JP3733815B2 - Exhaust purification system - Google Patents

Exhaust purification system Download PDF

Info

Publication number
JP3733815B2
JP3733815B2 JP33087999A JP33087999A JP3733815B2 JP 3733815 B2 JP3733815 B2 JP 3733815B2 JP 33087999 A JP33087999 A JP 33087999A JP 33087999 A JP33087999 A JP 33087999A JP 3733815 B2 JP3733815 B2 JP 3733815B2
Authority
JP
Japan
Prior art keywords
reducing agent
cartridge
liquid reducing
remaining amount
injection nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33087999A
Other languages
Japanese (ja)
Other versions
JP2001152831A (en
Inventor
恒明 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP33087999A priority Critical patent/JP3733815B2/en
Publication of JP2001152831A publication Critical patent/JP2001152831A/en
Application granted granted Critical
Publication of JP3733815B2 publication Critical patent/JP3733815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/30Removable or rechangeable blocks or cartridges, e.g. for filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/05Systems for adding substances into exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0418Methods of control or diagnosing using integration or an accumulated value within an elapsed period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1814Tank level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関等において、排気ガス中の窒素酸化物(NOx)の排出量を低減するために、排気ガスの排気通路にNOx還元用の触媒を設けて、還元剤を添加してNOxを還元させることにより、触媒作用を利用して排気ガスを浄化する排気浄化システムに関するものである。
【0002】
【従来の技術】
大型・小型の商用車や乗用車等の自動車や船舶等に搭載したディーゼルエンジンの排気ガスや燃焼機器等の排気ガスに含まれている窒素酸化物(NOx)を浄化するために、触媒作用を利用して、窒素酸化物を還元する各種の排気浄化システムが実用化されている。
【0003】
特に、自動車用のガソリンエンジンにおいては、三元触媒が実用化され成果を上げているが、ディーゼルエンジンにおいては、排気ガス中の酸素濃度が高いため、ガソリン自動車用の三元触媒を直接使用できないという問題がある。
【0004】
そのため、ディーゼルエンジンにおいては、窒素酸化物の浄化に尿素水やアンモニア(NH3 )等の還元剤を用いる選択接触還元触媒(SCR触媒)を使用したSCR法の採用が検討されている。このSCR法は、高温の排気ガス中に尿素水溶液やアンモニア水溶液や液体アンモニア等の液体還元剤を注入して金属触媒と接触させて脱硝する方法である。
【0005】
図5に示すように、このSRC法の排気浄化システム1Aでは、エンジン等の排気通路2にSCR触媒3を設けると共に、このSCR触媒3の上流側に、噴射ノズル8を設け、タンク4から液体還元剤(還元剤水溶液)Lをポンプ5で混合部6に供給し、また一方では圧縮空気供給装置(エアーアシスト)7から供給される空気Aを混合部6に供給して、噴射ノズル(インジェクター)8に送り、SCR触媒3の上流側に噴霧する。この噴射ノズル8の噴射孔8aから排気通路2内に噴霧される還元剤で、排気ガスG中の窒素酸化物をSCR触媒3の触媒作用により還元浄化している。
【0006】
また、この排気浄化システム1Aでは、コントローラ(コントロールユニット)9により、タンク4に配設した容量計スイッチ4aで液体還元剤Lの残存を確認しながら、噴射ノズル8の開閉弁を制御して噴霧量を調整している。そして、液体還元剤Lの残存量が少なくなると、これを容量計スイッチ4aで検知して警告ランプ10を点灯し、液体還元剤Lの補充を促すように構成されている。
【0007】
この窒素酸化物の還元作用は、4NO+4NH3 +O2 =4N2 +6H2 Oの反応で行なわれ、SCR触媒3としては、ペレット状やハニカム状に形成されたアルミナ(酸化アルミニウム:Al2 3 ),チタニア(酸化チタン:TiO2 )等を担体とし、白金(Pt),酸化バナジウム(V2 5 ),酸化鉄(Fe2 3 ),酸化銅(CuO),酸化マンガン(Mn2 3 ),酸化クロム(Cr2 3 ),酸化モリブデン(MoO3 )等を活性体として使用するものが知られている。
【0008】
【発明が解決しようとする課題】
しかしながら、従来のタンク方式の排気浄化システムでは、液体還元剤Lを霧状に噴霧する必要があるため、この液体還元剤Lを噴射ノズル8に供給するためのポンプ6や、噴霧化するための圧縮空気供給装置7等の加圧装置が必要になるため、排気浄化システム1Aが複雑化するという問題がある。
【0009】
また、尿素水溶液やアンモニア水溶液など、還元剤を溶解させた液体還元剤の場合には、還元剤の蒸発が発生するために、液体還元剤Lの濃度が変化するので、濃度の管理が難しく、排気ガス浄化が不十分となるという問題がある。
【0010】
つまり、充填後も還元剤の蒸発のために、濃度が徐々に低下し、また、充填当初の液体還元剤Lを追加した場合にも、タンク4内の追加直前の残存水溶液Lの濃度が蒸発によって低下しているため、混合後の濃度も一定しない。
【0011】
そして、この還元剤の濃度がその時々で変化してしまうために、適切な量の還元剤を供給することが出来ず、SRC触媒3の浄化効率が低下して排気ガスGの還元浄化を十分に行えなかったり、あるいは、余分な還元剤が排気ガス中に混入したまま排気されることになる。
【0012】
本発明は、上述の問題を解決するためになされたものであり、その目的は、触媒を使用した内燃機関等の排気浄化システムにおいて、液体還元剤の供給手段がシンプルで、液体還元剤の残存量の把握も容易で、しかも、液体還元剤の濃度を略一定に保って安定して供給することができる排気浄化システムを提供することにある。
【0013】
更なる目的は、液体還元剤の残存量を正確に把握して、残存量が少なくなった時に運転者に対して液体還元剤の供給を督促する警告をタイミング良く発生することができる排気浄化システムを提供することにある。
【0014】
【課題を解決するための手段】
以上のような目的を達成するための排気浄化システムは、以下のように構成される。
【0015】
内燃機関等の排気通路に、上流側から順に噴射ノズルと排気ガス浄化用の触媒を配置し、前記噴射ノズルより液体還元剤を噴霧して前記触媒に供給して、排気ガス中の窒素酸化物を還元浄化する排気浄化システムにおいて、前記液体還元剤を加圧ガスとともに封入して、該加圧ガスの圧力によって前記液体還元剤を前記噴射ノズルから噴射することができる交換検知手段を具備した交換可能なカートリッジを、前記噴射ノズルに連通する前記液体還元剤の供給管路に着脱可能に連結して構成される。
【0016】
この触媒としてはSCR触媒等があり、このSCR触媒は、担体をAl2 3 ,TiO2 等で形成し、活性体としての触媒金属をPt,V2 5 ,Fe2 3 ,CuO,Mn2 3 ,Cr2 3 ,MoO3 等で形成することができる。
【0017】
また、液体還元剤としては、尿素水溶液やアンモニア水溶液や液体アンモニア等があり、加圧ガスとしては、圧縮空気やその他のガス、例えば、塗料のスプレー缶や潤滑剤のスプレー缶等の液体を加圧する周知のガスを使用することができる。また、カートリッジとは、この加圧ガスの圧力に耐えるように形成された着脱可能な容器であり、この容器ごと交換することにより、液体還元剤の新たな供給を行うものである。
【0018】
この構成による内燃機関の排気浄化システムにおいては、カートリッジ内の加圧ガスによって、液体還元剤を噴霧するための圧力を得られるので、圧縮空気供給装置等の加圧機構を設ける必要が無くなり、排気浄化システムが単純化する。
【0019】
また、液体還元剤をカートリッジに封入しているので、還元剤を溶液に溶解している場合でも還元剤の蒸発が抑制されるので、還元剤溶液の濃度変化が殆ど無く、安定した濃度で還元剤を噴射ノズルに供給できる。そのため、最適な量を正確に触媒に供給することができるようになり、浄化効率が向上する。
【0020】
2)また、上記の内燃機関の排気浄化システムにおいて、前記カートリッジ内の前記液体還元剤の残存量を検知する残存量検知手段と、前記残存量が所定の下限量以下になった時に警告を発生する警告発生手段を有して形成される。
【0021】
この残存量検知手段と警告発生手段を備えることにより、警告を受けた運転者が適切な時期にカートリッジを交換するので、液体還元剤の管理が容易となり、液体還元剤の供給の中断を防止できる。
【0022】
また、残存量と所定の下限量との比較は、直接、液体還元剤の重量で比較してもよいが、この重量から換算可能な量、例えば、容量や検出信号の値(電圧値等)や液体還元剤を消費しながら走行できる走行距離等に換算した値で比較してもよく、本発明はこれらを含むものである。
【0023】
3)そして、上記の内燃機関の排気浄化システムにおいて、前記残存量検知手段を、前記噴射ノズルの作動を制御する制御信号を積算し、該積算値から前記液体還元剤の消費量を計算することによって、残存量を算出する演算手段で構成する。
【0024】
この構成によれば、噴射ノズル用の制御信号から、液体還元剤の消費量を算出するので、新たにセンサを設ける必要が無く、また、この演算手段は、内燃機関等のコントローラにプログラムの追加で設けることができるので、比較的容易に実施できる。
【0025】
4)あるいは、上記の内燃機関の排気浄化システムにおいて、前記残存量検知手段を、前記カートリッジの重量を検出する重量センサと、該重量センサの信号から前記液体還元剤の残存量を算出する演算手段で構成する。
【0026】
この構成によれば、重量センサにより、直接液体還元剤の量を測定できるので、誤差の少ないよりきめ細かい管理が可能となる。
【0027】
5)そして、更に、前記交換検知手段によって前記カートリッジの交換が検知された時に、所定時間の間前記噴射ノズルを作動させるように構成される。
【0028】
この交換検知手段は、カートリッジの有無に従ってON/OFFするスイッチ等で形成でき、また、噴射ノズルを作動させる所定時間は、カートリッジ交換に伴う液体還元剤の供給ライン(カートリッジと噴射孔との間)のエア抜きができる、予め決められ、予めコントローラに入力された時間である。
【0029】
この構成により、カートリッジの交換を検知できるので、残存量の推定基準となる初期値を正確にリセットできる。つまり、カートリッジの充填量及び濃度は、カートリッジ製造メーカーが工場の品質管理で所定の値になるように正確に管理して出荷するので、カートリッジの交換時にこの所定の充填量をリセットの初期値として使用することにより、より正確な残存量の推定が可能となる。
【0030】
また、カートリッジ交換時に、自動的にエア抜きを行うので、液体還元剤の供給ラインのエア噛みを防止でき、常時、コントローラの指示に従って適切な量の液体還元剤を供給できる。
【0031】
【発明の実施の形態】
以下、図面を用いて、本発明に係る排気浄化システムの実施の形態について説明する。
【0032】
図1に示すように、本発明に係る排気浄化システム1は、エンジン等の排気通路2に、SCR(選択接触還元)触媒3を設け、更に、このSCR触媒3の上流側に液体還元剤の一つである尿素水溶液Lを噴霧できる噴射ノズル(インジェクター)8を設けて構成される。
【0033】
このSCR触媒3は、担体をAl2 3 ,TiO2 等で形成し、活性体としての触媒金属をPt,V2 5 ,Fe2 3 ,CuO,Mn2 3 ,Cr2 3 ,MoO3 等で形成する。
【0034】
そして、尿素水溶液Lと加圧ガスPを封入して貯蔵した交換可能なカートリッジ21を備え、このカートリッジ21を供給管路22で噴射ノズル8と着脱可能に連結して、このカートリッジ21内の加圧ガスPの圧力によって、尿素水溶液Lが噴射ノズル8に供給され、コントローラ(コントロールユニット)9の制御に従って、噴射孔8aから排気通路2内に噴霧されるように構成される。
【0035】
この噴霧の原理は、一般的に使用されている、塗料のスプレー缶や潤滑剤スプレー缶等と同様であり、液体Lと圧縮気体(ガス又は空気)Pをボンベのようなカートリッジ21に充填して、液体Lを気体Pで加圧しておき、出口が開放されると、出口から液体Lを押し出して噴霧するものである。
【0036】
この噴霧は、コントローラ9がエンジンの各種情報等を参照して算出した目標の噴霧量になるように、噴射ノズル8をデューティ(Duty)制御で開閉制御して行う。
【0037】
この構成によれば、カートリッジ21内の加圧ガスPによって、液体還元剤Lを噴霧するための圧力を得られるので、圧縮空気供給装置(エアーアシスト)等の加圧機構を設ける必要が無くなり、排気浄化システム1を単純化することができる。
【0038】
また、液体還元剤Lをカートリッジ21に封入しているので、蒸発等による液体還元剤Lの濃度変化が無く、安定した濃度で還元剤を触媒3に適切な量供給でき、浄化効率を良好に保つことができる。
【0039】
〔残存量の推定〕
更に、カートリッジ21内の尿素水溶液Lの残存量Wsを推定し、必要に応じて運転者等に警告するために、演算手段や重量センサ23等で構成される残存量検知手段とカートリッジ21の交換を検知する交換検知手段を設け、後述する図2〜図4に示すフローにそれぞれ従うような演算及び制御を行う。
【0040】
この残存量検知手段と警告発生手段(警告ランプ)10を設けることにより、正確な残存量Wsを把握して、運転者に残存量Wsの表示又は交換を促す警告をすることができる。そのため、適切な時期にカートリッジ21を交換し液体還元剤Lを供給できるので、液体還元剤Lの中断を防止できる。
【0041】
更に、カートリッジ21の交換を検知する交換検知手段を備えることにより、残存量Wsの初期値を所定の値にリセットできるので正確に残存量Wsを推定できる。また、カートリッジ21の交換が検知された時に、所定時間の間噴射ノズル8を作動させることにより、供給管路22のエア抜きを自動的に行うことができるので、エア噛みを防止して噴射ノズル8の正確な作動を維持できる。
【0042】
〔残存量の推定(その1)〕
最初に、カートリッジ21の交換を検知する交換検知手段24を設けた場合について説明する。
【0043】
この交換検知手段24は、空になったカートリッジ21を取り外した時にOFFになり、新しいカートリッジ21を装着した時にONとなるような、単純なON/OFFスイッチ24で形成できる。この場合は、スイッチ24からコントローラ9への出力がOFF信号からON信号に変化した時に、交換が行われた判断し、液体残存量Wsの初期値を工場出荷時の所定の量にリセットする。なお、ONとOFFを逆に設定してもよい。
【0044】
また、この構成では、残存量検知手段を、噴射ノズル8の作動を制御するコントローラ9の制御信号を積算し、この積算値から液体還元剤Lの消費量Wcを計算することによって、残存量Wsを算出するように構成する。
【0045】
従って、簡単なON/OFFスイッチ24と新たな残存量算出プログラムを追加するだけで、残存量検知手段とすることができるので、新たに高価なセンサを設ける必要が無い。
【0046】
そして、この場合は、図2のフローに従った演算及び制御を行う。この図2のフローの部分がメインの制御プログラムから所定の期間毎に繰り返し呼ばれ、このフローがスタートすると、先ず、ステップS11で、カートリッジ21内の尿素水溶液Lの残存量Wsを算出する。
【0047】
この残存量Wsの算出は、このフローが呼ばれる前の尿素水溶液Lの残存量(重量)Wsから、消費した重量Wcを引き算して行う。この消費した重量Wcは、噴射ノズル8を開閉制御するデューティ(Duty)信号のデューティ比を積算し、この積算値を噴霧量に換算して、この換算値に尿素水溶液Lの比重を乗じて求める。
【0048】
そして、ステップS12に行くと、カートリッジ21が交換されたか否かを、交換検知手段24の出力で判定し、交換がなされたと判断された場合(YES )には、ステップS13で、残存量Wsを初期化して所定量にリセットし、ステップS14で、所定時間の間、例えば、数秒間程度、噴射ノズル8を作動させる信号を出力して、供給管路22のエア抜きをしてからステップS15に行き、カートリッジ21の交換がなされていない場合(NO)にはそのままステップS15に行く。
【0049】
なお、この供給管路22のエア抜きは、カートリッジ21を交換した時に、供給管路22にエアが入るので、噴射ノズル8にエアが噛んで正確な噴射が出来なくなることを防ぐために行うものであり、エア抜きバルブ(図示しない)を設けて、このエア抜きバルブを所定の時間開放してもよい。
【0050】
そして、カートリッジの交換を督促する警告をするか否かの判定のための演算を行う。この演算は、先ず、ステップS15で、現在の残存量Wsから、交換無しで走行可能な距離Dpを推定演算し、ステップS16で、この走行可能な距離Dpが所定のしきい値である警告距離Dwより小さくなったか否かを判定する。
【0051】
この走行可能な距離Dpは、例えば、60km/hの一定の基準速度(平地)で走行した場合の単位時間当たりの尿素水溶液Lの消費量Waを予め入力したデータか、あるいは、実際の走行時に蓄積したデータから推定して、この消費量Waで残存量Wsを除することにより、即ち、Dp=Ws/Waとすることにより算出することができる。また、警告距離Dwとしては、交換までに走行を要する標準的な距離、例えば、50km等を採用する。
【0052】
そして、走行可能な距離Dpが警告距離Dw以下でない場合(NO)には、そのまま、リターンして、メインの制御に戻り、以下である場合(YES )には、ステップS17で、警告ランプ10を点灯し、運転者に、カートリッジ21内の尿素水溶液Lが少なくなっていることを知らせ、交換を促す。それから、リターンして、メインの制御に戻る。なお、警告ランプ10の代わりに音声で警告してもよく、音声と警告ランプ10を併用してもよい。
【0053】
また、警告距離Dwを走行した場合に消費すると推定される尿素水溶液Lの量を所定の下限量Wpとして予め算出しておき、ステップS15とステップS16の代わりに、直接、残存量Wsと所定の下限値Wpとを比較して、残存量Wsが所定の下限量Wp以下になった時に、ステップS17に行き警告を発生するように構成することもできる。
【0054】
〔残存量の推定(その2)〕
次に、上記の交換検知手段21が配設されず、カートリッジ21の重量を測定するための重量センサ23が配設され、このカートリッジ21の重量を測定し、その結果をコントローラ9に出力するように構成された場合について説明する。
【0055】
この重量センサ23を使用する場合には、尿素水溶液Lが十分残っている時に、一旦取り外してから戻した場合や、残留量が新品の量とは異なる中古品のカートリッジ21を取り付けたりした場合に生じる、残存量の誤った推定を回避することができる。また、直接的に液体還元剤Lの量を測定できるので、誤差の少ないよりきめ細かい管理ができる。
【0056】
そして、この場合は、図3のフローに従った演算及び制御を行う。この図3のフローの部分がメインの制御プログラムから所定の期間毎に繰り返し呼ばれ、スタートすると、先ず、ステップS21で、カートリッジ21の総重量Cwを検出し、カートリッジ21本体の重量(加圧ガスの重量を含む)を引き算し残存量Wsを算出する。次にステップS22で、この重量Cwが工場出荷時と同じ重さか否か、即ち、所定の重量Co以上か否かを判定し、以上(YES )であれば、ステップS23に行き、カートリッジ21が交換されたとして所定時間の間、噴射ノズル8を作動させる信号を出力してからステップS24に行き、以下(NO)であれば、カートリッジ21の交換がなされていないとしてそのままステップS24に行く。
【0057】
そして、ステップS24からステップS26でカートリッジの交換を督促する警告をするか否かの判定のための演算をするが、この演算は、上記のステップS15からステップS17と同様であるので、説明を省く。
【0058】
〔残存量の推定(その3)〕
更に、カートリッジ21の交換の有無を検知できるように、交換検知手段24と、カートリッジ21の重量を測定するための重量センサ23とが共に配設された場合について説明する。
【0059】
この場合のメリットは、図3のフローに従う重量センサ23のみ設置した場合では、所定時間の間のエア抜き用の噴射ノズル8の作動を繰り返し行わないようにするために、新品のカートリッジ21の重さとエア抜き作動後の重さとの差を検知できる高精度の重量センサ23が必要になるが、交換検知手段24を加えた場合には、エア抜き用の噴射はこの交換検知手段24に基づいてのみ行うので、重量センサ23では残存量Wsがある程度の精度で分かれば良いことになり、安価な重量センサ23で済み、高価な重量センサ23が不要になる点である。
【0060】
また、カートリッジ21の充填量及び濃度は、カートリッジ製造メーカーが工場の品質管理で所定の値になるように正確に管理して出荷するので、カートリッジ21の交換時に残存量の初期値をこの所定の値にリセットすることにより、より正確な残存量の推定が可能となる。
【0061】
そして、この場合には図4のフローに従った演算及び制御を行う。この図4のフローの部分がメインの制御プログラムから所定の期間毎に繰り返し呼ばれ、スタートすると、先ず、ステップS31で、カートリッジ21が交換されたか否かを判定し、交換がなされたと判断された場合(YES )には、ステップS32で、所定時間の間、噴射ノズル8を作動させる信号を出力してから、ステップS33に行き、カートリッジ21の交換がなされていない場合(NO)にはそのままステップS33に行く。
【0062】
このステップS33では、重量センサ23でカートリッジ21の総重量Cwを検出し、カートリッジ21本体の重量(加圧ガスの重量も含む)を引き算し残存量Wsを算出する。
【0063】
そして、ステップS34からステップS36でカートリッジ21の交換を督促する警告をするか否かの判定のための演算をするが、この演算は、上記のステップS15からステップS17と同様であるので、説明を省く。
【0064】
なお、以上の説明では、自動車等のエンジンの排気ガス浄化を例に、また、液体還元剤として尿素水溶液を例にして説明したが、これらの内燃機関以外の例えば燃焼炉等の他の排気ガスの浄化にも本発明を使用でき、また、液体還元剤に関しても、上述の尿素水溶液やアンモニア水溶液等の還元剤を溶解した水溶液や、液体アンモニア等の還元剤自体が液状であるものにも使用できるので、本発明は上記した実施の形態のみに限定されるものではない。
【0065】
【発明の効果】
以上の説明のように、本発明に係る排気浄化システムによれば、次のような効果を奏することができる。
【0066】
カートリッジ内の液体還元剤と共に加圧ガスを封入し、カートリッジ内に液体還元剤を噴霧するための圧力源を設けているので、圧縮空気供給装置等の加圧機構を設ける必要が無く、排気浄化システムが単純化し、排気浄化システムの小型軽量化を図ることができる。
【0067】
また、液体還元剤をカートリッジに封入しているので、還元剤の蒸発等による液体還元剤の濃度変化が無く、安定した濃度で還元剤を触媒に適切な量供給でき、浄化効率を良好に保つことができる。
【0068】
更に、残存量検知手段と警告発生手段を設けることにより、正確な残存量を把握して、運転者に残存量の表示又は交換を促す警告をすることができる。そのため、液体還元剤の管理を確実に行えるようになり、適切な時期にカートリッジを交換し液体還元剤を供給できるので、液体還元剤の中断による排気ガス浄化不良を回避できる。
【図面の簡単な説明】
【図1】本発明に係る排気浄化システムを示す構成図である。
【図2】カートリッジに対する交換検出手段を使用した本発明に係る排気浄化システムの制御フローを示す図である。
【図3】カートリッジに対する重量検出手段を使用した本発明に係る排気浄化システムの制御フローを示す図である。
【図4】カートリッジに対する交換検出手段と重量検出手段を使用した本発明に係る排気浄化システムの制御フローを示す図である。
【図5】従来技術の排気浄化システムを示す構成図である。
【符号の説明】
1 排気浄化システム
2 排気通路
3 SCR触媒(触媒)
8 噴射ノズル
8a 噴射孔
9 コントローラ(残存量検知手段)
10 警告ランプ(警告発生手段)
21 カートリッジ
22 供給管路
23 重量センサ(残存量検知手段)
24 ON/OFFスイッチ(交換検知手段)
G 排気ガス
L 尿素水溶液(液体還元剤)
P 加圧ガス
Ws 残存量
Wc 消費量
Wp 所定の下限量
[0001]
BACKGROUND OF THE INVENTION
In an internal combustion engine or the like, in order to reduce the amount of nitrogen oxide (NOx) in exhaust gas, a NOx reduction catalyst is provided in an exhaust gas exhaust passage, and a reducing agent is added to the NOx. The present invention relates to an exhaust gas purification system that purifies exhaust gas by utilizing catalytic action by reducing the amount of gas.
[0002]
[Prior art]
Uses catalytic action to purify nitrogen oxides (NOx) contained in exhaust gas from diesel engines and combustion equipment mounted on automobiles and ships such as large and small commercial vehicles and passenger cars Various exhaust purification systems that reduce nitrogen oxides have been put into practical use.
[0003]
In particular, three-way catalysts have been put into practical use in gasoline engines for automobiles and have been successful. However, in diesel engines, the three-way catalyst for gasoline cars cannot be used directly because the oxygen concentration in the exhaust gas is high. There is a problem.
[0004]
Therefore, in a diesel engine, adoption of the SCR method using a selective catalytic reduction catalyst (SCR catalyst) using a reducing agent such as urea water or ammonia (NH 3 ) for purifying nitrogen oxides is being studied. This SCR method is a method in which a liquid reducing agent such as an aqueous urea solution, an aqueous ammonia solution, or liquid ammonia is injected into a high-temperature exhaust gas and brought into contact with a metal catalyst for denitration.
[0005]
As shown in FIG. 5, in the exhaust purification system 1A of the SRC method, an SCR catalyst 3 is provided in an exhaust passage 2 of an engine or the like, and an injection nozzle 8 is provided upstream of the SCR catalyst 3, and liquid is supplied from a tank 4. A reducing agent (reducing agent aqueous solution) L is supplied to the mixing unit 6 by a pump 5, and on the other hand, air A supplied from a compressed air supply device (air assist) 7 is supplied to the mixing unit 6, and an injection nozzle (injector) ) 8 and spray on the upstream side of the SCR catalyst 3. The reducing agent sprayed into the exhaust passage 2 from the injection hole 8 a of the injection nozzle 8 reduces and purifies nitrogen oxide in the exhaust gas G by the catalytic action of the SCR catalyst 3.
[0006]
Further, in this exhaust purification system 1A, the controller (control unit) 9 controls the on / off valve of the injection nozzle 8 while spraying the liquid reducing agent L while confirming the remaining of the liquid reducing agent L with the capacity meter switch 4a disposed in the tank 4. The amount is adjusted. When the remaining amount of the liquid reducing agent L decreases, this is detected by the capacity meter switch 4a, the warning lamp 10 is turned on, and replenishment of the liquid reducing agent L is promoted.
[0007]
The reduction action of this nitrogen oxide is carried out by the reaction of 4NO + 4NH 3 + O 2 = 4N 2 + 6H 2 O. As the SCR catalyst 3, alumina formed in pellets or honeycombs (aluminum oxide: Al 2 O 3 ) , Titania (titanium oxide: TiO 2 ) or the like as a carrier, platinum (Pt), vanadium oxide (V 2 O 5 ), iron oxide (Fe 2 O 3 ), copper oxide (CuO), manganese oxide (Mn 2 O 3) ), Chromium oxide (Cr 2 O 3 ), molybdenum oxide (MoO 3 ) and the like are known as active substances.
[0008]
[Problems to be solved by the invention]
However, in the conventional tank type exhaust purification system, it is necessary to spray the liquid reducing agent L in the form of a mist, so that the pump 6 for supplying the liquid reducing agent L to the injection nozzle 8 and the atomizing are performed. Since a pressurizing device such as the compressed air supply device 7 is required, there is a problem that the exhaust purification system 1A becomes complicated.
[0009]
Further, in the case of a liquid reducing agent in which a reducing agent is dissolved, such as an aqueous urea solution or an aqueous ammonia solution, since the concentration of the liquid reducing agent L changes because evaporation of the reducing agent occurs, it is difficult to manage the concentration. There is a problem that exhaust gas purification becomes insufficient.
[0010]
That is, even after filling, the concentration gradually decreases due to evaporation of the reducing agent, and even when the liquid reducing agent L at the beginning of filling is added, the concentration of the remaining aqueous solution L just before the addition in the tank 4 evaporates. Therefore, the concentration after mixing is not constant.
[0011]
Since the concentration of the reducing agent changes from time to time, an appropriate amount of the reducing agent cannot be supplied, and the purification efficiency of the SRC catalyst 3 is reduced to sufficiently reduce and purify the exhaust gas G. Or the excess reducing agent is exhausted while being mixed in the exhaust gas.
[0012]
The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a simple means for supplying a liquid reducing agent in an exhaust gas purification system such as an internal combustion engine using a catalyst, and the remaining liquid reducing agent. It is an object of the present invention to provide an exhaust purification system that can easily grasp the amount and can stably supply the concentration of the liquid reducing agent while keeping it substantially constant.
[0013]
A further object is to accurately grasp the remaining amount of the liquid reducing agent, and when the remaining amount is low, an exhaust purification system capable of generating a warning prompting the driver to supply the liquid reducing agent in a timely manner. Is to provide.
[0014]
[Means for Solving the Problems]
An exhaust gas purification system for achieving the above object is configured as follows.
[0015]
An injection nozzle and an exhaust gas purification catalyst are arranged in order from the upstream side in an exhaust passage of an internal combustion engine or the like, and a liquid reducing agent is sprayed from the injection nozzle and supplied to the catalyst, and nitrogen oxides in the exhaust gas In the exhaust purification system for reducing and purifying the gas, the replacement is provided with an exchange detection means that encloses the liquid reducing agent together with the pressurized gas and can inject the liquid reducing agent from the injection nozzle by the pressure of the pressurized gas. A possible cartridge is configured to be detachably connected to the liquid reducing agent supply line communicating with the injection nozzle.
[0016]
As this catalyst, there is an SCR catalyst or the like. In this SCR catalyst, the support is formed of Al 2 O 3 , TiO 2 or the like, and the catalyst metal as the active substance is Pt, V 2 O 5 , Fe 2 O 3 , CuO, It can be formed of Mn 2 O 3 , Cr 2 O 3 , MoO 3 or the like.
[0017]
Examples of the liquid reducing agent include urea aqueous solution, aqueous ammonia solution, and liquid ammonia. As the pressurized gas, liquid such as compressed air and other gases such as paint spray cans and lubricant spray cans are added. A well-known gas can be used. The cartridge is a detachable container formed to withstand the pressure of the pressurized gas, and the liquid reducing agent is newly supplied by exchanging the container.
[0018]
In the exhaust gas purification system for an internal combustion engine with this configuration, since the pressure for spraying the liquid reducing agent can be obtained by the pressurized gas in the cartridge, there is no need to provide a pressurizing mechanism such as a compressed air supply device. The purification system is simplified.
[0019]
In addition, since the liquid reducing agent is sealed in the cartridge, the evaporation of the reducing agent is suppressed even when the reducing agent is dissolved in the solution. The agent can be supplied to the injection nozzle. Therefore, the optimum amount can be accurately supplied to the catalyst, and the purification efficiency is improved.
[0020]
2) In the exhaust gas purification system for the internal combustion engine, a remaining amount detecting means for detecting the remaining amount of the liquid reducing agent in the cartridge, and a warning when the remaining amount falls below a predetermined lower limit amount It is formed with warning generating means.
[0021]
By providing the remaining amount detecting means and the warning generating means, the driver who has received the warning replaces the cartridge at an appropriate time, so that the liquid reducing agent can be easily managed and the supply of the liquid reducing agent can be prevented from being interrupted. .
[0022]
Further, the comparison between the remaining amount and the predetermined lower limit amount may be made directly by the weight of the liquid reducing agent, but the amount that can be converted from this weight, for example, the value of the capacity or the detection signal (voltage value, etc.) Or a value converted into a travel distance that can be traveled while consuming the liquid reducing agent, etc., and the present invention includes these values.
[0023]
3) In the exhaust gas purification system for an internal combustion engine, the remaining amount detection means integrates a control signal for controlling the operation of the injection nozzle, and calculates the consumption amount of the liquid reducing agent from the integrated value. Thus, it is constituted by a calculation means for calculating the remaining amount.
[0024]
According to this configuration, since the amount of consumption of the liquid reducing agent is calculated from the control signal for the injection nozzle, there is no need to provide a new sensor, and this calculation means adds a program to a controller such as an internal combustion engine. Therefore, it can be implemented relatively easily.
[0025]
4) Alternatively, in the exhaust gas purification system for an internal combustion engine, the remaining amount detecting means includes a weight sensor for detecting the weight of the cartridge, and a calculating means for calculating the remaining amount of the liquid reducing agent from a signal of the weight sensor. Consists of.
[0026]
According to this configuration, since the amount of the liquid reducing agent can be directly measured by the weight sensor, finer management with less error is possible.
[0027]
5) Then, further, when the replacement of the cartridge is detected by the exchange detection unit, configured to actuate the injection nozzle during a predetermined time period.
[0028]
This exchange detection means can be formed by a switch or the like that is turned ON / OFF according to the presence or absence of a cartridge, and a predetermined time for operating the injection nozzle is a liquid reducing agent supply line (between the cartridge and the injection hole) that accompanies cartridge replacement. This is a predetermined time that can be removed from the air and input to the controller in advance.
[0029]
With this configuration, since the replacement of the cartridge can be detected, the initial value that is the estimation criterion of the remaining amount can be accurately reset. In other words, the cartridge filling amount and concentration are accurately controlled by the cartridge manufacturer so as to become a predetermined value in the quality control of the factory before shipping, and this predetermined filling amount is used as an initial value of reset when the cartridge is replaced. By using it, the remaining amount can be estimated more accurately.
[0030]
In addition, since air is automatically vented when the cartridge is replaced, it is possible to prevent the air biting of the supply line of the liquid reducing agent and to always supply an appropriate amount of the liquid reducing agent in accordance with instructions from the controller.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of an exhaust purification system according to the present invention will be described with reference to the drawings.
[0032]
As shown in FIG. 1, an exhaust purification system 1 according to the present invention is provided with an SCR (selective contact reduction) catalyst 3 in an exhaust passage 2 of an engine or the like, and further, a liquid reducing agent is disposed upstream of the SCR catalyst 3. An injection nozzle (injector) 8 that can spray one urea aqueous solution L is provided.
[0033]
In this SCR catalyst 3, the support is formed of Al 2 O 3 , TiO 2 or the like, and the catalyst metal as an active substance is Pt, V 2 O 5 , Fe 2 O 3 , CuO, Mn 2 O 3 , Cr 2 O 3. , MoO 3 or the like.
[0034]
The cartridge 21 is provided with a replaceable cartridge 21 in which the urea aqueous solution L and the pressurized gas P are enclosed and stored. The cartridge 21 is detachably connected to the injection nozzle 8 through a supply line 22 so that the inside of the cartridge 21 can be added. The urea aqueous solution L is supplied to the injection nozzle 8 by the pressure of the pressurized gas P, and is sprayed into the exhaust passage 2 from the injection hole 8a under the control of the controller (control unit) 9.
[0035]
The principle of this spraying is the same as that of commonly used paint spray cans and lubricant spray cans, and the cartridge 21 such as a cylinder is filled with liquid L and compressed gas (gas or air) P. Then, the liquid L is pressurized with the gas P, and when the outlet is opened, the liquid L is pushed out and sprayed from the outlet.
[0036]
This spraying is performed by controlling the opening and closing of the injection nozzle 8 by duty control so that the controller 9 has a target spray amount calculated by referring to various information of the engine.
[0037]
According to this configuration, since the pressure for spraying the liquid reducing agent L can be obtained by the pressurized gas P in the cartridge 21, it is not necessary to provide a pressure mechanism such as a compressed air supply device (air assist). The exhaust purification system 1 can be simplified.
[0038]
Further, since the liquid reducing agent L is sealed in the cartridge 21, there is no change in the concentration of the liquid reducing agent L due to evaporation or the like, and an appropriate amount of the reducing agent can be supplied to the catalyst 3 at a stable concentration, thereby improving the purification efficiency. Can keep.
[0039]
[Estimation of remaining amount]
Further, in order to estimate the remaining amount Ws of the urea aqueous solution L in the cartridge 21 and to warn the driver or the like as necessary, the cartridge 21 is replaced with a remaining amount detecting means constituted by a calculating means, a weight sensor 23, etc. An exchange detection means is provided for performing the calculation and control according to the flows shown in FIGS.
[0040]
By providing the remaining amount detecting means and the warning generating means (warning lamp) 10, it is possible to grasp the accurate remaining amount Ws and warn the driver to display or replace the remaining amount Ws. Therefore, since the cartridge 21 can be replaced at an appropriate time and the liquid reducing agent L can be supplied, interruption of the liquid reducing agent L can be prevented.
[0041]
Furthermore, since the replacement detection means for detecting the replacement of the cartridge 21 is provided, the initial value of the remaining amount Ws can be reset to a predetermined value, so that the remaining amount Ws can be estimated accurately. Also, when the replacement of the cartridge 21 is detected, the supply nozzle 22 can be automatically vented by operating the injection nozzle 8 for a predetermined time, so that the air nozzle is prevented and the injection nozzle is prevented. 8 accurate operation can be maintained.
[0042]
[Estimation of remaining amount (part 1)]
First, the case where the replacement detection means 24 for detecting the replacement of the cartridge 21 is provided will be described.
[0043]
The replacement detection means 24 can be formed by a simple ON / OFF switch 24 that is turned off when an empty cartridge 21 is removed and turned on when a new cartridge 21 is mounted. In this case, when the output from the switch 24 to the controller 9 changes from the OFF signal to the ON signal, it is determined that the replacement has been performed, and the initial value of the remaining liquid amount Ws is reset to a predetermined amount at the time of shipment from the factory. Note that ON and OFF may be set in reverse.
[0044]
Further, in this configuration, the remaining amount detection means integrates the control signal of the controller 9 that controls the operation of the injection nozzle 8, and calculates the remaining amount Ws of the liquid reducing agent L from this integrated value, thereby calculating the remaining amount Ws. Is configured to calculate.
[0045]
Therefore, it is possible to provide the remaining amount detection means simply by adding a simple ON / OFF switch 24 and a new remaining amount calculation program, so that it is not necessary to provide a new expensive sensor.
[0046]
In this case, calculation and control are performed according to the flow of FIG. The portion of the flow in FIG. 2 is repeatedly called from the main control program every predetermined period. When this flow starts, first, the remaining amount Ws of the urea aqueous solution L in the cartridge 21 is calculated in step S11.
[0047]
The remaining amount Ws is calculated by subtracting the consumed weight Wc from the remaining amount (weight) Ws of the urea aqueous solution L before the flow is called. The consumed weight Wc is obtained by integrating the duty ratio of a duty signal for controlling the opening and closing of the injection nozzle 8, converting the integrated value into a spray amount, and multiplying the converted value by the specific gravity of the urea aqueous solution L. .
[0048]
In step S12, it is determined whether or not the cartridge 21 has been replaced by the output of the replacement detection means 24. If it is determined that the cartridge 21 has been replaced (YES), the remaining amount Ws is determined in step S13. In step S14, a signal for operating the injection nozzle 8 is output for a predetermined time, for example, for a few seconds, and the supply line 22 is bleed, and then the process proceeds to step S15. If the cartridge 21 has not been replaced (NO), the process goes directly to step S15.
[0049]
The air supply line 22 is vented to prevent air from entering the supply pipe line 22 when the cartridge 21 is replaced, so that the injection nozzle 8 cannot be accurately injected due to the air. Yes, an air vent valve (not shown) may be provided, and the air vent valve may be opened for a predetermined time.
[0050]
Then, a calculation is performed to determine whether or not to issue a warning prompting replacement of the cartridge. In this calculation, first, in step S15, the distance Dp that can be traveled without replacement is estimated from the current remaining amount Ws, and in step S16, the warning distance in which the travelable distance Dp is a predetermined threshold value. It is determined whether or not it becomes smaller than Dw.
[0051]
The travelable distance Dp is, for example, data obtained by previously inputting the consumption amount Wa of the aqueous urea solution L per unit time when traveling at a constant reference speed (flat ground) of 60 km / h, or during actual traveling It can be calculated by estimating from the accumulated data and dividing the remaining amount Ws by this consumed amount Wa, that is, by setting Dp = Ws / Wa. Further, as the warning distance Dw, a standard distance that requires traveling before replacement, for example, 50 km is adopted.
[0052]
If the travelable distance Dp is not less than or equal to the warning distance Dw (NO), the process returns to the main control, and if it is the following (YES), the warning lamp 10 is turned on in step S17. Lights up and informs the driver that the urea aqueous solution L in the cartridge 21 is low and prompts replacement. Then, return and return to the main control. It should be noted that a warning may be given by voice instead of the warning lamp 10, or the voice and the warning lamp 10 may be used in combination.
[0053]
Further, the amount of the urea aqueous solution L estimated to be consumed when traveling the warning distance Dw is calculated in advance as a predetermined lower limit amount Wp, and the remaining amount Ws and the predetermined amount are directly used instead of steps S15 and S16. It is also possible to compare the lower limit value Wp and to go to step S17 and generate a warning when the remaining amount Ws becomes equal to or less than the predetermined lower limit amount Wp.
[0054]
[Estimation of remaining amount (part 2)]
Next, the replacement detection means 21 is not provided, but a weight sensor 23 for measuring the weight of the cartridge 21 is provided. The weight of the cartridge 21 is measured, and the result is output to the controller 9. The case where it comprises is demonstrated.
[0055]
When this weight sensor 23 is used, when a sufficient amount of urea aqueous solution L remains, when it is once removed and then returned, or when a used cartridge 21 having a residual amount different from the new amount is attached. The erroneous estimation of the remaining amount that occurs can be avoided. Further, since the amount of the liquid reducing agent L can be directly measured, finer management can be performed with less error.
[0056]
In this case, calculation and control are performed according to the flow of FIG. 3 is repeatedly called at predetermined intervals from the main control program and starts. First, in step S21, the total weight Cw of the cartridge 21 is detected and the weight of the cartridge 21 (pressurized gas) is detected. The remaining amount Ws is calculated. In step S22, it is determined whether or not the weight Cw is the same as that at the time of shipment from the factory, that is, whether or not the weight Cw is equal to or greater than a predetermined weight Co. If it is exchanged, a signal for operating the ejection nozzle 8 is output for a predetermined time, and then the process goes to Step S24. If the following (NO), the process goes to Step S24 as it is because the cartridge 21 is not exchanged.
[0057]
Then, in step S24 to step S26, a calculation for determining whether or not to issue a warning for prompting the replacement of the cartridge is performed, but this calculation is the same as the above-described step S15 to step S17, and thus description thereof is omitted. .
[0058]
[Estimation of remaining amount (part 3)]
Further, a case will be described in which the replacement detection means 24 and the weight sensor 23 for measuring the weight of the cartridge 21 are provided together so that the presence or absence of replacement of the cartridge 21 can be detected.
[0059]
The merit in this case is that when only the weight sensor 23 according to the flow of FIG. 3 is installed, the weight of the new cartridge 21 is reduced so as not to repeat the operation of the ejection nozzle 8 for bleeding for a predetermined time. However, when the replacement detection means 24 is added, the air release jet is based on this replacement detection means 24. Therefore, the weight sensor 23 only needs to know the remaining amount Ws with a certain degree of accuracy, and an inexpensive weight sensor 23 is required, and an expensive weight sensor 23 is unnecessary.
[0060]
Further, since the cartridge manufacturer fills the cartridge 21 with a precise value so that the cartridge manufacturer has a predetermined value in the quality control of the factory, the initial value of the remaining amount is set when the cartridge 21 is replaced. By resetting to a value, the remaining amount can be estimated more accurately.
[0061]
In this case, calculation and control are performed according to the flow of FIG. This flow part of FIG. 4 is repeatedly called from the main control program every predetermined period and starts. First, in step S31, it is determined whether or not the cartridge 21 has been replaced, and it is determined that the replacement has been performed. In the case (YES), in step S32, a signal for operating the injection nozzle 8 is output for a predetermined time, and then the process goes to step S33. If the cartridge 21 has not been replaced (NO), the step is continued. Go to S33.
[0062]
In this step S33, the total weight Cw of the cartridge 21 is detected by the weight sensor 23, and the remaining amount Ws is calculated by subtracting the weight of the cartridge 21 (including the weight of the pressurized gas).
[0063]
Then, in step S34 to step S36, a calculation for determining whether or not to warn the replacement of the cartridge 21 is performed. This calculation is the same as the above-described step S15 to step S17. Omit.
[0064]
In the above description, the exhaust gas purification of an engine such as an automobile is taken as an example, and the urea aqueous solution is taken as an example as a liquid reducing agent. However, other exhaust gases other than these internal combustion engines such as a combustion furnace are used. The present invention can also be used for purification of liquids, and liquid reducing agents can also be used in aqueous solutions in which reducing agents such as urea aqueous solutions and aqueous ammonia solutions are dissolved, and in which reducing agents such as liquid ammonia themselves are in liquid form. Therefore, the present invention is not limited to the above-described embodiment.
[0065]
【The invention's effect】
As described above, according to the exhaust purification system of the present invention, the following effects can be achieved.
[0066]
Since the pressurized gas is sealed together with the liquid reducing agent in the cartridge and the pressure source for spraying the liquid reducing agent in the cartridge is provided, there is no need to provide a pressurized mechanism such as a compressed air supply device, and exhaust purification. The system can be simplified and the exhaust purification system can be reduced in size and weight.
[0067]
Also, since the liquid reducing agent is sealed in the cartridge, there is no change in the concentration of the liquid reducing agent due to evaporation of the reducing agent, etc., and an appropriate amount of reducing agent can be supplied to the catalyst at a stable concentration, thus maintaining good purification efficiency. be able to.
[0068]
Furthermore, by providing the remaining amount detecting means and the warning generating means, it is possible to grasp the accurate remaining amount and issue a warning prompting the driver to display or replace the remaining amount. As a result, the liquid reductant can be reliably managed and the cartridge can be replaced at an appropriate time to supply the liquid reductant, so that exhaust gas purification failure due to interruption of the liquid reductant can be avoided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an exhaust purification system according to the present invention.
FIG. 2 is a diagram showing a control flow of an exhaust purification system according to the present invention using replacement detection means for a cartridge.
FIG. 3 is a diagram showing a control flow of an exhaust purification system according to the present invention using weight detection means for a cartridge.
FIG. 4 is a diagram showing a control flow of an exhaust purification system according to the present invention using replacement detection means and weight detection means for a cartridge.
FIG. 5 is a configuration diagram showing a conventional exhaust purification system.
[Explanation of symbols]
1 Exhaust purification system 2 Exhaust passage 3 SCR catalyst (catalyst)
8 Injection nozzle 8a Injection hole 9 Controller (residual amount detection means)
10 Warning lamp (Warning generation means)
21 cartridge
22 Supply pipeline
23 Weight sensor (remaining amount detection means)
24 ON / OFF switch (exchange detection means)
G Exhaust gas L Urea aqueous solution (liquid reducing agent)
P Pressurized gas Ws Remaining amount Wc Consumption amount Wp Predetermined lower limit amount

Claims (4)

内燃機関等の排気通路に、上流側から順に噴射ノズルと排気ガス浄化用の触媒を配置し、前記噴射ノズルより液体還元剤を噴霧して前記触媒に供給して、排気ガス中の窒素酸化物を還元浄化する排気浄化システムにおいて、前記液体還元剤を加圧ガスとともに封入して、該加圧ガスの圧力によって前記液体還元剤を前記噴射ノズルから噴射することができる交換可能なカートリッジを、前記噴射ノズルに連通する前記液体還元剤の供給管路に着脱可能に連結し、前記カートリッジの交換を検知する交換検知手段を有することを特徴とする排気浄化システム。An injection nozzle and an exhaust gas purification catalyst are arranged in order from the upstream side in an exhaust passage of an internal combustion engine or the like, and a liquid reducing agent is sprayed from the injection nozzle and supplied to the catalyst, and nitrogen oxides in the exhaust gas In the exhaust gas purification system for reducing and purifying the above, an exchangeable cartridge that encloses the liquid reducing agent together with a pressurized gas and can inject the liquid reducing agent from the injection nozzle by the pressure of the pressurized gas. An exhaust purification system comprising an exchange detection means for detachably connecting to the liquid reducing agent supply line communicating with an injection nozzle and detecting exchange of the cartridge . 前記噴射ノズルの作動を制御する制御信号を積算し、該積算値から前記液体還元剤の消費量を計算することによって、前記液体還元剤の残存量を算出する演算手段で構成される残存量検知手段と、前記残存量が所定の下限値以下となった時に警告を発生する警告発生手段とを有することを特徴とする請求項記載の排気浄化システム。 Remaining amount detection configured by calculating means for calculating the residual amount of the liquid reducing agent by integrating the control signal for controlling the operation of the injection nozzle and calculating the consumption amount of the liquid reducing agent from the integrated value. exhaust gas purification system according to claim 1, characterized in that it has means, and a warning generating means for the residual amount to generate a warning when it becomes less than a predetermined lower limit value. 前記カートリッジの重量を検出する重量センサと、該重量センサの信号から前記液体還元剤の残存量を算出する演算手段で構成される残存量検知手段と、前記残存量が所定の下限値以下となった時に警告を発生する警告発生手段とを有することを特徴とする請求項記載の排気浄化システム。A remaining amount detecting means comprising a weight sensor for detecting the weight of the cartridge, a calculating means for calculating the remaining amount of the liquid reducing agent from the signal of the weight sensor, and the remaining amount is equal to or less than a predetermined lower limit value. exhaust gas purification system according to claim 1; and a warning generating means for generating a warning when the. 前記交換検知手段によって前記カートリッジの交換が検知された時に、所定時間の間前記噴射ノズルを作動させることを特徴とする請求項1〜のいずれかに記載の排気浄化システム。The exhaust purification system according to any one of claims 1 to 3 , wherein when the replacement of the cartridge is detected by the replacement detection means, the injection nozzle is operated for a predetermined time.
JP33087999A 1999-11-22 1999-11-22 Exhaust purification system Expired - Fee Related JP3733815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33087999A JP3733815B2 (en) 1999-11-22 1999-11-22 Exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33087999A JP3733815B2 (en) 1999-11-22 1999-11-22 Exhaust purification system

Publications (2)

Publication Number Publication Date
JP2001152831A JP2001152831A (en) 2001-06-05
JP3733815B2 true JP3733815B2 (en) 2006-01-11

Family

ID=18237538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33087999A Expired - Fee Related JP3733815B2 (en) 1999-11-22 1999-11-22 Exhaust purification system

Country Status (1)

Country Link
JP (1) JP3733815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140045944A (en) * 2011-05-13 2014-04-17 아아키위 & 아아키위 에스아 Device for measuring a quantity of a reducing agent, preferably nh3, contained in a vessel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4243538B2 (en) * 2001-08-18 2009-03-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for storing and metering reducing agent
DE10155675A1 (en) 2001-08-18 2003-05-28 Bosch Gmbh Robert Method and device for storing and dosing a reducing agent
JP4326976B2 (en) 2003-10-22 2009-09-09 日産ディーゼル工業株式会社 Engine exhaust purification system
DE602005000689T2 (en) * 2004-02-05 2007-06-28 Haldor Topsoe A/S Injection nozzle and method for uniform injection of a fluid stream into a gas stream by means of an injector at high temperature
JP2006226204A (en) * 2005-02-18 2006-08-31 Nissan Diesel Motor Co Ltd Exhaust emission control device of engine
BR112019021375A2 (en) * 2017-04-13 2020-05-05 Cummins Emission Solutions Inc dosing module for use in exhaust gas treatment systems for internal combustion engines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140045944A (en) * 2011-05-13 2014-04-17 아아키위 & 아아키위 에스아 Device for measuring a quantity of a reducing agent, preferably nh3, contained in a vessel
KR101908096B1 (en) * 2011-05-13 2018-10-16 아아키위 & 아아키위 에스아 Device for measuring a quantity of a reducing agent, preferably nh3, contained in a vessel

Also Published As

Publication number Publication date
JP2001152831A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
CN101680345B (en) Control unit for exhaust gas purification apparatus, method for controlling exhaust gas purification apparatus, and exhaust gas purification apparatus for internal combustion engine
US7497076B2 (en) Emission control system
CN102245868B (en) Exhaust gas purifying device
EP1860294B1 (en) Unit capable of judging condition of reducing agent injection used in exhaust purification system
JP2001173431A (en) Exhaust emission control system
US20030033799A1 (en) Exhaust gas treatment unit and measuring instrument for ascertaining a concentration of a urea-water solution
CN102301104B (en) Exhaust gas purifying apparatus
CN101918687A (en) Fault diagnosis apparatus for oxidation catalyst, method of fault diagnosis for oxidation catalyst, and exhaust purification apparatus of internal combustion engine
KR101040347B1 (en) System for calculation efficiency conversion of selective catalytic reduction in diesel vehicle and method thereof
CN103046989B (en) Plug-and-play urea spraying control method and system
JP5508600B2 (en) Reducing agent supply device and exhaust gas denitrification system using the same
JP2002508466A (en) Method and apparatus for reducing nitrogen oxides in exhaust gas from combustion equipment
KR20090064061A (en) System for control urea injection of selective catalytic reduction system on vehicle exhaust line and method thereof
JP3733815B2 (en) Exhaust purification system
CN108798840A (en) Selective catalytic reduction dosage controls
JP5846490B2 (en) Exhaust gas purification device for internal combustion engine
KR20100007602A (en) System for control urea injection of vehicle and method thereof
KR100992816B1 (en) System for correction a stored ammonia quantity of emission reduce line on diesel vehicle and method thereof
RU2563595C1 (en) Method and system for detecting of crystals of reducing agent in scr system of subsequent treatment of exhaust gases
CN105019988A (en) Vehicle-mounted urea solution metering, ultrasonic atomizing and supplying device
US20190063285A1 (en) Emissions control system of a combustion engine exhaust system
RU2601691C2 (en) Scr (selective catalytic reduction) system and method of exhaust gases cleaning in scr system
CN108071458B (en) Method for verifying a signal generated by an acoustic sensor
JP2018159383A (en) Gaging autonomy of system for storing and delivering gaseous ammonia
JP5907425B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees