JP3732961B2 - Cooling device for waste after melting treatment - Google Patents

Cooling device for waste after melting treatment Download PDF

Info

Publication number
JP3732961B2
JP3732961B2 JP03415699A JP3415699A JP3732961B2 JP 3732961 B2 JP3732961 B2 JP 3732961B2 JP 03415699 A JP03415699 A JP 03415699A JP 3415699 A JP3415699 A JP 3415699A JP 3732961 B2 JP3732961 B2 JP 3732961B2
Authority
JP
Japan
Prior art keywords
waste
cooling
holding container
receiver
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03415699A
Other languages
Japanese (ja)
Other versions
JP2000234719A (en
Inventor
勝哉 秋山
護 須鎗
朗義 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP03415699A priority Critical patent/JP3732961B2/en
Publication of JP2000234719A publication Critical patent/JP2000234719A/en
Application granted granted Critical
Publication of JP3732961B2 publication Critical patent/JP3732961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶融処理後の廃棄体の冷却装置に関し、詳細には、各種の無機物、金属、並びに有機物を含む一般の廃棄物、下水汚泥、都市ごみ及びこれらの焼却灰、更に低レベルの放射性廃棄物等をプラズマアーク、誘導加熱、燃焼加熱などの手段により融点以上に加熱処理した後の溶融物を冷却固化して、廃棄体を製造する際に用いられる冷却装置に関するものである。
【0002】
【従来の技術】
都市ごみや下水汚泥の焼却工場より排出される焼却灰は、従来ごみの最終処分場に埋め立て処分されていた。また、原子力発電所より発生する低レベルの放射性廃棄物、例えば原子力容器を囲む建物のコンクリートや鉄骨などの建築廃材、配管材等といった無機物はそのままの状態で、また配線材料や衣類といった可燃物、難燃物は焼却灰として混在されドラム缶に収納して保管、蓄積されてきた。しかし、近年、処分場や保管場所の容量、期限などの関係から、これらの廃棄物の体積を極力減少させる技術の要求が高まってきた。
【0003】
上記廃棄物の見かけ体積を減少させるためには、廃棄物を融点以上に加熱し、その後冷却固化させる溶融固化法が最も一般的な方法であって、これまで加熱手段としてプラズマアーク、誘導加熱、燃焼加熱などの加熱手段を備えた溶融炉を用いて様々なプロセスが提案され、一部は実用もされている。
【0004】
ところで、上記に提案されている溶融炉を用いたプロセスにおいては、溶融した廃棄物を冷却固化する必要がある。この冷却固化手段としては、対象廃棄物が低レベル放射性雑固体廃棄物の場合ではあるが特開平 9− 90096号公報に提案されているものがある。
【0005】
上記の公報に提案されている冷却固化手段は、それまでに知られている▲1▼溶融物を水槽内に滴下しガラス状の粒状物質となしたり、▲2▼溶融物を固化室内の水冷鋳型で冷却固化したり、あるいは▲3▼溶融物をるつぼごと冷却室で冷却したりする方法が、▲1▼の方法では水や冷却媒体等が放射能等に汚染され、汚染による二次廃棄物が出る問題、▲2▼の方法では鋳型から取り出された固化体が取扱中に破損、飛散する問題、▲3▼の方法では溶融処理に耐えさせるため厚肉なるつぼを用いる必要から廃棄物の減容効率が低下する問題、等を有していることから、これらの問題を改善するためになされたものであって、溶融炉から排出される溶融物を、厚肉耐火構造の保持容器に保持された薄肉鋼製の受容器に減圧雰囲気で充填し、自然冷却により溶融物中の溶存ガス及び巻き込みガスによる溶融物中の気泡を放出するとともに、溶融物を比重差により金属層とスラグ層に分別形成し、溶融物の凝固後、保持容器ごと冷却フード内で冷却する、といった冷却固化手段が採られている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記公報に提案の冷却固化手段は、冷却水、排ガス等の二次廃棄物の発生を抑制し得るとともに、溶融物中の気泡が放出されていることから減容比を高めることができ、また、溶融物の固化形状を最終廃棄体(ドラム缶)の形状に近い大きさ、形にできることから処分場や保管場所での廃棄体の収容効率を高めることができる。等の作用効果が期待されるものの、次の如き問題が懸念される。すなわち、
(1) 溶融物を厚肉耐火構造の保持容器に保持された薄肉鋼製の受容器に充填するため、薄肉鋼製の受容器が変形したり、溶損することが懸念され、万一受容器が大きく変形した場合、あるいは溶損した場合には溶融物が保持容器外にまで流れ出すといった重大な事故につながる可能性がある。
(2) 自然冷却により溶融物中の溶存ガス及び巻き込みガス等の気泡を放出するとともに、溶融物を比重差により金属層とスラグ層に分別形成しており、冷却処理速度が遅くなるばかりか冷却室容積、冷却ファン等の冷却室付帯設備が大掛かりなものとなりコストが増大する。
【0007】
本発明は、上記の問題点に鑑みてなされたものであって、その目的は、溶融炉から排出される廃棄溶融物の処理工程において、薄肉鋼製の受容器を変形や溶損させることなく、薄肉鋼製の受容器内に充填された溶融物を安全且つ迅速に冷却し得るとともに、冷却室の小スペース化及び冷却ファン等の冷却室付帯設備のコストを抑制し得る溶融処理後の廃棄体の冷却装置を提供するものである。
【0008】
【課題を解決するための手段】
上記目的を達成するための、本発明に係る溶融処理後の廃棄体の冷却装置は、加熱溶融された廃棄溶融物を薄肉鋼製の受容器に収容して受容器と共に廃棄体として冷却固化するための冷却装置であって、前記加熱溶融された廃棄溶融物を収容するための薄肉鋼製の受容器と、この受容器の底部及び周囲に密着して該受容器を収容するための保持容器とを具備するとともに、前記保持容器が熱伝導率 5.8W/m・K以上の材料で構成されてなるものである。
【0009】
上記の構成では、薄肉鋼製の受容器が、その底部及び周囲を密着して保持容器内に収容されるので、しかも保持容器は熱伝導率 5.8W/m・K以上の材料で構成されているため、溶融炉で加熱溶融された廃棄溶融物を薄肉鋼製の受容器内に注入、収容しても、溶融物の熱は薄肉鋼製の受容器壁から保持容器壁へと速やかに伝熱され、薄肉鋼製の受容器が高温に曝される時間が短く、受容器の変形や溶損を防止することはもとより、溶融物を速やかに冷却固化させることができる。またこれにより、冷却室の小スペース化が図られるとともに、大掛かりな冷却設備が不要となりコストダウンが期待できる。このような作用効果をより効果的に得る、すなわち急速な抜熱効果を得るためには、前記保持容器を熱伝導率11.6W/m・K以上の材料で構成することが好ましい。
【0010】
そして、上記本発明においては、特に限定するものではないが、保持容器を形成する材料としてステンレス鋼材(熱伝導率:16W/m・K)、炭素鋼材(熱伝導率:43W/m・K)、銅材(熱伝導率: 386W/m・K)、アルミニウム材(熱伝導率: 164W/m・K)を単独、あるいは2つ以上を積層して用いることができる。このような材料を保持容器に用いることで、上記作用効果をより効果的且つ経済的に享受することができる。また特に放射性物質の廃棄溶融物の処理の場合には前記材料に積層させて鉛材や樹脂材を積層させて用いることもでき、冷却室での放射線遮蔽効果の向上が期待できる。
【0011】
また、上記本発明においては、保持容器が、冷却媒体の流路を備えてあってもよい。このように冷却媒体の流路を設けることで、より冷却効果が増し、薄肉鋼製の受容器の変形や溶損の防止はもとより、薄肉鋼製の受容器内に注入、収容する溶融物を効率よく冷却することができる。
【0012】
また、上記本発明においては、保持容器が、受容器の周囲に密着する部分に少なくとも縦方向の凹溝を有するものであってもよい。この凹溝を設けることで、薄肉鋼製の受容器内に溶融物を注入、収容した際に生じる受容器の膨張を吸収させることができる。
【0013】
また、上記本発明においては、保持容器が、縦方向に2又は3分割されてあってもよいし、あるいは底部と受容器の周囲に密着する部分とに分割され、且つ受容器の周囲に密着する部分が縦方向に2又は3分割されてあってもよい。このような分割構成とすることにより、受容器の底部と周囲の保持容器への密着がより確実なものにでき、より冷却効果が増し、薄肉鋼製の受容器の変形や溶損の防止はもとより、薄肉鋼製の受容器内に注入、収容する溶融物を効率よく冷却することができる。また、冷却固化後の廃棄体の取り出しが容易になる。
【0014】
また、上記本発明においては、保持容器の外周側に、保持容器の外壁に向けて冷却媒体を吹き付ける冷却媒体吹き付け装置を備えてあってもよい。このような冷却媒体吹き付け装置を設けることで、保持容器の外周側からの抜熱効果を上げることができ、より冷却効果が増し、薄肉鋼製の受容器の変形や溶損の防止はもとより、薄肉鋼製の受容器内に注入、収容する溶融物を効率よく冷却することができる。
【0015】
なお、上記本発明に係る冷却装置は、廃棄溶融物が無機廃棄物、下水汚泥、ごみ焼却灰、放射性廃棄物の1種以上を溶解させる廃棄物溶融炉の排出側に設備され、廃棄物溶融炉から排出される溶融物を収容して冷却するのに用いられるものである。
【0016】
【発明の実施の形態】
本発明の実施形態を図面を参照して説明する。図1は、本発明に係る溶融処理後の廃棄体の冷却装置の説明図であって、aは断面図、bは上面図である。
【0017】
冷却装置1は、薄肉鋼製の受容器2と保持容器3を備えて構成され、薄肉鋼製の受容器2は底部4と円筒部5を有する容器であって、底部4と円筒部5の肉厚は約10mmのものである。
【0018】
保持容器3は、内径が前記受容器2の外径とほぼ等しい円筒部6と底部7を有する肉厚約 100mmのステンレス鋼製の容器であって、左右容器体8,9に2分割可能に構成されるとともに、円筒部6の分割端面の外側部にはフランジ10, 11が設けられ、このフランジ10, 11にボルト・ナット12を取り付けることで一体化が可能に構成されている。なお、本例では、保持容器3を2分割した場合を例としたが、3分割であってもよい。4分割となると一体化の作業や操作に時間を要するため好ましくなくなる。また一体化するためにフランジ10, 11とボルト・ナット12による例としたが、一体化と共に後記する受容器2との密着性が得られるのであれば、特にその構成は限定するものではなく、例えば容器体8,9の背面に設けられたシリンダにより進退駆動させてもよいし、あるいは金属バンドで簡便に締めつける構造としてもよい。また保持容器3は有底の円筒体としてもよいが、薄肉鋼製の受容器2との密着部分を多くするように配慮する必要がある。
【0019】
上記冷却装置1は、薄肉鋼製の受容器2を左右容器体8,9で挟み付けるようにして保持容器3内に収容した後、左右容器体8,9のフランジ10, 11にボルト・ナット12を取付けるとともにナットを締めつけて構成される。このように構成された冷却装置1は、図示省略するが、溶融炉の排湯室にセットされ廃棄溶融物13を注入、収容した後、冷却室に移送され、冷却室で薄肉鋼製の受容器2内の廃棄溶融物13を冷却固化する。そして、廃棄溶融物13が冷却固化した後、ボルト・ナット12を緩め左右容器体8,9に分離し、薄肉鋼製の受容器2とその受容器2内で冷却固化した廃棄物とからなる廃棄体を取り出す。取り出し後、保持容器3はその内部に薄肉鋼製の受容器2がセットされ冷却装置1として繰り返し使用される。
【0020】
冷却装置1は、上記の如く使用されるものであり、保持容器3が肉厚約 100mmのステンレス鋼で構造されているので、熱伝導性に優れるとともに、熱容量が大きいことから、薄肉鋼製の受容器2内に収容した廃棄溶融物13を、受容器2を変形、溶損させることなく迅速に冷却固化させることができる。また冷却固化が迅速に行えるので、大掛かりな強制冷却設備が不要であり冷却室の小スペース化が図られるとともに、大掛かりな冷却設備が不要な分コストダウンが期待できる。
【0021】
図2は、本発明に係る溶融処理後の廃棄体の冷却装置の別の実施形態の説明図であって、aは断面図、bは上面図である。この図に示す例の冷却装置14は、保持容器3を、底部15と受容器2の周囲に密着する部分(円筒部)16とに分割して構成するとともに、更に前記円筒部16を縦方向に2分割して円筒部体17, 18に構成し、底部15と円筒部体17, 18とに、及び円筒部体17と18とに図示省略する図1に示すフランジ及びボルトナットと同様の締結手段を設けて構成した外は、上記図1に示す冷却装置1と同じ構成のものである。
【0022】
上記のように構成された冷却装置14であっても、上記図1に示す冷却装置1と同様に使用できるとともに、段落番号〔0020〕に示す作用効果を得ることができる。
【0023】
図3は、本発明に係る溶融処理後の廃棄体の冷却装置の別の実施形態の説明図であって、aは断面図、bは上面図である。この図に示す例の冷却装置19は、図2に示す保持容器3の円筒部体17, 18の外周面に冷却媒体の流路20を上から下に蛇行させて設けるとともに、図示省略するが下部に冷却媒体の供給口、上部に冷却媒体の排出口を設けるとともに、排出口からの冷却媒体を再冷却して循環可能に配管した構成の外は、上記図2に示す冷却装置と同じ構成のものである。なお、本例では、冷却媒体の流路20を円筒部体17, 18のみに設けた例を示したが、底部15にも設けてもよいことは言うまでもない。
【0024】
上記のように構成された冷却装置19であっても、上記図1に示す冷却装置1乃至図2に示す冷却装置14と同様に使用できるとともに、段落番号〔0020〕に示す作用効果を得ることができる。また、本例では、冷却媒体の流路20を設けたことで、若干冷却コストが増すものの、強制冷却により冷却効果が増し、薄肉鋼製の受容器2内に収容した廃棄溶融物13を、受容器2を変形、溶損させることなくより迅速に冷却固化させることができる。
【0025】
また、上記のような冷却効果を得るのに、図2に二点鎖線で示すように、円筒部16の外周に間隔をおいて冷却媒体(ガス)の噴出装置(ノズル)21を配設してもよい。このように噴出装置21を配設して保持容器3(容器体8,9や円筒部16)の外周面を強制冷却しても、上記段落番号〔0024〕と同様の作用効果を得ることができる。なお、このように保持容器3の外周側を冷却ガスを吹き付けて強制冷却する場合には放熱効果を上げるために保持容器3の外周に放熱フィンを設けるようにしてもよい。
【0026】
図4は、本発明に係る溶融処理後の廃棄体の冷却装置の別の実施形態の説明図であって、aは断面図、bは上面図である。この図に示す例の冷却装置22は、図2に示す保持容器3の円筒部体17, 18の内周面に縦方向の凹溝23を略等間隔で4箇所設けた構成の外は、上記図2に示す冷却装置14と同じ構成のものである。なお、本例では、凹溝23を円筒部体17, 18の中央より下方に設けた例を示したが、これは、凹溝23の高さを薄肉鋼製の受容器2内に収容される廃棄溶融物13の高さに合わせたもので、上方まで設けてもよいことは言うまでもない。また、図1aは、図1bの凹溝23上を断面示した。
【0027】
上記のように構成された冷却装置22であっても、上記図1に示す冷却装置1乃至図2に示す冷却装置14と同様に使用できるとともに、段落番号〔0020〕に示す作用効果を得ることができる。また、本例では、凹溝23をを設けたことで、薄肉鋼製の受容器2内に廃棄溶融物13を注入、収容した際に生じる受容器2の膨張を吸収させることができる。
【0028】
【発明の効果】
以上説明したように、本発明に係る溶融処理後の廃棄体の冷却装置であれば、薄肉鋼製の受容器をその底部及び周囲を密着して保持容器内に収容できるので、しかも保持容器は熱伝導率 5.8W/m・K以上(より好ましくは11.6W/m・K以上)の材料で構成されているので、廃棄物溶融炉で加熱溶融された廃棄溶融物を前記薄肉鋼製の受容器内に注入、収容しても、溶融物の熱は薄肉鋼製の受容器壁から保持容器壁へと速やかに伝熱でき、薄肉鋼製の受容器が高温に曝される時間を短くでき、該受容器の変形や溶損を防止することができるとともに、収容した廃棄溶融物を速やかに冷却固化させることができる。また前記の構成であるので、冷却室の小スペース化が図られるとともに、大掛かりな冷却設備が不要となりコストダウンが期待できる。
【図面の簡単な説明】
【図1】本発明に係る溶融処理後の廃棄体の冷却装置の説明図であって、aは断面図、bは上面図である。
【図2】本発明に係る溶融処理後の廃棄体の冷却装置の別の実施形態の説明図であって、aは断面図、bは上面図である。
【図3】本発明に係る溶融処理後の廃棄体の冷却装置の別の実施形態の説明図であって、aは断面図、bは上面図である。
【図4】本発明に係る溶融処理後の廃棄体の冷却装置の別の実施形態の説明図であって、aは断面図、bは上面図である。
【符号の説明】
1:冷却装置 2:薄肉鋼製の受容器 3:保持容器
4:受容器の底部 5:受容器の円筒部 6:保持容器の円筒部
7:保持容器の底部 8,9:容器体 10, 11:フランジ
12:ボルト・ナット 13:廃棄溶融物 14:冷却装置
15:保持容器の底部 16:保持容器の円筒部
17, 18:保持容器の円筒部体 19:冷却装置
20:冷却媒体の流路 21:冷却媒体の噴出装置 22:冷却装置
23:凹溝
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a cooling apparatus for a waste body after melting treatment, and in particular, general waste containing various inorganic substances, metals and organic substances, sewage sludge, municipal waste and incineration ash thereof, and further, a low level of radioactive material. The present invention relates to a cooling device used when a waste is manufactured by cooling and solidifying a melt after heat treatment of a waste or the like to a melting point or higher by means of plasma arc, induction heating, combustion heating or the like.
[0002]
[Prior art]
Incineration ash discharged from municipal waste and sewage sludge incineration plants has been disposed of in landfills at the final landfill site. In addition, low-level radioactive waste generated from nuclear power plants, for example, building wastes such as concrete and steel frames surrounding buildings, and inorganic materials such as piping materials, as well as combustible materials such as wiring materials and clothing, Flame retardants are mixed as incinerated ash and stored and stored in drums. However, in recent years, demands for technologies for reducing the volume of waste as much as possible have increased due to the relationship between the capacity of the disposal site and the storage location, the deadline, and the like.
[0003]
In order to reduce the apparent volume of the waste, the melt solidification method in which the waste is heated to the melting point or higher and then cooled and solidified is the most common method, and so far, plasma arc, induction heating, Various processes have been proposed using a melting furnace equipped with a heating means such as combustion heating, and some have been put into practical use.
[0004]
By the way, in the process using the melting furnace proposed above, it is necessary to cool and solidify the molten waste. As this cooling and solidifying means, there is one proposed in Japanese Patent Laid-Open No. 9-90096, although the target waste is a low-level radioactive miscellaneous solid waste.
[0005]
The cooling and solidification means proposed in the above-mentioned publications include (1) a melt that has been known so far, dropped into a water tank to form a glassy granular material, and (2) water-cooling the melt into a solidification chamber. The method of cooling and solidifying with a mold or (3) cooling the molten material together with the crucible in the cooling chamber is the method of (1), where water and cooling medium are contaminated with radioactivity, etc., and secondary disposal due to contamination. In the method of (2), the solidified material taken out from the mold is broken or scattered during handling, and in the method of (3), it is necessary to use a thick crucible to withstand the melting process. In order to solve these problems, etc., the melting volume discharged from the melting furnace is changed into a thick-walled refractory structure holding container. Filled in a reduced-pressure atmosphere into a thin steel receiver held in However, by cooling, bubbles in the melt due to dissolved gas and entrained gas in the melt are released, and the melt is separated into a metal layer and a slag layer due to the difference in specific gravity. Cooling and solidifying means such as cooling inside is adopted.
[0006]
[Problems to be solved by the invention]
However, the cooling and solidification means proposed in the above publication can suppress the generation of secondary waste such as cooling water and exhaust gas, and can increase the volume reduction ratio because bubbles in the melt are released. Moreover, since the solidified shape of the melt can be made to have a size and shape close to the shape of the final waste body (drum can), it is possible to increase the waste housing efficiency at the disposal site and storage place. However, there are concerns about the following problems. That is,
(1) Since the melted material is filled into the thin-walled steel receiver held in the thick-walled fireproof holding container, there is a concern that the thin-walled steel receiver may be deformed or melted. If the material is greatly deformed or melted, a serious accident may occur in which the melt flows out of the holding container.
(2) Bubbles such as dissolved gas and entrained gas in the melt are released by natural cooling, and the melt is separated into a metal layer and a slag layer due to the difference in specific gravity. Cooling room incidental facilities such as a room volume and a cooling fan become large and cost increases.
[0007]
The present invention has been made in view of the above-described problems, and its purpose is not to deform or damage the thin-walled steel receiver in the processing step of the waste melt discharged from the melting furnace. Disposal after melting processing that can cool the melt filled in the thin-walled steel receiver safely and quickly, and can reduce the space for the cooling chamber and the cost of the cooling room incidental equipment such as a cooling fan. A body cooling device is provided.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a cooling apparatus for a waste body after melting treatment according to the present invention accommodates a heat-melted waste melt in a thin-walled steel receiver and cools and solidifies it as a waste body together with the receiver. A thin-walled steel receiver for storing the heated and melted waste melt, and a holding container for receiving the receiver in close contact with the bottom and the periphery of the receiver And the holding container is made of a material having a thermal conductivity of 5.8 W / m · K or more.
[0009]
In the above configuration, since the thin-walled steel receiver is housed in the holding container with its bottom and periphery in close contact, the holding container is made of a material having a thermal conductivity of 5.8 W / m · K or more. Therefore, even if the waste melt heated and melted in the melting furnace is injected into and accommodated in the thin steel receiver, the heat of the melt is quickly transferred from the thin steel receiver wall to the holding container wall. The time during which the receiver made of thin steel is heated and exposed to a high temperature is short, and the melt can be quickly cooled and solidified as well as preventing deformation and melting of the receiver. As a result, the space for the cooling chamber can be reduced, and a large-scale cooling facility is not required, so that cost reduction can be expected. In order to obtain such an effect more effectively, that is, to obtain a rapid heat removal effect, the holding container is preferably made of a material having a thermal conductivity of 11.6 W / m · K or more.
[0010]
In the present invention, although not particularly limited, stainless steel materials (thermal conductivity: 16 W / m · K) and carbon steel materials (thermal conductivity: 43 W / m · K) are used as materials for forming the holding container. A copper material (thermal conductivity: 386 W / m · K) and an aluminum material (thermal conductivity: 164 W / m · K) can be used alone or in a laminate of two or more. By using such a material for the holding container, the above-mentioned effects can be enjoyed more effectively and economically. In particular, in the case of disposal of radioactive material waste melt, it is also possible to use the material by laminating a lead material or a resin material, which can be expected to improve the radiation shielding effect in the cooling chamber.
[0011]
In the present invention, the holding container may include a cooling medium flow path. By providing the cooling medium flow path in this way, the cooling effect is further increased, and the molten material that is poured into and accommodated in the thin-walled steel receiver is not only prevented from being deformed and melted. It can be cooled efficiently.
[0012]
Moreover, in the said invention, a holding | maintenance container may have a ditch | groove of a vertical direction at least in the part closely_contact | adhered to the circumference | surroundings of a receiver. By providing this concave groove, it is possible to absorb the expansion of the receptacle that occurs when the melt is poured into and accommodated in the thin steel receptacle.
[0013]
In the present invention, the holding container may be divided into two or three in the vertical direction, or divided into a bottom portion and a portion that is in close contact with the periphery of the receiver, and is in close contact with the periphery of the receiver. The part to be performed may be divided into two or three in the vertical direction. By adopting such a divided configuration, the bottom of the receiver and the surrounding holding container can be more securely adhered, the cooling effect can be increased, and the thin-walled steel receiver can be prevented from being deformed or damaged. Of course, it is possible to efficiently cool the melt poured and contained in the thin-walled steel receiver. Further, it becomes easy to take out the waste body after cooling and solidification.
[0014]
In the present invention, a cooling medium spraying device that sprays the cooling medium toward the outer wall of the holding container may be provided on the outer peripheral side of the holding container. By providing such a cooling medium spraying device, it is possible to increase the heat removal effect from the outer peripheral side of the holding container, increase the cooling effect, and to prevent deformation and erosion of the thin-walled steel receiver, The melt poured and contained in the thin-walled steel receiver can be efficiently cooled.
[0015]
The cooling device according to the present invention is provided on the discharge side of a waste melting furnace in which the waste melt dissolves one or more of inorganic waste, sewage sludge, waste incineration ash, and radioactive waste, It is used to contain and cool the melt discharged from the furnace.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of a cooling device for a waste body after melting treatment according to the present invention, in which a is a cross-sectional view and b is a top view.
[0017]
The cooling device 1 includes a thin-walled steel receiver 2 and a holding container 3, and the thin-walled steel receiver 2 is a container having a bottom portion 4 and a cylindrical portion 5, and includes a bottom portion 4 and a cylindrical portion 5. The wall thickness is about 10mm.
[0018]
The holding container 3 is a stainless steel container having a cylindrical part 6 and a bottom part 7 having an inner diameter substantially equal to the outer diameter of the receiver 2 and having a wall thickness of about 100 mm and can be divided into left and right container bodies 8 and 9. In addition, flanges 10 and 11 are provided on the outer side of the divided end surface of the cylindrical portion 6, and the bolts and nuts 12 are attached to the flanges 10 and 11 so as to be integrated. In this example, the case where the holding container 3 is divided into two parts is taken as an example, but it may be divided into three parts. The division into four is not preferable because it takes time for the work and operation for integration. Moreover, in order to integrate, the example by the flanges 10 and 11 and the bolts and nuts 12 was taken, but if the adhesion with the receiver 2 described later is obtained together with the integration, the configuration is not particularly limited. For example, it may be driven back and forth by a cylinder provided on the back surface of the container bodies 8 and 9, or may be configured to be simply tightened with a metal band. The holding container 3 may be a bottomed cylindrical body, but it is necessary to consider so as to increase the contact portion with the thin-walled steel receiver 2.
[0019]
The cooling device 1 accommodates the thin steel receiver 2 in the holding container 3 so as to be sandwiched between the left and right container bodies 8 and 9 and then bolts and nuts to the flanges 10 and 11 of the left and right container bodies 8 and 9. Constructed by installing 12 and tightening the nut. Although not shown, the cooling device 1 configured in this way is set in the hot water chamber of the melting furnace, injects and stores the waste melt 13, and is then transferred to the cooling chamber where it is made of thin-walled steel. The waste melt 13 in the container 2 is cooled and solidified. Then, after the waste melt 13 is cooled and solidified, the bolts and nuts 12 are loosened and separated into the left and right container bodies 8 and 9, and the thin steel receptacle 2 and the waste solidified by cooling in the receptacle 2 are formed. Remove the waste. After the take-out, the holding container 3 has a thin-walled steel receiver 2 set therein and is repeatedly used as the cooling device 1.
[0020]
The cooling device 1 is used as described above. Since the holding container 3 is made of stainless steel having a wall thickness of about 100 mm, it is excellent in thermal conductivity and has a large heat capacity. The waste melt 13 accommodated in the receiver 2 can be quickly cooled and solidified without causing the receiver 2 to be deformed or melted. In addition, since the cooling and solidification can be performed quickly, a large-scale forced cooling facility is not required, the space for the cooling chamber can be reduced, and a cost reduction can be expected because a large-scale cooling facility is unnecessary.
[0021]
FIG. 2 is an explanatory view of another embodiment of the cooling device for a waste body after melting treatment according to the present invention, in which a is a cross-sectional view and b is a top view. The cooling device 14 of the example shown in this figure is configured by dividing the holding container 3 into a bottom portion 15 and a portion (cylindrical portion) 16 that is in close contact with the periphery of the receiver 2, and further the cylindrical portion 16 in the vertical direction. 1 is formed into cylindrical parts 17 and 18, and the bottom 15 and the cylindrical parts 17 and 18 and the cylindrical parts 17 and 18 are similar to the flanges and bolts and nuts shown in FIG. Except that the fastening means is provided, the configuration is the same as that of the cooling device 1 shown in FIG.
[0022]
Even the cooling device 14 configured as described above can be used in the same manner as the cooling device 1 shown in FIG. 1 and can obtain the effects shown in paragraph [0020].
[0023]
FIG. 3 is an explanatory view of another embodiment of the cooling device for the waste body after the melting treatment according to the present invention, in which a is a cross-sectional view and b is a top view. The cooling device 19 of the example shown in this figure is provided with a cooling medium flow path 20 meandering from the top to the bottom on the outer peripheral surface of the cylindrical parts 17 and 18 of the holding container 3 shown in FIG. The same configuration as the cooling device shown in FIG. 2 except that the cooling medium supply port is provided in the lower portion and the cooling medium discharge port is provided in the upper portion and the cooling medium from the discharge port is re-cooled and circulated. belongs to. In this example, the cooling medium flow path 20 is provided only in the cylindrical parts 17 and 18, but it goes without saying that the cooling medium flow path 20 may also be provided in the bottom part 15.
[0024]
Even the cooling device 19 configured as described above can be used in the same manner as the cooling device 1 shown in FIG. 1 or the cooling device 14 shown in FIG. 2 and obtains the operational effects shown in paragraph [0020]. Can do. Further, in this example, although the cooling medium flow path 20 is provided, the cooling cost is slightly increased, but the cooling effect is increased by forced cooling, and the waste melt 13 accommodated in the thin-walled steel receiver 2 is The receiver 2 can be cooled and solidified more quickly without being deformed or melted.
[0025]
In order to obtain the cooling effect as described above, a cooling medium (gas) jetting device (nozzle) 21 is disposed around the outer periphery of the cylindrical portion 16 as shown by a two-dot chain line in FIG. May be. Thus, even if the ejection device 21 is arranged and the outer peripheral surface of the holding container 3 (the container bodies 8, 9 and the cylindrical portion 16) is forcibly cooled, the same effect as the paragraph [0024] can be obtained. it can. When the outer periphery of the holding container 3 is forcibly cooled by blowing a cooling gas in this way, heat radiating fins may be provided on the outer periphery of the holding container 3 in order to increase the heat dissipation effect.
[0026]
FIG. 4 is an explanatory view of another embodiment of the cooling device for the waste body after the melting treatment according to the present invention, in which a is a cross-sectional view and b is a top view. The cooling device 22 of the example shown in this figure has a configuration in which four vertical grooves 23 are provided at substantially equal intervals on the inner peripheral surface of the cylindrical portions 17 and 18 of the holding container 3 shown in FIG. It has the same configuration as the cooling device 14 shown in FIG. In this example, an example in which the concave groove 23 is provided below the center of the cylindrical parts 17 and 18 is shown. However, the height of the concave groove 23 is accommodated in the thin-walled steel receiver 2. Needless to say, it may be provided up to the top of the waste melt 13. FIG. 1a shows a cross-sectional view of the groove 23 shown in FIG. 1b.
[0027]
Even the cooling device 22 configured as described above can be used in the same manner as the cooling device 1 shown in FIG. 1 or the cooling device 14 shown in FIG. 2 and obtains the operational effects shown in paragraph [0020]. Can do. Further, in this example, by providing the concave groove 23, it is possible to absorb the expansion of the receiver 2 that occurs when the waste melt 13 is injected and stored in the receiver 2 made of thin steel.
[0028]
【The invention's effect】
As described above, if it is a cooling device for a waste body after melting treatment according to the present invention, the receptacle made of thin-walled steel can be accommodated in the holding container with its bottom and surroundings closely attached, and the holding container is Since it is composed of a material having a thermal conductivity of 5.8 W / m · K or more (more preferably 11.6 W / m · K or more), the waste melt heated and melted in the waste melting furnace is received by the thin-walled steel. Even when injected and contained in a container, the heat of the melt can be transferred quickly from the thin-walled steel receiver wall to the holding container wall, reducing the time during which the thin-walled steel receiver is exposed to high temperatures. In addition to preventing deformation and erosion of the receiver, the stored waste melt can be quickly cooled and solidified. In addition, because of the above-described configuration, the space for the cooling chamber can be reduced, and a large-scale cooling facility is not required, so that cost reduction can be expected.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a cooling apparatus for a waste body after melting treatment according to the present invention, in which a is a cross-sectional view and b is a top view.
FIGS. 2A and 2B are explanatory views of another embodiment of a cooling apparatus for a waste body after melting treatment according to the present invention, in which a is a cross-sectional view and b is a top view.
FIGS. 3A and 3B are explanatory views of another embodiment of the cooling apparatus for a waste body after melting treatment according to the present invention, in which a is a cross-sectional view and b is a top view. FIGS.
FIGS. 4A and 4B are explanatory views of another embodiment of the apparatus for cooling a waste body after melting treatment according to the present invention, in which a is a cross-sectional view and b is a top view. FIGS.
[Explanation of symbols]
1: Cooling device 2: Receptor made of thin steel 3: Holding container 4: Bottom portion of the receiver 5: Cylindrical portion of the receiver 6: Cylindrical portion of the holding container 7: Bottom portion of the holding container 8, 9: Container body 10, 11: Flange
12: Bolts and nuts 13: Waste melt 14: Cooling device
15: Bottom of holding container 16: Cylindrical part of holding container
17, 18: Cylindrical part of holding container 19: Cooling device
20: Cooling medium flow path 21: Cooling medium ejection device 22: Cooling device
23: Groove

Claims (9)

加熱溶融された廃棄溶融物を薄肉鋼製の受容器に収容して受容器と共に廃棄体として冷却固化するための冷却装置であって、前記加熱溶融された廃棄溶融物を収容するための薄肉鋼製の受容器と、この受容器の底部及び周囲に密着して該受容器を収容するための保持容器とを具備するとともに、前記保持容器が熱伝導率 5.8W/m・K以上の材料で構成されてなることを特徴とする溶融処理後の廃棄体の冷却装置。A cooling device for storing a heat-melted waste melt in a thin-walled steel receiver and cooling and solidifying it as a waste body together with the receiver, the thin-wall steel for storing the heat-melted waste melt And a holding container for accommodating the receiving container in close contact with the bottom and the periphery of the receiving container, and the holding container is made of a material having a thermal conductivity of 5.8 W / m · K or more. An apparatus for cooling a waste body after melting treatment, characterized in that the apparatus is configured. 保持容器が熱伝導率11.6W/m・K以上の材料で構成されてなる請求項1に記載の溶融処理後の廃棄体の冷却装置。The apparatus for cooling a waste body after melting treatment according to claim 1, wherein the holding container is made of a material having a thermal conductivity of 11.6 W / m · K or more. 保持容器を形成する材料が、ステンレス鋼材、炭素鋼材、銅材、アルミニウム材のうちの1つ、あるいはこれらのうちの2つ以上の積層材である請求項1又は2に記載の溶融処理後の廃棄体の冷却装置。The material forming the holding container is one of a stainless steel material, a carbon steel material, a copper material, and an aluminum material, or a laminate material of two or more of these materials. Waste body cooling system. 保持容器が、冷却媒体の流路を備えてなる請求項1乃至3のいずれかに記載の溶融処理後の廃棄体の冷却装置。The apparatus for cooling a waste body after the melting treatment according to any one of claims 1 to 3, wherein the holding container includes a flow path for a cooling medium. 保持容器が、受容器の周囲に密着する部分に少なくとも縦方向の凹溝を有する請求項1乃至4のいずれかに記載の溶融処理後の廃棄体の冷却装置。The apparatus for cooling a waste body after melting treatment according to any one of claims 1 to 4, wherein the holding container has at least a longitudinal groove in a portion closely contacting the periphery of the receiver. 保持容器が、縦方向に2又は3分割されてなる請求項1乃至5のいずれかに記載の溶融処理後の廃棄体の冷却装置。The apparatus for cooling a waste body after melting treatment according to any one of claims 1 to 5, wherein the holding container is divided into two or three in the vertical direction. 保持容器が、底部と受容器の周囲に密着する部分とに分割され、且つ受容器の周囲に密着する部分が縦方向に2又は3分割されてなる請求項1乃至5のいずれかに記載の溶融処理後の廃棄体の冷却装置。6. The holding container according to claim 1, wherein the holding container is divided into a bottom portion and a portion that is in close contact with the periphery of the receiver, and a portion that is in close contact with the periphery of the receiver is divided into two or three in the vertical direction. Cooling device for waste after melting treatment. 保持容器の外周側に、保持容器の外壁に向けて冷却媒体を吹き付ける冷却媒体吹き付け装置を備えてなる請求項1乃至7のいずれかに記載の溶融処理後の廃棄体の冷却装置。The apparatus for cooling a waste body after melting treatment according to any one of claims 1 to 7, further comprising a cooling medium spraying device that sprays a cooling medium toward an outer wall of the holding container on an outer peripheral side of the holding container. 廃棄溶融物が、無機廃棄物、下水汚泥、ごみ焼却灰、放射性廃棄物の1種以上を溶解させる廃棄物溶融炉から排出される溶融物である請求項1乃至8のいずれかに記載の溶融処理後の廃棄体の冷却装置。The melt according to any one of claims 1 to 8, wherein the waste melt is a melt discharged from a waste melting furnace that dissolves at least one of inorganic waste, sewage sludge, waste incineration ash, and radioactive waste. Cooling device for waste after processing.
JP03415699A 1999-02-12 1999-02-12 Cooling device for waste after melting treatment Expired - Lifetime JP3732961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03415699A JP3732961B2 (en) 1999-02-12 1999-02-12 Cooling device for waste after melting treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03415699A JP3732961B2 (en) 1999-02-12 1999-02-12 Cooling device for waste after melting treatment

Publications (2)

Publication Number Publication Date
JP2000234719A JP2000234719A (en) 2000-08-29
JP3732961B2 true JP3732961B2 (en) 2006-01-11

Family

ID=12406353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03415699A Expired - Lifetime JP3732961B2 (en) 1999-02-12 1999-02-12 Cooling device for waste after melting treatment

Country Status (1)

Country Link
JP (1) JP3732961B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4791123B2 (en) * 2005-09-28 2011-10-12 株式会社栗本鐵工所 Planetary ball mill

Also Published As

Publication number Publication date
JP2000234719A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
US4326842A (en) Device for the pulverization of radioactive wastes
JP2583301B2 (en) Container for processing heated material and method for cooling the same
US3930939A (en) Pressure suppression system for a nuclear reactor
CA1074110A (en) Slag quenching system for pyrolysis furnaces
CA2560260A1 (en) Apparatus and method for melting of materials to be treated
JP3732961B2 (en) Cooling device for waste after melting treatment
RU2486616C1 (en) Method for processing of solid radioactive wastes
EP0694733B1 (en) Waste melting furnace
JP3750881B2 (en) Ash melting furnace
KR20130061953A (en) Movable melting decontamination equipment for radioactive metal waste
KR19990074869A (en) Plasma Pyrolysis and Vitrification Systems of Waste
JPS6047513B2 (en) Water cooling structure of furnace wall
US4019445A (en) Studded hearth
JP2002005424A (en) Waste melting furnace
JP3252355B2 (en) Melt solidification method of waste by induction heating
JPH10300892A (en) Melting method nd melting furnace for miscellaneous radioactive solid waste
JPH07305969A (en) Pan for air-cooling solidification of molten slag
CA2498404C (en) Apparatus and method for vitrification of contaminated soil or waste
RU2175152C2 (en) Method and device for confinement of nuclear- reactor molten core
JPS6319833Y2 (en)
JPH019040Y2 (en)
RU866U1 (en) Complex for processing dismantled radioactive contaminated equipment
JP3831930B2 (en) Electrode sealing device for ash melting furnace
JP2001083289A (en) Cask
JP3841639B2 (en) Flue structure of ash melting furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

EXPY Cancellation because of completion of term