JP3734637B2 - Drive device for piezoelectric transformer - Google Patents

Drive device for piezoelectric transformer Download PDF

Info

Publication number
JP3734637B2
JP3734637B2 JP11317499A JP11317499A JP3734637B2 JP 3734637 B2 JP3734637 B2 JP 3734637B2 JP 11317499 A JP11317499 A JP 11317499A JP 11317499 A JP11317499 A JP 11317499A JP 3734637 B2 JP3734637 B2 JP 3734637B2
Authority
JP
Japan
Prior art keywords
piezoelectric transformer
primary
sides
piezoelectric
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11317499A
Other languages
Japanese (ja)
Other versions
JP2000307165A (en
Inventor
泰秀 松尾
努 大内
正基 児嶋
哲哉 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP11317499A priority Critical patent/JP3734637B2/en
Publication of JP2000307165A publication Critical patent/JP2000307165A/en
Application granted granted Critical
Publication of JP3734637B2 publication Critical patent/JP3734637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、パソコン等に用いられている液晶を裏側から光で照らすバックライト用の光源に使用される冷陰極管の駆動回路や、その他テレビジョン受像機、電子複写機などの直流高電圧発生装置等に用いられる圧電トランスの駆動装置に関する。
【0002】
【従来の技術】
従来この種の圧電トランスは、例えば図5に示すように、矩形板形が用いられている。図において11は一次側(入力側)で表裏にはそれぞれ一次側電極11aが設けられ、また、12は二次側(出力側)でその端部には出力取出用の二次側電極12aが設けられている。
【0003】
また、矢印はそれぞれ分極方向を示すもので、一次側11は厚さ方向に高電界で分極し、かつ二次側12は長さ方向に分極し、一次側11に長さ寸法で決まる固有共振周波数の電圧を入力すると、逆圧電効果により機械振動が生じ圧電効果によって振動に応じた高電圧が二次側12から出力されるようになっている。
【0004】
しかして、従来上記形状(矩形板形)のものはそれ自体の昇圧比が低いために、冷陰極管を点灯させる場合、前段に巻線トランス等の昇電圧用手段が必要であった。
【0005】
これを解決するために近年積層型圧電トランスが活発に検討されている。
【0006】
【発明が解決しようとする課題】
しかしながら、この積層型圧電トランスでは、昇圧比は高いものの内部電極に用いる材料コストが高いことや層間での剥離等、信頼性に問題がある。
【0007】
また、昇圧比を高くするために、図6に示すような構成の対称三次ローゼン型トランスがあるが、図5に示したような2ヵ所の節(振動が生じない部分で、ノード点という)を有する従来の一般的な二次ローゼン型のものに比べて長さが同じであっても周波数が高くなってしまい、周波数が高くなると圧電トランスと接続され駆動される冷陰極管からの漏れ電流が大きくなるので、インバータの効率の観点から考えると好ましくない。
【0008】
また、従来方式の三端子方式の圧電トランスであれば設計上不便であることや漏れ電流等も考慮しなければならない、という課題があった。
【0009】
この発明は上記のことに鑑み提案されたもので、その目的とするところは、積層型でなく単板タイプであっても高い昇圧比を得ることができ、しかも四端子であるため、設計が容易になり、圧電インバータとして用いた場合には漏れ電流についても従来型よりも低減し得る圧電トランスの駆動装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、それぞれ矩形単板型の第1、第2の圧電トランス1、2を備え、これら第1、第2の圧電トランス本体1、2は、各々が本体の厚さ方向に互いに同方向に分極されかつ両面に一次側電極3a、3a’、4a、4a’を有する入力側としての一次側3、4および本体の長さ方向に互いに逆方向に分極されかつ本体の長さ方向端面に二次側電極5a、6aを有する出力側としての二次側5、6を有し、両端を第1、第2の圧電トランス本体1、2の一次側電極3a、3 a ’、4a、4a’に並列に接続した電源V と、両端を第1、第2の圧電トランス本体1、2の二次側電極5a、6a間に接続した冷陰極管Lとでなる構成とし、上記目的を達成している。
また、一次側3、3の分極は厚さ方向に対し逆方向とし、二次側5、5はそれぞれ長さ方向に対し同方向に分極し、一次側電極3a、3a’、3a’、3aに並列に電源V を接続し、二次側電極5a、5a間に冷陰極管 L を接続してなる構成とし、上記目的を達成している。
【0011】
【発明の実施の形態】
いわゆるローゼン型圧電トランスはPZT等の圧電セラミックスに一次、二次の電極を設け、それぞれ高電界で分極したものである。一次側の長さ方向で決まる固有共振周波数の電圧を印加すると、逆圧電効果により素子が振動し、圧電効果により振動に見合っただけの電圧が二次側から取出すことができる。
【0012】
ところで、圧電体はセラミックスのある方向に高電界をかけ、結晶軸を揃えることで得ることができる。そして、圧電体には、張力を加えたときにその力に対する座標軸の正の向きに正の電荷を発生させる(圧電の符号が正)ものと負の電荷を発生させる(圧電の符号が負)ものがある。そこで、同じ材料でできた圧電トランスの二次側あるいは一次側の分極を逆にした場合、一次側に共振周波数の電圧を印加するとそれぞれ異符号の同じ大きさの電位が二次側に発生する。
【0013】
上記のことに鑑み、この発明は単板の圧電トランスを2つ用い、一次側の分極方向をそれぞれ同方向にし、二次側を逆としたり、或いは一次側の分極方向を逆とし、二次側を同方向とし、各圧電トランスの各々二次側間に負荷を接続し、一方の二次側に正の電位、他方の二次側に負の電位を発生させ、冷陰極管を挟んで大きな電位差を生じさせるようにし、高い昇圧比を期待できるようにしたものである。
【0014】
【実施例1】
図1は本発明の第1実施例を示す。この実施例では矩形板形の第1の圧電トランス本体1と、同形状の第2の圧電トランス本体2とを備えている。図示の状態において、これら第1、第2の圧電トランス本体1,2のほぼ左半部はそれぞれ一次側3,4となっており、反対側の右半部は二次側5,6となっている。
【0015】
そして、特徴的なことは、一次側3,4は矢印で示すように、厚み方向は同方向に分極されているが、二次側5,6はその長さ方向においてそれぞれ矢印で示すように逆に分極されている。
【0016】
なお、周知のように各一次側3,4の表裏面にはそれぞれ一次側電極3a,3a′,4a,4a′が設けられ、二次側5,6の外端部には出力取出用の二次側電極5a,6aが設けられる。
【0017】
また、第1の圧電トランス本体1の表面側の一次側電極3aには電源Vの一端が接続され、かつ一次側電極3aは第2の圧電トランス本体2の一次側電極4aに接続されている。また、第1の圧電トランス本体1の裏面側の一次側電極3a′は第2の圧電トランス本体2の一次側電極4a′に接続されているとともに、電源Vの他端に接続され、かつ接地されている。また、第1、第2の圧電トランス本体5,6の二次側電極5a,6a間に冷陰極管Lが接続され、圧電トランス本体1,2を駆動し、二次側出力により冷陰極管Lを点灯するように構成されている。
【0018】
図2(a)は従来の圧電インバータの駆動方式を示す。なお、図中Cは冷陰極管Lの駆動時に生じる浮遊容量Cを模式的に簡単に表わしたものである、また、Iaは浮遊容量Cによって生じる漏れ電流であり、浮遊容量Cが大きいとこの漏れ電流も大きくなる。また、図2(b)は従来例と対比した上記した本発明の駆動方式を示す。
【0019】
従来では、図2(a)に示すように、圧電トランスの二次側12に負荷である冷陰極管Lの一端をつなぎ、他端をアースに落とし、かつ一次側11に電源Vを介し入力電圧を印加し、冷陰極管Lを点灯するようにしていた。
【0020】
しかし、この方法においては、冷陰極管Lに寄生する浮遊容量Cのために漏れ電流Iaが生じ、この漏れ電流は圧電インバータの効率や冷陰極管Lの輝度ムラに大きく影響する、という欠点があった。なお、ここでの漏れ電流IaはIa=2πfC・V(fは駆動周波数、Vは点灯電圧)である。
【0021】
これに対し本発明の第1実施例では、図1、図2(b)に示すように、各圧電トランス本体1,2の一次側3,4の分極をそれぞれ同方向とし、二次側5,6は逆にし、二次側電極5a,6b間に冷陰極管Lを接続している。
【0022】
このように、二次側5,6の分極をそれぞれ逆にした圧電トランス本体1,2を冷陰極管Lの点灯に用いた場合、各圧電トランス本体1,2の各二次側5,6はそれぞれ分極方向が逆であるため、冷陰極管Lの電位差Vだけ生じさせようとすると、一方の二次側部分には正の電圧+V/2が、他方の二次側部分には負の電圧−V/2が発生し、冷陰極管Lを挟んで大きな電位差が生じる。つまり、二つの圧電トランス本体1,2をこのように駆動すれば、高い昇圧比を期待することができる。
【0023】
すなわち、図2(a)のように、圧電トランスが一つであると、二次側に例えば+1000Vの電圧Vが生じるとすると、これをアース(0V)に落としてしまうと電位差は1000Vである。
これに対し、図2(b)の本発明のように第1、第2の2つの圧電トランス1,2を用いると、各二次側間は+1000V−(−1000V)となり、電位差は2000Vとなり、結局、図2(a)と同程度の輝度を冷陰極管Lに求めれば電源電圧Vは1/2で済むことになる。
【0024】
また、本発明では、各圧電トランス本体1,2の二次側は互いに同じ大きさの異符号電圧+1/2V,−1/2Vを出しているため、冷陰極管Lの中央部分が0Vとなり、浮遊容量はC/2となり、漏れ電流が低減する。
【0025】
この方式によれば、両高圧であることから、輝度ムラが起こりにくい。また、漏れ電流も出力の片方だけに注目すると、次式のようになる。
【0026】
Ib1=2πf(C/2)・(V/2)
【0027】
全体の漏れ電流は次のようになる。
【0028】
Ib+Ib=πfC・V=(1/2)Ia
【0029】
したがって、漏れ電流も半減する。
【0030】
【実施例2】
図3は本発明の第2の実施例に用いられる2つの圧電トランス本体1,2の斜視図を示す。この実施例では各圧電トランス本体1,1を用い、一方を裏返して用い、各一次側3,3の厚さ方向の分極を矢印で示すように互いに逆にし、また、二次側5,5は長さ方向においてはそのまま同方向に配置して用いることに特徴を有している。この場合、各一次側3,3の分極を逆にし、各二次側に異符号の同じ大きさの電位を発生させ、大きな電位差としている。
【0031】
これらの2つの圧電トランス本体1,1を用い、第2図(b)の駆動回路に適用した圧電インバータにおいても第1実施例と同様の作用効果を得ることができる。
【0032】
図4は、これらにさらに補助1次電極3b,3b′をそれぞれ増設したもので、この応用例においては補助電極を増設し、駆動部を増大させている。また、矢印で示すように、分極を逆にすることで、昇圧比を上げることが可能となる。また、補助一次電極3b,3b′の大きさ変えれば駆動部を調節でき、圧電トランスの効率を損なうことなく昇圧比を制御することができる。
【0033】
なお、上記実施例は対称三次ローゼンにも適用できる。また、冷陰極管Lを駆動する例について説明したが、高電圧電源用としても用いることができる。
【0034】
【発明の効果】
以上のように本発明では、2つの圧電トランスを用い二次側または一次側の分極を逆にするなどの構成とし、各二次側の出力端にそれぞれ正、負の電位を発生させて大きな電位差を生じさせるようにすれば、実質的に高い昇圧比を期待でき、四端子構造であって漏れ電流を少なくすることができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例を示す。
【図2】 (a)は従来の圧電インバータ方式、(b)は本発明の方式を示す。
【図3】 本発明の第2実施例を示す。
【図4】 本発明の第3実施例を示す。
【図5】 従来の二次ローゼン型圧電トランスの斜視図を示す。
【図6】 従来の対称三次ローゼン型圧電トランスの斜視図を示す。
【符号の説明】
1,2 圧電トランス本体
3,4 一次側
3a,3a′,4a,4a′ 一次電極
3b,3b′ 補助一次電極
5,6 二次側
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drive circuit for a cold-cathode tube used as a light source for a backlight that illuminates a liquid crystal used in a personal computer with light from the back side, and other DC high voltage generation such as a television receiver and an electronic copying machine. The present invention relates to a driving device for a piezoelectric transformer used in a device or the like.
[0002]
[Prior art]
Conventionally, this type of piezoelectric transformer has a rectangular plate shape as shown in FIG. 5, for example. In the figure, 11 is a primary side (input side) and primary side electrodes 11a are provided on both sides, and 12 is a secondary side (output side), and a secondary side electrode 12a for output extraction is provided at an end thereof. Is provided.
[0003]
Each arrow indicates a polarization direction. The primary side 11 is polarized with a high electric field in the thickness direction, the secondary side 12 is polarized in the length direction, and the primary resonance is determined by the length dimension on the primary side 11. When a voltage having a frequency is input, mechanical vibration is generated by the inverse piezoelectric effect, and a high voltage corresponding to the vibration is output from the secondary side 12 by the piezoelectric effect.
[0004]
Conventionally, the above-mentioned shape (rectangular plate shape) has a low step-up ratio, so that when a cold-cathode tube is turned on, a means for increasing voltage such as a winding transformer is required in the previous stage.
[0005]
In order to solve this problem, multilayer piezoelectric transformers have been actively studied in recent years.
[0006]
[Problems to be solved by the invention]
However, although this multilayer piezoelectric transformer has a high step-up ratio, there are problems in reliability such as high material cost used for internal electrodes and peeling between layers.
[0007]
In order to increase the step-up ratio, there is a symmetrical third-order Rosen transformer configured as shown in FIG. 6, but there are two nodes as shown in FIG. 5 (nodes where no vibration occurs). Even if the length is the same as that of the conventional general secondary rosen type having the above, the frequency becomes high, and when the frequency becomes high, the leakage current from the cold cathode tube connected to and driven by the piezoelectric transformer Is not preferable from the viewpoint of the efficiency of the inverter.
[0008]
In addition, the conventional three-terminal type piezoelectric transformer has a problem that it is inconvenient in design and leakage current must be taken into consideration.
[0009]
The present invention has been proposed in view of the above, and the object of the present invention is to obtain a high step-up ratio even if it is a single plate type instead of a laminated type, and because it is a four-terminal, the design is It is an object of the present invention to provide a piezoelectric transformer drive device that is easy and can reduce leakage current as compared with the conventional type when used as a piezoelectric inverter.
[0010]
[Means for Solving the Problems]
The present invention comprises first and second piezoelectric transformers 1 and 2 each having a rectangular single plate type, and these first and second piezoelectric transformer bodies 1 and 2 are respectively in the same direction in the thickness direction of the body. Are polarized in opposite directions in the longitudinal direction of the primary side 3, 4 and the main body as the input side having primary electrodes 3a, 3a ', 4a, 4a' on both sides and on the longitudinal end faces of the main body secondary electrodes 5a, has a secondary side 5, 6 as an output side having a 6a, the ends first, primary electrodes 3a of the second piezoelectric transformer body 1,2, 3 a ', 4a, 4a a power supply V 0 connected in parallel to 'the ends first, second piezoelectric transformer body and second secondary-side electrode 5a, a structure consisting of a cold cathode tube L connected between 6a, the object Have achieved.
Further, the polarization of the primary sides 3 and 3 is opposite to the thickness direction, and the secondary sides 5 and 5 are polarized in the same direction with respect to the length direction, respectively, and the primary electrodes 3a, 3a ′, 3a ′, 3a the power V 0 connected in parallel, and formed by connecting the cold cathode tubes L configuration between the secondary-side electrode 5a, 5a, has achieved the above objects.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A so-called Rosen-type piezoelectric transformer is obtained by providing primary and secondary electrodes on a piezoelectric ceramic such as PZT and polarizing each with a high electric field. When a voltage having a natural resonance frequency determined by the length direction on the primary side is applied, the element vibrates due to the inverse piezoelectric effect, and a voltage corresponding to the vibration can be extracted from the secondary side due to the piezoelectric effect.
[0012]
By the way, the piezoelectric body can be obtained by applying a high electric field in a certain direction of the ceramic and aligning the crystal axes. Then, when tension is applied to the piezoelectric body, positive charge is generated in the positive direction of the coordinate axis with respect to the force (piezoelectric sign is positive) and negative charge is generated (piezoelectric sign is negative). There is something. Therefore, when the polarization of the secondary side or the primary side of the piezoelectric transformer made of the same material is reversed, when the voltage of the resonance frequency is applied to the primary side, a potential of the same magnitude with a different sign is generated on the secondary side. .
[0013]
In view of the above, the present invention uses two single-plate piezoelectric transformers, with the primary polarization direction being the same direction and the secondary side being reversed, or the primary side polarization direction being reversed and the secondary direction being reversed. The sides are in the same direction, a load is connected between the secondary sides of each piezoelectric transformer, a positive potential is generated on one secondary side, and a negative potential is generated on the other secondary side. A large potential difference is generated so that a high step-up ratio can be expected.
[0014]
[Example 1]
FIG. 1 shows a first embodiment of the present invention. In this embodiment, a rectangular plate-shaped first piezoelectric transformer body 1 and a second piezoelectric transformer body 2 having the same shape are provided. In the state shown in the figure, the substantially left half of the first and second piezoelectric transformer bodies 1 and 2 is the primary side 3 and 4, respectively, and the opposite right half is the secondary side 5 and 6. ing.
[0015]
Characteristically, the primary sides 3 and 4 are polarized in the same direction as indicated by arrows, while the secondary sides 5 and 6 are indicated by arrows in the length direction, respectively. Conversely, it is polarized.
[0016]
As is well known, primary and secondary electrodes 3a, 3a ', 4a and 4a' are provided on the front and back surfaces of the primary sides 3 and 4, respectively, and the outer ends of the secondary sides 5 and 6 are used for output extraction. Secondary electrodes 5a and 6a are provided.
[0017]
One end of the power source V 0 is connected to the primary electrode 3 a on the surface side of the first piezoelectric transformer body 1, and the primary electrode 3 a is connected to the primary electrode 4 a of the second piezoelectric transformer body 2. Yes. The first piezoelectric transformer body 1 on the back side of the primary-side electrode 3a 'and the second primary-side electrode 4a of the piezoelectric transformer body 2' with is connected to, is connected to the other end of the power supply V 0, and Grounded. Further, a cold cathode tube L is connected between the secondary side electrodes 5a and 6a of the first and second piezoelectric transformer bodies 5 and 6, and the piezoelectric transformer bodies 1 and 2 are driven, and the cold cathode tube is driven by the secondary side output. L is turned on.
[0018]
FIG. 2A shows a driving method of a conventional piezoelectric inverter. In the figure, C is a schematic representation of the stray capacitance C generated when the cold cathode tube L is driven, and Ia is a leakage current generated by the stray capacitance C. Leakage current also increases. FIG. 2B shows the above-described driving method of the present invention in comparison with the conventional example.
[0019]
Conventionally, as shown in FIG. 2 (a), connecting one end of the cold cathode fluorescent lamps L is the load to the piezoelectric transformer secondary side 12, down the other end to ground, and through the power supply V 0 to the primary side 11 An input voltage was applied to light the cold cathode tube L.
[0020]
However, this method has a drawback that a leakage current Ia occurs due to the stray capacitance C parasitic on the cold cathode tube L, and this leakage current greatly affects the efficiency of the piezoelectric inverter and the luminance unevenness of the cold cathode tube L. there were. Here, the leakage current Ia is Ia = 2πfC · V (f is the driving frequency, and V is the lighting voltage).
[0021]
On the other hand, in the first embodiment of the present invention, as shown in FIGS. 1 and 2B, the polarizations of the primary sides 3 and 4 of the piezoelectric transformer bodies 1 and 2 are set in the same direction, and the secondary side 5 , 6 are reversed and a cold cathode tube L is connected between the secondary electrodes 5a, 6b.
[0022]
In this way, when the piezoelectric transformer bodies 1 and 2 with the polarizations of the secondary sides 5 and 6 reversed are used for lighting the cold cathode tube L, the secondary sides 5 and 6 of the piezoelectric transformer bodies 1 and 2 are used. Since the polarization directions are respectively reversed, if only the potential difference V of the cold-cathode tube L is generated, a positive voltage + V / 2 is applied to one secondary side portion, and a negative voltage is applied to the other secondary side portion. A voltage −V / 2 is generated, and a large potential difference is generated across the cold cathode tube L. That is, if the two piezoelectric transformer bodies 1 and 2 are driven in this way, a high step-up ratio can be expected.
[0023]
That is, as shown in FIG. 2A, if there is one piezoelectric transformer, for example, if a voltage V of +1000 V is generated on the secondary side, the potential difference is 1000 V if this voltage is dropped to ground (0 V). .
On the other hand, when the first and second piezoelectric transformers 1 and 2 are used as in the present invention of FIG. 2B, the secondary side becomes + 1000V − (− 1000V) and the potential difference becomes 2000V. eventually, the power supply voltage V 0 by obtaining the brightness of the same extent as FIGS. 2 (a) to the cold cathode fluorescent lamps L would need 1/2.
[0024]
In the present invention, since the secondary sides of the piezoelectric transformer bodies 1 and 2 output different sign voltages + 1 / 2V and -1 / 2V having the same magnitude, the central portion of the cold cathode tube L becomes 0V. The stray capacitance becomes C / 2, and the leakage current is reduced.
[0025]
According to this method, since both pressures are high, luminance unevenness hardly occurs. Further, if attention is paid to only one of the outputs, the leakage current is expressed by the following equation.
[0026]
Ib1 = 2πf (C / 2) · (V / 2)
[0027]
The overall leakage current is:
[0028]
Ib 1 + Ib 2 = πfC · V = (1/2) Ia
[0029]
Therefore, the leakage current is also halved.
[0030]
[Example 2]
FIG. 3 is a perspective view of two piezoelectric transformer bodies 1 and 2 used in the second embodiment of the present invention. In this embodiment, the piezoelectric transformer bodies 1 and 1 are used, one of them is turned over, the polarizations in the thickness direction of the primary sides 3 and 3 are reversed to each other as indicated by arrows, and the secondary sides 5 and 5 are used. Is characterized by being used in the same direction as it is in the length direction. In this case, the polarizations of the primary sides 3 and 3 are reversed, and electric potentials of the same magnitude with different signs are generated on the respective secondary sides, resulting in a large electric potential difference.
[0031]
In the piezoelectric inverter using these two piezoelectric transformer bodies 1 and 1 and applied to the drive circuit shown in FIG. 2B, the same effects as the first embodiment can be obtained.
[0032]
In FIG. 4, auxiliary primary electrodes 3b and 3b 'are further added to these, and in this application example, auxiliary electrodes are added to increase the drive unit. Moreover, as shown by the arrows, it is possible to increase the step-up ratio by reversing the polarization. Further, if the sizes of the auxiliary primary electrodes 3b and 3b 'are changed, the drive unit can be adjusted, and the step-up ratio can be controlled without impairing the efficiency of the piezoelectric transformer.
[0033]
The above embodiment can also be applied to a symmetrical third-order rosen. Moreover, although the example which drives the cold cathode tube L was demonstrated, it can be used also for high voltage power supplies.
[0034]
【The invention's effect】
As described above, according to the present invention, two piezoelectric transformers are used to reverse the polarization of the secondary side or the primary side, and positive and negative potentials are generated at the output ends of the secondary sides, respectively. If a potential difference is generated, a substantially high step-up ratio can be expected, and the leakage current can be reduced with the four-terminal structure.
[Brief description of the drawings]
FIG. 1 shows a first embodiment of the present invention.
2A is a conventional piezoelectric inverter system, and FIG. 2B is a system according to the present invention.
FIG. 3 shows a second embodiment of the present invention.
FIG. 4 shows a third embodiment of the present invention.
FIG. 5 is a perspective view of a conventional secondary Rosen piezoelectric transformer.
FIG. 6 is a perspective view of a conventional symmetrical third-order Rosen piezoelectric transformer.
[Explanation of symbols]
1, 2 Piezoelectric transformer body 3, 4 Primary side 3a, 3a ', 4a, 4a' Primary electrode 3b, 3b 'Auxiliary primary electrode 5, 6 Secondary side

Claims (2)

それぞれ矩形単板型の第1、第2の圧電トランス本体(1)、(2)を備え、これら第1、第2の圧電トランス本体(1)、(2)は、各々が本体の厚さ方向に互いに同方向に分極されかつ両面に一次側電極(3a、3a’)、(4a、4a’)を有する入力側としての一次側(3)、(4)および本体の長さ方向に互いに逆方向に分極されかつ本体の長さ方向端面に二次側電極(5a)、(6a)を有する出力側としての二次側(5)、(6)を有し、両端を第1、第2の圧電トランス本体(1)、(2)の一次側電極(3a、3a’)、(4a、4a’)に並列に接続した電源VEach of the first and second piezoelectric transformer bodies (1) and (2) is a rectangular single plate type, and each of the first and second piezoelectric transformer bodies (1) and (2) has a thickness of the body. Primary side (3), (4) as an input side that is polarized in the same direction and has primary side electrodes (3a, 3a '), (4a, 4a') on both sides and in the longitudinal direction of the body It has secondary sides (5) and (6) as output sides that are polarized in the opposite direction and have secondary side electrodes (5a) and (6a) on the longitudinal end faces of the main body. The power supply V connected in parallel to the primary electrodes (3a, 3a ′), (4a, 4a ′) of the piezoelectric transformer bodies (1), (2) of 2 0 と、両端を第1、第2の圧電トランス本体(1)、(2)の二次側電極(5a)、(6a)間に接続した冷陰極管Lとでなることを特徴とする圧電トランスの駆動装置。And a cold cathode tube L having both ends connected between the secondary side electrodes (5a) and (6a) of the first and second piezoelectric transformer bodies (1) and (2). Drive device. それぞれ矩形単板型の第1、第2の圧電トランス本体(1)、(1)を備え、これら第1、第2の圧電トランス本体(1)、(1)は、各々が本体の厚さ方向に互いに逆方向に分極されかつ両面に一次側電極(3a、3a’)、(3a’、3a)を有する入力側としての一次側(3)、(3)および本体の長さ方向に互いに同方向に分極されかつ本体の長さ方向端面に二次側電極(5a)、(5a)を有する出力側としての二次側(5)、(5)を有し、両端を第1、第2の圧電トランス本体(1)、(1)の一次側電極(3a、3a’)、(3a’、3a)に並列に接続した電源VEach of the first and second piezoelectric transformer bodies (1) and (1) is a rectangular single plate type, and each of the first and second piezoelectric transformer bodies (1) and (1) has a thickness of the body. Primary side (3), (3) as an input side polarized in opposite directions to each other and having primary side electrodes (3a, 3a '), (3a', 3a) on both sides and in the longitudinal direction of the body It has secondary sides (5) and (5) as output sides that are polarized in the same direction and have secondary side electrodes (5a) and (5a) on the longitudinal end faces of the main body. The power supply V connected in parallel to the primary electrodes (3a, 3a ′), (3a ′, 3a) of the piezoelectric transformer bodies (1), (1) of 2 0 と、両端を第1、第2の圧電トランス本体(1)、(1)の二次側電極(5a)、(5a)間に接続した冷陰極管Lとでなることを特徴とする圧電トランスの駆動装置。And a cold cathode tube L having both ends connected between the first and second piezoelectric transformer bodies (1) and the secondary side electrodes (5a) and (5a) of (1). Drive device.
JP11317499A 1999-04-21 1999-04-21 Drive device for piezoelectric transformer Expired - Lifetime JP3734637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11317499A JP3734637B2 (en) 1999-04-21 1999-04-21 Drive device for piezoelectric transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11317499A JP3734637B2 (en) 1999-04-21 1999-04-21 Drive device for piezoelectric transformer

Publications (2)

Publication Number Publication Date
JP2000307165A JP2000307165A (en) 2000-11-02
JP3734637B2 true JP3734637B2 (en) 2006-01-11

Family

ID=14605440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11317499A Expired - Lifetime JP3734637B2 (en) 1999-04-21 1999-04-21 Drive device for piezoelectric transformer

Country Status (1)

Country Link
JP (1) JP3734637B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949867B1 (en) * 2002-05-20 2005-09-27 Zippy Technology Corp. Multi-load driver circuit equipped with piezoelectric transformation circuits
KR100561526B1 (en) * 2003-04-18 2006-03-16 스미다 코포레이션 Inverter transformer and Inverter circuit
JP4312021B2 (en) 2003-10-06 2009-08-12 株式会社タムラ製作所 Piezoelectric transformer driving device and piezoelectric transformer driving method
JP4720372B2 (en) * 2005-08-24 2011-07-13 富士ゼロックス株式会社 Power supply
JP2007173297A (en) * 2005-12-19 2007-07-05 Sharp Corp Piezoelectric transformer and its manufacturing method
JP5291411B2 (en) * 2008-09-11 2013-09-18 株式会社タムラ製作所 Piezoelectric transformer device

Also Published As

Publication number Publication date
JP2000307165A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
JP3553028B2 (en) Piezoelectric transformer for fluorescent lamp
JP3734637B2 (en) Drive device for piezoelectric transformer
JP4278750B2 (en) Piezoelectric transformer
JPH10200174A (en) Tertiary rosen type piezo-electric transformer and its driving circuit
JP4312021B2 (en) Piezoelectric transformer driving device and piezoelectric transformer driving method
JP4422440B2 (en) Piezoelectric transformer
JP3405033B2 (en) Piezoelectric transformer
JP2004140204A (en) Piezoelectric transformer
JPH10284279A (en) Cold-cathode tube lighting device
JPH10174436A (en) Piezoelectric element drive circuit
JPH10241884A (en) Cold cathode tube lighting drive unit and liquid crystal backlight cold cathode tube lighting drive unit
JP2004055718A (en) Piezoelectric transformer
JPH09214010A (en) Piezoelectric transformer
US20030102779A1 (en) Piezoelectric transformer
JP3239047B2 (en) Piezoelectric transformer and inverter and liquid crystal display incorporating the same
JPH09214013A (en) Piezoelectric transformer
JPH11317554A (en) Piezoelectric transformer
JP2004134422A (en) Piezoelectric transformer
JPH0951134A (en) Piezoelectric transformer
JP2004273709A (en) Piezoelectric transformer
JPH10321927A (en) Piezoelectric transformer
JPH1023753A (en) High voltage generating circuit
JP2005217259A (en) Piezoelectric transformer
JP3349048B2 (en) Piezoelectric transformer
JP2001308403A (en) Piezoelectric transformer, driving circuit thereof and liquid crystal display

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term