JP3733751B2 - Ion exchange resin volume reduction treatment equipment - Google Patents

Ion exchange resin volume reduction treatment equipment Download PDF

Info

Publication number
JP3733751B2
JP3733751B2 JP20144998A JP20144998A JP3733751B2 JP 3733751 B2 JP3733751 B2 JP 3733751B2 JP 20144998 A JP20144998 A JP 20144998A JP 20144998 A JP20144998 A JP 20144998A JP 3733751 B2 JP3733751 B2 JP 3733751B2
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
processing container
processing
volume reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20144998A
Other languages
Japanese (ja)
Other versions
JPH11314080A (en
Inventor
源一 片桐
禎浩 柳沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP20144998A priority Critical patent/JP3733751B2/en
Publication of JPH11314080A publication Critical patent/JPH11314080A/en
Application granted granted Critical
Publication of JP3733751B2 publication Critical patent/JP3733751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物として生じるイオン交換樹脂の減容処理装置に係わり、特に酸素含有雰囲気中の放電により生じる活性酸素を利用して灰化減容処理を行う装置に関する。
【0002】
【従来の技術】
図9は、特願平9−37478号に出願されているμ波を利用したイオン交換樹脂減容処理装置の基本構成を模式的に示す断面図である。本装置では、放電容器51に備えたガス導入口55より酸素を供給し、反応容器52の排気配管57に組み込んだ減圧ポンプ56により排気して放電容器51と反応容器52の内部を減圧酸素含有雰囲気とし、ソレノイドコイル59を励磁し、導波管58よりμ波を投入すると、放電容器51の内部の電子はサイクロトロン運動を行い、減圧下でも効果的にμ波放電が形成され、活性酸素が生成される。さらにソレノイドコイル59は反応容器52に向かって発散磁界を形成するので、荷電粒子は磁界の傾きによって放電容器51から反応容器52の方向へと向かう流れを形成し、これに伴って、活性酸素が反応容器52の処理皿54に搭載されたイオン交換樹脂53の方向へと導かれ、イオン交換樹脂53の活性酸素による酸化反応が生じて、灰化減容処理が進行することとなる。
【0003】
図10は、同じく特願平9−37478号に出願されている高周波誘導コイルを利用したイオン交換樹脂減容処理装置の基本構成を模式的に示す断面図である。本装置では、上記の装置と同様の操作により放電容器60と反応容器61の内部を減圧酸素含有雰囲気とし、高周波発生器69により高周波誘導コイル68に高周波電流を通電すると、放電容器60の内部に高周波磁界が発生し、電磁誘導によって放電が形成、維持され、活性酸素やイオンが生成する。このとき、放電と高周波誘導コイル68の高周波とは誘導的に結合し、放電内部に発生する旋回方向に交番する誘導電界が電子を加速するので、放電内部に高周波電力が供給される。したがって、効果的に電子の加熱が行われ、高密度の活性酸素やイオンが生成される。生成されたこれらの活性酸素やイオンは、ガス流や温度上昇による体積膨張によって開放端66から反応容器61の内部へと吹き出し、処理皿63に搭載されたイオン交換樹脂62へと達して作用し、効果的に灰化減容処理が進行することとなる。
【0004】
これらの装置は、いずれも、放電によって生成した活性種を直接被処理物のイオン交換樹脂へ作用させ、酸化させて灰化、減容するもので、すすの発生や処理材の損傷等の恐れがないのでメンテナンスが簡単であり、また、排出ガスが少なく、原子力設備からの廃棄物として生じるイオン交換樹脂を減容処理する場合にあっても、放射性核種の飛散が少ないという長所を備えている。
【0005】
【発明が解決しようとする課題】
上記のごとく従来の装置は優れた特性を備えており、特に原子力設備からの廃棄物のイオン交換樹脂の減容処理に有効である。しかしながら、これらの装置においても、なお以下のごとき問題点が残っている。
すなわち、これらの装置は、放電により生成した活性種を被処理物のイオン交換樹脂に接触させて反応させるものであり、反応はイオン交換樹脂の表面において進行することとなる。これに対して、これらの装置では、いずれも反応容器の内部に備えた処理皿に搭載したイオン交換樹脂に上方から活性種を吹き付ける方式を採っているため、活性種に接するイオン交換樹脂は上層面にあるものに限られ、下方に位置するイオン交換樹脂は上層のイオン交換樹脂に遮られて活性種と接触できず、減容処理反応の進行速度が極めて遅くなるという難点がある。
【0006】
本発明の目的は、イオン交換樹脂が放電により生成した活性種と効果的に接触し、早い処理速度で減容処理できるイオン交換樹脂の減容処理装置を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明においては、
被処理用のイオン交換樹脂を内蔵する円筒状の処理容器、処理容器に酸素または酸素を含むガスを導入するガス導入手段、処理容器を減圧状態に保持する減圧手段、ならびに処理容器の外側に配された高周波誘導コイルを備え、ガス導入手段と減圧手段により処理容器の内部を減圧酸素含有雰囲気とし、高周波誘導コイルの生じる高周波磁界の作用によって放電を発生させ、放電により生じた活性酸素を処理容器に内蔵されたイオン交換樹脂に作用させて灰化し、減容処理するイオン交換樹脂減容処理装置において、
(1)上記の処理容器を、回転軸支持機構と回転運動伝達機構によって回転可能に組み込み、かつ回転軸気密機構によって回転状態においても減圧状態を保持できるよう組み込むこととする。
【0008】
(2)また、この処理容器の回転軸方向の一方の側端に上記のガス導入手段を、もう一方の側端に上記の減圧手段を組み込むこととする。
(3)さらに、上記の(1)あるいは(2)に加えて、処理容器の内面を、回転方向に対して凹凸を備えるものとする。
(4)さらに、上記の(1)〜(3)に加えて、処理容器の回転軸方向の端部に、貫通孔を有する導電性のシールド部材を備えることとする。
【0009】
(5)さらに、上記の(1)〜(4)に加えて、処理容器の外側に、処理容器に内蔵されたイオン交換樹脂を加熱する輻射加熱手段を備えることとする。
(6)また、上記の(1)〜(5)に加えて、処理容器の回転軸方向の一方の側端にイオン交換樹脂の供給手段を配し、もう一方の側端に減容処理により生じた残さを排出する排出手段を備えることとする。
【0010】
(7)さらに、上記の(6)において、処理容器の内面に回転軸を中心軸とする螺旋状の溝を備えることとする。
既に述べたように、減圧酸素含有雰囲気にある処理容器の内部に、高周波誘導コイルの生じる高周波磁界を作用させて放電を発生させ、生じた活性酸素を処理容器に内蔵されたイオン交換樹脂に作用させると、イオン交換樹脂は、活性酸素と直接接触する表面において酸化反応を生じて灰化し、減容される。しかしながら、酸化反応の進行は表面層にあるイオン交換樹脂に限られ、直接活性酸素に触れない部分では反応が進行しないので、反応の効率を上げるには、活性酸素に触れる表面積を増大することが必要となる。これに対して、上記の(1)のごとく、イオン交換樹脂を内蔵した処理容器を回転軸支持機構と回転運動伝達機構によって回転可能に組み込み、回転軸気密機構により回転状態においても減圧酸素含有雰囲気が保持できるよう構成して、回転させれば、内蔵されたイオン交換樹脂は、処理容器の内面との摩擦により回転方向へと引き上げられ、重力により落下するサイクルを繰り返して攪拌されるので、放電により生じた活性酸素と触れるイオン交換樹脂の表面積が大幅に増大することとなり、灰化、減容処理が急速に進行することとなる。
【0011】
さらに、上記の(2)のごとく、処理容器の一方の側端に上記のガス導入手段を、もう一方の側端に上記の減圧手段を組み込むこととすれば、処理容器に内蔵されたイオン交換樹脂は、一端から他端まで全体にわたって活性酸素に直接接触するので、灰化、減容処理が急速に進行することとなる。
さらに、上記の(3)のごとく、処理容器の内面を回転方向に対して凹凸を備えたものとすれば、処理容器の内面と内蔵されたイオン交換樹脂との摩擦係数が増大し、処理容器の回転に伴ってイオン交換樹脂はより高く回転方向へと引き上げられるので、より効果的に攪拌され、活性酸素に触れる表面積が増大する。したがって、灰化、減容処理の速度は一層早くなる。
【0012】
また、上記の(4)のごとく、処理容器の回転軸方向の端部に、貫通孔を有する導電性のシールド部材を備えれば、放電により生じたプラズマが処理容器の端部から外部に漏れ出すのを抑制できる。したがって、処理容器の端部に組み込まれる回転軸気密機構のプラズマによる加熱が防止され、所要耐熱性能が低く抑えられるので、低コストの回転軸気密機構を適用できることとなる。
【0013】
さらに、上記の(5)のごとく、処理容器の外側に、処理容器に内蔵されたイオン交換樹脂を加熱する輻射加熱手段を備えれば、イオン交換樹脂の温度を上昇させて活性酸素による酸化反応を行わせることができるので、反応速度が上昇し、より一層効果的に、灰化、減容処理が進行することとなる。
また上記の(6)のごとく、処理容器の一端にイオン交換樹脂の供給手段を配し、もう一方の側端に減容処理により生じた残さを排出する排出手段を備えることとすれば、イオン交換樹脂の灰化、減容処理を連続的に行うことができる。
【0014】
さらに、上記の(7)のごとく、処理容器の内面に回転軸を中心軸とする螺旋状の溝を備えることとすれば、螺旋状の溝へ導入されたイオン交換樹脂は、処理容器の回転とともに、内面との摩擦による上昇と重力による落下を繰り返して攪拌されながら、螺旋状の溝に沿って回転軸方向へと移動することとなる。すなわち、処理容器に導入されたイオン交換樹脂は処理容器を回転させると自動的に搬送されるので、イオン交換樹脂の灰化、減容処理を連続的に行う際に極めて効果的である。
【0015】
【発明の実施の形態】
<実施例1>
図1は、本発明のイオン交換樹脂減容処理装置の第1の実施例の基本構成を模式的に示す断面図である。
図に見られるごとく、本実施例のイオン交換樹脂減容処理装置は、両端にくびれを備えた円筒状の処理容器1、ガス導入口3aを備え、内部に処理容器1へ導入するガスの流路を備えた円筒状の固定ガス導入ブロック3、処理容器1より排出されるガスを取り出す固定排気配管2、回転する処理容器1と固定排気配管2との間を内部を気密に保持して連結する回転軸気密機構4A、回転する処理容器1と固定ガス導入ブロック3との間を内部を気密に保持して連結する回転軸気密機構4B、固定排気配管2および回転軸気密機構4Aを介して回転する処理容器1の一端を支持する回転軸支持機構6A、固定ガス導入ブロック3および回転軸気密機構4Bを介して回転する処理容器1の他端を支持する回転軸支持機構6B、回転軸気密機構4Bの外側円筒に連結され、処理容器1を回転させる機能を果たす回転運動伝達機構5、ならびに処理容器1の外側に配された高周波誘導コイル10とこれを支持するコイル支持機構9により構成されている。
【0016】
このうち、処理容器1は、高周波を通し活性酸素に耐性を有する電気絶縁材料である石英ガラスにより形成されており、その両端は、それぞれ接続ピース8A,8Bを介して回転軸気密機構4A,4Bの外側円筒に連結されている。回転軸気密機構4A,4Bはいずれも磁気流体式で、内側円筒と外側円筒との間に軸受とともに磁気流体を介在させて回転時も気密に保持する方式のものである。また、回転軸気密機構4Bの外側円筒に連結された回転運動伝達機構5は、図示しない回転駆動源からの回転力をプーリ―とベルトを用いて伝達するもので、この回転運動伝達機構5によって、処理容器1とその両端に連結された接続ピース8A,8Bならびに回転軸気密機構4A,4Bの外側円筒が回転することとなる。
【0017】
本装置において、処理容器1の内部に被処理用のイオン交換樹脂20を挿入して本図のごとく組み立てたのち、回転運動伝達機構5により処理容器1を回転させ、ガス導入口3aより酸素を含むガスを導入し、固定排気配管2に接続した減圧ポンプ7により吸引して処理容器1の内部を減圧酸素含有雰囲気とし、高周波発生器11により高周波コイル10に高周波電流を通電すると、高周波コイル10の電圧や高周波磁界による電磁誘導作用による電界で、処理容器1の内部に放電が形成、維持され、活性酸素やイオンを生成する。生成された活性酸素は、処理容器1に内蔵されたイオン交換樹脂20に作用して酸化し、灰化、減容処理する。本構成では、処理容器1の回転とともに内蔵されたイオン交換樹脂20が攪拌されるので、従来の装置に比べて活性酸素に接触する表面積が極めて大きくなり、生成された活性酸素の利用効率が高くなるので、短い時間で灰化、減容処理ができる。また、このため、処理のエネルギー効率が大幅に改善されることとなる。
【0018】
<実施例2>
図2は、本発明のイオン交換樹脂減容処理装置の第2の実施例の基本構成を模式的に示す断面図である。
本実施例の構成の実施例1の構成との相違点は、処理容器1の内壁に、回転軸方向と平行に延びる複数の攪拌用フィン12が備えられている点にある。したがって、本実施例の処理容器1の内面は、回転方向に対して凹凸を有することとなり、処理容器1を回転させると、内蔵された図示しないイオン交換樹脂は、攪拌用フィン12によって高い位置まで引き上げられ、そののち重力により落下するサイクルを繰り返すこととなるので、処理容器1の内部で効果的に攪拌されることとなる。したがって、処理容器1の内部を減圧酸素含有雰囲気とし、放電を形成、維持して活性酸素を生成し、生成された活性酸素をイオン交換樹脂に作用させて酸化させる際に、活性酸素に直接接触するイオン交換樹脂の表面積が飛躍的に増大するので、酸化反応が急速に進行し、短時間で灰化、減容処理を行うことができる
なお、本実施例では、回転軸方向と平行に延びる複数の攪拌用フィン12を備えることにより、処理容器1の内面を回転方向に対して凹凸を有するものとしているが、処理容器1の厚みを変化させて、内面に凹凸を備えるものとしても同様の効果が得られ、また、攪拌用フィンの場合も、回転軸方向と平行に配するものに限らず、回転方向に対して角度を備えて延伸するものであればよい。
【0019】
<実施例3>
図3は、本発明のイオン交換樹脂減容処理装置の第3の実施例の基本構成を模式的に示す断面図である。
本実施例の構成の実施例1の構成との相違点は、処理容器1の回転軸方向の両端部に、貫通孔を有する導電性のシールド部材としてシールド板13A,13Bが備えられている点にある。図1に示した実施例1の構成では、放電によって生成されたプラズマが処理容器1の内部から回転軸気密機構4A,4Bの内部まで拡散し、高周波電流の大きさ如何によっては、回転軸気密機構4A,4Bに発生する高周波電界によってこの部分にプラズマが発生し、回転軸気密機構4A,4Bが加熱される可能性があるが、本実施例のごとく導電性のシールド板13A,13Bを備えれば、電界やプラズマ流の侵入が抑制されるので、回転軸気密機構4A,4Bの所要耐熱性能は低くてよく、低コストの回転軸気密機構を用いることができる。また、シールド板13A,13Bには貫通孔が備えられているので、実施例1あるいは2と同様に、ガス導入口3aより導入された酸素を含むガスは滞ることなく処理容器1の内部へと導かれ、固定排気配管に接続された減圧ポンプによって減圧状態に維持される。
【0020】
<実施例4>
図4は、本発明のイオン交換樹脂減容処理装置の第4の実施例の基本構成を模式的に示す断面図である。
本実施例の構成の特徴は、実施例3のごとく構成したイオン交換樹脂減容処理装置に、さらに、処理容器1に内蔵されたイオン交換樹脂20を加熱する輻射加熱手段としての加熱ランプ14を備えた点にある。本構成のごとく加熱ランプ14を備えてイオン交換樹脂20を加熱すれば、含水したイオン交換樹脂20の乾燥時間が短縮されるとともに、温度が高いほど活性酸素によるイオン交換樹脂20の酸化反応の反応速度が上昇するので、短時間でイオン交換樹脂20の灰化、減容処理が行えることとなる。さらに、酸素の導入量と高周波電流を増加させ、活性酸素やイオンの供給量を十分に維持して運転すれば、加熱ランプ14でイオン交換樹脂20の温度を上げ、積極的に分解揮発させ、気相で酸化分解させることが可能となるので、処理速度が早く、かつ炭化水素排ガスの少ない安全な処理装置となる。
【0021】
<実施例5>
図5は、本発明のイオン交換樹脂減容処理装置の第5の実施例の基本構成を模式的に示す断面図である。
本構成の特徴は、第一に、回転可能に組み込まれた処理容器1Aの内面に、螺旋状の突起41で区画された螺旋溝40が形成されていること、第二に、処理容器1Aの一方の端部に回転軸気密機構4Cを介して取り付けられた回転軸支持機構6Cに、投入口21、切出弁22、供給室23、投入弁24ならびに搬送機構室25を備えたイオン交換樹脂の供給手段が連結されていること、第三に、処理容器1Aのもう一方の端部に、回転軸気密機構4Dを介して、冷却室31、仕切弁32、回収準備室33、回収弁34、回収室35を備えた生成残さの排出手段が連結されていることにある。
【0022】
本構成においては、ベルトコンベアあるいはホッパー等によってイオン交換樹脂が投入口21に搬送装入される。投入口21の下部には、供給室23を大気から遮断して気密に保持するための切出弁22が設けられており、装入されたイオン交換樹脂はこの切出弁22によって支持、閉止される。供給室23には、真空排気装置に連結された図示しない真空排気用配管と、遮断弁を介してガス供給手段に連結された図示しない大気圧復帰用配管が接続されている。また、供給室23の下部には、搬送機構室25を大気から遮断して気密に保持するための投入弁24が設けられており、切出弁22を通って供給室23へと送られたイオン交換樹脂はこの投入弁24によって支持、閉止される。搬送機構室25には図示しないガス供給用の配管が接続されており、遮断弁を介して前記のガス供給手段に連結されている。また、搬送機構室25には、イオン交換樹脂を搬送機構室25から処理容器1Aの所定位置へと移送する移送手段25aが付設されている。
【0023】
搬送機構室25が連結された回転軸支持機構6Cには、排気口6aが備えられており、図示しない真空排気手段により処理容器1A内の処理ガスを均等に排気することができる。処理容器1Aは、接続ピース8Cおよび磁性流体式の回転軸気密機構4Cを介して回転軸支持機構6Cに取り付けられており、回転運動伝達機構5Aを用いることにより回転運動される。なお、本図では簡略化して表示しているが、回転軸気密機構4Cおよび回転運動伝達機構5Aの構成は図1の構成と基本的に同一である。
【0024】
円筒型の処理容器1Aの内面には螺旋溝40が形成されている。移送手段25aによって搬送機構室25から処理容器1Aの内部へと移送されたイオン交換樹脂は、処理容器1Aの回転とともに螺旋状の突起41で区画された螺旋溝40に沿って移動する。すなわち、図のごとく右ネジ状の螺旋溝40の場合には搬送機構室25の側から見て反時計回りの方向に処理容器1Aを回転させることによって、導入したイオン交換樹脂を搬送機構室25の側から冷却室31の側へと移送することができる。
【0025】
冷却室31は、処理容器1Aに回転軸気密機構4Dと接続ピース8Dとを介して連結されており、処理容器1Aを回転可能に保持している。また、冷却室31には処理ガスを導入するためのガス導入口31aが備えられている。ガス導入口31aは遮断弁を介して図示しないガス供給手段へと連結されている。ガス導入口31aから導入された処理ガスは、冷却室31から処理容器1Aへと入り、処理容器1Aを通流したのち、回転軸支持機構6Cに備えられた排気口6aより取り出され真空排気手段により排気される。
【0026】
冷却室31の下部には、冷却室31と隣接する回収準備室33との間の気密を保持し、処理容器1Aで減容処理されたイオン交換樹脂の残さを冷却室31に貯留するための開閉可能な仕切弁32が設けられている。回収準備室33には、真空排気装置に連結された図示しない真空排気用配管と、遮断弁を介してガス供給手段に連結された図示しない大気圧復帰用配管が接続されている。回収準備室33の下部には、回収準備室33と回収室35の間の気密を保持し、かつ回収準備室33に落下したイオン交換樹脂の残さを貯留するための開閉可能な回収弁34が設けられている。回収室35には容器36が配されており、回収準備室33より落下したイオン交換樹脂の残さが収納される。また容器36の収納量が所定値に達すると、図示しない密閉手段により容器36は密閉処理される。また、回収室35には真空排気装置に連結された図示しない真空排気用配管と、遮断弁を介してガス供給手段に連結された図示しない雰囲気ガス置換用配管が接続されている。さらに、回収室35には取出弁37が付設されており、この取出弁37を開閉することにより、イオン交換樹脂の残さが容器36に密閉されて取出されることとなる。
【0027】
本構成のイオン交換樹脂減容処理装置の運転操作は次のごとく行われる。
まず、回収室35に容器36を蓋を開けて配置し、切出弁22、投入弁24、仕切弁32、回収弁34、ならびに各室に連結した配管の遮断弁を閉じ、次いで、排気口6aを介して処理容器1A内を真空に排気する。次に、ガス導入口31aより酸素を含む処理ガスを導入して、処理容器1A内の圧力を所定の処理圧力に設定する。同時に、搬送機構室25への酸素、活性酸素、イオン等の混入を防止するために、付設のガス供給用の配管を通して搬送機構室25に不活性ガスを導入し、処理容器1A内の圧力より搬送機構室25の圧力が高くなるよう調整する。次に、高周波発生器11により高周波誘導コイル10に高周波電流を通電して処理容器1A内に放電を形成、維持させ、活性酸素やイオンを生成する。
【0028】
次に、切出弁22を開いて所定の処理量のイオン交換樹脂を投入口21から供給室23へと落下させ、その後切出弁22を閉じる。次いで、付設の配管系を用いて供給室23を真空に排気し、その後不活性ガスを導入して、供給室23の圧力が搬送機構室25の圧力と等しくなるよう調整する。次いで、投入弁24を開いてイオン交換樹脂を搬送機構室25に投入し、その後投入弁24を閉じる。なお、このとき、供給室23は、一度真空に排気したのち不活性ガスを導入して大気圧とし、切出弁22を開けて所定量のイオン交換樹脂を投入口21から供給室23へと落下させ、次段階の処理に供する。
【0029】
次いで、処理容器1Aを回転状態へと移行させたのち、移送手段25aによって搬送機構室25内のイオン交換樹脂を処理容器1A内の螺旋溝40へと移送する。イオン交換樹脂は処理容器1Aの回転によって上下なく攪拌され、放電により形成された活性酸素やイオンに接触する表面積が増加し、効率的に減容処理される。また、イオン交換樹脂およびその減容処理により生じた残さは、処理容器1Aの回転にともなって、螺旋溝40内を冷却室31の方向へと自動的に移送される。
【0030】
減容処理されたイオン交換樹脂の残さは、回転によって自動的に移送されたのち、処理容器1Aより冷却室31の内部へと落下する。残さが所定量に達すると仕切弁32を開き、真空排気と不活性ガス導入により冷却室31と等しい圧力に予め調整された回収準備室33へと落下させる。回収準備室33へ所定量のイオン交換樹脂の残さが堆積すると、仕切弁32を閉じ、配管系の遮断弁を開けて大気圧へと戻す。次いで、回収弁34を開き、回収準備室33に堆積したイオン交換樹脂の残さを回収室35の容器36内へと落下させる。これらの操作を繰り返して容器36内へ堆積したイオン交換樹脂の残さが所定量に達すると、取出弁37を開けて容器36を外部へと取出し、新たに空の容器36を取り付けて次段階の減容処理に対処する。
【0031】
このように、本構成のイオン交換樹脂減容処理装置では、導入されたイオン交換樹脂が攪拌されることにより活性酸素やイオンに接触する表面積が増加し、効率的に減容処理されるばかりでなく、処理容器1A内に導入されたイオン交換樹脂が自動的に移送されるので、連続的な減容処理が可能となる。
<実施例6>
図6は、本発明のイオン交換樹脂減容処理装置の第6の実施例の基本構成を模式的に示す断面図である。
【0032】
本実施例の構成の第5の実施例との相違点は、処理容器1Aの内面に設けられた螺旋溝の中に、処理容器1Aの回転軸と平行に延伸する処理容器1Aと同一材料よりなる複数の攪拌用フィン12Aが備えられている点にある。移送手段25aによって搬送機構室25から処理容器1A内の螺旋溝へと移送されたイオン交換樹脂は、処理容器1Aの回転に伴って、攪拌用フィン12Aによって高い位置まで持ち上げられたのち落下することとなるので、より効果的に攪拌されることとなり、活性酸素やイオンに曝される表面積が大きくなって、減容処理がより促進されることとなる。
【0033】
なお、本実施例では、回転軸方向と平行に延びる複数の攪拌用フィン12Aを備えることとしているが、既に第2の実施例で述べたごとく、処理容器1Aの厚みを変化させて、内面に凹凸を備えるものとしても同様の効果が得られ、また、攪拌用フィンの場合も、回転方向に対して角度を備えて延伸するものであればよい。
【0034】
<実施例7>
図7は、本発明のイオン交換樹脂減容処理装置の第7の実施例の基本構成を模式的に示す断面図である。
本実施例の構成の第5の実施例との相違点は、処理容器1Aの回転軸支持機構6C側の端部に、貫通孔を有する導電性のシールド部材としてアルミニウム製のシールド板13Cが備えられている点にある。したがって、第3の実施例の場合と同様に、回転軸気密機構4Cへの高周波電界やプラズマ流の侵入が抑制され、加熱量が低減されるので信頼性の高い装置が得られる。また、このため回転軸気密機構4Cの所要耐熱性能は低くてよく、低コストの回転軸気密機構を用いることができる。
【0035】
なお、本構成では小孔を多数開けたアルミニウム製のシールド板13Cを用いているが、細線を組み合わせたメッシュや、ハンチング加工の板を使用しても同等の効果が得られる。
参考例>図8は、本発明のイオン交換樹脂減容処理装置の参考例の基本構成を模式的に示す断面図である。
【0036】
参考例の構成の第5の実施例との相違点は、処理容器1Bに導入されたイオン交換樹脂を加熱するための加熱ランプ14Aが、処理容器1Bの外周の高周波誘導コイル10の前段に配されている点にある。活性酸素による酸化反応は、温度が高いほど反応速度が速くなるので、本構成のごとく、導入したイオン交換樹脂を予め加熱して乾燥し、温度を高くして灰化、減容処理することとすれば、処理速度の早い装置が得られる。さらに、温度を上げてイオン交換樹脂を積極的に分解、揮発させることとすれば、酸素ガス量や高周波電流を増加させて活性酸素やイオンの供給量を十分に維持することによって、イオン交換樹脂を気相で酸化分解することが可能となり、処理速度が速く、炭化水素の排ガスが少ない安全な処理装置が得られることとなる。
【0037】
上述のごとく、本発明によれば、
(1)イオン交換樹脂減容処理装置を請求項1に記載のごとく構成することとしたので、処理容器の回転により内蔵されたイオン交換樹脂が攪拌され、放電により生成した活性酸素と効果的に接触することとなったので、早い処理速度で減容処理できるイオン交換樹脂の減容処理装置が得られる。(2)さらに請求項1のごとく構成したので、処理容器に内蔵されたイオン交換樹脂は、一端から他端まで全体にわたって活性酸素に直接接触して灰化、減容処理されるので、処理速度の速い装置が得られる。
(3)請求項2に記載のように構成すれば、処理容器に内臓されたイオン交換樹脂がより効果的に攪拌され、処理速度の速い装置として好適である。
(4)請求項3に記載のように構成すれば、放電により生成したプラズマ流の侵入や、高周波磁界の侵入により生じるプラズマによる回転軸気密機構の加熱が抑制され、低コストの回転軸気密機構が適用可能となり装置のコストダウンとともに、信頼性の高い装置が得られる。
(5)請求項4に記載のように構成すれば、含水したイオン交換樹脂の乾燥時間が短縮され、処理速度もさらに上昇するので、処理速度の速い装置として好適である。
(6)請求項5に記載のように構成すれば、イオン交換樹脂の灰化、減容処理を連続的に行うことができるので、処理速度の速い装置として好適である。
(7)請求項6に記載のように構成すれば、イオン交換樹脂は、処理容器の回転とともに螺旋状の溝に沿って回転軸方向に自動的に搬送されるので、イオン交換樹脂の灰化、減容処理を連続的に行う上で、特に効果的である。
【図面の簡単な説明】
【図1】本発明のイオン交換樹脂減容処理装置の第1の実施例の基本構成を模式的に示す断面図
【図2】本発明のイオン交換樹脂減容処理装置の第2の実施例の基本構成を模式的に示す断面図
【図3】本発明のイオン交換樹脂減容処理装置の第3の実施例の基本構成を模式的に示す断面図
【図4】本発明のイオン交換樹脂減容処理装置の第4の実施例の基本構成を模式的に示す断面図
【図5】本発明のイオン交換樹脂減容処理装置の第5の実施例の基本構成を模式的に示す断面図
【図6】本発明のイオン交換樹脂減容処理装置の第6の実施例の基本構成を模式的に示す断面図
【図7】本発明のイオン交換樹脂減容処理装置の第7の実施例の基本構成を模式的に示す断面図
【図8】本発明のイオン交換樹脂減容処理装置の参考例の基本構成を模式的に示す断面図
【図9】μ波を利用したイオン交換樹脂減容処理装置の基本構成を模式的に示す断面図
【図10】高周波誘導コイルを利用したイオン交換樹脂減容処理装置の基本構成を模式的に示す断面図
【符号の説明】
1 処理容器
1A,1B 処理容器
2 固定排気配管
3 固定ガス導入ブロック
3a ガス導入口
4A,4B 回転軸気密機構
4C,4D 回転軸気密機構
5,5A 回転運動伝達機構
6A,6B,6C 回転軸支持機構
7 減圧ポンプ
8A,8B 接続ピース
8C,8D 接続ピース
9 コイル支持機構
10 高周波誘導コイル
11 高周波発生器
12,12A 攪拌用フィン
13A,13B,13C シールド板
14,14A 加熱ランプ
20 イオン交換樹脂
21 投入口
23 供給室
25 搬送機構室
25a 移送手段
31 冷却室
31a ガス導入口
33 回収準備室
35 回収室
36 容器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for reducing the volume of ion exchange resin produced as waste, and more particularly to an apparatus for carrying out an ashing volume reduction process using active oxygen generated by discharge in an oxygen-containing atmosphere.
[0002]
[Prior art]
FIG. 9 is a cross-sectional view schematically showing a basic configuration of an ion exchange resin volume reduction processing apparatus using μ waves, which is applied for in Japanese Patent Application No. 9-37478. In this apparatus, oxygen is supplied from a gas inlet 55 provided in the discharge vessel 51 and is exhausted by a decompression pump 56 incorporated in an exhaust pipe 57 of the reaction vessel 52 so that the inside of the discharge vessel 51 and the reaction vessel 52 contains reduced-pressure oxygen. When the atmosphere is energized, the solenoid coil 59 is excited, and a μ wave is input from the waveguide 58, electrons inside the discharge vessel 51 perform a cyclotron motion, and a μ wave discharge is effectively formed even under reduced pressure. Generated. Further, since the solenoid coil 59 forms a divergent magnetic field toward the reaction vessel 52, the charged particles form a flow from the discharge vessel 51 toward the reaction vessel 52 due to the inclination of the magnetic field, and accordingly, active oxygen is The ion exchange resin 53 is guided in the direction of the ion exchange resin 53 mounted on the treatment dish 54 of the reaction vessel 52, and an oxidation reaction of the ion exchange resin 53 with active oxygen occurs, and the ashing volume reduction process proceeds.
[0003]
FIG. 10 is a cross-sectional view schematically showing a basic configuration of an ion exchange resin volume reducing apparatus using a high frequency induction coil, which is also filed in Japanese Patent Application No. 9-37478. In the present apparatus, when the inside of the discharge vessel 60 and the reaction vessel 61 is made into a reduced-pressure oxygen-containing atmosphere by the same operation as the above-described device, and a high-frequency current is passed through the high-frequency induction coil 68 by the high-frequency generator 69, A high frequency magnetic field is generated, and discharge is formed and maintained by electromagnetic induction, and active oxygen and ions are generated. At this time, the discharge and the high frequency of the high frequency induction coil 68 are inductively coupled, and the induction electric field alternating in the turning direction generated inside the discharge accelerates the electrons, so that high frequency power is supplied inside the discharge. Therefore, electrons are effectively heated, and high-density active oxygen and ions are generated. The generated active oxygen and ions are blown out from the open end 66 into the reaction vessel 61 due to volume expansion due to gas flow and temperature rise, and reach the ion exchange resin 62 mounted on the processing plate 63 to act. As a result, the ashing and volume reduction process proceeds effectively.
[0004]
All of these devices act on the active species generated by the discharge directly on the ion-exchange resin to be treated and oxidize it to ash and reduce the volume, which may cause soot and damage to the treated material. Maintenance is easy because there is no emission, and there is an advantage that there is little scattering of radionuclides even when reducing the volume of ion exchange resin generated as waste from nuclear facilities. .
[0005]
[Problems to be solved by the invention]
As described above, the conventional apparatus has excellent characteristics, and is particularly effective for reducing the volume of ion exchange resin of waste from nuclear facilities. However, these devices still have the following problems.
That is, in these apparatuses, the active species generated by the discharge are brought into contact with the ion exchange resin of the object to be treated, and the reaction proceeds on the surface of the ion exchange resin. On the other hand, in these apparatuses, since the active species are sprayed from above on the ion exchange resin mounted on the processing dish provided inside the reaction vessel, the ion exchange resin in contact with the active species is the top. The ion exchange resin located below is limited to those on the layer surface, and the upper layer ion exchange resin is blocked by the upper layer and cannot contact the active species, so that there is a problem that the progress of the volume reduction reaction becomes extremely slow.
[0006]
An object of the present invention is to provide a volume reduction treatment apparatus for an ion exchange resin that can effectively come into contact with an active species generated by discharge of the ion exchange resin and can perform volume reduction treatment at a high treatment speed.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention,
A cylindrical processing container containing an ion exchange resin for processing, a gas introducing means for introducing oxygen or oxygen-containing gas into the processing container, a decompressing means for maintaining the processing container in a reduced pressure state, and an outer side of the processing container. The high-frequency induction coil is provided, the inside of the processing vessel is made into a reduced-pressure oxygen-containing atmosphere by the gas introduction means and the pressure-reducing means, discharge is generated by the action of the high-frequency magnetic field generated by the high-frequency induction coil, and active oxygen generated by the discharge is treated In the ion exchange resin volume reduction treatment equipment that acts on the ion exchange resin built in the ash to ash and reduce the volume,
(1) The processing container is incorporated so as to be rotatable by the rotation shaft support mechanism and the rotation motion transmission mechanism, and is incorporated by the rotation shaft hermetic mechanism so that the reduced pressure state can be maintained even in the rotation state.
[0008]
(2) Further, the gas introducing means is incorporated at one side end in the rotation axis direction of the processing vessel, and the pressure reducing means is incorporated at the other side end.
(3) Further, in addition to the above (1) or (2), the inner surface of the processing container is provided with unevenness in the rotation direction.
(4) Further, in addition to the above (1) to (3), a conductive shield member having a through hole is provided at the end in the rotation axis direction of the processing container.
[0009]
(5) Further, in addition to the above (1) to (4), radiation heating means for heating the ion exchange resin incorporated in the processing container is provided outside the processing container.
(6) Further, in addition to the above (1) to (5), an ion exchange resin supply means is arranged at one side end in the rotation axis direction of the processing container, and volume reduction processing is performed at the other side end. A discharging means for discharging the generated residue is provided.
[0010]
(7) Furthermore, in the above (6), a spiral groove having a rotation axis as a central axis is provided on the inner surface of the processing container.
As described above, a high-frequency magnetic field generated by a high-frequency induction coil is applied to the inside of a processing vessel in a reduced-pressure oxygen-containing atmosphere to generate a discharge, and the generated active oxygen acts on the ion exchange resin incorporated in the processing vessel. Then, the ion exchange resin undergoes an oxidation reaction on the surface that is in direct contact with the active oxygen, and is ashed and reduced in volume. However, the progress of the oxidation reaction is limited to the ion exchange resin in the surface layer, and the reaction does not proceed in the part that does not directly contact the active oxygen. Therefore, to increase the reaction efficiency, the surface area that contacts the active oxygen may be increased. Necessary. On the other hand, as described in (1) above, the processing vessel containing the ion exchange resin is rotatably incorporated by the rotation shaft support mechanism and the rotation motion transmission mechanism, and the reduced-pressure oxygen-containing atmosphere is also rotated by the rotation shaft airtight mechanism. Since the built-in ion exchange resin is pulled up in the rotation direction by friction with the inner surface of the processing vessel and stirred by repeating the cycle of dropping by gravity, the discharge is performed. As a result, the surface area of the ion exchange resin that comes into contact with the active oxygen generated by the process greatly increases, and ashing and volume reduction proceed rapidly.
[0011]
Further, as described in (2) above, if the gas introducing means is incorporated in one side end of the processing vessel and the pressure reducing means is incorporated in the other side end, the ion exchange incorporated in the processing vessel is performed. Since the resin is in direct contact with the active oxygen from one end to the other, the ashing and volume reduction process proceeds rapidly.
Further, as described in (3) above, if the inner surface of the processing container is provided with irregularities in the rotational direction, the friction coefficient between the inner surface of the processing container and the ion exchange resin incorporated therein increases, and the processing container As the ion exchange resin rotates, the ion exchange resin is pulled higher in the rotation direction, so that it is more effectively stirred and the surface area in contact with the active oxygen is increased. Therefore, the speed of ashing and volume reduction processing is further increased.
[0012]
Further, as described in (4) above, if a conductive shield member having a through hole is provided at the end of the processing vessel in the rotation axis direction, plasma generated by discharge leaks from the end of the processing vessel to the outside. It can be suppressed from taking out. Therefore, the heating by the plasma of the rotating shaft hermetic mechanism incorporated in the end of the processing vessel is prevented, and the required heat resistance performance is kept low, so that a low cost rotating shaft hermetic mechanism can be applied.
[0013]
Further, as described in (5) above, if a radiant heating means for heating the ion exchange resin incorporated in the processing container is provided outside the processing container, the temperature of the ion exchange resin is increased to oxidize the active oxygen. As a result, the reaction rate increases, and the ashing and volume reduction treatment proceed more effectively.
Further, as described in (6) above, if the ion exchange resin supply means is arranged at one end of the processing container and the other side end is provided with a discharge means for discharging the residue generated by the volume reduction treatment, The ashing and volume reduction treatment of the exchange resin can be performed continuously.
[0014]
Furthermore, as described in (7) above, if the inner surface of the processing vessel is provided with a spiral groove having the rotation axis as the central axis, the ion exchange resin introduced into the spiral groove is rotated by the rotation of the processing vessel. At the same time, it is moved in the direction of the rotation axis along the spiral groove while being repeatedly stirred and raised by friction with the inner surface and dropped by gravity. That is, since the ion exchange resin introduced into the processing container is automatically transported when the processing container is rotated, it is extremely effective when the ashing and volume reduction processing of the ion exchange resin is continuously performed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
<Example 1>
FIG. 1 is a cross-sectional view schematically showing a basic configuration of a first embodiment of the ion exchange resin volume reduction treatment apparatus of the present invention.
As seen in the figure, the ion exchange resin volume reduction treatment apparatus of the present embodiment is provided with a cylindrical treatment container 1 having constrictions at both ends and a gas introduction port 3a, and a gas flow introduced into the treatment container 1 inside. A cylindrical fixed gas introduction block 3 provided with a passage, a fixed exhaust pipe 2 for extracting gas discharged from the processing container 1, and a rotating processing container 1 and the fixed exhaust pipe 2 are connected while being kept airtight. Through the rotating shaft hermetic mechanism 4A, the rotating processing chamber 1 and the fixed gas introduction block 3 being held in an airtight manner and connected to each other, the fixed exhaust pipe 2 and the rotating shaft airtight mechanism 4A. A rotary shaft support mechanism 6A that supports one end of the rotating processing container 1, a rotary shaft support mechanism 6B that supports the other end of the rotating processing container 1 via the fixed gas introduction block 3 and the rotary shaft airtight mechanism 4B, and a rotary shaft airtight. Mechanism 4B Is connected to the outer cylinder is composed of a coil supporting mechanism 9 for supporting the the rotary motion transmission mechanism 5 and the high-frequency induction coil 10 disposed outside the processing container 1, it serves the function of rotating the processing chamber 1.
[0016]
Among these, the processing container 1 is formed of quartz glass, which is an electrically insulating material that is resistant to active oxygen through high frequencies, and both ends thereof are respectively connected to the rotary shaft hermetic mechanisms 4A and 4B via connection pieces 8A and 8B. Connected to the outer cylinder. The rotary shaft hermetic mechanisms 4A and 4B are both of a magnetic fluid type, and are of a type in which a magnetic fluid is interposed between an inner cylinder and an outer cylinder together with a bearing so as to be kept airtight during rotation. The rotational motion transmission mechanism 5 connected to the outer cylinder of the rotary shaft hermetic mechanism 4B transmits rotational force from a rotational drive source (not shown) using a pulley and a belt. The processing container 1 and the connecting pieces 8A and 8B connected to both ends thereof and the outer cylinders of the rotary shaft hermetic mechanisms 4A and 4B rotate.
[0017]
In this apparatus, after the ion-exchange resin 20 to be processed is inserted into the processing container 1 and assembled as shown in the figure, the processing container 1 is rotated by the rotational motion transmission mechanism 5, and oxygen is supplied from the gas inlet 3a. When the containing gas is introduced and sucked by the decompression pump 7 connected to the fixed exhaust pipe 2 to make the inside of the processing vessel 1 have a reduced pressure oxygen-containing atmosphere, and the high frequency current is supplied to the high frequency coil 10 by the high frequency generator 11, the high frequency coil 10 A discharge is formed and maintained in the processing chamber 1 by an electric field due to electromagnetic induction action due to the voltage and high-frequency magnetic field, and active oxygen and ions are generated. The generated active oxygen acts on the ion exchange resin 20 incorporated in the processing vessel 1 to be oxidized and incinerated and reduced in volume. In this configuration, since the ion exchange resin 20 incorporated therein is agitated with the rotation of the processing container 1, the surface area in contact with the active oxygen is extremely large compared to the conventional apparatus, and the use efficiency of the generated active oxygen is high. Therefore, ashing and volume reduction treatment can be performed in a short time. For this reason, the energy efficiency of the process is greatly improved.
[0018]
<Example 2>
FIG. 2 is a cross-sectional view schematically showing the basic configuration of the second embodiment of the ion exchange resin volume reduction treatment apparatus of the present invention.
The difference of the configuration of the present embodiment from the configuration of the first embodiment is that the inner wall of the processing container 1 is provided with a plurality of stirring fins 12 extending in parallel with the rotation axis direction. Therefore, the inner surface of the processing container 1 of the present embodiment has irregularities in the rotation direction. When the processing container 1 is rotated, the built-in ion exchange resin (not shown) is moved to a higher position by the stirring fins 12. The cycle of being pulled up and then dropping due to gravity is repeated, so that the processing vessel 1 is effectively stirred. Therefore, when the inside of the processing vessel 1 has a reduced-pressure oxygen-containing atmosphere, discharge is formed and maintained to generate active oxygen, and when the generated active oxygen is allowed to act on the ion exchange resin to be oxidized, it directly contacts the active oxygen. Since the surface area of the ion exchange resin to be greatly increased, the oxidation reaction proceeds rapidly, and ashing and volume reduction can be performed in a short time.
In the present embodiment, the inner surface of the processing container 1 has irregularities with respect to the rotation direction by providing a plurality of stirring fins 12 extending in parallel with the rotation axis direction. The same effect can be obtained even if the inner surface is provided with unevenness, and the stirring fin is not limited to the one arranged in parallel to the rotation axis direction, and has an angle with respect to the rotation direction. What is necessary is just to extend | stretch.
[0019]
<Example 3>
FIG. 3 is a cross-sectional view schematically showing a basic configuration of a third embodiment of the ion exchange resin volume reducing apparatus of the present invention.
The difference of the configuration of the present embodiment from the configuration of the first embodiment is that shield plates 13A and 13B are provided as conductive shield members having through holes at both ends in the rotation axis direction of the processing container 1. It is in. In the configuration of the first embodiment shown in FIG. 1, the plasma generated by the discharge diffuses from the inside of the processing vessel 1 to the inside of the rotary shaft hermetic mechanisms 4A and 4B, and depending on the magnitude of the high-frequency current, the rotary shaft hermetic is sealed. There is a possibility that plasma is generated in this portion by the high frequency electric field generated in the mechanisms 4A and 4B, and the rotary shaft hermetic mechanisms 4A and 4B may be heated. However, as in this embodiment, the conductive shield plates 13A and 13B are provided. Then, since the penetration of the electric field and the plasma flow is suppressed, the required heat resistance performance of the rotary shaft hermetic mechanisms 4A and 4B may be low, and a low cost rotary shaft hermetic mechanism can be used. Further, since the shield plates 13A and 13B are provided with through holes, the gas containing oxygen introduced from the gas introduction port 3a enters the inside of the processing vessel 1 without stagnation, as in the first or second embodiment. The pressure is reduced and maintained by a pressure reducing pump connected to the fixed exhaust pipe.
[0020]
<Example 4>
FIG. 4 is a cross-sectional view schematically showing a basic configuration of a fourth embodiment of the ion exchange resin volume reduction processing apparatus of the present invention.
The feature of the configuration of the present embodiment is that the ion exchange resin volume reduction processing apparatus configured as in Embodiment 3 is further provided with a heating lamp 14 as a radiant heating means for heating the ion exchange resin 20 incorporated in the processing container 1. It is in the point prepared. If the ion exchange resin 20 is heated with the heating lamp 14 as in this configuration, the drying time of the ion exchange resin 20 containing water is shortened, and the reaction of the oxidation reaction of the ion exchange resin 20 with active oxygen increases as the temperature increases. Since the speed increases, the ion exchange resin 20 can be ashed and reduced in a short time. Furthermore, if the amount of oxygen introduced and the high-frequency current are increased and the operation is performed while maintaining the supply amount of active oxygen and ions sufficiently, the temperature of the ion exchange resin 20 is increased by the heating lamp 14 to actively decompose and volatilize, Since it can be oxidatively decomposed in the gas phase, it becomes a safe treatment apparatus with a high treatment speed and less hydrocarbon exhaust gas.
[0021]
<Example 5>
FIG. 5 is a cross-sectional view schematically showing a basic configuration of a fifth embodiment of the ion exchange resin volume reduction processing apparatus of the present invention.
The feature of this configuration is that, first, a spiral groove 40 defined by a spiral projection 41 is formed on the inner surface of a process vessel 1A rotatably incorporated, and secondly, the process vessel 1A An ion exchange resin comprising a rotary shaft support mechanism 6C attached to one end via a rotary shaft hermetic mechanism 4C, and having an inlet 21, a cutout valve 22, a supply chamber 23, a supply valve 24, and a transport mechanism chamber 25. And thirdly, the cooling chamber 31, the gate valve 32, the recovery preparation chamber 33, and the recovery valve 34 are connected to the other end of the processing vessel 1A via the rotary shaft hermetic mechanism 4D. The generation residue discharging means including the recovery chamber 35 is connected.
[0022]
In this configuration, the ion exchange resin is conveyed and charged into the charging port 21 by a belt conveyor or a hopper. A cut-out valve 22 for keeping the supply chamber 23 airtight by blocking the supply chamber 23 from the atmosphere is provided below the input port 21, and the charged ion exchange resin is supported and closed by the cut-out valve 22. Is done. The supply chamber 23 is connected to a vacuum exhaust pipe (not shown) connected to the vacuum exhaust apparatus and an atmospheric pressure return pipe (not shown) connected to the gas supply means via a shut-off valve. In addition, at the lower part of the supply chamber 23, there is provided a closing valve 24 for keeping the transfer mechanism chamber 25 from the atmosphere and keeping it airtight, and sent to the supply chamber 23 through the cut-off valve 22. The ion exchange resin is supported and closed by the charging valve 24. A gas supply pipe (not shown) is connected to the transfer mechanism chamber 25 and is connected to the gas supply means via a shut-off valve. Further, the transfer mechanism chamber 25 is provided with transfer means 25a for transferring the ion exchange resin from the transfer mechanism chamber 25 to a predetermined position of the processing container 1A.
[0023]
The rotary shaft support mechanism 6C to which the transfer mechanism chamber 25 is connected is provided with an exhaust port 6a, and the processing gas in the processing container 1A can be exhausted uniformly by a vacuum exhaust means (not shown). The processing container 1A is attached to the rotary shaft support mechanism 6C via the connection piece 8C and the magnetic fluid type rotary shaft airtight mechanism 4C, and is rotated by using the rotary motion transmission mechanism 5A. Although shown in a simplified manner in this figure, the configurations of the rotary shaft hermetic mechanism 4C and the rotary motion transmission mechanism 5A are basically the same as the configurations of FIG.
[0024]
A spiral groove 40 is formed on the inner surface of the cylindrical processing container 1A. The ion exchange resin transferred from the transfer mechanism chamber 25 to the inside of the processing container 1A by the transfer means 25a moves along the spiral groove 40 defined by the spiral protrusion 41 with the rotation of the processing container 1A. That is, in the case of the right-handed spiral groove 40 as shown in the drawing, the introduced ion exchange resin is transferred to the transport mechanism chamber 25 by rotating the processing container 1A in the counterclockwise direction when viewed from the transport mechanism chamber 25 side. It can be transferred from the side to the cooling chamber 31 side.
[0025]
The cooling chamber 31 is connected to the processing container 1A via the rotary shaft hermetic mechanism 4D and the connection piece 8D, and holds the processing container 1A rotatably. The cooling chamber 31 is provided with a gas inlet 31a for introducing a processing gas. The gas inlet 31a is connected to a gas supply means (not shown) through a shutoff valve. The processing gas introduced from the gas introduction port 31a enters the processing container 1A from the cooling chamber 31 and flows through the processing container 1A, and then is taken out from the exhaust port 6a provided in the rotary shaft support mechanism 6C and is evacuated. Is exhausted.
[0026]
In the lower part of the cooling chamber 31, airtightness between the cooling chamber 31 and the adjacent recovery preparation chamber 33 is maintained, and the residue of the ion exchange resin subjected to volume reduction treatment in the processing container 1 </ b> A is stored in the cooling chamber 31. A gate valve 32 that can be opened and closed is provided. The recovery preparation chamber 33 is connected to a vacuum exhaust pipe (not shown) connected to the vacuum exhaust apparatus and an atmospheric pressure return pipe (not shown) connected to the gas supply means via a shut-off valve. Under the recovery preparation chamber 33, an openable and closable recovery valve 34 for maintaining the airtightness between the recovery preparation chamber 33 and the recovery chamber 35 and storing the residue of the ion exchange resin that has dropped into the recovery preparation chamber 33. Is provided. A container 36 is arranged in the recovery chamber 35 and the remainder of the ion exchange resin dropped from the recovery preparation chamber 33 is stored. When the storage amount of the container 36 reaches a predetermined value, the container 36 is sealed by a sealing means (not shown). The recovery chamber 35 is connected to a vacuum exhaust pipe (not shown) connected to the vacuum exhaust apparatus and an atmospheric gas replacement pipe (not shown) connected to the gas supply means via a shut-off valve. Further, an extraction valve 37 is attached to the recovery chamber 35. By opening and closing the extraction valve 37, the remainder of the ion exchange resin is taken out with the container 36 sealed.
[0027]
The operation of the ion exchange resin volume reduction treatment device of this configuration is performed as follows.
First, the container 36 is placed in the recovery chamber 35 with the lid open, the cut-off valve 22, the input valve 24, the gate valve 32, the recovery valve 34, and the shutoff valve of the pipe connected to each chamber are closed, and then the exhaust port The inside of the processing container 1A is evacuated to vacuum through 6a. Next, a processing gas containing oxygen is introduced from the gas inlet 31a, and the pressure in the processing container 1A is set to a predetermined processing pressure. At the same time, in order to prevent mixing of oxygen, active oxygen, ions and the like into the transport mechanism chamber 25, an inert gas is introduced into the transport mechanism chamber 25 through an attached gas supply pipe, and the pressure in the processing container 1A is increased. It adjusts so that the pressure of the conveyance mechanism chamber 25 may become high. Next, a high frequency current is passed through the high frequency induction coil 10 by the high frequency generator 11 to form and maintain a discharge in the processing vessel 1A, thereby generating active oxygen and ions.
[0028]
Next, the cut-off valve 22 is opened to drop a predetermined amount of ion exchange resin from the inlet 21 to the supply chamber 23, and then the cut-off valve 22 is closed. Next, the supply chamber 23 is evacuated to vacuum using an attached piping system, and then an inert gas is introduced to adjust the pressure in the supply chamber 23 to be equal to the pressure in the transport mechanism chamber 25. Next, the closing valve 24 is opened to load the ion exchange resin into the transport mechanism chamber 25, and then the closing valve 24 is closed. At this time, the supply chamber 23 is once evacuated and then introduced with an inert gas to atmospheric pressure, and the cut-off valve 22 is opened to supply a predetermined amount of ion exchange resin from the inlet 21 to the supply chamber 23. Drop it for the next stage of processing.
[0029]
Next, after the processing container 1A is shifted to the rotation state, the ion exchange resin in the transport mechanism chamber 25 is transferred to the spiral groove 40 in the processing container 1A by the transfer means 25a. The ion exchange resin is stirred up and down by the rotation of the processing container 1A, and the surface area in contact with the active oxygen and ions formed by the discharge is increased, so that the volume reduction treatment is efficiently performed. Further, the residue generated by the ion exchange resin and its volume reduction process is automatically transferred in the direction of the cooling chamber 31 in the spiral groove 40 as the processing container 1A rotates.
[0030]
The remainder of the ion exchange resin subjected to the volume reduction treatment is automatically transferred by rotation, and then falls from the treatment container 1 </ b> A into the cooling chamber 31. When the remaining amount reaches a predetermined amount, the gate valve 32 is opened and dropped into the recovery preparation chamber 33 that has been adjusted in advance to a pressure equal to that of the cooling chamber 31 by evacuation and introduction of inert gas. When a predetermined amount of ion-exchange resin residue accumulates in the recovery preparation chamber 33, the gate valve 32 is closed and the piping system shut-off valve is opened to return to atmospheric pressure. Next, the recovery valve 34 is opened, and the residue of the ion exchange resin accumulated in the recovery preparation chamber 33 is dropped into the container 36 of the recovery chamber 35. When the remaining amount of ion exchange resin accumulated in the container 36 by repeating these operations reaches a predetermined amount, the extraction valve 37 is opened to take out the container 36 to the outside, and a new empty container 36 is attached to the next stage. Deal with volume reduction.
[0031]
Thus, in the ion exchange resin volume reduction treatment device of this configuration, the surface area in contact with the active oxygen and ions is increased by stirring the introduced ion exchange resin, so that the volume reduction treatment can be efficiently performed. Since the ion exchange resin introduced into the processing container 1A is automatically transferred, continuous volume reduction processing becomes possible.
<Example 6>
FIG. 6 is a cross-sectional view schematically showing a basic configuration of a sixth embodiment of the ion exchange resin volume reduction treatment apparatus of the present invention.
[0032]
The difference of the configuration of the present embodiment from the fifth embodiment is that the same material as that of the processing container 1A extending in parallel with the rotation axis of the processing container 1A in the spiral groove provided on the inner surface of the processing container 1A. A plurality of stirring fins 12A are provided. The ion exchange resin transferred from the transfer mechanism chamber 25 to the spiral groove in the processing container 1A by the transfer means 25a is dropped to a high position by the stirring fin 12A as the processing container 1A rotates. Therefore, the agitation is more effectively performed, and the surface area exposed to active oxygen and ions is increased, and the volume reduction treatment is further promoted.
[0033]
In the present embodiment, a plurality of stirring fins 12A extending in parallel with the rotation axis direction are provided. However, as already described in the second embodiment, the thickness of the processing vessel 1A is changed to the inner surface. The same effect can be obtained even if the projections and depressions are provided, and the stirring fins may be extended as long as they have an angle with respect to the rotation direction.
[0034]
<Example 7>
FIG. 7 is a cross-sectional view schematically showing the basic configuration of the seventh embodiment of the ion exchange resin volume reducing apparatus of the present invention.
The difference of the configuration of the present embodiment from the fifth embodiment is that an aluminum shield plate 13C is provided as a conductive shield member having a through hole at the end of the processing vessel 1A on the rotating shaft support mechanism 6C side. It is in the point. Therefore, as in the case of the third embodiment, the high-frequency electric field and the plasma flow are prevented from entering the rotary shaft hermetic mechanism 4C, and the amount of heating is reduced, so that a highly reliable device can be obtained. For this reason, the required heat resistance of the rotary shaft hermetic mechanism 4C may be low, and a low-cost rotary shaft hermetic mechanism can be used.
[0035]
In this configuration, the aluminum shield plate 13C having a large number of small holes is used, but the same effect can be obtained by using a mesh combined with fine wires or a hunting plate.
< Reference example > FIG. 8 shows the ion exchange resin volume reduction treatment apparatus of the present invention. Reference example It is sectional drawing which shows typically the basic composition of this.
[0036]
Book Reference example The difference from the fifth embodiment of the configuration is that a heating lamp 14A for heating the ion exchange resin introduced into the processing vessel 1B is arranged in front of the high frequency induction coil 10 on the outer periphery of the processing vessel 1B. There is in point. Since the reaction rate of the oxidation reaction with active oxygen increases as the temperature increases, the introduced ion exchange resin is preheated and dried, and the ashing and volume reduction treatment are performed at a higher temperature as in this configuration. Then, a device with a high processing speed can be obtained. Furthermore, if the ion exchange resin is actively decomposed and volatilized by raising the temperature, the amount of oxygen gas and high-frequency current is increased to maintain a sufficient supply amount of active oxygen and ions, thereby allowing the ion exchange resin to be sufficiently maintained. Can be oxidatively decomposed in the gas phase, and a safe processing apparatus with a high processing speed and a small amount of hydrocarbon exhaust gas can be obtained.
[0037]
As mentioned above, according to the present invention,
(1) Since the ion exchange resin volume reduction treatment apparatus is configured as described in claim 1, the ion exchange resin built in by the rotation of the treatment container is agitated, and effectively with the active oxygen generated by the discharge. Since it comes in contact, a volume reduction treatment apparatus for ion exchange resin capable of volume reduction treatment at a high treatment speed can be obtained. (2) Since it is further configured as in claim 1, the ion exchange resin incorporated in the processing vessel is in contact with active oxygen from one end to the other end in direct contact with ash and volume reduction treatment, so that the processing speed Can be obtained.
(3) If comprised as described in Claim 2, the ion exchange resin built in the processing container will be stirred more effectively, and it is suitable as an apparatus with a high processing speed.
(4) According to the third aspect of the present invention, the invasion of the plasma flow generated by the discharge and the heating of the rotary shaft hermetic mechanism by the plasma caused by the penetration of the high frequency magnetic field are suppressed, and the cost-effective rotary shaft hermetic mechanism is reduced. As a result, the cost of the apparatus can be reduced and a highly reliable apparatus can be obtained.
(5) If constituted as in claim 4, the drying time of the ion-exchange resin containing water is shortened and the processing speed is further increased, so that it is suitable as an apparatus having a high processing speed.
(6) Since the ashing and volume reduction treatment of the ion exchange resin can be continuously performed if configured as described in claim 5, it is suitable as a device having a high treatment speed.
(7) According to the sixth aspect, the ion exchange resin is automatically conveyed in the direction of the rotation axis along the spiral groove along with the rotation of the processing container. It is particularly effective for continuously performing the volume reduction treatment.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a basic configuration of a first embodiment of an ion exchange resin volume reducing apparatus according to the present invention.
FIG. 2 is a cross-sectional view schematically showing a basic configuration of a second embodiment of the ion exchange resin volume reduction treatment apparatus of the present invention.
FIG. 3 is a cross-sectional view schematically showing a basic configuration of a third embodiment of the ion exchange resin volume reducing apparatus of the present invention.
FIG. 4 is a cross-sectional view schematically showing a basic configuration of a fourth embodiment of the ion exchange resin volume reducing apparatus of the present invention.
FIG. 5 is a cross-sectional view schematically showing a basic configuration of a fifth embodiment of the ion exchange resin volume reduction treatment apparatus of the present invention.
FIG. 6 is a cross-sectional view schematically showing a basic configuration of a sixth embodiment of the ion exchange resin volume reduction treatment apparatus of the present invention.
FIG. 7 is a cross-sectional view schematically showing a basic configuration of a seventh embodiment of the ion exchange resin volume reduction treatment apparatus of the present invention.
FIG. 8 is a cross-sectional view schematically showing a basic configuration of a reference example of the ion exchange resin volume reduction treatment apparatus of the present invention.
FIG. 9 is a cross-sectional view schematically showing a basic configuration of an ion exchange resin volume reduction processing apparatus using μ waves.
FIG. 10 is a cross-sectional view schematically showing a basic configuration of an ion exchange resin volume reduction processing apparatus using a high frequency induction coil.
[Explanation of symbols]
1 Processing container
1A, 1B processing container
2 Fixed exhaust piping
3 Fixed gas introduction block
3a Gas inlet
4A, 4B Rotary shaft airtight mechanism
4C, 4D rotary shaft airtight mechanism
5,5A Rotational motion transmission mechanism
6A, 6B, 6C Rotating shaft support mechanism
7 Pressure reducing pump
8A, 8B connection piece
8C, 8D connection piece
9 Coil support mechanism
10 High frequency induction coil
11 High frequency generator
12,12A Stirring fin
13A, 13B, 13C Shield plate
14,14A Heating lamp
20 Ion exchange resin
21 slot
23 Supply room
25 Transport mechanism room
25a Transfer means
31 Cooling room
31a Gas inlet
33 Collection preparation room
35 Collection room
36 containers

Claims (6)

被処理用のイオン交換樹脂を内蔵する円筒状の処理容器、処理容器に酸素または酸素を含むガスを導入するガス導入手段、処理容器を減圧状態に保持する減圧手段、ならびに処理容器の外側に配された高周波誘導コイルを備え、ガス導入手段と減圧手段により処理容器の内部を減圧酸素含有雰囲気とし、高周波誘導コイルの生じる高周波磁界の作用によって放電を処理容器全体に発生させ、放電により生じた活性酸素を処理容器に内蔵されたイオン交換樹脂に作用させて灰化し、減容処理するイオン交換樹脂減容処理装置において、
前記処理容器が、回転軸支持機構と回転運動伝達機構によって回転可能に組み込まれ、かつ回転軸気密機構によって減圧状態を保持できるように組み込まれているとともに、
前記ガス導入手段が、処理容器の回転軸方向の一方の側端に配され、前記減圧手段が、処理用息の回転軸方向のもう一方の側端に配されていることを特徴とするイオン交換樹脂減容処理装置。
A cylindrical processing container containing an ion exchange resin for processing, a gas introducing means for introducing oxygen or oxygen-containing gas into the processing container, a decompressing means for maintaining the processing container in a reduced pressure state, and an outer side of the processing container. The generated high-frequency induction coil has a reduced-pressure oxygen-containing atmosphere inside the processing vessel by the gas introduction means and the decompression means, and a discharge is generated in the entire processing vessel by the action of the high-frequency magnetic field generated by the high-frequency induction coil. In an ion exchange resin volume reduction treatment device that causes oxygen to act on the ion exchange resin built in the processing vessel to ash and reduce the volume,
The processing container is incorporated so as to be rotatable by a rotary shaft support mechanism and a rotary motion transmission mechanism, and is incorporated so that a reduced pressure state can be maintained by the rotary shaft airtight mechanism .
The gas introduction means is arranged at one side end in the rotation axis direction of the processing container, and the decompression means is arranged at the other side end in the rotation axis direction of the processing breath. Exchange resin volume reduction equipment.
前記処理容器が、回転方向に対して凹凸を有する内面を備えてなることを特徴とする請求項1に記載のイオン交換樹脂減容処理装置。The ion exchange resin volume reduction processing apparatus according to claim 1, wherein the processing container includes an inner surface having irregularities with respect to a rotation direction. 前記処理容器の回転軸方向の端部に、貫通孔を有するシールド部材が備えられていることを特徴とする請求項1又は2に記載のイオン交換樹脂減容処理装置。The ion exchange resin volume reduction processing apparatus according to claim 1, wherein a shield member having a through hole is provided at an end of the processing container in the rotation axis direction. 前記処理容器の外側に、処理容器に内蔵されたイオン交換樹脂を加熱する輻射加熱手段が備えられていることを特徴とする請求項1乃至3に記載のイオン交換樹脂減容処理装置。The ion exchange resin volume reduction processing apparatus according to claim 1, further comprising a radiant heating unit that heats an ion exchange resin built in the processing container outside the processing container. 処理容器にイオン交換樹脂を供給する供給手段が、処理容器の回転軸方向の一方の側端に配され、処理容器での減容処理により生じた残さを排出する排出手段が、処理容器の回転軸方向のもう一方の側端に配されていることを特徴とする請求項1乃至4に記載のイオン交換樹脂減容処理装置。A supply means for supplying the ion exchange resin to the processing container is arranged at one side end in the rotation axis direction of the processing container, and a discharging means for discharging the residue generated by the volume reduction processing in the processing container is a rotation of the processing container. 5. The ion exchange resin volume reduction treatment device according to claim 1, wherein the ion exchange resin volume reduction treatment device is disposed on the other side end in the axial direction. 前記処理容器が、回転軸を中心軸として螺旋状に形成された螺旋溝を内面に備えてなることを特徴とする請求項5に記載のイオン交換樹脂減容処理装置。6. The ion exchange resin volume reducing apparatus according to claim 5, wherein the processing container includes a spiral groove formed in a spiral shape with a rotation axis as a central axis on an inner surface.
JP20144998A 1998-03-02 1998-07-16 Ion exchange resin volume reduction treatment equipment Expired - Fee Related JP3733751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20144998A JP3733751B2 (en) 1998-03-02 1998-07-16 Ion exchange resin volume reduction treatment equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4962198 1998-03-02
JP10-49621 1998-03-02
JP20144998A JP3733751B2 (en) 1998-03-02 1998-07-16 Ion exchange resin volume reduction treatment equipment

Publications (2)

Publication Number Publication Date
JPH11314080A JPH11314080A (en) 1999-11-16
JP3733751B2 true JP3733751B2 (en) 2006-01-11

Family

ID=26390039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20144998A Expired - Fee Related JP3733751B2 (en) 1998-03-02 1998-07-16 Ion exchange resin volume reduction treatment equipment

Country Status (1)

Country Link
JP (1) JP3733751B2 (en)

Also Published As

Publication number Publication date
JPH11314080A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
WO2006082724A1 (en) Method for cleaning and method for plasma treatment
US5690050A (en) Plasma treating apparatus and plasma treating method
KR100666018B1 (en) Processing apparatus and processing method
EP1212575A1 (en) Apparatus and method for continuous microwave drying of ceramics
JP3733751B2 (en) Ion exchange resin volume reduction treatment equipment
JP2014036142A (en) Cleaning method of microwave processor
JP2000310697A (en) Processing device and method for solid waste
JP2005142234A5 (en)
KR101092889B1 (en) Continuous firing furnace
JPH09111309A (en) Continuous sintering furnace
JP3845933B2 (en) Volume reduction processing method and apparatus for ion exchange resin
JP2764027B2 (en) Sample processing method and apparatus
JP3736141B2 (en) Ion exchange resin volume reduction treatment equipment
JP2001276817A (en) Contaminated oil effluent treating device
JP3733733B2 (en) Volume reduction treatment method for ion exchange resin
JP2003190925A (en) Organic compound decomposing and treating device
JP4096402B2 (en) Graphitization furnace
JP3025454B2 (en) Resist ashing device
JP7323736B1 (en) Heat treatment apparatus and heat treatment method
US5656334A (en) Plasma treating method
JP2003190924A (en) Organic compound decomposing and treating device
JP2001099991A (en) Method and device for volume reducing hydrated solid waste
JP6809745B1 (en) Plasma processing equipment
WO2023189752A1 (en) Heat treatment device and heat treatment method
JP2982211B2 (en) Plasma device and method of using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees