. 20 is a process cross-sectional view illustrating a manufacturing process of a transmission electron microscope observation base sample according to a fifth embodiment.
FIG. 21 is a sectional view showing the structure of a transmission electron microscope observation base sample according to a fifth embodiment.
FIG. 22 is a cross-sectional view showing a TEM observation sample manufacturing process according to the fifth embodiment.
FIG. 23 is a sectional view showing the structure of a TEM observation sample according to a fifth embodiment.
FIG. 24 is a perspective view for explaining a transmission electron microscope observation method according to a fifth embodiment.
FIG. 25 is a process cross-sectional view showing the manufacturing process of the transmission electron microscope observation base sample according to the sixth embodiment.
FIG. 26 is a process cross-sectional view illustrating a manufacturing process of a transmission electron microscope observation base sample according to the sixth embodiment.
FIG. 27 is a process cross-sectional view illustrating a manufacturing process of a transmission electron microscope observation base sample according to the sixth embodiment.
FIG. 28 is a sectional view showing the structure of a transmission electron microscope observation base sample according to the sixth embodiment.
FIG. 29 is a sectional view showing the structure of a TEM observation sample according to a sixth embodiment.
FIG. 30 is a plan view showing a TEM observation sample manufacturing process according to the sixth embodiment.
FIG. 31 is a perspective view for explaining a transmission electron microscope observation method according to a sixth embodiment.
FIG. 32 is a cross-sectional view showing the configuration of a transmission electron microscope observation base sample according to a seventh embodiment.
FIG. 33 is a sectional view showing the structure of a TEM observation sample according to a seventh embodiment.
FIG. 34 is a perspective view for explaining a transmission electron microscope observation method according to a seventh embodiment.
FIG. 35 is a sectional view showing the structure of a TEM observation sample according to an eighth embodiment.
FIG. 36 is a perspective view for explaining a transmission electron microscope observation method according to an eighth embodiment.
FIG. 37 is a sectional view showing the structure of a transmission electron microscope observation base sample according to the ninth embodiment.
FIG. 38 is a perspective view for explaining a transmission electron microscope observation method according to a ninth embodiment.
FIG. 39 is a cross-sectional view showing the configuration of a transmission electron microscope observation base sample according to a modification of the ninth embodiment.
FIG. 40 is a perspective view illustrating a transmission electron microscope observation method according to a modification of the ninth embodiment.
41 is a cross-sectional view showing the configuration of a transmission electron microscope observation base sample according to another modification of the ninth embodiment. FIG.
FIG. 42 is a perspective view for explaining a transmission electron microscope observation method according to another modification of the ninth embodiment.
FIG. 43 is a cross-sectional view illustrating a manufacturing process of a transmission electron microscope observation base sample according to an embodiment of the present invention.
FIG. 44 is a cross-sectional view for explaining a manufacturing process of a transmission electron microscope observation base sample according to an embodiment of the present invention.
FIG. 45 is a cross-sectional view for explaining a manufacturing process of a transmission electron microscope observation base sample according to an embodiment of the present invention.
FIG. 46 is a cross-sectional view for explaining a manufacturing process of a transmission electron microscope observation base sample according to an embodiment of the present invention.
FIG. 47 is a cross-sectional view for explaining a manufacturing process of a transmission electron microscope observation base sample according to an embodiment of the present invention.
FIG. 48 is a cross-sectional view for explaining a manufacturing process of a transmission electron microscope observation base sample according to an embodiment of the present invention.
FIG. 49 is a cross-sectional view showing the configuration of a base sample for observation with a transmission electron microscope according to one embodiment of the present invention.
FIG. 50 is a view for explaining the width of the protrusions and the limit of the interval between the protrusions of the transmission electron microscope observation base sample according to the embodiment of the present invention.
FIG. 51 is a block diagram showing a configuration of a transmission electron microscope apparatus according to a tenth embodiment of the present invention.
[Explanation of symbols]
1 Ground sample for transmission electron microscope observation
2 Silicon substrate
4 Silicon oxynitride film
5 Polysilicon film
6 Silicon nitride film
7 Silicon oxide film
8 Silicon nitride film
10 TEM observation sample
12 Hf silicate membrane
13 Gold fine particles
14 Silicon oxide film
15 Epitaxial growth film
16 Epitaxial growth film
40 Anti-reflective coating
50 resists
60 mask
70 dicing saw
100 Transmission electron microscope apparatus
110 Transmission electron microscope
112 electron gun
114 focusing lens
116 Objective lens
118 Restricted field stop
120 Intermediate lens
122 Projection lens
124 fluorescent screen
140 Epitaxial film deposition system
150 Load lock

Claims (5)

幅が約300nm以下の一部領域を備える柱状の突起部を有することを特徴とする透過電子顕微鏡観測用下地試料。  A base sample for observation with a transmission electron microscope, comprising a columnar protrusion having a partial region with a width of about 300 nm or less. 柱状の突起部に形成された透過電子顕微鏡の電子線が透過可能となる幅を有する一部領域に透過電子顕微鏡測定対象物を形成した透過電子顕微鏡観察試料を前記透過電子顕微鏡のホルダーに収まるよう加工し、この加工された透過電子顕微鏡観察試料を前記透過電子顕微鏡の筐体内に導入し、前記透過電子顕微鏡観察試料の前記一部領域の側部方向から電子線を入射させて透過電子顕微鏡像を得ることを特徴とする透過電子顕微鏡観察方法。  A transmission electron microscope observation sample in which a transmission electron microscope measurement object is formed in a partial region having a width that allows transmission of an electron beam of a transmission electron microscope formed on a columnar projection so as to fit in the holder of the transmission electron microscope. The processed transmission electron microscope observation sample is introduced into the case of the transmission electron microscope, and an electron beam is incident from the side of the partial region of the transmission electron microscope observation sample to obtain a transmission electron microscope image. And a transmission electron microscope observation method. 柱状の突起部に形成された透過電子顕微鏡の電子線が透過可能となる幅を有する一部領域を備えた透過電子顕微鏡観測用下地試料を前記透過電子顕微鏡のホルダーに収まるよう加工し、この加工された透過電子顕微鏡観測用下地試料の前記一部領域上に透過電子顕微鏡測定対象物を形成して透過電子顕微鏡観察試料を作成し、この透過電子顕微鏡観察試料を前記透過電子顕微鏡の筐体内に導入し、前記透過電子顕微鏡観察試料の前記一部領域の側部方向から電子線を入射させて透過電子顕微鏡像を得ることを特徴とする透過電子顕微鏡観察方法。  Processing a transmission electron microscope observation ground sample provided with a partial region having a width that allows transmission of an electron beam of a transmission electron microscope formed on a columnar projection so as to fit in the holder of the transmission electron microscope. A transmission electron microscope measurement object is formed on the partial region of the transmitted transmission electron microscope observation base sample to create a transmission electron microscope observation sample, and the transmission electron microscope observation sample is placed in the casing of the transmission electron microscope. A transmission electron microscope observation method comprising introducing an electron beam from a side direction of the partial region of the transmission electron microscope observation sample to obtain a transmission electron microscope image. 透過電子顕微鏡像が得られた前記透過電子顕微鏡観察試料に所定の処理を行い、この所定の処理が行われた前記透過電子顕微鏡観察試料を前記透過電子顕微鏡の筐体内に導入し、前記透過電子顕微鏡観察試料の前記柱状の突起部の側部方向から電子線を入射させて透過電子顕微鏡像を得ることを特徴とする請求項2または3のいずれかに記載の透過電子顕微鏡観察方法。  The transmission electron microscope observation sample from which the transmission electron microscope image was obtained is subjected to a predetermined treatment, and the transmission electron microscope observation sample subjected to the predetermined treatment is introduced into a case of the transmission electron microscope, and the transmission electron microscope 4. The transmission electron microscope observation method according to claim 2, wherein an electron beam is incident from a side direction of the columnar protrusion of the microscope observation sample to obtain a transmission electron microscope image. 前記一部領域が結晶領域であることを特徴とする請求項2乃至4のいずれかに記載の透過電子顕微鏡観察方法。  5. The transmission electron microscope observation method according to claim 2, wherein the partial region is a crystal region.
JP2003076357A 2003-03-19 2003-03-19 Transmission electron microscope observation base sample, transmission electron microscope measurement method, and transmission electron microscope apparatus Expired - Fee Related JP3735614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076357A JP3735614B2 (en) 2003-03-19 2003-03-19 Transmission electron microscope observation base sample, transmission electron microscope measurement method, and transmission electron microscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076357A JP3735614B2 (en) 2003-03-19 2003-03-19 Transmission electron microscope observation base sample, transmission electron microscope measurement method, and transmission electron microscope apparatus

Publications (2)

Publication Number Publication Date
JP2004286486A JP2004286486A (en) 2004-10-14
JP3735614B2 true JP3735614B2 (en) 2006-01-18

Family

ID=33291439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076357A Expired - Fee Related JP3735614B2 (en) 2003-03-19 2003-03-19 Transmission electron microscope observation base sample, transmission electron microscope measurement method, and transmission electron microscope apparatus

Country Status (1)

Country Link
JP (1) JP3735614B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947965B2 (en) * 2005-12-06 2012-06-06 ラピスセミコンダクタ株式会社 Preparation method, observation method and structure of sample for transmission electron microscope
JP5292326B2 (en) * 2010-01-29 2013-09-18 株式会社日立ハイテクノロジーズ Standard sample preparation method and standard sample
DE102010032894B4 (en) * 2010-07-30 2013-08-22 Carl Zeiss Microscopy Gmbh Tem lamella, process for its preparation and apparatus for carrying out the process
US8912490B2 (en) 2011-06-03 2014-12-16 Fei Company Method for preparing samples for imaging
US8859963B2 (en) * 2011-06-03 2014-10-14 Fei Company Methods for preparing thin samples for TEM imaging
US8822921B2 (en) 2011-06-03 2014-09-02 Fei Company Method for preparing samples for imaging
CN103558055B (en) * 2013-09-29 2016-01-06 中国疾病预防控制中心病毒病预防控制所 A kind of locating super-thin dicing method for infecting viral sick cell
JP6955675B2 (en) * 2018-05-15 2021-10-27 信越半導体株式会社 Sample preparation method, defect observation method
JP2024022791A (en) * 2022-08-08 2024-02-21 株式会社日立製作所 Standard sample used for transmission electron microscope, manufacturing method of the same, adjustment method of transmission electron microscope and analysis method of observation image obtained by transmission electronic microscope

Also Published As

Publication number Publication date
JP2004286486A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US6963630B2 (en) Method for evaluating an SOI substrate, evaluation processor, and method for manufacturing a semiconductor device
US5960255A (en) Calibration standard for 2-D and 3-D profilometry in the sub-nanometer range and method of producing it
JP3735614B2 (en) Transmission electron microscope observation base sample, transmission electron microscope measurement method, and transmission electron microscope apparatus
CN106997847A (en) Pellicle and its manufacture method
JPH05251338A (en) Manufacture of quantum-box row
US6884362B2 (en) Mass production of cross-section TEM samples by focused ion beam deposition and anisotropic etching
US9721751B2 (en) Electron microscopy specimen and method of fabrication
US20030032299A1 (en) Method of aligning structures on opposite sides of a wafer
Decoster et al. Lift-off protocols for thin films for use in EXAFS experiments
JP2010056295A (en) Standard sample for sputtering rate correction, and method of calculating sputtering rate ratio by using the same
JP3287320B2 (en) Preparation method for transmission electron microscope sample
US7232631B2 (en) Mask for charged particle beam exposure, and method of forming the same
Kennedy MBE-grown ZnO-based nanostructures for electronics applications
JP2006267048A (en) Method for preparing sample for cross-section observation
US8906709B1 (en) Combinatorially variable etching of stacks including two dissimilar materials for etch pit density inspection
JP7327714B1 (en) Gallium arsenide single crystal substrate and manufacturing method thereof
KR20050112261A (en) Method of forming sample using analysis by tem
JP4858939B2 (en) Method for producing nitride thin film on sapphire substrate
JP2006093642A (en) Sectional sample preparing method
JP3303858B2 (en) X-ray mask and manufacturing method thereof
KR100676613B1 (en) Manufacturing Method of Semiconductor Specimen by Using Paraffin
Patchett Germanium-tin-silicon epitaxial structures grown on silicon by reduced pressure chemical vapour deposition
Vanhellemont et al. A rapid specimen preparation technique for cross-section TEM investigation of semiconductors and metals
CN113916919A (en) Sample preparation method, sample detection method and sample detection system
JP2917937B2 (en) Method for analyzing impurity concentration distribution of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees