JP3734981B2 - Sintered oil-impregnated bearing for spindle motor - Google Patents

Sintered oil-impregnated bearing for spindle motor Download PDF

Info

Publication number
JP3734981B2
JP3734981B2 JP14267799A JP14267799A JP3734981B2 JP 3734981 B2 JP3734981 B2 JP 3734981B2 JP 14267799 A JP14267799 A JP 14267799A JP 14267799 A JP14267799 A JP 14267799A JP 3734981 B2 JP3734981 B2 JP 3734981B2
Authority
JP
Japan
Prior art keywords
bearing
oil
impregnated
bearing member
spindle motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14267799A
Other languages
Japanese (ja)
Other versions
JP2000337380A (en
Inventor
元博 宮坂
秀和 徳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP14267799A priority Critical patent/JP3734981B2/en
Publication of JP2000337380A publication Critical patent/JP2000337380A/en
Application granted granted Critical
Publication of JP3734981B2 publication Critical patent/JP3734981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ポリアルファオレフィン(PAO)やポリオールエステル、その他の基油にパーフルオロポリエーテル(PFPE)を混合乳化してなる潤滑油を含浸した焼結含油軸受に関し、特にスピンドルモーター用として好適な焼結含油軸受に関するものである。
【0002】
【従来の技術】
パーフルオロポリエーテルなどのいわゆるフッ素オイルの一部は、金属表面と反応して金属フッ化物を形成する性質がある。生成した金属フッ化物は固体潤滑性能を有しており、摩擦係数が低く優れた摺動特性を示す。また、金属の表面における金属フッ化物の被膜は、一度形成されるとフッ素オイル以外の油に入れてもそのまま保持され、良好な摺動特性を維持する。従って、そのような目的のために使用する一般に高価なフッ素オイルは、金属表面との反応に必要な量を供給すれば十分であるから、安価な基油に適量を添加して用いることが経済的に望ましい。
しかしながら、フッ素オイルを単に基油と混合しても、両者は2層に分離して均一な混合物は得られず、そのような混合物を実用に供すると、摺動特性のバラツキが大きく、優れた潤滑効果は得られない。
なお、特開平5−240251号公報には、パーフルオロポリエーテルを単独で、または他の潤滑用と配合した混成油として焼結含油軸受に含浸することが記載されているが、混成油の製造法については具体的な技術が開示されていない。
【0003】
【発明が解決しようとする課題】
本発明は、以上のような従来技術に鑑み、フッ素オイルと基油との均一な混合物を調製し、それを含浸してなる摺動特性に優れたスピンドルモータ用焼結含油軸受を提供することを目的とする。
【0004】
本発明者らは、上記の目的に沿って鋭意検討した結果、特定のフッ素オイルを使用することにより、基油との均一な混合物が得られることを見出して本発明を完成した。
すなわち、本発明の第1は、ポリアルファオレフィン、ポリオールエステル、ジフェニルエーテル、ジエステル油、鉱油(精製鉱油)、アルキルベンゼンおよびアルキルナフタレンからなる群から選ばれる1種、もしくは2種以上の混合物に、0.1〜30容量%パーフルオロポリエーテルを混 合してエマルジョン化した潤滑油を、軸受部材に含浸したことを特徴とするスピンドルモータ用焼結含油軸受に関するものである。
本発明の第2は、前記パーフルオロポリエーテルが、
CF−[(O−CF−CF)−(O−CF)]−O−CF
(ここで、pおよびqは10から200の整数)
である潤滑油を含浸したスピンドルモータ用焼結含油軸受に関するものである。
本発明の第3は、前記パーフルオロポリエーテルが、
CF−CF−CF−O−(CF−CF−O)−CF−CF
(ここで、mは10から200の整数)
である潤滑油を含浸したスピンドルモータ用焼結含油軸受に関するものである。
本発明の第4は、前記パーフルオロポリエーテルのフッ素原子の少なくとも1つを三フッ化メチル基で置換した潤滑油を含浸したスピンドルモータ用焼結含油軸受に関するものである。
本発明の第5は、両端部に回転軸を摺動支持する軸受部を設け、かつ両軸受部の間に回転軸と接触しない中膨み部を設けた軸受部材の、該中膨み部の外周面をハウジングの内孔に圧入してなり、前記軸受部の外周面とハウジングの内孔面との間に間隙を形成し、さらに軸受部材の圧入部外周面に設けた軸方向の溝とハウジングの内孔面とにより貫通孔を形成した軸受の軸受部材に、前記潤滑油を含浸してなるスピンドルモータ用焼結含油軸受に関するものである。
本発明の第6は、前記軸受部の内周面に動圧溝を設けてなるスピンドルモータ用焼結含油軸受に関するものである。
本発明の第7は、前記軸受部の軸芯と直角方向の断面が三円弧形状であるスピンドルモータ用焼結含油軸受に関するものである。
【0005】
以下に本発明を詳細に説明する。
まず本発明においては、潤滑油組成物の基油として、ポリアルファオレフィン(PAO)、ポリオールエステル、ジフェニルエーテル、ジエステル油、鉱油(精製鉱油)、アルキルベンゼンおよびアルキルナフタレンなどから選ばれる1種もしくは2種以上の混合物を使用する。
PAOとしては、例えば 、1−デセン、イソブチレン等をルイス酸などの存在下に重合し、あるいは更に水素添加を行ったものを用いることができる。
ポリオールエステルとしては、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の多価アルコールとモノカルボン酸とのエステル化合物等の例が挙げられる。
ジエステル油としては、セバシン酸、アゼライン酸、アジピン酸等の直鎖二塩基酸と、側鎖を有する高級アルコール、例えば2−エチルヘキシルアルコールとから得られるジエステル類が特に優れた性状を示す。
また、精製鉱油としては、主として石油系の潤滑油留分を、蒸留、溶剤精製、水素化精製などの方法により高度に精製したものを用いることができる。
アルキルベンゼンとしてはプロピルベンゼン、ブチルベンゼン、ジメチルベンゼン、トリメチルベゼンなどが、またアルキルナフタレンとしては、メチルナフタレン、エチルナフタレン、エチルメチルナフタレンなどが例示される。
【0006】
本発明においては、上記の基油にパーフルオロポリエーテル(PFPE)を混合してエマルジョン化することが肝要である。
すなわち、基油の密度は0.8〜0.9g/cm程度であるのに対し、PFPEの密度は1.8〜1.9g/cmと著しく大きいので、両油層が分離し易いことも一因であるが、基油とPFPEとは通常の方法により混合しても、均一な混合物を得ることは困難である。そこで本発明者らは、混合方法について検討を加えた結果、基油にPFPEを0.1〜30容量%の範囲で配合してエマルジョン化することにより、性能の優れた潤滑油を得られることを見出した。
エマルジョンに含まれるPFPEの量が0.1容量%未満ではPFPEの効果が発揮されず、また30容量%を超えると比重差により沈降を生じエマルジョン状態を安定化することが困難であり、更にコストが増大するため、いずれも好ましくない。
PFPEは摺動特性に優れているが、非常に高価であるのに対し、基油は摺動特性においてPFPEに劣るが比較的安価である。従って、少量のPFPEを基油中に均一に分散させることはコスト低減の観点から望ましい。
エマルジョンを形成する方法は以下の通りである。
すなわち、基油となるオイル中へPFPEを適量添加し、攪拌した後に乳化(エマルジョン化)が確認されれば十分である。PFPE中へ基油を添加しても同様に行うことができる。
【0007】
本発明において用いるPFPEとしては、下記式の化学構造を有するものが好ましい。これらはいずれも1分子中に多くのエーテル結合を有し、酸素原子を多量に含有しているため、金属表面と結合し易く、従って金属フッ化物を生成し易いので優れた摺動特性を発揮することができる。
(1)CF−[(O−CF−CF)−(O−CF)]−O−CF
(ここで、pおよびqは10から200の整数である。)
(2)CF−CF−CF−O−(CF−CF−O)−CF−CF
(ここで、mは10から200の整数である。)
(3)上記(1)項において、フッ素原子の少なくとも1つを三フッ化メチル基に置換した構造を有する化合物、例えば、
CF−[(O−CF(CF)−CF)p−(O−CF)q]−O−CF
(商品名:フォンブリオン、アウジモント社製)
(4)上記(2)において、フッ素原子の少なくとも1つを三フッ化メチル基に置換した構造を有するもの、例えば、
CF−CF−CF−O−(CF(CF)−CF−O)m-1−CF−CF
(商品名:バリエルタ、クリューバー社製;商品名:クライトックス、デュポン社製)
【0008】
次に、前記潤滑油を含浸して使用する上で特に好適な焼結含油軸受の構造について説明する。すなわち、次の〔1〕項から〔3〕項の構成、及びそれらに〔4〕項の要件を付加した構成の軸受が好ましい。
〔1〕軸受部材の内孔の両端部に軸支面を設け、両者の中間部の内径を大きくして中膨み部を形成する。
〔2〕軸受部材の中膨み部の外周面をハウジングの内孔に圧入し、両端側の軸支面に対応する外周面とハウジング内孔面との間に間隙を設ける。中膨み部を造形する際の軸受部材の外形に応じて、上記の構成になるようにハウジング内孔の形状を調整する。なお、中膨み部の造形については、後に述べるように各種方法が知られている。
〔3〕軸受部材の外周面に軸方向の溝を設け、軸受部材をハウジングの内孔に圧入したときに、その溝が通気孔または通油孔となる軸方向の貫通孔を形成する。
【0009】
図1(a)から(c)は本発明の各種軸受の実施例の縦断面図であり、図1(d)から(f)はそれらの軸受の平面図である。すなわち、図1(d)は図1(a)の軸受の平面図であり、図1(e)は図1(b)の軸受の平面図であり、図1(f)は図1(c)の軸受の平面図である。
図1の各図において、軸受部材1は多孔質の粉末焼結金属からなり、潤滑油を含浸することができる。軸受部材1の両側部には軸受部2を有し、かつ両軸受部2の内孔の中間に中膨み部3を有する。また、軸受部材1は中膨み部3の外周面においてハウジング4の内孔(圧入面7)に圧入されており、軸受部2の外周とハウジング4の内孔との間には間隙が形成されている。更に軸受部材1の圧入部外周面には軸方向に溝5を設け、溝5とハウジング4の内孔面(圧入面7)とが貫通孔6を形成する。
【0010】
上記〔1〕項から〔3〕項の構成に加え、更に次のような要件を付加することが好ましい。
〔4〕軸受部2の内孔の摺動面に動圧溝を設ける。動圧溝としてはスパイラル形、ヘリングボーン形、傾斜形、周囲閉塞形などの溝を形成するか、あるいは三円弧軸受部材の形状の何れかにする。
図2はこれらの動圧溝を設けた摺動面の展開図である。図2(a)から(d)は、それぞれスパイラル溝11a、ヘリングボーン溝11b、傾斜溝11cおよび閉塞溝11dの例を示す。
また、図3は三円弧軸受部材12の軸受部2の内孔の形状を示す横断面図であり、比較のために仮想円を点線で示す。
【0011】
上記スパイラル溝、ヘリングボーン溝、傾斜溝および閉塞溝は、次の方法で製作することができる。
例えば、軸受部材の摺動面に形成する動圧溝に対応する凸部を外周に有するマンドレルに、内径寸法のやや大きい軸受部材を嵌合し、金型中でマンドレルに圧接させて軸受部材の内周面に溝を形成した後、軸受部材をマンドレルと共に離型し、軸受部材をスプリングバックさせてマンドレルから抜き取る。
三円弧軸受部材は、粉末成形又はサイジングの際に、コアロッドを用いて造形する通常の方法で製作することができる。なお、三円弧軸受部材は、動圧溝を付与した構造の変形と見られる。例えば、日本潤滑学会編「潤滑ハンドブック」(1970) (株)養賢堂 p.136、あるいは軸受・潤滑便覧編集委員会編「軸受・潤滑便覧」(1961) 日刊工業新聞社 p.73などにその構造が記載されている。
【0012】
上記のような構造の軸受部材を用いることにより、特に潤滑油の循環およびそれによる冷却効果が促進され、潤滑油自体の性能がより有効に引き出され、特に高速回転に適する軸受要素が得られる。すなわち、比較的高速回転の小型スピンドル用として好適な構造を提供することができる。 前記〔1〕項から〔4〕項の構成は、それぞれ以下のような効果を発揮する。
〔1〕摺動面積が比較的小さくなり、上下両方の軸支面の製作精度が向上する。また、中膨み部を油溜めに利用することができるので、更に軸受要素として部材数を少なくすることができる。
〔2〕ハウジングに組込む際に軸支面に変形が生じないので、組立精度が良好である。また、組立時に軸支面にマンドレルを差し込む必要がない。
〔3〕軸受要素の空隙にある熱膨張した空気を貫通孔から排出することにより、軸受要素内の潤滑油の漏出を防止できる。また潤滑油が貫通孔を介して軸受要素内を循環するので再潤滑及び冷却の効果を奏する。
〔4〕動圧溝を設けることにより、動圧作用によって摺動面の潤滑がより向上し、高速回転のときに効果が顕著に現れる。
【0013】
中膨み部を有する軸受部材の造形については、下記のような方法があり、それらのいずれかを適宜に採用することができる。
(a)特開昭10−46212号公報
円筒焼結体をダイに入れ、焼結体の内径より細いマンドレルを用いて上下からパンチで押圧すると、両端の径が変形縮小し、マンドレルによりサイジングが行われる。
(b)特開平2−107705号公報
マンドレルとして軸方向の中間部のみを大径としたものを用い、前記と同様に圧縮して焼結体の内径をマンドレルに当接し、マンドレルごとダイから抜き出すと同時に、軸受部材をスプリングバックさせてマンドレルを引き抜く。
(c)特開昭63−270918号公報
円筒焼結体の外周中間部分を環状に切削除去形成しておき、金型内で圧縮すると、焼結体の環状溝部が消失するように内径中間部が拡張し、両端部はマンドレルでサイジングが行われる。
(d)特開昭58−84222号公報
使用するダイは軸方向に2分割されており、一体化したときに中間部の内径が大きくなる。円筒焼結体を金型内で圧縮すると、焼結体はダイ孔の大径部に向かって膨出し、内径中間部も大径となる。内径両端の小径部はマンドレルによって形成する。
(e)特開平6−238381号公報
内径がマンドレル径より大きい円筒焼結体を用い、焼結体の両端側のみを外周方向から縮小する。
(f)特開平2−8302号公報
内径の一端側を小さく、中間部から他端にかけて大きく形成した焼結体を用い、サイジングの際に金型によって内径が大きい側の端部を外周から縮小する。
(g)特開平1−242821号公報
内径の一端側をマンドレルの径より小さく、中間部から他端にかけて大きく形成した焼結体を用い、ダイ孔の軸方向中間部には焼結体外径との間に間隙を生ずる大径部を設ける。サイジングの際に内孔の小径部をマンドレルにより拡張し、他端側はダイによりマンドレル側に縮径し、軸受部材の中間部はダイとの間隙を埋めるように拡径する。
【0014】
軸受部材用の焼結合金としては、青銅系、または鉄を40%以上含む鉄銅系の材料が好ましい。後者は耐摩耗性が特に必要な場合に適しており、かつ低コストである。
【0015】
【発明の実施の形態】
本発明の具体的な実施の形態を以下の実施例により説明する。
(1)原料の配合
(a)青銅系の例:銅粉+10%錫粉
(b)鉄銅系の例:以下の範囲から用途に応じて選択する。
鉄粉:40〜80%
銅粉:20〜60%
錫粉:銅に対して4〜10%
(2)圧粉成形
通常の金型を用いて、円筒形状に粉末成形を行い軸受部材を作製する。
(3)焼結
前記青銅系および鉄銅系の場合には、アンモニア分解ガスの還元雰囲気中において、750℃で焼結を行う。
(4)中膨み部のサイジング
前記(d)特開昭58−84222号公報に記載された方法により行う。前記のように、使用するダイは軸方向に2分割されており、一体化すると中間部の内径が大きくなっている。円筒焼結体を金型内で圧縮すると、焼結体はダイ孔の大径部に向かって膨出し、内径中間部も大径となる。また、内径の両端の小径部はマンドレルによって形成する。このサイジングの際に、軸受部材の外周の大径部に例えば3本の縦溝を形成する。
なお、別の方法で中膨み部を造形すると、軸受部材の外形がこの方法のものとは異なることがあり、縦溝及び後述のハウジング内孔の形状は軸受部材の外形に合わせて製作する。
(5)動圧溝の形成
前述のスプリングバック方式で動圧溝を形成する場合には、上記(4)で造形したサイジング済みの軸受部材の軸受部の内径寸法より僅かに細いコアロッドの表面に、電解腐食法等により溝形状パターンに対応する凸部を形成しておく。サイジング済みの軸受部材にコアロッドを装着し、金型中で軸受部材の外周又は端面側を押圧して変形し、コアロッドに密着させて軸受部材に溝を刻印し、軸受部材をコアロッドと共に離型すると、軸受部材がスプリングバックしてコアロッドを抜き取ることができる。
図4は、ヘリングボーン形動圧溝を形成するためのコアロッドの部分斜視図である。コアロッド13の表面には動圧溝のパターンに対応する多数の凸条14が形成されている。
なお、三円弧軸受部材は、上記(4)の工程で造形することができる。
(6)潤滑油の含浸
ポリオールエステルなどの基油にPFPEを0.1〜30容量%混合してエマルジョンとした潤滑油を、常温で通常の方法により真空含浸させる。粘度が高い場合には加温して粘度を低下させた状態で真空含浸を行ってもよい。また、上記エマルジョン化オイルには、別の効果として含浸時の発泡を抑制する作用があり、PFPEが消泡剤として機能する。
(7)ハウジングの製作
ハウジングの内孔はプレーンな形状の方が製作が容易であるから、軸受部材の形状は図1(a)に示すような外側に大径部を有するものが好ましい。ハウジングは、溶製棒材を切削したり、粉末冶金法を用いて造形する。
(8)軸受部材の圧入
ハウジングに軸受部材を押し込み圧入する。軸受部材の圧入部は両軸受部の中間であり、軸受摺動部の内径に圧入の影響は及ばないので、圧入時に芯出し用のマンドレルを用いる必要はない。ただし、中膨み部を有する軸受部材が長い場合には、軸心の歪みをできるだけ少なくするために、マンドレルを用いて圧入することが好ましい。
(9)好ましい用途例 本発明の焼結含油軸受は、CD−ROMドライブ用のスピンドルモータ(使用時回転数:2,000〜11,000rpm程度)、その他、MD(ミニディスク)、LBP(レーザビームプリンタ)、IC用の冷却ファン等のスピンドルの軸受、その他小形高速回転機器用の軸受としての用途が挙げられる。
図5はCD−ROMドライブ用スピンドルモーターの例を示す縦断面図である。
軸受部材1は、基盤21に固定したハウジング4の内孔に圧入されており、軸受部材1内に装入された軸22の下端はスラスト受板8により回転自在に支承する。ディスク保持治具23、回転板24およびローター25は軸22の上端に固定されており、ローターの内側に設けた永久磁石26およびハウジング4の外周に設けた電磁コイル27の磁力により高速に回転する。
【0016】
【発明の効果】
本発明において用いる、基油とパーフルオロポリエーテルとを混合してエマルジョン化した潤滑油は、金属表面に金属フッ化物の皮膜を形成して、優れた摺動特性を示す。このような潤滑油を特定の構成を有する軸受の軸受部材に含浸することにより、高速回転の小形スピンドルモーターなどに好適な焼結含浸軸受を提供することができる。
【図面の簡単な説明】
【図1】図1(a)から(c)は本発明の各種軸受の実施例の縦断面図であり、図1(d)から(f)はそれらの平面図である。
【図2】軸受部材の軸受部に各種の動圧溝を設けた内孔摺動面の展開図であり、図2(a)から(d)は、それぞれスパイラル溝、ヘリングボーン溝、傾斜溝および閉塞溝の例を示す。
【図3】三円弧軸受部材の横断面図である。
【図4】動圧溝としてヘリングボーン溝を形成するために用いるコアロッドの部分斜視図である。
【図5】CD−ROMドライブ用のスピンドルモーターの実施例の縦断面図である。
【符号の説明】
1 軸受部材
2 軸受部
3 中膨み部
4 ハウジング
5 溝
6 貫通孔
7 圧入面
8 スラスト受板
11a スパイラル溝
11b ヘリングボーン溝
11c 傾斜溝
11d 閉塞溝
12 三円弧軸受部材
13 コアロッド
14 凸条
21 基盤
22 軸
23 ディスク保持治具
24 回転板
25 ローター
26 永久磁石
27 電磁コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sintered oil-impregnated bearing impregnated with a lubricating oil obtained by mixing and emulsifying perfluoropolyether (PFPE) with polyalphaolefin (PAO), polyol ester, or other base oil, and is particularly suitable for a spindle motor. The present invention relates to a sintered oil-impregnated bearing.
[0002]
[Prior art]
Some of so-called fluorine oils such as perfluoropolyether have a property of reacting with a metal surface to form a metal fluoride. The produced metal fluoride has solid lubrication performance, and has a low friction coefficient and excellent sliding characteristics. Further, once the metal fluoride film on the metal surface is formed, it is maintained as it is even if it is put in oil other than fluorine oil, and maintains good sliding characteristics. Therefore, since it is sufficient to supply an amount necessary for the reaction with the metal surface for the generally expensive fluorine oil used for such purposes, it is economical to use an appropriate amount added to an inexpensive base oil. Is desirable.
However, even if the fluorine oil is simply mixed with the base oil, the two are separated into two layers, and a uniform mixture cannot be obtained. When such a mixture is put to practical use, the variation in sliding characteristics is large and excellent. The lubrication effect cannot be obtained.
JP-A-5-240251 describes impregnating sintered oil-impregnated bearings with perfluoropolyether alone or as a mixed oil blended with other lubricants. No specific technology is disclosed for the law.
[0003]
[Problems to be solved by the invention]
The present invention provides a sintered oil-impregnated bearing for spindle motors that is excellent in sliding characteristics by preparing a uniform mixture of fluorine oil and base oil and impregnating the mixture, in view of the prior art as described above. With the goal.
[0004]
As a result of intensive investigations along the above-mentioned purpose, the present inventors have found that a uniform mixture with a base oil can be obtained by using a specific fluorine oil, thereby completing the present invention.
That is, the first aspect of the present invention is a polyalphaolefin, polyol ester, diphenyl ether, diester oil, mineral oil (refined mineral oil), one selected from the group consisting of alkylbenzene and alkylnaphthalene, or a mixture of two or more. The present invention relates to a sintered oil-impregnated bearing for a spindle motor , wherein a bearing member is impregnated with a lubricating oil emulsified by mixing 1 to 30% by volume of perfluoropolyether.
In the second aspect of the present invention, the perfluoropolyether is:
CF 3 - [(O-CF 2 -CF 2) p - (O-CF 2) q] -O-CF 3
(Where p and q are integers from 10 to 200)
The present invention relates to a sintered oil-impregnated bearing for a spindle motor impregnated with a lubricating oil.
According to a third aspect of the present invention, the perfluoropolyether is
CF 3 -CF 2 -CF 2 -O- ( CF 2 -CF 2 -O) m -CF 2 -CF 3
(Where m is an integer from 10 to 200)
The present invention relates to a sintered oil-impregnated bearing for a spindle motor impregnated with a lubricating oil.
A fourth aspect of the present invention relates to a sintered oil impregnated bearing for a spindle motor impregnated with a lubricating oil in which at least one fluorine atom of the perfluoropolyether is substituted with a methyl trifluoride group.
According to a fifth aspect of the present invention, there is provided a bearing member in which a bearing portion that slides and supports the rotating shaft is provided at both end portions, and an intermediate swelling portion that does not contact the rotating shaft is provided between both bearing portions. The outer peripheral surface of the bearing is press-fitted into the inner hole of the housing, a gap is formed between the outer peripheral surface of the bearing portion and the inner hole surface of the housing, and an axial groove provided on the outer peripheral surface of the press-fit portion of the bearing member. The present invention relates to a sintered oil-impregnated bearing for a spindle motor, in which a bearing member of a bearing in which a through hole is formed by an inner hole surface of a housing and a housing is impregnated with the lubricating oil.
The sixth aspect of the present invention relates to a sintered oil-impregnated bearing for a spindle motor in which a dynamic pressure groove is provided on the inner peripheral surface of the bearing portion.
A seventh aspect of the present invention relates to a sintered oil-impregnated bearing for a spindle motor whose cross section in a direction perpendicular to the axis of the bearing portion has a three-arc shape.
[0005]
The present invention is described in detail below.
First, in the present invention, as a base oil of a lubricating oil composition, one or more selected from polyalphaolefin (PAO), polyol ester, diphenyl ether, diester oil, mineral oil (refined mineral oil), alkylbenzene, alkylnaphthalene, and the like. A mixture of
As PAO, for example, 1-decene, isobutylene or the like polymerized in the presence of a Lewis acid or the like, or further hydrogenated can be used.
Examples of polyol esters include ester compounds of polycarboxylic alcohols such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and dipentaerythritol and monocarboxylic acids.
As the diester oil, diesters obtained from a linear dibasic acid such as sebacic acid, azelaic acid, and adipic acid and a higher alcohol having a side chain, such as 2-ethylhexyl alcohol, exhibit particularly excellent properties.
Moreover, as refined mineral oil, what refined | purified mainly the petroleum-type lubricating oil fraction by methods, such as distillation, solvent refinement | purification, and hydrorefining, can be used.
Examples of the alkylbenzene include propylbenzene, butylbenzene, dimethylbenzene, and trimethylbezene, and examples of the alkylnaphthalene include methylnaphthalene, ethylnaphthalene, and ethylmethylnaphthalene.
[0006]
In the present invention, it is important to emulsify by mixing perfluoropolyether (PFPE) with the above base oil.
That is, the density of the base oil is about 0.8 to 0.9 g / cm 3 whereas the density of PFPE is remarkably high, 1.8 to 1.9 g / cm 3 , so that both oil layers are easily separated. However, even if the base oil and PFPE are mixed by an ordinary method, it is difficult to obtain a uniform mixture. Therefore, as a result of studying the mixing method, the present inventors can obtain a lubricating oil with excellent performance by blending PFPE into the base oil in the range of 0.1 to 30% by volume and emulsifying. I found.
If the amount of PFPE contained in the emulsion is less than 0.1% by volume, the effect of PFPE will not be exhibited, and if it exceeds 30% by volume, it will be difficult to stabilize the emulsion state due to sedimentation due to the difference in specific gravity. Is unfavorable because it increases.
PFPE is excellent in sliding properties but very expensive, whereas base oil is inferior to PFPE in sliding properties but relatively inexpensive. Therefore, it is desirable from the viewpoint of cost reduction to uniformly disperse a small amount of PFPE in the base oil.
The method for forming the emulsion is as follows.
That is, it is sufficient if emulsification (emulsification) is confirmed after an appropriate amount of PFPE is added to the base oil and stirred. The same can be done by adding base oil into PFPE.
[0007]
As the PFPE used in the present invention, those having a chemical structure of the following formula are preferable. All of these have many ether bonds in one molecule and contain a large amount of oxygen atoms, so they easily bond to the metal surface, and therefore easily form metal fluorides, thus exhibiting excellent sliding characteristics. can do.
(1) CF 3 - [( O-CF 2 -CF 2) p - (O-CF 2) q] -O-CF 3
(Where p and q are integers from 10 to 200)
(2) CF 3 -CF 2 -CF 2 -O- (CF 2 -CF 2 -O) m -CF 2 -CF 3
(Here, m is an integer from 10 to 200.)
(3) In the above item (1), a compound having a structure in which at least one fluorine atom is substituted with a methyl trifluoride group, for example,
CF 3 - [(O-CF (CF 3) -CF 2) p - (O-CF 2) q] -O-CF 3
(Product name: von Brion, made by Augmont)
(4) In the above (2), a structure having at least one fluorine atom substituted with a methyl trifluoride group, for example,
CF 3 -CF 2 -CF 2 -O- ( CF (CF 3) -CF 2 -O) m-1 -CF 2 -CF 3
(Product name: Barrierta, manufactured by Kluber; Product name: Krytox, manufactured by DuPont)
[0008]
Next, a structure of a sintered oil-impregnated bearing that is particularly suitable for use by impregnating the lubricating oil will be described. That is, a bearing having the configuration of the following items [1] to [3] and a configuration in which the requirement of the item [4] is added thereto is preferable.
[1] A shaft support surface is provided at both end portions of the inner hole of the bearing member, and an intermediate bulge portion is formed by increasing the inner diameter of the intermediate portion between the two.
[2] The outer peripheral surface of the middle bulging portion of the bearing member is press-fitted into the inner hole of the housing, and a gap is provided between the outer peripheral surface corresponding to the shaft support surface on both ends and the housing inner hole surface. The shape of the housing inner hole is adjusted so as to have the above-described configuration according to the outer shape of the bearing member at the time of modeling the middle swelling portion. Various methods are known for modeling the middle bulge portion, as will be described later.
[3] An axial groove is provided on the outer peripheral surface of the bearing member, and when the bearing member is press-fitted into the inner hole of the housing, an axial through hole is formed in which the groove becomes a vent hole or an oil passage hole.
[0009]
FIGS. 1A to 1C are longitudinal sectional views of various bearing examples of the present invention, and FIGS. 1D to 1F are plan views of these bearings. 1 (d) is a plan view of the bearing of FIG. 1 (a), FIG. 1 (e) is a plan view of the bearing of FIG. 1 (b), and FIG. 1 (f) is a plan view of FIG. ) Is a plan view of the bearing.
In each drawing of FIG. 1, the bearing member 1 is made of a porous powder sintered metal and can be impregnated with a lubricating oil. The bearing member 1 has bearing portions 2 on both sides, and has an intermediate bulge portion 3 in the middle of the inner holes of both bearing portions 2. Further, the bearing member 1 is press-fitted into the inner hole (press-fit surface 7) of the housing 4 on the outer peripheral surface of the middle swelling portion 3, and a gap is formed between the outer periphery of the bearing portion 2 and the inner hole of the housing 4. Has been. Further, a groove 5 is provided in the axial direction on the outer peripheral surface of the press-fitting portion of the bearing member 1, and the groove 5 and the inner hole surface (press-fitting surface 7) of the housing 4 form a through hole 6.
[0010]
In addition to the configurations of the items [1] to [3], it is preferable to add the following requirements.
[4] A dynamic pressure groove is provided on the sliding surface of the inner hole of the bearing portion 2. As the dynamic pressure groove, a spiral, herringbone, inclined, or peripherally closed groove is formed, or a three-arc bearing member is formed.
FIG. 2 is a development view of the sliding surface provided with these dynamic pressure grooves. 2A to 2D show examples of the spiral groove 11a, the herringbone groove 11b, the inclined groove 11c, and the closing groove 11d, respectively.
FIG. 3 is a cross-sectional view showing the shape of the inner hole of the bearing portion 2 of the three-arc bearing member 12, and an imaginary circle is indicated by a dotted line for comparison.
[0011]
The spiral groove, herringbone groove, inclined groove and closing groove can be manufactured by the following method.
For example, a bearing member having a slightly larger inner diameter is fitted to a mandrel having a convex portion on the outer periphery corresponding to a dynamic pressure groove formed on the sliding surface of the bearing member, and the bearing member is pressed against the mandrel in a mold. After forming the groove on the inner peripheral surface, the bearing member is released together with the mandrel, and the bearing member is spring-backed and extracted from the mandrel.
The three-arc bearing member can be manufactured by an ordinary method of forming using a core rod during powder molding or sizing. The three-arc bearing member is regarded as a deformation of the structure provided with dynamic pressure grooves. For example, in the Lubrication Society of Japan “Lubrication Handbook” (1970) Yokendo Co., Ltd. p.136 or the Bearing and Lubrication Handbook Editorial Board “Bearing and Lubrication Handbook” (1961) Its structure is described.
[0012]
By using the bearing member having the structure as described above, the circulation of the lubricating oil and the cooling effect thereby are promoted, the performance of the lubricating oil itself is more effectively extracted, and a bearing element particularly suitable for high-speed rotation can be obtained. That is, a structure suitable for a small spindle rotating at a relatively high speed can be provided. The configurations of the items [1] to [4] exhibit the following effects, respectively.
[1] The sliding area is relatively small, and the manufacturing accuracy of both the upper and lower shaft support surfaces is improved. Further, since the middle swelling portion can be used as an oil sump, the number of members as a bearing element can be further reduced.
[2] Since the shaft support surface is not deformed when assembled in the housing, the assembly accuracy is good. Further, it is not necessary to insert a mandrel into the shaft support surface during assembly.
[3] Leakage of lubricating oil in the bearing element can be prevented by discharging the thermally expanded air in the gap of the bearing element from the through hole. Further, since the lubricating oil circulates in the bearing element through the through hole, the effect of re-lubrication and cooling is obtained.
[4] By providing the dynamic pressure groove, the lubrication of the sliding surface is further improved by the dynamic pressure action, and the effect appears remarkably at high speed rotation.
[0013]
There are the following methods for modeling the bearing member having the middle swelling portion, and any one of them can be appropriately employed.
(A) Japanese Patent Application Laid-Open No. 10-46212 When a cylindrical sintered body is put into a die and pressed with a punch from above and below using a mandrel thinner than the inner diameter of the sintered body, the diameters at both ends are deformed and reduced, and the mandrel is sized. Done.
(B) Japanese Patent Application Laid-Open No. 2-107705 A mandrel having a large diameter only in the middle in the axial direction is compressed in the same manner as described above, the inner diameter of the sintered body is brought into contact with the mandrel, and the whole mandrel is extracted from the die. At the same time, the bearing member is spring-backed and the mandrel is pulled out.
(C) Japanese Patent Laid-Open No. 63-270918 An outer peripheral intermediate portion of a cylindrical sintered body is cut and formed in an annular shape and compressed in a mold so that the annular groove portion of the sintered body disappears. Is expanded and both ends are sized with mandrels.
(D) The die used in Japanese Patent Laid-Open No. 58-84222 is divided into two in the axial direction, and when integrated, the inner diameter of the intermediate portion increases. When the cylindrical sintered body is compressed in the mold, the sintered body swells toward the large diameter portion of the die hole, and the inner diameter intermediate portion also has a large diameter. The small diameter portions at both ends of the inner diameter are formed by mandrels.
(E) Japanese Patent Application Laid-Open No. 6-233831 A cylindrical sintered body having an inner diameter larger than the mandrel diameter is used, and only both end sides of the sintered body are reduced from the outer peripheral direction.
(F) JP-A-2-8302 uses a sintered body formed by reducing one end of the inner diameter from the middle to the other end, and reducing the end of the larger inner diameter from the outer periphery with a mold during sizing. To do.
(G) Japanese Laid-Open Patent Publication No. 1-242821 A sintered body in which one end side of the inner diameter is smaller than the diameter of the mandrel and formed from the intermediate portion to the other end is used. A large-diameter portion that creates a gap is provided. During sizing, the small diameter portion of the inner hole is expanded by the mandrel, the other end side is reduced in diameter by the die to the mandrel side, and the intermediate portion of the bearing member is expanded so as to fill the gap with the die.
[0014]
As the sintered alloy for the bearing member, a bronze-based material or an iron-copper-based material containing 40% or more of iron is preferable. The latter is suitable when wear resistance is particularly necessary and is low in cost.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Specific embodiments of the present invention will be described with reference to the following examples.
(1) Mixing of raw materials (a) Example of bronze type: copper powder + 10% tin powder (b) Example of iron copper type: Select from the following ranges according to applications.
Iron powder: 40-80%
Copper powder: 20-60%
Tin powder: 4-10% of copper
(2) Powder compaction Using an ordinary mold, powder molding is performed into a cylindrical shape to produce a bearing member.
(3) Sintering In the case of the bronze and iron copper systems, sintering is performed at 750 ° C. in a reducing atmosphere of ammonia decomposition gas.
(4) Sizing of the middle swelling portion (d) Performed by the method described in JP-A-58-84222. As described above, the die to be used is divided into two in the axial direction, and when integrated, the inner diameter of the intermediate portion is increased. When the cylindrical sintered body is compressed in the mold, the sintered body swells toward the large diameter portion of the die hole, and the inner diameter intermediate portion also has a large diameter. Moreover, the small diameter part of the both ends of an internal diameter is formed with a mandrel. During this sizing, for example, three longitudinal grooves are formed in the large-diameter portion on the outer periphery of the bearing member.
In addition, if the middle bulge part is shaped by another method, the outer shape of the bearing member may be different from that of this method, and the shape of the longitudinal groove and the housing inner hole described later is manufactured according to the outer shape of the bearing member. .
(5) Formation of dynamic pressure groove When the dynamic pressure groove is formed by the spring back method described above, the surface of the core rod is slightly thinner than the inner diameter of the bearing portion of the sized bearing member formed in (4) above. A convex portion corresponding to the groove shape pattern is formed by an electrolytic corrosion method or the like. When a core rod is mounted on a sized bearing member, the outer periphery or end face side of the bearing member is pressed and deformed in the mold, and the bearing member is in close contact with the groove and engraved with the groove, and the bearing member is released together with the core rod. The bearing rod can spring back and the core rod can be removed.
FIG. 4 is a partial perspective view of a core rod for forming a herringbone dynamic pressure groove. A large number of ridges 14 corresponding to the pattern of the dynamic pressure grooves are formed on the surface of the core rod 13.
The three-arc bearing member can be formed by the process (4).
(6) Impregnation of lubricating oil A lubricating oil made by mixing 0.1 to 30% by volume of PFPE with a base oil such as a polyol ester is vacuum impregnated at ordinary temperature by an ordinary method. When the viscosity is high, vacuum impregnation may be performed in a state where the viscosity is lowered by heating. The emulsified oil has another effect of suppressing foaming during impregnation, and PFPE functions as an antifoaming agent.
(7) Fabrication of the housing Since the plain inner shape of the housing is easier to fabricate, the bearing member preferably has a large diameter portion on the outside as shown in FIG. The housing is formed by cutting a molten bar or using powder metallurgy.
(8) Push the bearing member into the press-fitting housing of the bearing member and press-fit it. Since the press-fitting portion of the bearing member is intermediate between the two bearing portions and the inner diameter of the bearing sliding portion is not affected by the press-fitting, it is not necessary to use a centering mandrel during press-fitting. However, when the bearing member having the middle swelling portion is long, it is preferable to press-fit using a mandrel in order to reduce the distortion of the shaft center as much as possible.
(9) Preferred application example The sintered oil-impregnated bearing of the present invention is a spindle motor for a CD-ROM drive (rotational speed when used: about 2,000 to 11,000 rpm), MD (mini disk), LBP (laser) Beam printers), spindle bearings such as cooling fans for ICs, and other applications as bearings for small high-speed rotating equipment.
FIG. 5 is a longitudinal sectional view showing an example of a spindle motor for a CD-ROM drive.
The bearing member 1 is press-fitted into the inner hole of the housing 4 fixed to the base 21, and the lower end of the shaft 22 inserted into the bearing member 1 is rotatably supported by the thrust receiving plate 8. The disk holding jig 23, the rotating plate 24 and the rotor 25 are fixed to the upper end of the shaft 22, and rotate at high speed by the magnetic force of the permanent magnet 26 provided inside the rotor and the electromagnetic coil 27 provided on the outer periphery of the housing 4. .
[0016]
【The invention's effect】
The lubricating oil emulsified by mixing the base oil and perfluoropolyether used in the present invention forms a metal fluoride film on the metal surface and exhibits excellent sliding properties. By impregnating the bearing member of the bearing having a specific configuration with such a lubricating oil, it is possible to provide a sintered impregnated bearing suitable for a high-speed rotating small spindle motor or the like.
[Brief description of the drawings]
1 (a) to 1 (c) are longitudinal sectional views of embodiments of various bearings of the present invention, and FIGS. 1 (d) to (f) are plan views thereof.
FIG. 2 is a development view of a sliding surface of an inner hole in which various dynamic pressure grooves are provided in the bearing portion of the bearing member. FIGS. 2A to 2D are a spiral groove, a herringbone groove, and an inclined groove, respectively. An example of a closed groove is shown.
FIG. 3 is a cross-sectional view of a three-arc bearing member.
FIG. 4 is a partial perspective view of a core rod used for forming a herringbone groove as a dynamic pressure groove.
FIG. 5 is a longitudinal sectional view of an embodiment of a spindle motor for a CD-ROM drive.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bearing member 2 Bearing part 3 Medium swelling part 4 Housing 5 Groove 6 Through-hole 7 Press-fit surface 8 Thrust receiving plate 11a Spiral groove 11b Herringbone groove 11c Inclination groove 11d Closure groove 12 Three-arc bearing member 13 Core rod 14 Protrusion 21 Base 22 Shaft 23 Disc holding jig 24 Rotating plate 25 Rotor 26 Permanent magnet 27 Electromagnetic coil

Claims (7)

ポリアルファオレフィン(PAO)、ポリオールエステル、ジフェニルエーテル、ジエステル油、鉱油(精製鉱油)、アルキルベンゼンおよびアルキルナフタレンからなる群から選ばれる1種もしくは2種以上の混合物に、0.1〜30容量%のパーフルオロポリエーテル(PFPE)を混合してエマルジョン化した潤滑油を、軸受部材に含浸したことを特徴とするスピンドルモータ用焼結含油軸受。0.1 to 30% by volume of one or more mixtures selected from the group consisting of polyalphaolefin (PAO), polyol ester, diphenyl ether, diester oil, mineral oil (refined mineral oil), alkylbenzene and alkylnaphthalene. A sintered oil-impregnated bearing for a spindle motor , wherein a bearing member is impregnated with a lubricating oil emulsified by mixing fluoropolyether (PFPE). 前記パーフルオロポリエーテルが、CF−[(O−CF−CF)−(O−CF)]−O−CF(ここで、pおよびqは10から200の整数)である請求項1に記載のスピンドルモータ用焼結含油軸受。Said perfluoropolyethers, CF 3 - In - [(O-CF 2) q (O-CF 2 -CF 2) p] -O-CF 3 ( where, p and q are from 10 to 200 integer) The sintered oil impregnated bearing for spindle motors according to claim 1. 前記パーフルオロポリエーテルが、CF−CF−CF−O−(CF−CF−O)−CF−CF(ここで、mは10から200の整数)である請求項1に記載のスピンドルモータ用焼結含油軸受。Claim wherein the perfluoropolyether, CF 3 -CF 2 -CF 2 -O- (CF 2 -CF 2 -O) m -CF 2 -CF 3 ( where, m is from 10 integers 200) is 1. A sintered oil-impregnated bearing for spindle motors according to 1. 前記パーフルオロポリエーテルのフッ素原子の少なくとも1つを三フッ化メチル基で置換した化合物である請求項2または3に記載のスピンドルモータ用焼結含油軸受。The sintered oil-impregnated bearing for a spindle motor according to claim 2 or 3, which is a compound in which at least one fluorine atom of the perfluoropolyether is substituted with a methyl trifluoride group. 両端部に回転軸を摺動支持する軸受部を設け、かつ両軸受部の間に回転軸と接触しない中膨み部を設けた軸受部材の、該中膨み部の外周面をハウジングの内孔に圧入してなり、前記軸受部の外周面とハウジングの内孔面との間に間隙を形成し、さらに軸受部材の圧入部外周面に設けた軸方向の溝とハウジングの内孔面とにより貫通孔を形成した軸受の軸受部材に、前記潤滑油を含浸したことを特徴とする請求項1から4のいずれかに記載のスピンドルモータ用焼結含油軸受。  A bearing member that slides and supports the rotating shaft at both ends and an intermediate swelling portion that does not contact the rotating shaft between the bearing portions is provided on the outer peripheral surface of the inner swelling portion of the housing. A gap formed between the outer peripheral surface of the bearing portion and the inner hole surface of the housing, and an axial groove provided on the outer peripheral surface of the press-fit portion of the bearing member, and an inner hole surface of the housing. The sintered oil-impregnated bearing for a spindle motor according to any one of claims 1 to 4, wherein the lubricating oil is impregnated in a bearing member of a bearing in which a through hole is formed. 前記軸受部の内周面に動圧溝を設けたことを特徴とする請求項5に記載のスピンドルモータ用焼結含油軸受。  The sintered oil-impregnated bearing for spindle motor according to claim 5, wherein a dynamic pressure groove is provided on an inner peripheral surface of the bearing portion. 前記軸受部の軸芯と直角方向の断面が三円弧形状である請求項5に記載のスピンドルモータ用焼結含油軸受。  The sintered oil-impregnated bearing for a spindle motor according to claim 5, wherein a cross section in a direction perpendicular to the axis of the bearing portion has a three-arc shape.
JP14267799A 1999-05-24 1999-05-24 Sintered oil-impregnated bearing for spindle motor Expired - Fee Related JP3734981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14267799A JP3734981B2 (en) 1999-05-24 1999-05-24 Sintered oil-impregnated bearing for spindle motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14267799A JP3734981B2 (en) 1999-05-24 1999-05-24 Sintered oil-impregnated bearing for spindle motor

Publications (2)

Publication Number Publication Date
JP2000337380A JP2000337380A (en) 2000-12-05
JP3734981B2 true JP3734981B2 (en) 2006-01-11

Family

ID=15320955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14267799A Expired - Fee Related JP3734981B2 (en) 1999-05-24 1999-05-24 Sintered oil-impregnated bearing for spindle motor

Country Status (1)

Country Link
JP (1) JP3734981B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013972A (en) 2001-06-27 2003-01-15 Minebea Co Ltd High speed rotating bearing
JP3918520B2 (en) * 2001-11-14 2007-05-23 Nokクリューバー株式会社 Lubricating composition for oil-impregnated bearings
DE102004012757A1 (en) * 2004-03-15 2005-10-06 Robert Bosch Gmbh bearings
JP2008266656A (en) * 2008-07-04 2008-11-06 Tonengeneral Sekiyu Kk Lubricating oil composition
JP6317079B2 (en) * 2013-07-26 2018-04-25 ポーライト株式会社 Method for producing sintered oil-impregnated bearing
JP2015172384A (en) * 2014-03-11 2015-10-01 Ntn株式会社 Sintered bearing, fluid dynamic-pressure bearing device and motor having the bearing, and sintered bearing manufacturing method

Also Published As

Publication number Publication date
JP2000337380A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
US20090142010A1 (en) Sintered metal material, sintered oil-impregnated bearing formed of the metal material, and fluid lubrication bearing device
JP5085035B2 (en) Sintered metal material, sintered oil-impregnated bearing, fluid bearing device, and motor
JP5384014B2 (en) Sintered bearing
KR19980064275A (en) Bearings and bearing devices with hydrostatic porous oil
JP2010223246A (en) Sintered metal bearing
JP2006266429A (en) Bearing and combination of bearing and shaft
US20090290821A1 (en) Hydrodynamic bearing device and spindle motor using the same
JP3734981B2 (en) Sintered oil-impregnated bearing for spindle motor
JP4954478B2 (en) Hydrodynamic bearing device
JP2001279349A (en) Sintered oilless bearing material using copper-coated iron powder and its producing method
JP3782889B2 (en) Hydrodynamic sintered oil-impregnated bearing
JP4213714B2 (en) Sintered oil-impregnated bearing
JP4409474B2 (en) Sintered oil-impregnated bearing
JP2001152174A (en) Sintered oilless bearing
JP2008248975A (en) Sintered metal part
JP5214555B2 (en) Sintered oil-impregnated bearing
JP2595583B2 (en) bearing
WO2023243496A1 (en) Fluid dynamic pressure bearing lubricant oil composition, fluid dynamic pressure bearing, and fluid dynamic pressure bearing apparatus
JP4122900B2 (en) Hydrodynamic bearing device and spindle motor using the same
JP3911133B2 (en) Sintered oil-impregnated bearing
JP6536866B1 (en) Sintered bearing, sintered bearing device and rotating device
WO2021171375A1 (en) Oil-impregnated sintered bearing, oil-impregnated sintered bearing equipment, and rotating equipment
JPH102335A (en) Bearing device
JP2023182538A (en) Lubricant composition for fluid dynamic pressure bearing, fluid dynamic pressure bearing, and fluid dynamic pressure bearing device
WO2021070712A1 (en) Sintered oil-containing bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20051018

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20081028

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101028

LAPS Cancellation because of no payment of annual fees