JP3735389B2 - Manufacturing method of surface acoustic wave device - Google Patents

Manufacturing method of surface acoustic wave device Download PDF

Info

Publication number
JP3735389B2
JP3735389B2 JP29727594A JP29727594A JP3735389B2 JP 3735389 B2 JP3735389 B2 JP 3735389B2 JP 29727594 A JP29727594 A JP 29727594A JP 29727594 A JP29727594 A JP 29727594A JP 3735389 B2 JP3735389 B2 JP 3735389B2
Authority
JP
Japan
Prior art keywords
layer
plate
acoustic wave
package
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29727594A
Other languages
Japanese (ja)
Other versions
JPH08162879A (en
Inventor
正夫 坂庭
健一郎 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba Corp
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba IT and Control Systems Corp filed Critical Toshiba Corp
Priority to JP29727594A priority Critical patent/JP3735389B2/en
Publication of JPH08162879A publication Critical patent/JPH08162879A/en
Application granted granted Critical
Publication of JP3735389B2 publication Critical patent/JP3735389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、移動体通信・BS(衛星放送受信)チューナー等を構成している電子部品に関し、特にその周波数変換フィルタとなる弾性表面波素子の製造方法に関する。
【0002】
【従来の技術】
従来、この種の弾性表面波パッケージの素子パッケージには、次のようなものがある。すなわち、図8に示すように、素子パッケージ11は複数のセラミック基材を段差を有する積層状態として構成されている。
【0003】
まず、素子パッケージ11の構成の詳細を図7、図10を参照して説明する。素子パッケージ11は、外部(図示しない電子回路基板等)との電気的接続および表面波素子9′から素子パッケージ11内部のスルーホールdを通じて電気的に接続するベースパターン1″を印刷した第1層1′と、表面波素子9からのボンディングワイヤ10により電気的接続しかつスルーホールeを通して第1層1′へ電気的接続をするボンディングパターン2′を印刷した第2層2と、この第2層2の保護および電気的接続のための第3層3と、素子パッケージ11内の図示しない内部を密閉するための蓋を溶接するリング4からなっている。
【0004】
第1層1′、第2層2、第3層3のそれぞれは、主としてセラミック器材であり、セラミック特有の焼成工程によって積層、結合されている。溶接リング4はロー付け溶接によって第3層3に固定されている。
【0005】
【発明が解決しようとする課題】
次に、素子パッケージ11へ表面波素子9′を装着する際の素子パッケージの構造に関する問題点について説明する。
【0006】
まず、第1に素子パッケージの外形仕上りの精度が低いことである。これについて図7を参照して説明する。一般的にこの種のパッケージ11は、第1層1′から第3層3の各々の層の形状、パターンを単位として、縦横に多数配列した所定外寸の図示しないシート状で各々の層を焼成工程で積層、結合し、結合後の素子パッケージ単位の寸法に合わせて、積層方向に格子状に形成したスリット(積層全厚さの1/2〜2/3)に沿って分割切断する。
【0007】
すなわち、楔効果(楔形状による軽荷重切断)によって切断するので、切断端面仕上り寸法にばらつきを生じ、0.1〜0.15mm程度の精度となる。
【0008】
第2に各層に形成されるパターンの印刷精度が低いことである。図7、図9につきこれについて説明する。第1層1′上のベースパターン1″および第2層2上のボンディングパターン2′は、各々各個別に印刷工程(スクリーン印刷)によって印刷する。単一の層状態、つまり焼成前にあっては、層の基準点に対して10〜20μm程度の高い印刷精度であるが、焼成後の完成した素子パッケージ11としては約60〜80μm程度と4倍程度に悪化してしまう。
【0009】
第3に各層間の積層、結合精度の低いことがあげられる。これにつき図7を参照して説明する。素子パッケージ11は前記のように焼成工程を経て積層、結合されるため、焼成前に図示しない治工具等により、5〜15μm程度に層間位置合わせを行っても、焼成後においては60〜80μm程度と約5倍に悪化してしまう。
【0010】
第4に表面波素子9′の素子パッケージ11内に対する装着精度が低く、表面波素子9′の外形寸法が制約されることがある。これは、前記1〜3の問題点から二次的に派生する問題である。問題点を説明する前に素子パッケージ11に表面波素子9′を装着するこの装着方法につき、図10,図11を参照して説明する。素子パッケージ11に表面波素子9′を装着する工程においては、前記第1および第3の問題により、素子パッケージ11の外形を位置わせして表面波素子9を装着しても、十分な精度が得られない。すなわち、表面波素子9′が素子パッケージ11の第2層2のボンディングパターン2′に乗り上がってしまうという不都合が発生するからである。従って、一般的には素子パッケージ11のボンディングパターン2′を図示しない画像認識系で位置補正を行い、表面波素子9′を装着する方法をとっている。
【0011】
次に、図10、図12、図13を参照して前記問題点に関して説明する。前記ボンディングパターン2′を画像認識系によって位置補正を行って表面波素子9′を装着する方法においては、前記第1の問題点による装着精度低下の要因は解決できるものの、第2の問題点による装着精度低下の要因が残る。すなわち、表面波素子9′と第2層2との隙間fは、f≧80+α μm必要となる。ここに示した80μmは前記第2の問題点の焼成後の印刷精度、α μmは図示してない装着工程設備の設備性能(機械的装着精度)で決定される数値であって、一般的に50μm程度とされている。
【0012】
従って、一般的にはf≧130μmとなり表面波素子9′の外形寸法gは、素子パッケージ11の第2層2のキャビティ寸法Y1を基準として。常ら2f分の260μmだけ最低でも小さく設計しなければならない(g=Y1−2f)。
【0013】
また、ボンディングパターン2′は最大80μmの印刷精度でばらつきが発生し、このボンディングパターン2′を画像認識系で位置補正して表面波素子9′装着するので、装着位置も相対的にばらつきを生じることなる。
【0014】
このばらつきは、図示しない装着工程の次工程である接続工程(ワイヤボンディング工程)でのボンディングワイヤ10のワイヤ軌跡の異常や、表面波素子9′とボンディングパターン2′を画像認識系により位置合わせする時点での認識異常の原因となり、設備稼働率の低下を生じ工程歩留まりの低下を生じる。
【0015】
本発明は上記の事情に基づきなされたもので、積層構造をなす弾性表面波素子パッケージにおいて、素子パッケージの表面波素子を装着する装着精度を向上させかつ表面波素子の外形寸法の自由度を高めようにした弾性表面波素子の製造方法を提供する。
【0017】
【課題を解決するための手段】
発明の弾性表面波素子の製造方法は、複数枚のセラミック基材を積層状で段差を有する構造で結合固定した表面波素子を保護および表面波素子から外部へ電気的接続するための素子パッケージと、表面波素子と、素子パッケージと表面波素子を電気的接続するボンディングワイヤからなる弾性表面波素子の製造方法において、前記素子パッケージの表面波素子を装着する部分の層面基材に少なくとも2箇所のパターンを対称的な位置に形成すると共に、複数枚の積層状基材の位置合せを前記2箇所のパターンに対する画像処理に基づいて行う。
【0019】
【作用】
本発明の弾性表面波素子の製造方法においては、素子を装着する位置すなわち装着エリアとして素子パッケージのボンディングではなく、装着する面に形成したパターンを画像処理によって認識して実際の装着エリアとしての位置補正を行い、迅速かつ正確に素子の装着を行うことができる。
【0020】
【実施例】
以下、本発明の実施例の詳細を図面に基づき説明する。
【0021】
図1は本発明の一実施例による素子パッケージの斜視図、図2は図1に示した素子パッケージを上方向から見た平面図、図3は図1に示した素子パッケージの第1層を示す平面図、図6は図1に示した素子パッケージの組立状態を示す平面図である。
【0022】
これらの図に示すように、本実施例による素子パッケージは、表面波素子9と、表面波素子9から他端面へ電気的接続を行うボンディングワイヤ10と、セラミック基材の積層、結合および段差を有する外部電子回路基板(図示しない)と電気的接続をする図示しない配線パターンを印刷した第1層1と、表面波素子9からボンディングワイヤ10で電気的接続する表面波素子9の他端面となるボンディングパターン2′を印刷した第2層2と、第2層2の保護および電気的接続のために設けた第3層3と、図示しない蓋によって表面波素子を密閉する溶接リング4からなる素子パッケージ5により構成される。なお、表面波素子9は図示しない接着剤で素子パッケージ5の第1層1に装着されている。
【0023】
また、第1層1には図2、図3に示すように、表面波素子9を装着する中心に対して対称的に向かい合うように、2箇所に三角形パターン6、6′を形成してあり、表面波素子9を素子パッケージ5に装着する際には図示しない装着設備によって、前記三角形パターン6、6′を画像認識系で位置補正の処理を行い装着するようになっている。
【0024】
次に、図2、図4、図5の示すところに従い三角形パターン6、6′の図示しない装着設備における作用について説明する。三角形パターン6、6′は積層、結合後の素子パッケージ5の表面波素子9を装着するエリアである第1層1と、第2層2とで合成されたキャビティ7に配置されている。これらの三角形パターン6、6′は、素子パッケージ5の焼成前において図4に示すように大きさ、位置,関係ともにキャビティ寸法Y1の中心に対して対称的に配置されているが、焼成後では印刷精度および積層、結合精度の総合された精度ばらつきから、図5に示すような大きさ、位置関係が変化した変形パターン8、8′となる。
【0025】
図示しない画像認識系では、三角形パターン6、6′の頂点I (A、A′)の位置を抽出できるので、変形パターン8、8′であっても同様に頂点II(B、B′)が抽出できる。
【0026】
従って、線分A−A′の長さと線分B−B′の長さは等しく且つ同一素子パッケージであるならば不変であって、キャビティ7のキャビティ寸法Y1として正確に抽出できる。
【0027】
また、キャビティ横寸法(X1)も線分A−A′または線分B−B′を基準として、図示しない画像認識系の演算処理系によって線分に対して直交な平行移動の距離データとして、キャビティ7の線分部分の角度的なずれ量を含めた理論的な寸法、すなわち素子パッケージ5の製品仕様上の標準寸法として抽出できる。以下に、図3、図6、図10、図11を参照して本発明の効果を説明する。本発明の効果は、キャビティ7の形状、寸法を正確に抽出できるので、素子パッケージ5は表面波素子9を装着する上で必要となるキャビティ寸法Y1に対する表面波素子9との隙間cを、c≧α μm(α=50μm程度)に抑えられ従来技術で隙間寸法の悪化要因となっていた80μm(f≧80+α μm)の精度向上により、表面波素子9の外径寸法hがg+(80×2)=g+160μmとなり、従来技術に比較して160μm分の表面波素子の大型化または素子パッケージのキャビティ内径の小型化による素子パッケージの小型化などの製品デザインの設計自由度の向上と、表面波素子9の装着位置精度の向上と再現性のよさとにより次工程(ワイヤボンディング工程)の設備稼動率および製品歩留りの向上が見られる。
【0028】
以下、上記実施例の製造法を実施する製造装置について説明する。
【0029】
図21は従来、この種の製造法において使用される部材搬送ジグの平面図、図23は図21のR−R線における断面図である。この種のジグにおいては、部材30を整列装着し、その着脱を容易にするための逃げ溝36を配置した部材ポケット35が列、行の単位である一定の間隔に複数配置され、行方向の間隔に同期した位置に部材位置決め孔37、搬送ガイド孔38およびV字溝39を配置した1枚の平板を配置した部材搬送具40がある。部材搬送具40は、平板35に部材ポケット35′、部材位置決め孔37、搬送ガイド孔38、V字溝39をプレスによる一体成型で加工してある。なお、部材ポケット35′は平板35の塑性変形を利用した深絞り加工によって、平板35に対して窪み状にして部材30を整列させるようにしてある。
【0030】
上記従来の部材搬送具は下記の通りに作動する。例えば、部材30の組立工程の中で部材30を着脱する移載工程の図示しない移載装置において、部材搬送具40は図示しないジグ収納装置から1枚づつ図示しないジグ搬送系によって搬送ガイド孔38をガイドとして、部材ポケット35の行方向の間隔と同一の距離を搬送し部材位置決め孔37に図示しない位置決めピン等を挿入することにより部材ポケット35′の位置決めを行う。すなわち、部材位置決め孔37および搬送ガイド孔38は部材ポケット35′の行方向の中心線上に位置しているので、位置決めがなされるわけである。
【0031】
部材ポケット35′の位置決め後、部材30は図示しない部材搬送系により部材搬送具40の部材ポケット35′に着脱される。すなわち、部材30の着脱作業がなされる。この時、部材30を保持する図示しないチャック爪の部分との逃げとなるのが逃げ溝36である。
【0032】
部材30の着脱は、列方向の部材ポケット35′個数分同時または一括して行い、この後は順次行方向に部材ポケット35′を前記の手順で搬送して行方向の個数分の着脱を繰り返す。
【0033】
最後の着脱作業が終ると、図示しないジグ搬送系によって搬送ガイド孔38をガイドとして、部材搬送具40が図示しないジグ回収装置に排出、回収される。また、他の工程設備においては前記の着脱作業に相当する作業が他の作業となる。すなわち、この種の従来装置における組立工程には前記の移載工程のほか、素子装着工程(チップマウント工程)、素子配線接続工程(ワイヤボンディング工程)、溶接密閉工程(シーリング工程)がある。
【0034】
なお、素子装着工程および素子配線接続工程では工程設備の性能上、部材搬送具40の平板35のS面と部材10のP面の面レベル(高さ)を合わせる必要があった。
【0035】
以下に、部材30の組立構造と面レベルを合わせる必要について図22および図23を参照して説明する。部材30は、素子装着工程において素子33を図示しない接着剤により装着し、次の素子配線接続工程において部材30と素子33とをボンディングワイヤ34で電気的に接続する。平板35SH面と部材30のP面の面レベルを合わせる理由は、前記両工程ともに工程設備に光学系を具えるものであるため、この光学系の焦点等の機械的な調整を含めた基準面合わせにS面を利用しているので、部材30のP面が同一面となることが要求されること、素子配線接続工程設備では平板35のS面が基準となっており、ボンディングワイヤ34を配線する高さを同一にすることにより設備稼働率が安定することとがある。
【0036】
次に、上記従来の装置の問題点について説明する。従来装置における問題点は、前記のS面とP面の面レベルは一般的に設備性能上および稼働率安定性から0.1〜0.2mm程度以下が必要である。従来例の部材搬送具40はプレス加工による一体成形でしかも部材ポケット35′を形成するために、深絞り加工とされているために前記S面とP面とから相対的な位置となる平板35の深絞り加工面の面レベルは、0.15〜0.2mm程度となり必要な精度とぼ同程度となる。部材30のP面の部材30の製造上のばらつきや、平板35の素材固有のばらつき等が複合されることによって、設備稼働率の低下や部材30のへの物理的な損傷等の悪影響があること、また部材30へのP面寸法が異なる場合、すなわち部材の品種が異なる場合にはたとえ0.1〜0.2mm程度の寸法差であっても、プレス金型を製作しなければならない。金型の費用としては、300〜400万円程度の高額の費用を要すること、平板35はプレス加工上前記の逃げ溝36、部材位置決め孔37、搬送ガイド孔38、V字溝39の加工精度を組立工程の設備の性能から、±0.1mmにするためその板厚はt1.0mm程度が限界であり、部材搬送具40を組立工程内で繰り返し使用する上で機械的な強度が低く、定期的に且つ高頻度で更新しなければならず管理が非常に面倒であり、トータルなランニングコストが高くなる欠点がある。
【0037】
記従来の欠点を一掃した部材搬送具を以下参考として説明する
【0038】
図14は平面図、図15はその側面図、図16はその上板の平面図、図17は曲板材の平面図である。これらの図において、部材搬送具24は、上板21−1と、下板21−2を組み合わせた平板層21′と、周辺を板金の曲げ加工によって整形した曲板材34の3枚の板材を溶接によって組み立てられている。上板21−1は図14、図16に示すように、部材30を整列装着する整列孔27と、部材30を図示しない設備または手作業によって部材搬送具24から着脱するための逃げ溝28からなる部材ポケット29が列と行とを単位方向として、所定間隔で複数列配置してある。整列孔27の列方向の中心線の延長上において、片方には図示しない設備で部材ポケット29および部材30を位置決めする部材位置決め孔25、他の片方には図示しない設備で行方向の整列孔27を単位、すなわち2つの部材ポケット29を単位として、順次搬送および部材搬送具24を搬送するための搬送ガイド孔26を、整列孔27の行方向の間隔と同一間隔で組立ガイド孔23′をそれぞれ配置してある。さらに、平板層21′の行方向端辺近傍であって、且つ部材ポケット29の列方向中心線上の両端には、部材搬送具24を図示しない設備で整列および搬送するためのガイドとなるV字溝23が設けられている。
【0039】
なお、この平板層21′に配置してある部材ポケット29、部材位置決め孔25、搬送ガイド孔26、組立ガイド孔23′、V字溝23の孔および溝は、全てエッチング加工によって形成されている。なお、上板21−1においては、図20に示すように、それ等の孔などのエッチング加工後においてさらに電解研磨を施され、上板21−1の外形と前記孔および溝等のエッチング加工による加工面、周辺の端面のR21−5が形成してある。
【0040】
また、下板21−2にも上板21−1と同様の前記5種の孔および溝が形成されている。すなわち、上板、下板は基本的に同一形状としてある。
【0041】
曲板材22には、図17に示すように、部材30を図示しない設備等によって部材搬送具24から着脱するための逃げ溝31と、部材30の脱落を防ぎ部材30の底面を保持する台座32を兼ねる十字逃げ溝32′と、上板21−1、下板21−2と列、行の方向と相対的位置が相対的に同じである組立ガイド孔41が配置されている。
【0042】
以下、動作について説明する。上板21−1と、下板21−2と、曲板材22の3枚の板材は、各々の板材を形成している少なくとも2個の組立ガイド孔23′を基準として、図示しない位置合わせピン等により各板材共に相互の相対的な位置を整合するように組み立てて部材搬送具24を構成する。
【0043】
上板21−1、下板21−2、曲板材22の各々の板材共にエッチング加工により形成した組立ガイド孔23′が基準となるので、単体の板材の状態で相対的な孔および溝の形成精度が10〜20μm程度であり、3枚の板材を組み立てた状態での組み立て精度は、各々の板材の相互的な精度を加味しても50〜60μm程度となる。また、上板21−1は電解研磨によって、1〜0.2mm程度の丸みRが形成されているので、これが部材30を図示しない設備で部材ポケット29に装着する動作時にガイド的に作用し、装着動作を円滑にすると共に部材30に対する損傷等を防止する。
【0044】
曲板材22は、その列方向の断面形状が図示しない設備によって部材搬送具24を搬送する際の平板層21′の下方に配置してあり, 列方向の端面を互いに向かい合うように折り曲げられた所謂コの字型にに成形しているので、板厚0.8〜1.2mm程度の所謂薄版構造の平板層21′の断面方向の機械的強度を補強している。これは、部材搬送具24が図示しない設備で搬送されるされる際に搬送ガイド孔26、位置決めする際に部材位置決め孔25を使用するので、図示しない設備において設備側と部材搬送具24とが互いに接触したり摩擦したりすることにより必要な機械的強度は、平板層21′が受け持つこととなり、前記曲板材22はこれを補強する。
【0045】
また、上板21−1と下板21−2は各々の部材において、その板厚が0.3〜0.5mmの組み合わせで平板層21′を構成しているので、前記従来例の作用において説明した部材の組立工程におけるの設備の性能から要求される作業上の基準となる、図18に示すP面と平板層21′のO面の面レベルを0.05〜0.1mm程度の精度で同一にできる。すなわち、この精度は組み合わせる板材の仕上り精度で決まるものであり、t=0.3〜0.5mmの板厚ではその仕上り精度は0.05〜0.1mm程度となる。
【0046】
部材30の品種が異なる場合に前記の面レベルを同一に合わせることを含め、平板層21′を構成する上板21−1、下板21−2の各板材の組み合わせがどのようになるかを図16〜図18を参照して説明する。図18に示すように、部材30のP面と平板層21′のO面の面レベルを同一にするためには、平板層21′は上板21−1、下板21−2ともに同一の孔および溝、すなわち部材ポケット29、部材位置決め孔25、搬送ガイド孔26、組立てガイド孔23′、V字溝23を形成した板材であって、部材30のt1寸法が平板層33の板厚寸法と同一になるよう上板21−1、下板21−2の板厚寸法を組み合わせる。
【0047】
一方、図19に示すように異なる部材30′になった時には平板層21′の各板材組み合わせは、t2寸法と上板21−3の板厚寸法を同一にして下板21−4を部材30の台座にして、平板層21″にする。なお、平板層21′と平板層21″とはその板厚は同一となるように上板21−3と下板21−4を組み合わせる。この理由は、図示しない設備によって部材搬送具24を搬送するためのガイドとなるのは平板層21″であり、設備の性能上その板厚寸法差として0.1〜0.2mm程度に板厚を合わせなければならないからである。
【0048】
また、下板21−4は前記下板21−2とは異なり、図17に示す曲板材22の十字状の逃げ溝32′を形成する。すなわち、t1寸法とt2寸法との差に相当する寸法分を平板層21″の下板21−4より得て、平板層21″のO面と部材30′のF面の面レベルを同一にするための同一にするために部材30′の台座となるからである。
【0049】
なお、上板21−3、下板21−4の板厚は、0.3〜0.5mmで組み合わせてあるので、部材ポケット29の外径が同一、つまりt1寸法やt2寸法のように部材外形が同一寸法で、P面、Q面の高さのみ異なる場合においては、エッチング加工する際に必要な露光マスクの変更は不要である。
【0050】
以上のように、従来のものと比較して平板層と曲板材の組立構造によって機械的強度を3倍以上に向上させること、その各々の板材に形成した個々の孔および溝の諸寸法とそれらの相対的な位置精度を2倍程度高めること、面レベルの必要なO面およびP面の精度を2倍程度高めることによって、部材の組立工程内の各設備での搬送、作業等の設備稼動率を安定させることができ、製品歩留まりの向上を図ることができる。また、部材の品種が異なる場合には平板層を構成する各板材の板厚組合せを変更するか、またはエッチング加工に必要な露光マスクを製作するだけでよく、安価に対応できる。
【0051】
【発明の効果】
本発明によれば、積層構造をなす弾性表面波素子パッケージにおいて、素子パッケージの表面波素子を装着する装着精度を向上させかつ表面波素子の外形寸法の自由度を高めようにした弾性表面波素子の製造方法を提供できる
【図面の簡単な説明】
【図1】本発明の一実施例による素子パッケージの斜視図。
【図2】図1を上方向から見た平面図。
【図3】図1に示した素子パッケージの第1層を示す平面図。
【図4】図1に示した素子パッケージの状態挙動を示す部分平面図。
【図5】図1に示した素子パッケージの状態挙動を示す部分平面図。
【図6】図1に示した素子パッケージの組立状態を示す平面図。
【図7】従来の素子パッケージの分解斜視図。
【図8】従来の素子パッケージの斜視図。
【図9】図7の第1層を示す平面図。
【図10】従来例の組立図。
【図11】その断面図。
【図12】図8を上から見た平面図。
【図13】図10を拡大して示す拡大断面図。
【図14】参考となる搬送具の一例を示す平面図。
【図15】その側面図。
【図16】その上板の平面図。
【図17】その曲板の平面図。
【図18】図15の組立状態を示す不分断面図。
【図19】別部材の組立状態を示す部分断面図。
【図20】図18を拡大して示す拡大断面図.
【図21】従来の搬送具の平面図。
【図22】部材の組立状態を示す断面図。
【図23】図21の側面の断面図。
【符号の説明】
1………第1層
2………第2層
2’…ボンディングパターン
3………第3層
4………溶接リング
5………素子パッケージ
6、6’…三角形パターン
7………キャビティ
8、8’…変形パターン
9………表面波素子
10………ボンディングワイヤ
11………素子パッケージ
21′……平板層
22………曲面材
24………部材搬送具
29………部材ポケット
[0001]
[Industrial application fields]
The present invention is a mobile communication · BS relates to an electronic component constituting the (satellite) tuner or the like, relate to particular manufacturing how the surface acoustic wave element to be that frequency conversion filter.
[0002]
[Prior art]
Conventionally, there are the following device packages of this type of surface acoustic wave package. That is, as shown in FIG. 8, the element package 11 is configured by stacking a plurality of ceramic substrates with steps.
[0003]
First, details of the configuration of the element package 11 will be described with reference to FIGS. The element package 11 has a first layer printed with a base pattern 1 ″ that is electrically connected to the outside (an electronic circuit board (not shown) or the like) and electrically connected from the surface wave element 9 ′ through a through hole d inside the element package 11. 1 ', a second layer 2 printed with a bonding pattern 2' electrically connected by a bonding wire 10 from the surface wave element 9 and electrically connected to the first layer 1 'through the through hole e, and the second layer 2 It consists of a third layer 3 for protecting the layer 2 and electrical connection, and a ring 4 for welding a lid for sealing the inside of the element package 11 (not shown).
[0004]
Each of the first layer 1 ′, the second layer 2, and the third layer 3 is mainly a ceramic device, and is laminated and bonded by a firing process unique to ceramic. The welding ring 4 is fixed to the third layer 3 by brazing welding.
[0005]
[Problems to be solved by the invention]
Next, problems relating to the structure of the element package when the surface acoustic wave element 9 'is mounted on the element package 11 will be described.
[0006]
First, the accuracy of the external finish of the element package is low. This will be described with reference to FIG. In general, this type of package 11 is formed in a sheet shape (not shown) having a predetermined outer dimension in which a large number of layers are arranged vertically and horizontally in units of the shape and pattern of each of the first layer 1 'to the third layer 3. In the firing step, the layers are laminated and bonded, and divided and cut along slits (1/2 to 2/3 of the total thickness of the stacked layers) formed in a lattice shape in the stacking direction in accordance with the dimensions of the combined element package units.
[0007]
That is, since the cutting is performed by the wedge effect (light load cutting by the wedge shape), the finished dimensions of the cut end surface vary, and the accuracy is about 0.1 to 0.15 mm.
[0008]
Secondly, the printing accuracy of the pattern formed on each layer is low. This will be described with reference to FIGS. The base pattern 1 ″ on the first layer 1 ′ and the bonding pattern 2 ′ on the second layer 2 are each printed individually by a printing process (screen printing). In a single layer state, ie before firing. Has a high printing accuracy of about 10 to 20 μm with respect to the reference point of the layer, but the completed device package 11 after firing is about 60 to 80 μm, which is about four times worse.
[0009]
Thirdly, the lamination between layers and the bonding accuracy are low. This will be described with reference to FIG. Since the element package 11 is laminated and bonded through the firing process as described above, even if the interlayer alignment is performed to about 5 to 15 μm with a jig or the like (not shown) before firing, about 60 to 80 μm after firing. It will deteriorate about 5 times.
[0010]
Fourth, the mounting accuracy of the surface acoustic wave element 9 'in the element package 11 is low, and the external dimensions of the surface acoustic wave element 9' may be restricted. This is a problem that is secondarily derived from the above problems 1 to 3. Prior to describing the problem, this mounting method for mounting the surface wave element 9 'on the element package 11 will be described with reference to FIGS. In the step of mounting the surface wave element 9 ′ on the element package 11, sufficient accuracy can be obtained even if the surface wave element 9 is mounted by positioning the outer shape of the element package 11 due to the first and third problems. I can't get it. That is, the inconvenience that the surface wave element 9 ′ rides on the bonding pattern 2 ′ of the second layer 2 of the element package 11 occurs. Therefore, generally, the bonding pattern 2 'of the element package 11 is corrected by an image recognition system (not shown) and the surface wave element 9' is mounted.
[0011]
Next, the problem will be described with reference to FIG. 10, FIG. 12, and FIG. In the method of mounting the surface acoustic wave element 9 ′ by correcting the position of the bonding pattern 2 ′ using an image recognition system, the cause of the decrease in mounting accuracy due to the first problem can be solved, but the second problem is caused. The factor of mounting accuracy decline remains. That is, the gap f between the surface acoustic wave element 9 'and the second layer 2 needs to be f ≧ 80 + α μm. 80 μm shown here is the printing accuracy after firing of the second problem, α μm is a numerical value determined by the equipment performance (mechanical mounting accuracy) of the mounting process equipment not shown, It is about 50 μm.
[0012]
Therefore, generally, f ≧ 130 μm, and the external dimension g of the surface acoustic wave element 9 ′ is based on the cavity dimension Y 1 of the second layer 2 of the element package 11. Usually, it must be designed to be as small as 260 μm for 2f (g = Y1-2f).
[0013]
Further, the bonding pattern 2 'varies with a printing accuracy of a maximum of 80 .mu.m, and the bonding pattern 2' is corrected by the image recognition system and mounted on the surface wave element 9 ', so that the mounting position also varies relatively. It will be different.
[0014]
This variation is caused by an abnormality in the wire trajectory of the bonding wire 10 in the connection process (wire bonding process), which is the next process of the mounting process (not shown), and the surface wave element 9 'and the bonding pattern 2' are aligned by the image recognition system. This causes a recognition error at the time, resulting in a decrease in equipment operation rate and a decrease in process yield.
[0015]
The present invention has been made based on the above circumstances, and in a surface acoustic wave device package having a laminated structure, the mounting accuracy of mounting the surface wave device of the device package is improved and the degree of freedom of the external dimensions of the surface wave device is increased. It provides a method of manufacturing a surface acoustic wave element which is adapted.
[0017]
[Means for Solving the Problems]
A method of manufacturing a surface acoustic wave device according to the present invention includes a device package for protecting and electrically connecting a surface wave device, in which a plurality of ceramic substrates are bonded and fixed in a laminated structure having a stepped structure to the outside from the surface wave device. And a surface acoustic wave device, and a surface acoustic wave device comprising a bonding wire that electrically connects the device package and the surface acoustic wave device. These patterns are formed at symmetrical positions, and alignment of a plurality of laminated base materials is performed based on image processing for the two patterns.
[0019]
[Action]
In the method for manufacturing a surface acoustic wave device according to the present invention, the position where the device is mounted, that is, the mounting area, not the bonding of the device package, but the pattern formed on the mounting surface is recognized by image processing and the position as the actual mounting area. Correction is performed, and the element can be mounted quickly and accurately.
[0020]
【Example】
The details of the embodiments of the present invention will be described below with reference to the drawings.
[0021]
Figure 1 is a perspective view of a device package according to an embodiment of the present invention, FIG. 2 is a plan view seen from above the element package shown in FIG. 1, FIG. 3 the first layer of the device package shown in FIG. 1 FIG. 6 is a plan view showing an assembled state of the element package shown in FIG.
[0022]
As shown in these drawings, the element package according to the present embodiment has a surface wave element 9, a bonding wire 10 that electrically connects the surface wave element 9 to the other end surface, and stacking, bonding, and steps of the ceramic substrate. A first layer 1 printed with a wiring pattern (not shown) that is electrically connected to an external electronic circuit board (not shown), and the other surface of the surface wave element 9 that is electrically connected from the surface wave element 9 to the bonding wire 10. An element comprising a second layer 2 printed with a bonding pattern 2 ', a third layer 3 provided for protection and electrical connection of the second layer 2, and a weld ring 4 for sealing the surface wave element with a lid (not shown). A package 5 is used. The surface wave element 9 is attached to the first layer 1 of the element package 5 with an adhesive (not shown).
[0023]
Further, as shown in FIGS. 2 and 3, the first layer 1 is formed with triangular patterns 6 and 6 'at two locations so as to be symmetrically opposed to the center on which the surface wave element 9 is mounted. When the surface wave element 9 is mounted on the element package 5, the triangular patterns 6 and 6 'are mounted by performing position correction processing by an image recognition system using a mounting facility (not shown).
[0024]
Next, the action of the triangular pattern 6, 6 'in the mounting equipment (not shown) will be described with reference to FIGS. The triangular patterns 6 and 6 ′ are arranged in the cavity 7 synthesized by the first layer 1 and the second layer 2, which are areas where the surface wave elements 9 of the element package 5 after lamination and bonding are mounted. These triangular patterns 6 and 6 'are arranged symmetrically with respect to the center of the cavity dimension Y1 in terms of size, position and relationship before firing the element package 5, as shown in FIG. Due to the integrated accuracy variation of the printing accuracy, the stacking accuracy, and the coupling accuracy, the deformation patterns 8 and 8 ′ having different sizes and positional relationships as shown in FIG. 5 are obtained.
[0025]
In the image recognition system (not shown), the positions of the vertices I (A, A ') of the triangular patterns 6, 6' can be extracted, so that the vertices II (B, B ') are similarly applied to the deformed patterns 8, 8'. Can be extracted.
[0026]
Accordingly, the length of the line segment A-A ′ and the length of the line segment BB ′ are equal and are unchanged if they are the same element package, and can be accurately extracted as the cavity dimension Y 1 of the cavity 7.
[0027]
Further, the cavity horizontal dimension (X1) is also used as distance data of parallel movement orthogonal to the line segment by an arithmetic processing system (not shown) based on the line segment A-A 'or line segment B-B'. It can be extracted as a theoretical dimension including the amount of angular deviation of the line segment portion of the cavity 7, that is, a standard dimension in the product specification of the element package 5. Hereinafter, the effects of the present invention will be described with reference to FIGS. 3, 6, 10, and 11. The effect of the present invention is that the shape and dimensions of the cavity 7 can be accurately extracted, so that the element package 5 has a clearance c between the surface wave element 9 and the cavity dimension Y1 required for mounting the surface wave element 9 as c. The outer diameter dimension h of the surface acoustic wave element 9 is reduced to g + (80 × 80 μm (α × 50 μm)) due to the improvement in accuracy of 80 μm (f ≧ 80 + α μm), which has been a factor of deterioration of the gap dimension in the prior art. 2) = g + 160 μm, which improves the design flexibility of the product design, such as downsizing of the device package by increasing the size of the surface wave device by 160 μm or downsizing the cavity inner diameter of the device package as compared with the prior art, and surface wave Improvement in the equipment operation rate and product yield in the next process (wire bonding process) can be seen due to the improved mounting position accuracy of the element 9 and good reproducibility.
[0028]
Hereinafter, the manufacturing apparatus which implements the manufacturing method of the said Example is demonstrated.
[0029]
FIG. 21 is a plan view of a member conveying jig conventionally used in this type of manufacturing method, and FIG. 23 is a cross-sectional view taken along the line RR in FIG. In this type of jig, a plurality of member pockets 35 in which members 30 are aligned and mounted and clearance grooves 36 for facilitating the mounting and dismounting thereof are arranged at regular intervals, which are units of columns and rows, are arranged in the row direction. There is a member conveying tool 40 in which one flat plate in which the member positioning hole 37, the conveying guide hole 38 and the V-shaped groove 39 are arranged is arranged at a position synchronized with the interval. In the member conveying tool 40, a member pocket 35 ', a member positioning hole 37, a conveying guide hole 38, and a V-shaped groove 39 are formed on a flat plate 35 by integral molding using a press. The member pocket 35 ′ is formed in a recessed shape with respect to the flat plate 35 by deep drawing using plastic deformation of the flat plate 35 so that the members 30 are aligned.
[0030]
The conventional member conveying tool operates as follows. For example, in the transfer device (not shown) in the transfer step of attaching and detaching the member 30 in the assembly process of the member 30, the member transport tool 40 is transported from the jig storage device (not shown) one by one by the jig transport system (not shown). As a guide, the member pocket 35 'is positioned by conveying the same distance as the interval of the member pocket 35 in the row direction and inserting a positioning pin or the like (not shown) into the member positioning hole 37. That is, since the member positioning hole 37 and the conveyance guide hole 38 are located on the center line in the row direction of the member pocket 35 ', positioning is performed.
[0031]
After positioning the member pocket 35 ', the member 30 is attached to and detached from the member pocket 35' of the member transport tool 40 by a member transport system (not shown). That is, the attachment / detachment work of the member 30 is performed. At this time, it is the escape groove 36 that escapes from a chuck claw portion (not shown) that holds the member 30.
[0032]
The attachment / detachment of the members 30 is performed simultaneously or collectively for the number of member pockets 35 ′ in the column direction, and thereafter, the member pockets 35 ′ are sequentially transported in the row direction by the above-described procedure, and the attachment / detachment for the number of rows in the row direction is repeated. .
[0033]
When the final attaching / detaching operation is completed, the member conveying tool 40 is discharged and collected by a jig collecting device (not shown) using the conveying guide hole 38 as a guide by a jig conveying system (not shown). Further, in other process equipment, the work corresponding to the above-described attachment / detachment work is another work. That is, the assembly process in this type of conventional apparatus includes an element mounting process (chip mounting process), an element wiring connecting process (wire bonding process), and a welding sealing process (sealing process) in addition to the transfer process.
[0034]
In the element mounting process and the element wiring connection process, it is necessary to match the surface levels (heights) of the S surface of the flat plate 35 of the member transport tool 40 and the P surface of the member 10 due to the performance of the process equipment.
[0035]
It will be described below with reference to FIG. 22 and FIG. 23 on the need to match the assembly structure and the surface level of the member 30. The member 30 mounts the element 33 with an adhesive (not shown) in the element mounting process, and electrically connects the member 30 and the element 33 with the bonding wire 34 in the next element wiring connection process. The reason why the plane level of the flat surface 35SH and the surface P of the member 30 are matched is that both the processes include an optical system in the process equipment, and therefore a reference plane including a mechanical adjustment such as a focal point of the optical system. Since the S surface is used for the alignment, the P surface of the member 30 is required to be the same surface. In the element wiring connection process equipment, the S surface of the flat plate 35 is used as a reference. Equipment availability may be stabilized by making the wiring height the same.
[0036]
Next, problems of the conventional apparatus will be described. The problem with the conventional apparatus is that the surface level of the S surface and the P surface generally needs to be about 0.1 to 0.2 mm or less in view of facility performance and operation rate stability. Since the member conveying tool 40 of the conventional example is formed by pressing and is deep-drawn in order to form the member pocket 35 ', the flat plate 35 is positioned relative to the S surface and the P surface. The surface level of the deep drawing surface is about 0.15 to 0.2 mm, which is about the same as the required accuracy. By combining the manufacturing variation of the member 30 on the P surface of the member 30 and the variation specific to the material of the flat plate 35, there is an adverse effect such as a decrease in equipment operation rate and physical damage to the member 30. In addition, when the P-plane dimension to the member 30 is different, that is, when the kind of the member is different, a press die must be manufactured even if the dimensional difference is about 0.1 to 0.2 mm. As for the cost of the mold, a high cost of about 3 to 4 million yen is required, and the flat plate 35 has a processing accuracy of the relief groove 36, the member positioning hole 37, the conveyance guide hole 38, and the V-shaped groove 39 in press processing. From the performance of the equipment in the assembly process, the plate thickness is limited to about 1.0 mm in order to make ± 0.1 mm, and the mechanical strength is low when the member transporter 40 is repeatedly used in the assembly process, It has to be updated regularly and frequently, which is very troublesome to manage and has the disadvantage of increasing the total running cost.
[0037]
The member conveyance member that swept over Symbol conventional drawbacks by reference below.
[0038]
Figure 14 is a flat surface, and FIG. 15 is a side view, FIG. 16 is a plan view of the upper plate, Fig. 17 is a plan view of the music sheet. In these drawings, the member transporting tool 24 is composed of three plate members: a flat plate layer 21 'in which an upper plate 21-1 and a lower plate 21-2 are combined, and a curved plate member 34 whose periphery is shaped by bending a sheet metal. It is assembled by welding. As shown in FIGS. 14 and 16, the upper plate 21-1 includes an alignment hole 27 for aligning and mounting the member 30, and a clearance groove 28 for attaching and detaching the member 30 from the member transporting tool 24 by equipment or manual work not shown. The member pockets 29 are arranged in a plurality of columns at a predetermined interval with a column and a row as a unit direction. Column centerline Oite on the extension of the alignment holes 27, member positioning holes 25 for positioning the member pocket 29 and the member 30 by not-shown facility to one, the alignment in the row direction in the not-shown facility to another one The transport guide holes 26 for sequentially transporting and transporting the member transport tool 24 with the hole 27 as a unit, that is, with the two member pockets 29 as a unit, are set at the same interval as the alignment hole 27 in the row direction. Are arranged respectively. Further, near the edge in the row direction of the flat plate layer 21 ′ and at both ends on the column direction center line of the member pocket 29, a V-shape serving as a guide for aligning and transporting the member transport tool 24 with equipment (not shown). A groove 23 is provided.
[0039]
Note that the member pocket 29, the member positioning hole 25, the conveying guide hole 26, the assembly guide hole 23 ', and the V-shaped groove 23 and the groove disposed in the flat layer 21' are all formed by etching. . As shown in FIG. 20, the upper plate 21-1 is further subjected to electrolytic polishing after etching such as holes to etch the outer shape of the upper plate 21-1 and the holes and grooves. R21-5 is formed on the processed surface and the peripheral end surface.
[0040]
Further, the five types of holes and grooves similar to those of the upper plate 21-1 are also formed in the lower plate 21-2. That is, the upper plate and the lower plate have basically the same shape.
[0041]
As shown in FIG. 17, the curved plate member 22 includes an escape groove 31 for attaching and detaching the member 30 from the member transporting tool 24 by equipment or the like (not shown), and a pedestal 32 that prevents the member 30 from falling off and holds the bottom surface of the member 30. And the assembly guide holes 41 that are relatively the same in the row and row directions as the upper plate 21-1 and the lower plate 21-2.
[0042]
The operation will be described below. The three plate members of the upper plate 21-1, the lower plate 21-2, and the curved plate member 22 are alignment pins (not shown) with reference to at least two assembly guide holes 23 'forming the respective plate members. The member conveying tool 24 is configured by assembling the plate members so that their relative positions are aligned with each other.
[0043]
Since the assembly guide hole 23 ′ formed by etching processing is used as a reference for each of the upper plate 21-1, the lower plate 21-2, and the curved plate material 22, formation of relative holes and grooves in the state of a single plate material. The accuracy is about 10 to 20 μm, and the assembly accuracy in the state where the three plate members are assembled is about 50 to 60 μm even if the mutual accuracy of each plate member is taken into account. Moreover, since the roundness R of about 1 to 0.2 mm is formed on the upper plate 21-1 by electrolytic polishing, this acts as a guide during the operation of mounting the member 30 in the member pocket 29 with equipment not shown in the figure, The mounting operation is made smooth and damage to the member 30 is prevented.
[0044]
The curved plate member 22 is so-called that its cross-sectional shape in the row direction is arranged below the flat plate layer 21 'when the member carrier 24 is transported by equipment not shown, and the end surfaces in the row direction are bent so as to face each other. Since it is formed into a U-shape, the mechanical strength in the cross-sectional direction of a so-called thin plate structure 21 ′ having a plate thickness of about 0.8 to 1.2 mm is reinforced. This is because the conveying guide hole 26 is used when the member conveying tool 24 is conveyed by equipment not shown, and the member positioning hole 25 is used when positioning, so that the equipment side and the member conveying tool 24 are not connected in the equipment not shown. The flat plate layer 21 'takes charge of the mechanical strength required by contacting and rubbing with each other, and the curved plate member 22 reinforces it.
[0045]
Further, in each member, the upper plate 21-1 and the lower plate 21-2 constitute a flat plate layer 21 'with a combination of plate thicknesses of 0.3 to 0.5 mm. The surface level of the P surface shown in FIG. 18 and the O surface of the flat plate layer 21 ′ shown in FIG. Can be the same. That is, this accuracy is determined by the finishing accuracy of the plate materials to be combined. When the plate thickness is t = 0.3 to 0.5 mm, the finishing accuracy is about 0.05 to 0.1 mm.
[0046]
The combination of the plate materials of the upper plate 21-1 and the lower plate 21-2 constituting the flat plate layer 21 'including how the surface levels are adjusted to be the same when the members 30 are of different varieties. This will be described with reference to FIGS. As shown in FIG. 18, in order to make the surface level of the P surface of the member 30 and the O surface of the flat plate layer 21 'the same, the flat plate layer 21' is the same for both the upper plate 21-1 and the lower plate 21-2. A plate material in which holes and grooves, that is, a member pocket 29, a member positioning hole 25, a conveyance guide hole 26, an assembly guide hole 23 ', and a V-shaped groove 23 are formed, and the t1 dimension of the member 30 is the plate thickness dimension of the flat layer 33. The plate thickness dimensions of the upper plate 21-1 and the lower plate 21-2 are combined.
[0047]
On the other hand, as shown in FIG. 19, when the different members 30 'are formed, the combination of the plate members of the flat layer 21' is the same as the thickness t2 and the plate thickness of the upper plate 21-3. The flat plate layer 21 ″ and the flat plate layer 21 ″ are combined with the upper plate 21-3 and the lower plate 21-4 so that the plate thickness is the same. This is because the flat plate layer 21 ″ serves as a guide for transporting the member transport tool 24 by a facility (not shown), and the plate thickness is about 0.1 to 0.2 mm as a difference in the plate thickness due to the performance of the facility. This is because they must be matched.
[0048]
Further, unlike the lower plate 21-2, the lower plate 21-4 forms a cross-shaped relief groove 32 'of the curved plate member 22 shown in FIG. That is, a dimension corresponding to the difference between the t1 dimension and the t2 dimension is obtained from the lower plate 21-4 of the flat plate layer 21 ″, and the surface levels of the O plane of the flat plate layer 21 ″ and the F plane of the member 30 ′ are made the same. This is because it becomes a pedestal for the member 30 ′ so as to be the same.
[0049]
The plate thicknesses of the upper plate 21-3 and the lower plate 21-4 are 0.3 to 0.5 mm, so that the outer diameter of the member pocket 29 is the same, that is, the member has a t1 size or a t2 size. When the outer dimensions are the same and only the heights of the P surface and the Q surface are different, it is not necessary to change the exposure mask necessary for etching.
[0050]
As described above, the mechanical strength is improved more than three times by the assembly structure of the flat plate layer and the curved plate material as compared with the conventional one , the dimensions of the individual holes and grooves formed in each plate material, and those By increasing the relative position accuracy of the surface by approximately twice, and by increasing the accuracy of the O and P surfaces, which require the surface level, by approximately twice, equipment operations such as transport and work in each equipment in the component assembly process The rate can be stabilized and the product yield can be improved. Further, when the types of members are different, it is only necessary to change the combination of plate thicknesses of the plate members constituting the flat plate layer or to manufacture an exposure mask necessary for the etching process, which can be handled at low cost.
[0051]
【The invention's effect】
According to the present invention, in a surface acoustic wave device package having a laminated structure, a surface acoustic wave device that improves the mounting accuracy of mounting the surface wave device of the device package and increases the degree of freedom of the external dimensions of the surface wave device. Can be provided .
[Brief description of the drawings]
FIG. 1 is a perspective view of an element package according to an embodiment of the present invention.
FIG. 2 is a plan view of FIG. 1 viewed from above.
3 is a plan view showing a first layer of the element package shown in FIG. 1. FIG.
4 is a partial plan view showing a state behavior of the element package shown in FIG . 1; FIG.
FIG. 5 is a partial plan view showing a state behavior of the element package shown in FIG . 1 ;
6 is a plan view showing an assembled state of the element package shown in FIG. 1. FIG.
FIG. 7 is an exploded perspective view of a conventional element package.
FIG. 8 is a perspective view of a conventional element package.
9 is a plan view showing a first layer in FIG. 7. FIG.
FIG. 10 is an assembly drawing of a conventional example.
FIG. 11 is a cross-sectional view thereof.
FIG. 12 is a plan view of FIG. 8 viewed from above.
13 is an enlarged sectional view showing FIG. 10 in an enlarged manner.
FIG. 14 is a plan view illustrating an example of a transport tool that serves as a reference .
FIG. 15 is a side view thereof.
FIG. 16 is a plan view of the upper plate.
FIG. 17 is a plan view of the curved plate.
18 is a cross-sectional view illustrating the assembled state of FIG.
FIG. 19 is a partial cross-sectional view showing an assembled state of another member.
FIG. 20 is an enlarged sectional view showing FIG. 18 in an enlarged manner.
FIG. 21 is a plan view of a conventional carrier.
FIG. 22 is a sectional view showing an assembled state of members.
23 is a cross-sectional view of the side surface of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ......... 1st layer 2 ......... 2nd layer 2 '... bonding pattern 3 ......... 3rd layer 4 ......... welding ring 5 ......... element package 6, 6' ... triangular pattern 7 ......... cavity 8, 8 '... Deformation pattern 9 ......... Surface wave element 10 ......... Bonding wire 11 ......... Element package 21' ... Flat plate layer 22 ......... Curved surface material 24 ......... Member carrier 29 ......... Member pocket

Claims (1)

複数枚のセラミック基材を積層状で段差を有する構造で結合固定した表面波素子を保護および表面波素子から外部へ電気的接続するための素子パッケージと、表面波素子と、素子パッケージと表面波素子を電気的接続するボンディングワイヤからなる弾性表面波素子の製造方法において、前記素子パッケージの表面波素子を装着する部分の層面基材に少なくとも2箇所のパターンを対称的な位置に形成すると共に、複数枚の積層状基材の位置合せを前記2箇所のパターンに対する画像処理に基づいて行うことを特徴とする弾性表面波素子の製造方法。  A device package for protecting and electrically connecting a surface acoustic wave device formed by bonding a plurality of ceramic substrates with a laminated structure having a stepped structure to the outside from the surface acoustic wave device, the surface acoustic wave device, the device package and the surface wave In the method for manufacturing a surface acoustic wave element comprising bonding wires for electrically connecting elements, at least two patterns are formed at symmetrical positions on the layer surface substrate of the part where the surface wave element of the element package is mounted, and A method of manufacturing a surface acoustic wave element, wherein alignment of a plurality of laminated base materials is performed based on image processing on the patterns at the two locations.
JP29727594A 1994-11-30 1994-11-30 Manufacturing method of surface acoustic wave device Expired - Fee Related JP3735389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29727594A JP3735389B2 (en) 1994-11-30 1994-11-30 Manufacturing method of surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29727594A JP3735389B2 (en) 1994-11-30 1994-11-30 Manufacturing method of surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPH08162879A JPH08162879A (en) 1996-06-21
JP3735389B2 true JP3735389B2 (en) 2006-01-18

Family

ID=17844421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29727594A Expired - Fee Related JP3735389B2 (en) 1994-11-30 1994-11-30 Manufacturing method of surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP3735389B2 (en)

Also Published As

Publication number Publication date
JPH08162879A (en) 1996-06-21

Similar Documents

Publication Publication Date Title
US9378967B2 (en) Method of making a stacked microelectronic package
US7195988B2 (en) Semiconductor wafer and method of manufacturing a semiconductor device using a separation portion on a peripheral area of the semiconductor wafer
US7246431B2 (en) Methods of making microelectronic packages including folded substrates
US20050051882A1 (en) Stacked chip package having upper chip provided with trenches and method of manufacturing the same
US20020061609A1 (en) Semiconductor device, method of fabricating the same, and electronic apparatus
US20050260829A1 (en) Manufacturing method of a semiconductor device
US20020037631A1 (en) Method for manufacturing semiconductor devices
US4951119A (en) Lead frame for semiconductor devices
US6734040B2 (en) Method of manufacturing semiconductor devices
JP4615282B2 (en) Manufacturing method of semiconductor package
US6633002B2 (en) Tape carrier having high flexibility with high density wiring patterns
US4753820A (en) Variable pitch IC bond pad arrangement
JP3735389B2 (en) Manufacturing method of surface acoustic wave device
KR20170022428A (en) sputtering frame for semiconductor package and sputtering process using the same
JP2632456B2 (en) Lead frame manufacturing method
JP2002246336A (en) Electronic equipment and its dicing method
JP6750603B2 (en) Winding core manufacturing method and winding core assembly
US6413796B1 (en) Tape for semiconductor package, method of manufacturing the same, and method of manufacturing the package using the tape
JP2737373B2 (en) Lead frame and integrated circuit manufacturing method
JPH01287937A (en) Film carrier tape
JP3777131B2 (en) Electronic component mounting method
EP0526147A2 (en) Film-carrier type semiconductor device and process for fabricating the same
US20130263780A1 (en) Method for producing a flexible circuit configuration
JPH0147894B2 (en)
JPH05315531A (en) Lead frame and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees