JP3732147B2 - Thermally expandable rubber and piping construction structure - Google Patents

Thermally expandable rubber and piping construction structure Download PDF

Info

Publication number
JP3732147B2
JP3732147B2 JP2002027702A JP2002027702A JP3732147B2 JP 3732147 B2 JP3732147 B2 JP 3732147B2 JP 2002027702 A JP2002027702 A JP 2002027702A JP 2002027702 A JP2002027702 A JP 2002027702A JP 3732147 B2 JP3732147 B2 JP 3732147B2
Authority
JP
Japan
Prior art keywords
rubber
heat
thermally expandable
rubber composition
expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002027702A
Other languages
Japanese (ja)
Other versions
JP2003226772A (en
Inventor
譲 坂東
康 川人
康史 工内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Togawa Rubber Co Ltd
Original Assignee
Togawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Togawa Rubber Co Ltd filed Critical Togawa Rubber Co Ltd
Priority to JP2002027702A priority Critical patent/JP3732147B2/en
Publication of JP2003226772A publication Critical patent/JP2003226772A/en
Application granted granted Critical
Publication of JP3732147B2 publication Critical patent/JP3732147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Gasket Seals (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築物の防火区画の仕切壁等に設けられる貫通孔部やその貫通孔部と配管との間の隙間等を閉塞する技術に関し、特に、このような施工の際に好適に用いられる、熱膨張性グラファイトを含有するゴム組成物を加硫成形してある熱膨張性ゴム、および、その熱膨張性ゴムを用いて配管施工する構造に関する。
【0002】
【従来の技術】
従来、この種の熱膨張性ゴムとしては、CR組成物に熱膨張性グラファイトを配合したものが知られている。このような熱膨張性ゴムは、前記熱膨張性グラファイトが膨張しない温度域で加硫成型され、例えば防火区画の配管施工の際に用いられる。
建築物の防火区画の仕切壁に設けられる貫通孔部に配管を施工する配管施工する際には、管に前記熱膨張性ゴムを巻回し、かつ、その管を貫通孔部に挿通させた状態にし、前記熱膨張性ゴムが前記貫通孔部内に位置するように固定する。
すると、このように配置された熱膨張性ゴムが火災等による高熱を受けた際に、前記熱膨張性ゴムが膨張し、前記貫通孔の内部が消失してもその空間を充填してしまうため、前記貫通孔を通じての延焼、類焼を防止することが出来るとともに、前記管が樹脂管の様な場合には、前記樹脂管が消失する前に、前記熱膨張性ゴムが膨張しつつ管路を閉塞する効果を発揮するため、さらに効果的に火災等による被害の拡大を防止できるようになる。
【0003】
【発明が解決しようとする課題】
従来の前記熱膨張性ゴムは、比較的硬質であるために、上述の配管施工方法を行うに当たって、管に巻回する際に、その管に密接しつつ全周を覆うように固定することが困難であって、前記貫通孔内部に配置した場合に、前記貫通孔内で前記管と前記熱膨張性ゴムとの間に隙間ができて、外観上見栄えが良くない状態になるうえ、防火性能が低下して十分な防火性能を発揮できないのではないかとの懸念を起こしてしまう状態になる場合がある。
また、隙間無く施工できたとしても、その施工に手間と熟練を要し、効率よく防火性能の高い配管施工を行うことが困難であるという実情がある。
さらに、前記熱膨張性ゴムは、通常耐火性に優れたゴム組成物で構成されるため、そのゴム組成物の耐火性に妨害されて、前記熱膨張性グラファイトの膨張開始温度が比較的高くなってしまっているという現状があり、比較的火災の初期で室内があまり高温に達しない状態でも十分前記貫通孔を閉塞することのできるものが望まれている。
【0004】
従って、本発明の目的は、上記実情に鑑み、貫通孔への配管施工が容易で防火性能の高い熱膨張性ゴムを提供することにあり、さらにその熱膨張性ゴムを用いた配管施工構造を提供することにある。
【0005】
【課題を解決するための手段】
この目的を達成するための本発明の第一の特徴構成は、
熱膨張性グラファイトを含有するゴム組成物を加硫成形してある熱膨張性ゴムであって、前記ゴム組成物が発泡剤を含有するとともに、前記発泡剤が少なくとも一部発泡し、かつ、前記熱膨張性グラファイトが実質的に膨張しない条件で加硫成形され、アスカーC型硬度計による硬さが16〜60である点にある。
第一の特徴構成において、前記ゴム組成物の(加硫成形後の体積/加硫成形前の体積)を2.0〜2.8とすることが好ましい。
また、本発明の第二の特徴構成は、
熱膨張性グラファイトを含有するゴム組成物を加硫成形してある熱膨張性ゴムであって、前記熱膨張性グラファイトの一部が膨張する条件で加硫成形され、アスカーC型硬度計による硬さが16〜60である点にある。
第二の特徴構成において、前記ゴム組成物の(加硫成形後の体積/加硫成形前の体積)を1.5〜2.0とすることが好ましい。
上述の熱膨張性ゴムにおいて、加硫成形後のゴム組成物を180℃雰囲気下に30分晒す防火耐久試験で、(試験後の体積/試験前の体積)(以下膨張率と称する)が3倍以上であることが好ましい
また、前記ゴム組成物が、NR、SBRを主成分とするものであることが好ましい。
尚、建築物の防火区画の仕切壁に設けられる貫通孔部に配管を施工する配管施工構造として、管に前記熱膨張性ゴムを巻回し、かつ、その管を貫通孔部に挿通させた状態にし、前記熱膨張性ゴムが前記貫通孔部内に位置するように固定してあることを特徴とする。
【0006】
〔作用効果〕
つまり、熱膨張性グラファイトを含有するゴム組成物を加硫成形してある熱膨張性ゴムは、火災等による高熱を受けると前記熱膨張性グラファイトが膨張するために、先述の防火性能を発揮することになる。
【0007】
ここで、前記ゴム組成物が発泡剤を含有すると、前記ゴム組成物の加硫成形の際に、前記発泡剤が発泡する条件を選ぶことができる。そのため、この加硫成形の条件を、前記発泡剤が少なくとも一部発泡する条件としてあれば、前記発泡剤が発泡したときに、前記ゴム組成物は前記発泡による気泡で多孔質に形成されるとともに、体積膨張した状態になる。すると、加硫成形された熱膨張性ゴムは、柔軟に形成されるとともに、その多孔質な構造に基づき、加硫成型された熱膨張性ゴムの孔部を通じて熱が全体に伝達され易くなるために、熱伝達率の高いものとできる。よって、前記施工方法を採用する場合に、前記熱膨張ゴムを管に巻き付ける際には、前記熱膨張ゴムを容易に巻き付け変形させることができるようになり、施工作業性が向上する。また、同様に、前記発泡剤が発泡する代わりに、前記熱膨張性グラファイトの一部が加硫時に膨張する条件を選んだとしても、同様に前記熱膨張ゴムを柔軟かつ高熱伝達率に成形することができる。つまり、前記熱膨張性グラファイトが実質的に膨張しない条件を選ぶ事により、火災時等における前記熱膨張性グラファイトの熱膨張による防火性能を維持しつつ、前記熱膨張性ゴムの発泡により、柔軟かつ高熱伝達率に成型できるので、防火性能、施工作業性ともに向上させられる。
【0008】
そのため、前記熱膨張ゴムは、前記管に巻き付けた状態で、その管に密接させ易いために、この熱膨張性ゴムを貫通孔に施工するような場合に、前記貫通孔を容易に密に閉塞させることができるので、あまり労力や熟練を要さずに防火施工等が行えるようになった。
【0009】
さらに、前記熱膨張性ゴムは、発泡により熱伝達率の高いものとなっているため、その熱膨張性ゴムに含まれる熱膨張性グラファイトは、熱を受けやすくなり、熱膨張可能な温度に達すると速やかに熱膨張できるようになる(後述の実施例(L)〜(Q))。そのため、このようにして得られた熱膨張性ゴムは、比較的低温で確実に膨張しはじめることができるようになるために、初期火災の時点で速やかに作用して貫通孔を閉塞してしまい、火災の延焼、類焼を防止することが出来るようになって、火事に対する防災性能が向上する。
【0010】
尚、ここで、前記熱膨張性グラファイトが膨張しない条件という場合、添加された熱膨張性グラファイトのほぼ全量が、膨張せずに残存し、火災時の膨張を阻害しない程度に維持される条件を指し、熱膨張性グラファイトが全く膨張してはならないことを限定する意味ではない。また、前記熱膨張性グラファイトの一部が膨張する条件という場合についても、前記熱膨張ゴムが多孔質かつ柔軟で高熱伝達率になる程度で、かつ、熱膨張性グラファイトの大部分が膨張しないで残存し、火災時の膨張を阻害しない程度に維持される条件を指し、熱膨張性グラファイトが火災時に膨張する機能を失うまでにほとんど膨張してしまう状況を含める意図のものではない。
【0011】
尚、熱膨張性グラファイトが加硫条件下で一部膨張した場合であっても同様の製品が得られることが実験的に明らかになっている(後述の実施例(E)〜(K))。
【0012】
また、熱膨張性グラファイトを含有するゴム組成物を加硫成形してあり、ゴム組成物の発泡率が1.5〜2.8である(後述の実施例(E)〜(K))と、前記ゴム組成物は十分軟質かつ高熱伝達率に形成されるため、上述の加硫条件を採用した場合と同様、施工作業性、防災性が向上する。また、このような発泡率に設定すると、均一に発泡した状態で、かつ、180℃雰囲気下に30分晒す防火耐久試験での膨張率の最大値が大きく設定される(後述の実施例(L)〜(Q))ので好ましい。
【0013】
また、熱膨張性グラファイトを含有するゴム組成物を加硫成形してあり、アスカー硬さが16未満であると、軟らかすぎて寸法安定性が低下するために施工作業性が低下する。一方、アスカー硬さが60以上であると、硬すぎて管に対する巻き付け作業性が低下する。よって、配管施工に用いる場合の施工作業性を良好に維持するにはアスカー硬さが16〜60であることが望ましく、上述の加硫条件を採用した場合と同様、施工作業性、防災性が向上する。(後述の実施例(E)〜(Q))
【0014】
また、これらの条件を備えた熱膨張性ゴムは、従来のものより膨張率が高く、樹脂管を圧縮閉塞させるような用途で特に有用に用いられることが明らかになっている。(後述の実施例(E)〜(Q))
たとえば、熱膨張性グラファイトを含有するゴム組成物を加硫成形してあり、加硫成型後のゴム組成物を180℃雰囲気下に30分晒す防火耐久試験で、膨張率が3倍以上であれば、低温で膨張しはじめるので、初期火災に対しても迅速に管路遮断機能を発揮できる。また、管路が熱変形しやすい樹脂管であってもその樹脂管を圧縮閉塞して管路を遮断できるので好ましい。
【0015】
また、前記ゴム組成物としては、任意のゴム材料を適用することができるが、NR、SBR等を主成分とするものであると、熱膨張性グラファイトに熱が伝達されやすく、前記熱膨張性グラファイトが熱膨張しはじめる温度を低く設定する上で有効である。
尚、熱膨張性グラファイトが膨張する際には、前記ゴム組成物を膨張させなければならず、そのゴム組成物が逆に熱膨張性グラファイトや発泡剤の膨張を抑制するように作用することになるが、前記ゴム組成物自体が熱を受けて容易に軟化、分解するNR、SBR等を主成分とするものとしてあれば、前記熱膨張性グラファイトは比較的低温で前記ゴム組成物による拘束を受けなくなるため、孔部を通じての熱伝達がさらに促進されて、見かけ上の熱伝達率が高くなり、比較的低温時における熱膨張性ゴムの膨張性能が良好に保たれ、初期火災における速やかな膨張が期待できる。
【0016】
尚、建築物の防火区画の仕切壁に設けられる貫通孔部に配管を施工する配管施工構造として、管に前記熱膨張性ゴムを巻回し、かつ、その管を貫通孔部に挿通させた状態にし、前記熱膨張性ゴムが前記貫通孔部内に位置するように固定してあれば前記熱膨張性ゴムの特性が十分に生かせ、施工性、防災性ともに優れた構造となる。
具体的には、前記熱膨張性ゴムが熱を受けて膨張すると、相対的に前記管を圧縮閉塞する方向に膨張することになり、前記管が焼失した後に空間ができてしまって、火災によって生じた有害なガスや火炎自体が隣接する部屋などに達し得るような状況が起きないように、前記管路も閉塞することができ、防火構造上好ましい形になる。
【0017】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
本発明の熱膨張性ゴムは、熱膨張性グラファイトを含有するゴム組成物を加硫成形して形成する。前記ゴム組成物には、発泡剤を含有させておき、前記発泡剤は、一部発泡し、かつ、前記熱膨張性グラファイトが膨張しない条件、あるいは、前記熱膨張性グラファイトの一部のみが膨張する条件で加硫成型されている。前記ゴム組成物としては、NR,SBR等の比較的耐熱性の低い基材を用いることが好ましい。
【0018】
また、この熱膨張性ゴムは、加硫時のゴム組成物の発泡率が1.5〜2.8であり、アスカー硬さが16〜60であり、加硫成型後のゴム組成物を180℃雰囲気下に30分晒す防火耐久試験で、膨張率が3倍以上である。
【0019】
このような熱膨張性ゴムは、建築物の防火区画の仕切壁に設けられる貫通孔部に配管を施工する場合、管に前記熱膨張性ゴムを巻回し、かつ、その管を貫通孔部に挿通させた状態にし、前記熱膨張性ゴムが前記貫通孔部内に位置するように固定する。
具体的には、図1に示すように、例えば壁部Wに設けられた貫通孔W1(防火区画貫通部)に樹脂製の配管1を挿通配置するに際して、前記貫通孔W1内に位置する部分に前記熱膨張性ゴム製の薄板状体2を巻回固定しておく。前記薄板状体2は、金属製のスリット付きの筒状スリーブ3に嵌着してあり、前記配管1を覆う状態で前記スリーブ3を筒状に組み立てることにより、前記薄板状体2が前記配管1を覆って密接する姿勢に巻回される。また、前記スリーブ3と貫通孔W1との間は、モルタルを充填して密閉される。
【0020】
このように施工された貫通孔W1が火災に見舞われたときには、前記薄板状体2が図2に示すように膨張して、前記配管を圧縮閉塞しつつ前記貫通孔W1を閉塞し、毒性ガスが隣接する部屋に流れたり、火炎が隣接する部屋に達して延焼や類焼を派生するのを防止する。
【0021】
【実施例】
以下に本発明の実施例を図面に基づいて説明する。
表1に示すA〜Qの配合のゴム組成物を加硫成型した結果、表2中Rに示す従来の配合のゴム組成物よりも柔軟で、かつ、低い温度で膨張が進行し、しかも、膨張率の高い熱膨張性ゴムが得られていることが分かった。
【0022】
【表1】

Figure 0003732147
【0023】
つまり、A〜Dと、Rとにより原料ゴムによる影響を比較すると、原料ゴムをCR(表中R(以下単に(R)のように記す、))からNR(A)や、SBR(B)に変更した場合には、低温領域(180℃未満)における膨張率は大きくは変わらないものの、高温領域(200℃以上)における膨張率が大きくなっている。これは、後述のL、Mの比較からもわかるように、原料ゴムの違いから採否に差を生じた受酸剤の影響によるものであって、前記受酸剤が、前記熱膨張性グラファイトの膨張を抑制している事によるものと考えられる。また、NRとSBRとのブレンドとした場合(C),(D)であっても、同様の傾向が見られ、(C),(D)の比較から軟化剤の相違によっては大きな差が生じないことが読みとれる。従って、原料ゴムの材質や、軟化材の相違によっては、熱膨張性グラファイトの膨張に大きな影響は生じないものと考えられる。
【0024】
また、加硫条件を種々変更した場合、水蒸気加硫条件下0.2MPaで30minの場合(E)加硫不足となることがわかったものの、水蒸気加硫条件下で0.3MPa以上の場合、15分以上の加硫で初期のアスカー硬さについて60以下となる十分良好な値が得られる発泡率となっていることがわかる。発泡率は、実質的にほとんどの熱膨張性グラファイトが膨張せず、一部のみが膨張したものと考えられる1.2〜2.0程度で十分な効果が得られていることがわかった。
【0025】
また、発泡剤を添加してある系(L)〜(Q)における発泡率は、2.0〜2.8と、発泡剤を添加していない系の同様の加硫条件のものに比べて高い発泡率となっていることが読みとれる。これは、発泡剤が少なくとも一部発泡していることによると考えられる。
【0026】
H〜Kによると、充填材は、熱膨張性グラファイトが多い場合には、やはり高温時の膨張率を高く設定できる(H)一方、少ない場合(J、K)にも、充填材含有量を適切に設定すれば、均一に発泡させながらも高い膨張率を発揮させられることがわかる。
また、ゴム配合としては、NR:SBR比を変更しても(H〜K)発泡率、膨張率ともに特に大きな変化は現れないと考えられることが分かった。
【0027】
さらに、このようなゴム組成物に、常圧での発泡開始温度160℃の有機系発泡剤を添加した場合(L)〜(Q)、初期の発泡率を高くでき、製品のアスカー硬さを、より低く設定できることが分かる。また、L、Mの比較より受酸剤は製品の低温域での膨張を抑制する傾向があることがわかり、L、Nの比較より、発泡助剤の添加によっても膨張率の増加が見込めることが分かる。
また、190℃近傍の膨張率のデータを参照して、M、P、Qより、発泡剤の量は1phrでやや効果がみられはじめ、5〜10phrで効果の程度がやや飽和しつつあるので、1〜10phrとすることが好ましいことが分かる。
【0028】
従って、前記ゴム組成物が発泡剤を含有するとともに、前記発泡剤が少なくとも一部発泡し、かつ、前記熱膨張性グラファイトが膨張しない条件で加硫成型されている、もしくは、前記熱膨張性グラファイトの一部のみが膨張する条件で加硫成型されている、もしくは、ゴム組成物の(加硫成型後の体積/加硫成型前の体積)が1.5〜2.8である、もしくは、アスカーC型硬度計による硬さが16〜60であるもしくは、加硫成型後のゴム組成物を180℃雰囲気下に30分晒す防火耐久試験で、(試験後の体積/試験前の体積)が3以上である
条件を満たすことにより高い柔軟性、低い膨張開始温度、高い膨張率を実現できる熱膨張性ゴムとでき、
前記ゴム組成物が、NR、SBRを主成分とするものであっても、高い防火性能を発揮させられることが分かった。
【図面の簡単な説明】
【図1】熱膨張性ゴムの施工状態を示す概略図
【図2】熱膨張性ゴムの防火作用説明図
【符号の説明】
W 壁部
W1 貫通孔
1 配管
2 熱膨張性ゴム製の薄板状体
3 スリーブ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for closing a through-hole portion provided in a partition wall of a fire prevention section of a building or the like and a gap between the through-hole portion and a pipe, and is particularly preferably used in such construction. The present invention relates to a thermally expandable rubber obtained by vulcanization molding of a rubber composition containing thermally expandable graphite, and a structure in which piping is constructed using the thermally expandable rubber.
[0002]
[Prior art]
Conventionally, as this type of heat-expandable rubber, one obtained by blending CR composition with heat-expandable graphite is known. Such a heat-expandable rubber is vulcanized and molded in a temperature range where the heat-expandable graphite does not expand, and is used, for example, at the time of piping construction in a fire prevention section.
When constructing a pipe in a through-hole part provided in a partition wall of a fire prevention section of a building, a state in which the thermally expandable rubber is wound around the pipe and the pipe is inserted into the through-hole part The heat-expandable rubber is fixed so as to be located in the through hole.
Then, when the heat-expandable rubber arranged in this way receives high heat from a fire or the like, the heat-expandable rubber expands and fills the space even if the inside of the through hole disappears. In addition, it is possible to prevent the spread of fire and the like through the through hole, and when the pipe is like a resin pipe, before the resin pipe disappears, the thermally expansible rubber is expanded while the pipe is opened. Since the blocking effect is exhibited, it is possible to more effectively prevent the spread of damage due to fire or the like.
[0003]
[Problems to be solved by the invention]
Since the conventional heat-expandable rubber is relatively hard, when performing the above-described piping construction method, when wound around a pipe, it may be fixed so as to cover the entire circumference while closely contacting the pipe. Difficult, and when placed inside the through hole, there is a gap between the tube and the thermally expandable rubber in the through hole, and the appearance is not good, and the fireproof performance May be in a state that raises concerns that sufficient fire protection performance may not be exhibited.
Moreover, even if it can be constructed without any gaps, there is a situation that it takes time and skill to perform the construction, and it is difficult to efficiently perform piping construction with high fire prevention performance.
Furthermore, since the heat-expandable rubber is usually composed of a rubber composition excellent in fire resistance, the heat-expanding temperature of the heat-expandable graphite is relatively high because of the fire resistance of the rubber composition. Therefore, there is a demand for a structure that can sufficiently close the through-hole even in a state where the room does not reach a very high temperature in the early stage of a fire.
[0004]
Therefore, in view of the above circumstances, an object of the present invention is to provide a heat-expandable rubber that is easily fired in a through-hole and has a high fire-proof performance. Further, a pipe work structure using the heat-expandable rubber is provided. It is to provide.
[0005]
[Means for Solving the Problems]
In order to achieve this object, the first characteristic configuration of the present invention is:
A heat-expandable rubber obtained by vulcanizing a rubber composition containing thermally expandable graphite, wherein the rubber composition contains a foaming agent, and the foaming agent is at least partially foamed, and The heat-expandable graphite is vulcanized and molded under the condition that it does not substantially expand, and the hardness by an Asker C-type hardness meter is 16 to 60 .
1st characteristic structure WHEREIN: It is preferable that (the volume after a vulcanization molding / the volume before a vulcanization molding) of the said rubber composition shall be 2.0-2.8.
The second characteristic configuration of the present invention is
A heat-expandable rubber obtained by vulcanizing and molding a rubber composition containing thermally expandable graphite, which is vulcanized and molded under the condition that a part of the thermally expandable graphite expands, and is hardened by an Asker C-type hardness meter. Is 16 to 60 .
2nd characteristic structure WHEREIN: It is preferable that (the volume after vulcanization molding / volume before vulcanization molding) of the said rubber composition shall be 1.5-2.0.
In the heat expandable rubber described above, in the fire endurance test exposure for 30 minutes a rubber composition after vulcanization molding under 180 ° C. atmosphere, the (volume before the volume / test after test) (hereinafter referred to as expansion ratio) It is preferably 3 times or more.
Moreover, it is preferable that the said rubber composition is what has NR and SBR as a main component.
In addition, as a piping construction structure for constructing piping in the through-hole portion provided in the partition wall of the fire prevention section of the building, a state in which the thermally expandable rubber is wound around the tube and the tube is inserted into the through-hole portion The heat-expandable rubber is fixed so as to be located in the through hole.
[0006]
[Function and effect]
That is, the heat-expandable rubber obtained by vulcanizing and molding a rubber composition containing heat-expandable graphite exhibits the above-mentioned fireproof performance because the heat-expandable graphite expands when subjected to high heat from a fire or the like. It will be.
[0007]
Here, when the rubber composition contains a foaming agent, the conditions under which the foaming agent foams can be selected during vulcanization molding of the rubber composition. Therefore, if the vulcanization molding conditions are such that the foaming agent is at least partially foamed, when the foaming agent is foamed, the rubber composition is formed to be porous with bubbles from the foaming. , It will be in a state of volume expansion. Then, the vulcanized and thermally expandable rubber is formed flexibly, and based on its porous structure, heat is easily transferred to the whole through the holes of the vulcanized and thermally expanded rubber. In addition, the heat transfer coefficient can be high. Therefore, when the construction method is employed, when the thermal expansion rubber is wound around a pipe, the thermal expansion rubber can be easily wound and deformed, thereby improving the workability. Similarly, even if a condition is selected in which a part of the thermally expandable graphite expands during vulcanization instead of foaming of the foaming agent, the thermally expandable rubber is molded in a flexible and high heat transfer rate. be able to. That is, by selecting the conditions under which the thermally expandable graphite does not substantially expand, while maintaining the fireproof performance due to the thermal expansion of the thermally expandable graphite in a fire or the like, the foam of the thermally expandable rubber is flexible and Since it can be molded to a high heat transfer rate, both fire prevention performance and construction workability can be improved.
[0008]
Therefore, since the thermal expansion rubber is easy to be in close contact with the pipe in a state of being wound around the pipe, the thermal expansion rubber is easily and tightly closed when the thermal expansion rubber is applied to the through hole. This makes it possible to carry out fire prevention work without requiring much labor and skill.
[0009]
Furthermore, since the heat-expandable rubber has a high heat transfer coefficient due to foaming, the heat-expandable graphite contained in the heat-expandable rubber is easily subjected to heat and reaches a temperature at which heat expansion is possible. Then, it becomes possible to rapidly expand the heat (Examples (L) to (Q) described later). For this reason, the heat-expandable rubber obtained in this way can start to expand reliably at a relatively low temperature, and thus acts quickly at the time of the initial fire and closes the through hole. Fire and fire spread can be prevented, and fire prevention performance is improved.
[0010]
In addition, here, the condition that the thermally expandable graphite does not expand, the condition that almost all of the added thermally expandable graphite remains unexpanded and is maintained to the extent that does not hinder expansion during a fire. It does not mean that the thermally expandable graphite should not expand at all. Also, in the case where the part of the thermally expandable graphite is expanded, the thermally expanded rubber is porous and flexible and has a high heat transfer rate, and most of the thermally expandable graphite is not expanded. It refers to conditions that remain and are maintained to the extent that they do not hinder expansion during a fire, and are not intended to include situations where the thermally expandable graphite almost expands before it loses its ability to expand during a fire.
[0011]
It has been experimentally clarified that similar products can be obtained even when the thermally expandable graphite is partially expanded under vulcanization conditions (Examples (E) to (K) described later). .
[0012]
Further, a rubber composition containing thermally expandable graphite is vulcanized and molded, and the foaming ratio of the rubber composition is 1.5 to 2.8 (Examples (E) to (K) described later). Since the rubber composition is sufficiently soft and has a high heat transfer rate, construction workability and disaster prevention are improved as in the case where the above vulcanization conditions are employed. Also, when such a foaming rate is set, the maximum value of the expansion rate in a fireproof endurance test that is uniformly foamed and exposed to an atmosphere at 180 ° C. for 30 minutes is set large (Examples (L ) To (Q)).
[0013]
Further, if the rubber composition containing thermally expandable graphite is vulcanized and the Asker hardness is less than 16, it is too soft and the dimensional stability is lowered, so that the workability is lowered. On the other hand, if the Asker hardness is 60 or more, it is too hard and the winding workability around the tube is lowered. Therefore, it is desirable that the Asker hardness is 16 to 60 in order to maintain the construction workability when used for piping construction, and the workability and disaster prevention are the same as when the above vulcanization conditions are adopted. improves. (Examples (E) to (Q) described later)
[0014]
Further, it has been clarified that the heat-expandable rubber having these conditions has a higher expansion coefficient than that of the conventional one, and is particularly useful in applications where the resin tube is compressed and closed. (Examples (E) to (Q) described later)
For example, in a fireproof durability test in which a rubber composition containing thermally expandable graphite is vulcanized and exposed to a 180 ° C atmosphere for 30 minutes, the expansion coefficient should be 3 times or more. Therefore, since it begins to expand at a low temperature, it is possible to quickly exhibit the function of shutting off the pipeline even for an initial fire. Moreover, even if the pipe is a resin pipe that is easily deformed by heat, it is preferable because the pipe can be blocked by compressing and closing the resin pipe.
[0015]
In addition, any rubber material can be applied as the rubber composition. However, when the main component is NR, SBR, or the like, heat is easily transferred to the heat-expandable graphite, and the heat-expandable property. This is effective for setting the temperature at which graphite begins to thermally expand.
When the thermally expandable graphite expands, the rubber composition must be expanded, and the rubber composition acts to suppress the expansion of the thermally expandable graphite and the foaming agent. However, if the rubber composition itself is mainly composed of NR, SBR, etc. that are easily softened and decomposed by heat, the thermally expandable graphite is restrained by the rubber composition at a relatively low temperature. Since the heat transfer through the hole is further promoted, the apparent heat transfer rate is increased, the expansion performance of the heat-expandable rubber at a relatively low temperature is kept good, and the rapid expansion in the initial fire Can be expected.
[0016]
In addition, as a piping construction structure for constructing piping in the through-hole portion provided in the partition wall of the fire prevention section of the building, a state in which the thermally expandable rubber is wound around the tube and the tube is inserted into the through-hole portion If the heat-expandable rubber is fixed so as to be located in the through-hole portion, the characteristics of the heat-expandable rubber can be fully utilized, and the construction property and the disaster prevention property are excellent.
Specifically, when the thermally expandable rubber receives heat and expands, the tube expands relatively in the direction of compressing and closing the tube, and after the tube is burnt out, a space is created, which is caused by a fire. The pipe line can also be closed to prevent a situation where the generated harmful gas or the flame itself can reach an adjacent room or the like, which is a preferable form in terms of fire prevention structure.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
The heat-expandable rubber of the present invention is formed by vulcanizing and molding a rubber composition containing heat-expandable graphite. The rubber composition contains a foaming agent, and the foaming agent partially expands and the thermally expandable graphite does not expand, or only a part of the thermally expandable graphite expands. It is vulcanized and molded under the following conditions. As the rubber composition, it is preferable to use a base material having relatively low heat resistance such as NR and SBR.
[0018]
Further, this heat-expandable rubber has a rubber composition foaming ratio of 1.5 to 2.8 at the time of vulcanization, an Asker hardness of 16 to 60, and a rubber composition after vulcanization molding of 180 In a fireproof endurance test that is exposed to an atmosphere of 30 ° C. for 30 minutes, the expansion rate is 3 times or more.
[0019]
Such a heat-expandable rubber is formed by winding the heat-expandable rubber around a pipe when the pipe is installed in the through-hole provided in the partition wall of the fire prevention section of the building, and the pipe is formed in the through-hole. It is made to insert, and it fixes so that the said heat | fever expansible rubber may be located in the said through-hole part.
Specifically, as shown in FIG. 1, for example, when a resin pipe 1 is inserted and disposed in a through hole W <b> 1 (fire prevention section through portion) provided in a wall portion W, a portion located in the through hole W <b> 1. The thin plate-like body 2 made of the heat-expandable rubber is wound and fixed. The thin plate-like body 2 is fitted to a cylindrical sleeve 3 with a metal slit, and the thin plate-like body 2 is formed into the pipe by assembling the sleeve 3 in a state of covering the pipe 1. It is wound in a close posture covering 1. The space between the sleeve 3 and the through hole W1 is sealed with mortar.
[0020]
When the through hole W1 constructed in this way is hit by a fire, the thin plate-like body 2 expands as shown in FIG. 2, and closes the through hole W1 while compressing and closing the pipe, thereby toxic gas. Prevents the flame from flowing into the adjacent room and the fire reaching the adjacent room and deriving fire spread or fire.
[0021]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
As a result of vulcanization molding of the rubber compositions of A to Q shown in Table 1, the rubber composition is more flexible than the conventional rubber composition of R shown in Table 2, and the expansion proceeds at a lower temperature, It was found that a thermally expandable rubber having a high expansion coefficient was obtained.
[0022]
[Table 1]
Figure 0003732147
[0023]
In other words, when the influence of the raw rubber is compared between A to D and R, the raw rubber is changed from CR (R in the table (hereinafter simply referred to as (R))) to NR (A) or SBR (B). In the case of changing to, the expansion coefficient in the low temperature region (less than 180 ° C.) does not change greatly, but the expansion coefficient in the high temperature region (200 ° C. or more) is large. As can be seen from the comparison of L and M described later, this is due to the influence of the acid acceptor that caused a difference in acceptance / rejection due to the difference in the raw rubber, and the acid acceptor was made of the thermally expandable graphite. This is thought to be due to the suppression of expansion. Moreover, even when (C) and (D) are blended with NR and SBR, the same tendency is observed, and a large difference occurs depending on the difference in the softener from the comparison of (C) and (D). I can read that there is nothing. Therefore, it is considered that the expansion of the heat-expandable graphite does not have a great influence depending on the material of the raw rubber and the softening material.
[0024]
In addition, when the vulcanization conditions were changed variously, it was found that when vulcanization conditions were 0.2 MPa for 30 min and (E) vulcanization was insufficient, but when the vulcanization conditions were 0.3 MPa or more under the steam vulcanization conditions, It can be seen that the foaming rate is such that a sufficiently good value of 60 or less can be obtained for the initial Asker hardness after vulcanization for 15 minutes or more. It was found that the expansion rate was about 1.2 to 2.0, which is considered to be that the expansion ratio of substantially no thermally expansible graphite was substantially expanded and only a part was expanded.
[0025]
Moreover, the foaming rate in the system (L) to (Q) to which the foaming agent is added is 2.0 to 2.8, compared with the system of the same vulcanization condition in which the foaming agent is not added. It can be seen that the foaming rate is high. This is considered due to the foaming agent being at least partially foamed.
[0026]
According to H to K, when the amount of thermally expandable graphite is large, the expansion coefficient at high temperature can be set high (H), while when the amount is small (J, K), the filler content can be reduced. It can be seen that if set appropriately, a high expansion rate can be exhibited while foaming uniformly.
In addition, as a rubber compounding, it has been found that even if the NR: SBR ratio is changed (H to K), it is considered that no significant change appears in both the foaming rate and the expansion rate.
[0027]
Furthermore, when an organic foaming agent having a foaming start temperature of 160 ° C. at normal pressure is added to such a rubber composition (L) to (Q), the initial foaming rate can be increased, and the Asker hardness of the product can be increased. It can be seen that it can be set lower. The comparison of L and M shows that the acid acceptor tends to suppress the expansion of the product in the low temperature range, and the comparison of L and N can be expected to increase the expansion rate by adding a foaming aid. I understand.
Further, referring to the data of the expansion coefficient in the vicinity of 190 ° C., the effect of the foaming agent is slightly seen at 1 phr from M, P, and Q, and the degree of the effect is becoming slightly saturated at 5 to 10 phr. It can be seen that 1 to 10 phr is preferable.
[0028]
Therefore, the rubber composition contains a foaming agent, and the foaming agent is at least partially foamed and vulcanized and molded under the condition that the thermally expandable graphite does not expand, or the thermally expandable graphite. Or a rubber composition (volume after vulcanization molding / volume before vulcanization molding) is 1.5 to 2.8, or Hardness measured by Asker C-type hardness meter is 16-60, or in a fireproof endurance test in which the rubber composition after vulcanization molding is exposed to an atmosphere at 180 ° C. for 30 minutes, (volume after test / volume before test) is By satisfying the condition of 3 or more, it can be a heat-expandable rubber that can realize high flexibility, low expansion start temperature, and high expansion rate,
It has been found that even when the rubber composition is mainly composed of NR and SBR, high fireproof performance can be exhibited.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a construction state of a heat-expandable rubber. FIG. 2 is an explanatory diagram of a fire-proof action of the heat-expandable rubber.
W Wall W1 Through-hole 1 Piping 2 Thin plate-like body made of thermally expandable rubber 3 Sleeve

Claims (7)

熱膨張性グラファイトを含有するゴム組成物を加硫成形してある熱膨張性ゴムであって、前記ゴム組成物が発泡剤を含有するとともに、前記発泡剤が少なくとも一部発泡し、かつ、前記熱膨張性グラファイトが実質的に膨張しない条件で加硫成形され、アスカーC型硬度計による硬さが16〜60である熱膨張性ゴム。A heat-expandable rubber obtained by vulcanizing a rubber composition containing thermally expandable graphite, wherein the rubber composition contains a foaming agent, and the foaming agent is at least partially foamed, and A heat-expandable rubber which is vulcanized and molded under conditions where the heat-expandable graphite does not substantially expand and has a hardness of 16 to 60 according to an Asker C-type hardness meter . 前記ゴム組成物の(加硫成形後の体積/加硫成形前の体積)が2.0〜2.8である請求項1に記載の熱膨張性ゴム。The heat-expandable rubber according to claim 1, wherein the rubber composition has a volume after vulcanization molding / volume before vulcanization molding of 2.0 to 2.8. 熱膨張性グラファイトを含有するゴム組成物を加硫成形してある熱膨張性ゴムであって、前記熱膨張性グラファイトの一部が膨張する条件で加硫成形され、アスカーC型硬度計による硬さが16〜60である熱膨張性ゴム。A heat-expandable rubber obtained by vulcanizing and molding a rubber composition containing thermally expandable graphite, which is vulcanized and molded under the condition that a part of the thermally expandable graphite expands, and is hardened by an Asker C-type hardness meter. A heat-expandable rubber having a length of 16-60 . 前記ゴム組成物の(加硫成形後の体積/加硫成形前の体積)が1.5〜2.0である請求項3に記載の熱膨張性ゴム。The thermally expandable rubber according to claim 3, wherein the rubber composition has a (volume after vulcanization molding / volume before vulcanization molding) of 1.5 to 2.0. 加硫成形後のゴム組成物を180℃雰囲気下に30分間晒す防火耐久性試験で(試験後の体積/試験前の体積)が3以上である請求項1〜4のいずれか一項に記載の熱膨張性ゴム。 According to claim 1 in fire endurance test of exposing the rubber composition after vulcanization under 180 ° C. atmosphere for 30 minutes (volume before the volume / test after test) is 3 or more thermal expansion of rubber. 前記ゴム組成物が、NR、SBRを主成分とするものである請求項1〜5のいずれか項に記載の熱膨張性ゴム。The thermally expandable rubber according to any one of claims 1 to 5, wherein the rubber composition contains NR and SBR as main components. 建築物の防火区画の仕切壁に設けられる貫通孔部に配管を施工する配管施工構造であって、管に請求項1〜6のいずれか項に記載の熱膨張性ゴムを巻回し、かつ、その管を貫通孔部に挿通させた状態にし、前記熱膨張性ゴムが前記貫通孔部内に位置するように固定する配管施工構造。A pipe construction structure for constructing a pipe in a through hole provided in a partition wall of a fire prevention section of a building, wherein the thermally expandable rubber according to any one of claims 1 to 6 is wound around the pipe, and A piping construction structure in which the tube is inserted into the through hole portion and fixed so that the thermally expandable rubber is located in the through hole portion.
JP2002027702A 2002-02-05 2002-02-05 Thermally expandable rubber and piping construction structure Expired - Fee Related JP3732147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002027702A JP3732147B2 (en) 2002-02-05 2002-02-05 Thermally expandable rubber and piping construction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002027702A JP3732147B2 (en) 2002-02-05 2002-02-05 Thermally expandable rubber and piping construction structure

Publications (2)

Publication Number Publication Date
JP2003226772A JP2003226772A (en) 2003-08-12
JP3732147B2 true JP3732147B2 (en) 2006-01-05

Family

ID=27749136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002027702A Expired - Fee Related JP3732147B2 (en) 2002-02-05 2002-02-05 Thermally expandable rubber and piping construction structure

Country Status (1)

Country Link
JP (1) JP3732147B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110014638A (en) * 2019-01-15 2019-07-16 中海石油(中国)有限公司上海分公司 Remember memory rubber packer and its processing unit (plant) and processing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244052B2 (en) 2006-06-06 2009-03-25 信越化学工業株式会社 Vinyl chloride resin composition and molded article thereof
CN100447470C (en) * 2007-06-01 2008-12-31 华东理工大学 Expansion fireproof casing pipe and producing method thereof
JP7248288B2 (en) * 2019-03-20 2023-03-29 イイダ産業株式会社 refractory molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110014638A (en) * 2019-01-15 2019-07-16 中海石油(中国)有限公司上海分公司 Remember memory rubber packer and its processing unit (plant) and processing method
CN110014638B (en) * 2019-01-15 2021-03-30 中海石油(中国)有限公司上海分公司 Memory rubber packer, and processing device and processing method thereof

Also Published As

Publication number Publication date
JP2003226772A (en) 2003-08-12

Similar Documents

Publication Publication Date Title
US8578672B2 (en) Intumescent backer rod
JP4443521B2 (en) Fire prevention parts
US8857528B2 (en) Flame-blocking system and construction method
KR101343832B1 (en) A pipe having cold-resistance and fire-resistance
JP4450760B2 (en) Joint materials and gaskets
JP4041149B2 (en) Thermally expandable putty composition
US5508321A (en) Intumescent silicone rubber composition
JP2008138180A (en) Rubber mixture for thermally expansible joint filling material, thermally expansible joint filling material and joint for fire-resistant double-layer pipe
JP3732147B2 (en) Thermally expandable rubber and piping construction structure
JP4490860B2 (en) Joint materials and gaskets
JP2005054163A (en) Thermal expansible fireproof composition
US20140091248A1 (en) Insulating material
JP3934612B2 (en) Rubber composition and foam molded article using the rubber composition
JP4386441B2 (en) Fireproof joint material
KR20080064500A (en) A pipe fixing material and method of filling up hole using houses
JP3130233U (en) Fire prevention compartment wiring structure of building
JP3455801B2 (en) Thermally expandable fire protection composition
JP2005225991A (en) Heat expandable composition
JP6949452B2 (en) Fireproof structure of compartment through hole
KR101354069B1 (en) Filling fire-resistant block
JP2011063783A (en) Intumescent resin composition for fire prevention
JP2659913B2 (en) Fire-resistant foamable resin composition
KR101999047B1 (en) Combined extrusion gasket and Method for manufacturing the same
KR20150119660A (en) A fireproof filling element which is applied in fire partition penetration department of the building
JP2006097466A (en) Fire resistant member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

R150 Certificate of patent or registration of utility model

Ref document number: 3732147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees