JP2005054163A - Thermal expansible fireproof composition - Google Patents

Thermal expansible fireproof composition Download PDF

Info

Publication number
JP2005054163A
JP2005054163A JP2003343168A JP2003343168A JP2005054163A JP 2005054163 A JP2005054163 A JP 2005054163A JP 2003343168 A JP2003343168 A JP 2003343168A JP 2003343168 A JP2003343168 A JP 2003343168A JP 2005054163 A JP2005054163 A JP 2005054163A
Authority
JP
Japan
Prior art keywords
expandable
mass
graphite
parts
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003343168A
Other languages
Japanese (ja)
Other versions
JP3779291B2 (en
Inventor
Kiyotaka Saito
清高 斉藤
Takuji Tsunoda
卓二 角田
Shuichi Wada
秀一 和田
Kiyonobu Maruhashi
清信 丸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
CRK KK
Original Assignee
Denki Kagaku Kogyo KK
CRK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK, CRK KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003343168A priority Critical patent/JP3779291B2/en
Publication of JP2005054163A publication Critical patent/JP2005054163A/en
Application granted granted Critical
Publication of JP3779291B2 publication Critical patent/JP3779291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Installation Of Indoor Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal expansible fireproof composition which is excellent in fire resistance, thermal expansibility, shape losing preventing effect, and temperature sensitivity. <P>SOLUTION: The thermal expansible fireproof composition comprises a rubber ingredient comprising a specified amount of a thermoplastic elastomer or a flexible urethane foam, an expansible graphite, an expansible microcapsule having a lower expansion initiation temperature than the expansible graphite, boric acid, and/or an inorganic filler. The composition has a flame retardancy, can be thermally expanded at a fire and burned to give a residue with an enough retention of shape. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、新規な熱膨張性防火用組成物に関する。   The present invention relates to a novel thermally expandable fireproofing composition.

防火用膨張性材料又は防火用発泡性材料(以下「防火用膨張性材料」と称す)は、例えば電力ケーブル、通信ケーブル等のようなケーブル類、空調設備等の配管類の周囲の被覆等に使用される。これらケーブル類、配管類等は、防火区画体の貫通口を通じて複数の防火区画体にまたがって配置される。   Fireproof inflatable material or fireproof foamable material (hereinafter referred to as “fireproof inflatable material”) is used, for example, for cables such as power cables and communication cables, and coatings around piping such as air conditioners. used. These cables, pipes, and the like are arranged across a plurality of fire prevention compartments through the through holes of the fire prevention compartments.

防火用膨張性材料が使用された部位は、火災時において加熱により膨張又は発泡して膨張層を形成し、これにより貫通口を閉塞して火災の延焼防止を図る。このため、防火用膨張性材料では、火災時に比較的低温で膨張を開始し膨張層により断熱作用を発現させ、膨張層の形成後には、膨張層が炎熱によって容易に形崩れを起こさず、所定の形状を出来るだけ長時間保持できることが条件となる。   The part where the fire-resistant expansive material is used is expanded or foamed by heating in the event of a fire to form an expanded layer, thereby blocking the through-hole and preventing the fire from spreading. For this reason, in an inflatable material for fire prevention, expansion starts at a relatively low temperature in the event of a fire and a thermal insulation effect is exhibited by the expansion layer. After the formation of the expansion layer, the expansion layer is not easily deformed by flame heat, The condition is that the shape can be maintained for as long as possible.

これに関し、例えばベース樹脂に無機系膨張剤及び又は有機系膨張剤と、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルケトン樹脂、ポリアミド樹脂、フェノール樹脂等の形崩れ防止用樹脂とが同時に配合されてなることを特徴とする防火用膨張性樹脂組成物等が知られている(例えば特許文献1参照)。この防火用膨張性組成物によれば、特に形崩れ防止用樹脂が配合されていることから、炎熱を受けても膨張層が形崩れを起こさず、その形状を保持し続けることができるとされている。   In this regard, for example, an inorganic expansion agent and / or an organic expansion agent and a resin for preventing deformation such as polycarbonate resin, polyphenylene sulfide resin, polyether ketone resin, polyamide resin, and phenol resin are blended in the base resin at the same time. An intumescent resin composition for fire prevention or the like characterized by this is known (see, for example, Patent Document 1). According to this fire-resistant intumescent composition, since the resin for preventing deformation is blended in particular, it is said that the expansion layer does not lose its shape even when subjected to flame heat and can continue to retain its shape. ing.

しかしながら、上記の防火用膨張性組成物は、形崩れ防止用樹脂自身が溶融ひいては燃焼してしまうため、火災中に十分な耐火性能が得られなかったり、膨張層が容易に粉化して火災後の処理に支障をもたらす。また形崩れ防止用樹脂は比較的高価でありコスト面においても問題があり、用途によっては弾性・柔軟性が十分でない面がある。   However, since the above-mentioned inflatable composition for fire prevention melts and then burns out, the resin for preventing deformation does not provide sufficient fire resistance during the fire, or the intumescent layer is easily pulverized and after the fire This will interfere with the processing. In addition, the shape-preventing resin is relatively expensive and has a problem in terms of cost. Depending on the application, there is a problem that elasticity and flexibility are not sufficient.

他方、弾性・柔軟性を有するポリウレタンに耐火性を付与するための技術として、ポリオールとポリイソシアネートに難燃剤として膨張性黒鉛を配合する耐火性弾性ポリウレタン軟質フォームの製造方法が知られている。(例えば特許文献2参照)   On the other hand, as a technique for imparting fire resistance to polyurethane having elasticity and flexibility, there is known a method for producing a fire-resistant elastic polyurethane flexible foam in which expansive graphite is blended as a flame retardant with a polyol and a polyisocyanate. (For example, see Patent Document 2)

しかしながら、上記の製造方法では、形崩れ防止効果はなお不十分である。またポリオールとポリイソシアネートの二液反応混合物からポリウレタンを製造する上記技術では、多量の膨張性黒鉛を配合することは極めて困難であり、十分な耐火性能を得ることができない。すなわち、より優れた耐火性能を付与するためには、膨張性黒鉛及び形崩れ防止剤をできるだけ多く配合することが必要となるが、上記技術ではスラリー粘度が高くなり、目的とするポリウレタンの製造そのものが困難となってしまう。   However, the manufacturing method described above is still insufficient in the effect of preventing deformation. Moreover, in the above technique for producing polyurethane from a two-component reaction mixture of a polyol and a polyisocyanate, it is extremely difficult to blend a large amount of expansive graphite, and sufficient fire resistance cannot be obtained. In other words, in order to give better fire resistance, it is necessary to add as much expandable graphite and shape change prevention agent as possible, but the above technique increases the slurry viscosity, and the production of the desired polyurethane itself. Becomes difficult.

これらの問題点を改善した技術としてゴム又は軟質ウレタンフォームに膨張性黒鉛及び形崩れ防止剤としてホウ酸を配合した組成が開示されている(例えば特許文献3、4)が、膨張性黒鉛の膨張温度より低温で膨張を開始し断熱性をいち早く付与させたり、膨張により隙間をいち早く遮断し煙の流入を阻止させることが要望されている。
特開平9−176498号公報(第2頁:請求項1〜4) 特許第2732435号(第1頁:請求項1〜9、第2頁請求項10〜12) 特開2001−348487号公報(第2頁:請求項1〜5) 特開2001−348476号公報(第2頁:請求項1〜8)
As a technique for solving these problems, a composition in which expansive graphite and boric acid as a shape loss preventing agent are blended with rubber or flexible urethane foam is disclosed (for example, Patent Documents 3 and 4). There is a demand to start expansion at a temperature lower than the temperature so as to impart heat insulation quickly, or to quickly block the gap by expansion to prevent the inflow of smoke.
JP-A-9-176498 (second page: claims 1 to 4) Patent No. 2732435 (first page: claims 1-9, second page claims 10-12) JP 2001-348487 A (2nd page: claims 1 to 5) JP 2001-348476 A (2nd page: claims 1 to 8)

このように、形崩れ防止効果を含む耐火性能を十分満足し、弾性と柔軟性とを兼ね備え、かつ、所定温度で1次膨張後、更に高温で2次膨張する材料は未だ開発されていないのが現状である。   As described above, a material that sufficiently satisfies the fire resistance performance including the deformation preventing effect, has both elasticity and flexibility, and has a secondary expansion at a higher temperature after a primary expansion at a predetermined temperature has not yet been developed. Is the current situation.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.

すなわち本発明は、熱可塑性エラストマーを特定量以上を含有するゴム成分、又は軟質ウレタンフォームと、膨張性黒鉛、膨張性マイクロカプセル、ホウ酸、及び/又は無機充填剤とからなり、難燃性を有し、火災発生時には熱膨張し、しかも温度感応性に優れ比較的低温で膨張して燃焼ガスや煙が貫通口の隙間から流入するのを防止し、且つ燃焼後の残渣が充分な形状保持性を有する、これまでにない新規な熱膨張性防火用組成物に係るものである。   That is, the present invention comprises a rubber component containing a specific amount or more of a thermoplastic elastomer, or a flexible urethane foam, and expandable graphite, expandable microcapsules, boric acid, and / or an inorganic filler, and has flame retardancy. It has thermal expansion in the event of a fire, and is excellent in temperature sensitivity and expands at a relatively low temperature to prevent combustion gas and smoke from flowing through the gaps in the through-holes, and the residue after combustion has a sufficient shape The present invention relates to an unprecedented novel thermally expandable fireproofing composition.

本発明組成物によれば、特に、ホウ酸と熱膨張性黒鉛及び膨張性黒鉛より膨張開始温度が低い熱膨張性マイクロカプセルとの組み合わせにより、従来技術よりも優れた耐火性能を発揮することができる。すなわち、膨張性マイクロカプセルが比較的低温で膨張する温度感応性に優れた特性と、高温下では膨張性黒鉛が膨張層を形成しホウ酸の形崩れ防止効果で長時間高温下にさらされても脆弱化しにくい。その結果、火災においても優れた耐火性能を安定して得ることができる。また、火災後においても、膨張層が崩れにくいため、火災後の処理も円滑且つ安全に行うことができる。   According to the composition of the present invention, in particular, the combination of boric acid, thermally expandable graphite, and thermally expandable microcapsules having a lower expansion start temperature than expandable graphite can exhibit fire resistance superior to that of the prior art. it can. In other words, expandable microcapsules are exposed to high temperatures for a long time due to their excellent temperature sensitivity, which expands at relatively low temperatures, and expandable graphite forms an expanded layer at high temperatures and prevents boric acid from collapsing. Are also less vulnerable. As a result, excellent fire resistance can be stably obtained even in a fire. Moreover, since the expansion layer is not easily broken even after a fire, the post-fire treatment can be performed smoothly and safely.

以下、本発明を詳細に説明する。
本発明で用いられるゴム成分としては、エチレンプロピレンゴム、ブチルゴム、スチレンブタジエンゴム、イソプレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエンゴム、クロロプレンゴム、ポリブテンゴム、塩素化ポリエチレンゴム、アクリルゴム、クロルスルホン化ポリエチレン、シリコーンゴム、フッ素ゴム、天然ゴム及び熱可塑性エラストマーが使用できる。
Hereinafter, the present invention will be described in detail.
The rubber component used in the present invention includes ethylene propylene rubber, butyl rubber, styrene butadiene rubber, isoprene rubber, acrylonitrile butadiene rubber, polybutadiene rubber, chloroprene rubber, polybutene rubber, chlorinated polyethylene rubber, acrylic rubber, chlorosulfonated polyethylene, silicone Rubber, fluororubber, natural rubber and thermoplastic elastomer can be used.

これらのゴム成分は混練性、シート成形性、押出し成形性、プレス成形性等を改善するために2種以上をブレンド使用することができるが、更にこうした成形品の寸法安定性を保持し、成形品を二層管に装着する際の強度及び可撓性のバランスを付与するためにゴム成分中に熱可塑性エラストマーを少なくとも20質量%以上含有して使用することが好ましい。20質量%より少ないと成形性、強度、成形品の寸法安定性が充分でない。   These rubber components can be used in a blend of two or more to improve kneadability, sheet formability, extrusion formability, press formability, etc. Further, the dimensional stability of such molded products is maintained and molded. In order to provide a balance between strength and flexibility when the product is mounted on the two-layer tube, it is preferable to use the rubber component containing at least 20% by mass or more of a thermoplastic elastomer. If it is less than 20% by mass, the moldability, strength and dimensional stability of the molded product are not sufficient.

熱可塑性エラストマーの添加効果は、成形加工時には熱可塑性エラストマー中のハードセグメントが溶融し流動性を発現して成形性に効果を発揮し、一方常温では熱可塑性エラストマー中のソフトセグメントによりゴム弾性を発現し強度及び可撓性に効果を発揮するとともに、ハードセグメントが成形品の寸法安定性を改善している。火災発生時には熱によりハードセグメントは溶融し、熱膨張した膨張性黒鉛を一時的につなぎとめる役割も果たしている。   The effect of adding thermoplastic elastomer is that the hard segment in the thermoplastic elastomer melts and develops fluidity at the time of molding, and the moldability is exerted. On the other hand, the soft segment in the thermoplastic elastomer exhibits rubber elasticity at room temperature. In addition to exerting an effect on the strength and flexibility, the hard segment improves the dimensional stability of the molded product. In the event of a fire, the hard segment melts due to heat and plays a role in temporarily holding the thermally expanded expansive graphite.

本発明で用いられる熱可塑性エラストマーは塩化ビニル系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー等の各種熱可塑性エラストマーが使用できるが、これらの熱可塑性エラストマーの中で特にスチレン系熱可塑性エラストマーが好ましい。   As the thermoplastic elastomer used in the present invention, various thermoplastic elastomers such as vinyl chloride thermoplastic elastomer, styrene thermoplastic elastomer, polyolefin thermoplastic elastomer, and polyester thermoplastic elastomer can be used. Of these, styrene thermoplastic elastomers are particularly preferred.

スチレン系熱可塑性エラストマーとしては、ビニル芳香族化合物を主体とする重合体ブロックと共役ジエン化合物を主体とする重合体ブロックとからなるブロック共重合体で、ビニル芳香族化合物としては、例えばスチレン、p−メチルスチレン、α−メチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン等が挙げられ、これらは単独又は2種以上を組み合わせて使用される。これらのうち特に好ましいものはスチレンである。   The styrenic thermoplastic elastomer is a block copolymer composed of a polymer block mainly composed of a vinyl aromatic compound and a polymer block mainly composed of a conjugated diene compound. Examples of the vinyl aromatic compound include styrene, p -Methyl styrene, (alpha) -methyl styrene, vinyl xylene, monochloro styrene, dichloro styrene, monobromo styrene, etc. are mentioned, These are used individually or in combination of 2 or more types. Of these, styrene is particularly preferred.

共役ジエン化合物としては、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン等が挙げられ、これらは単独又は2種以上組み合わせて使用される。これらのうち、好ましいものは1,3−ブタジエン、イソプレンであり、特に好ましいものは1,3−ブタジエンである。   Examples of the conjugated diene compound include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like, and these are used alone or in combination of two or more. Of these, preferred are 1,3-butadiene and isoprene, and particularly preferred is 1,3-butadiene.

本発明で用いられるスチレン系熱可塑性エラストマーのブロック共重合体は、公知のアニオン重合により製造される。   The block copolymer of styrenic thermoplastic elastomer used in the present invention is produced by known anionic polymerization.

本発明で用いられる軟質ウレタンフォームは、一液タイプ、二液タイプ等いずれの原料から得られたものも使用できるが、特に一液タイプが好ましい。一液タイプのものは、例えば水性ウレタンプレポリマーから得られる軟質ウレタンフォームを好適に用いることができる。   As the flexible urethane foam used in the present invention, those obtained from any raw material such as a one-pack type or a two-pack type can be used, but the one-pack type is particularly preferable. As the one-pack type, for example, a flexible urethane foam obtained from an aqueous urethane prepolymer can be suitably used.

水性ウレタンフォームを使用する場合には、まず膨張性黒鉛及びホウ酸に水を加えてスラリーを調整した後、このスラリーに水性ウレタンプレポリマーを混合し、発泡硬化させることにより製造することができる。スラリー濃度は、最終製品の使用目的、用途等に応じて適宜設定することができるが、通常は20〜90質量%、好ましくは50〜70質量%である。水が多すぎる場合には、得られる成形体の形状安定性が低下するおそれがある。また水が少なすぎる場合には、スラリーの粘度が上昇するため、所望の発泡硬化体が得られなくなることがある。   In the case of using an aqueous urethane foam, the slurry can be prepared by first adding water to expansive graphite and boric acid, and then mixing the aqueous urethane prepolymer with the slurry, followed by foam curing. The slurry concentration can be appropriately set according to the purpose and application of the final product, but is usually 20 to 90% by mass, preferably 50 to 70% by mass. When there is too much water, there exists a possibility that the shape stability of the molded object obtained may fall. Moreover, when there is too little water, since the viscosity of a slurry rises, a desired foaming hardening body may not be obtained.

また、スラリーには、必要に応じて他の添加剤を配合することもできる。例えば、界面活性剤、架橋剤、整泡剤、触媒、発泡剤、難燃剤、安定剤、紫外線吸収剤、酸化防止剤、顔料、フィラー等を用いることができる。スラリーはこれらの成分を同時又は順次配合した後、公知の攪拌機等で均一に混合する。次いでスラリーに水性ウレタンプレポリマーを添加し、発泡が開始するまで攪拌混合を続ける。必要に応じて所定の形状を有する型に注入し、発泡硬化させる。得られた成形体は必要に応じて例えば約50℃で養生して含有水分を蒸発させることにより、形状安定性に優れた発泡硬化体を得ることができる。これらの養生時間は、養生温度、発泡硬化体の大きさ等に応じて適宜設定すればよい。   Moreover, another additive can also be mix | blended with a slurry as needed. For example, a surfactant, a crosslinking agent, a foam stabilizer, a catalyst, a foaming agent, a flame retardant, a stabilizer, an ultraviolet absorber, an antioxidant, a pigment, a filler, and the like can be used. After mixing these components simultaneously or sequentially, the slurry is uniformly mixed with a known stirrer or the like. The aqueous urethane prepolymer is then added to the slurry and stirring and mixing is continued until foaming begins. If necessary, it is poured into a mold having a predetermined shape and foamed and cured. The obtained molded body is cured as necessary at, for example, about 50 ° C. to evaporate the contained water, thereby obtaining a foam cured body having excellent shape stability. These curing times may be appropriately set according to the curing temperature, the size of the foam cured body, and the like.

本発明で用いられる膨張性黒鉛は特に限定されない。膨張性黒鉛は天然グラファイト、熱分解グラファイト等の粉末を、硫酸、硝酸等の無機酸と濃硝酸、過マンガン酸塩等の強酸化剤とで処理したもので、グラファイト層状構造を維持した結晶化合物である。200℃程度以上の温度に曝されると100倍以上に熱膨張する。粉末には脱酸処理に加え、更に中和処理したタイプ他、各種品種があり、いずれも使用可能である。   The expandable graphite used in the present invention is not particularly limited. Expandable graphite is a powder of natural graphite, pyrolytic graphite, etc., treated with an inorganic acid such as sulfuric acid or nitric acid and a strong oxidizing agent such as concentrated nitric acid or permanganate, and is a crystalline compound that maintains a graphite layered structure. It is. When exposed to temperatures of about 200 ° C. or higher, it expands by a factor of 100 or more. In addition to the deoxidation treatment, there are various varieties such as a neutralized type powder, and any powder can be used.

粒度は、20〜400メッシュ程度が好ましい。400メッシュより粒度が小さくなると黒鉛の熱膨張度が小さく、また20メッシュより粒度が大きくなるとゴムに混練する際に分散性が悪くなり、強度等の物性低下が避けられない。   The particle size is preferably about 20 to 400 mesh. When the particle size is smaller than 400 mesh, the thermal expansion degree of graphite is small, and when the particle size is larger than 20 mesh, dispersibility deteriorates when kneaded into rubber, and physical properties such as strength are inevitably lowered.

膨張性黒鉛の含有量は、ゴム成分又は軟質ウレタンフォームの種類、所望の膨張倍率等によって適宜設定することが出来るが、通常はゴム成分又は軟質ウレタンフォーム100質量部に対し5〜100質量部を使用する。5質量部より少ないと、火災発生の高温時の熱膨張倍率が小さい。100質量部を超えると熱膨張倍率は大きくなるものの、得られる配合物の硬度が上昇し、強度等の物性も低下する。またシート成形する場合には成形性が劣り表面肌が悪くなる。   The content of expandable graphite can be appropriately set depending on the type of rubber component or flexible urethane foam, the desired expansion ratio, etc., but usually 5 to 100 parts by mass with respect to 100 parts by mass of the rubber component or flexible urethane foam. use. When the amount is less than 5 parts by mass, the thermal expansion ratio at the time of fire occurrence is low. If the amount exceeds 100 parts by mass, the thermal expansion ratio increases, but the hardness of the resulting compound increases and the physical properties such as strength also decrease. In the case of sheet forming, the formability is inferior and the surface skin is deteriorated.

本発明に用いられる膨張性マイクロカプセルは、低沸点の液体や固体あるいは加熱によってガスを発生する化合物を熱可塑性樹脂の殻で内包したプラスチックの微小球体(平均粒子径:5〜50μm)で、加熱によって殻が軟化し、同時に内包されている物質がガス化あるいはガスを発生しカプセルの膨張が起こるものである。内包される物質としては、低沸点の炭化水素や重炭酸ナトリウム等の重炭酸塩等あり、本用途には特に低沸点の炭化水素が好ましい。   The expandable microcapsule used in the present invention is a plastic microsphere (average particle diameter: 5 to 50 μm) in which a low-boiling liquid or solid or a compound that generates a gas upon heating is encapsulated in a thermoplastic resin shell. As a result, the shell softens, and at the same time, the encapsulated substance gasifies or generates gas, and the capsule expands. Examples of the substance to be included include low-boiling hydrocarbons and bicarbonates such as sodium bicarbonate, and low-boiling hydrocarbons are particularly preferable for this application.

膨張開始温度は殻である樹脂組成によって種々設計されるが、70℃〜170℃の性状のものが使用できる。膨張開始温度の選択は、併用される膨張性黒鉛の膨張開始温度より低いものが使用される。加熱時に、まず膨張性マイクロカプセルが膨張を開始し、更に温度上昇により膨張性黒鉛が膨張を開始する。これによって初期の加熱時に発生する煙やガスの流入を遮断し、また初期膨張により発泡層を形成し断熱効果を発揮できる。   The expansion start temperature is variously designed according to the resin composition as the shell, but those having a property of 70 ° C to 170 ° C can be used. For the selection of the expansion start temperature, a temperature lower than the expansion start temperature of the expandable graphite used together is used. At the time of heating, the expandable microcapsules start to expand, and then expandable graphite starts to expand as the temperature rises. As a result, the inflow of smoke and gas generated during the initial heating can be blocked, and a foamed layer can be formed by the initial expansion to exhibit a heat insulating effect.

膨張性マイクロカプセルの含有量は、通常はゴム100質量部に対し5〜100質量部を使用する。5質量部より少ないと、加熱時の熱膨張倍率が小さい。100質量部を超えると熱膨張倍率は大きくなるものの、コストが高くなり好ましくない。また膨張性黒鉛と膨張性マイクロカプセルとの質量比率は、好ましくは1:1〜10:1、より好ましくは1:1〜5:1である。   The content of the expandable microcapsule is usually 5 to 100 parts by mass with respect to 100 parts by mass of rubber. When the amount is less than 5 parts by mass, the thermal expansion ratio during heating is small. Exceeding 100 parts by mass is not preferable because the thermal expansion ratio increases, but the cost increases. The mass ratio between the expandable graphite and the expandable microcapsule is preferably 1: 1 to 10: 1, more preferably 1: 1 to 5: 1.

本発明で用いられる無機系形崩れ防止剤としては、ホウ酸を用いる。ホウ酸自体は、公知の製法により得られるもの又は市販品を用いることができる。ホウ酸は、オルトホウ酸(HBO)、メタホウ酸(HBO)等のいずれでも良いが、通常はオルトホウ酸を使用すれば良い。ホウ酸は、通常は粉末の形態で使用される。この場合、粉末の粒径は特に制限されないが、比較的粒径の小さなもの(通常100μm程度以下、好ましくは20μm程度以下)が好ましい。 As the inorganic type collapse preventing agent used in the present invention, boric acid is used. As boric acid itself, a product obtained by a known production method or a commercially available product can be used. The boric acid may be any of orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ), etc., but orthoboric acid is usually used. Boric acid is usually used in powder form. In this case, the particle size of the powder is not particularly limited, but a powder having a relatively small particle size (usually about 100 μm or less, preferably about 20 μm or less) is preferable.

ホウ酸の含有量は、使用する膨張性黒鉛の使用量によって適宜設定することができるが、通常はゴム100質量部に対し10〜200質量部を使用する。10質量部より少ないと、膨張性黒鉛をつなぎとめる効果が小さく形崩れ防止性能が劣る。また200質量部を超えて使用すると、配合物の硬度が高くなり可撓性が劣るので好ましくない。   The content of boric acid can be appropriately set depending on the amount of expansive graphite used, but usually 10 to 200 parts by mass with respect to 100 parts by mass of rubber. When the amount is less than 10 parts by mass, the effect of holding the expandable graphite is small, and the deformation prevention performance is inferior. Moreover, when it exceeds 200 mass parts, since the hardness of a compound becomes high and flexibility is inferior, it is unpreferable.

ホウ酸と膨張性黒鉛の割合は、成形性、強度特性等のバランスを考慮すると、好ましくは質量比で1:5〜10:1、より好ましくは1:2〜5:1である。   The ratio of boric acid and expandable graphite is preferably 1: 5 to 10: 1 by mass ratio, more preferably 1: 2 to 5: 1 in consideration of the balance of formability, strength characteristics and the like.

本発明で用いられる無機充填剤は、成形性等を改善する。シリカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、酸化鉄、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、ケイ酸カルシウム、タルク、クレー、マイカ、ベントナイト、活性白土、セピオライト、ガラス繊維、ガラスビーズ、窒化アルミニウム、窒化ホウ素、カーボンブラック、グラファイト、炭素繊維等が使用できる。これらは2種以上を併用しても良い。また粒径は、ゴム中への分散性の観点から1〜50μmが好ましい。   The inorganic filler used in the present invention improves moldability and the like. Silica, diatomaceous earth, alumina, zinc oxide, titanium oxide, magnesium oxide, iron oxide, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, hydrotalcite, calcium sulfate, barium sulfate, silicic acid Calcium, talc, clay, mica, bentonite, activated clay, sepiolite, glass fiber, glass beads, aluminum nitride, boron nitride, carbon black, graphite, carbon fiber and the like can be used. Two or more of these may be used in combination. The particle size is preferably 1 to 50 μm from the viewpoint of dispersibility in rubber.

上記無機充填剤の中では、水酸化アルミニウム、水酸化マグネシウムは加熱時の脱水反応によって生成する水のために吸熱が起こり、温度上昇が抑えられるという点で難燃性が改善され好ましい。特に水酸化アルミニウムが低価格で使いやすい。   Among the above inorganic fillers, aluminum hydroxide and magnesium hydroxide are preferable because they are endothermic due to water generated by the dehydration reaction during heating, and the flame retardancy is improved in that the temperature rise is suppressed. In particular, aluminum hydroxide is inexpensive and easy to use.

無機充填剤は、ゴム成分100質量部に対して10〜300質量部添加して使用する。10質量部より少ないと、シート成形性、打ち抜き性を改善する効果が小さい。300質量部を超えて使用すると、組成物の硬度が高くなり可撓性が劣り、強度特性も低下するので好ましくない。   The inorganic filler is used by adding 10 to 300 parts by mass with respect to 100 parts by mass of the rubber component. When the amount is less than 10 parts by mass, the effect of improving sheet formability and punchability is small. Use exceeding 300 parts by mass is not preferable because the hardness of the composition is increased, flexibility is inferior, and strength properties are also deteriorated.

更に本発明では、ゴムに一般に使用される可塑剤、軟化剤、老化防止剤、加工助剤、滑剤、粘着付与剤、加硫剤等を適宜併用することが可能である。   Furthermore, in the present invention, plasticizers, softeners, anti-aging agents, processing aids, lubricants, tackifiers, vulcanizing agents and the like generally used for rubber can be used in combination as appropriate.

上記ゴム配合物は、上記各成分を公知のミキサー、バンバリーミキサー、ニーダーミキサー、二本ロール等の混練装置を用いて混練することにより得ることができ、これを用いて、プレス成型、ロール成型、押し出し成型、カレンダー成型等の従来公知の成型方法により、成形品を得ることが出来る。   The rubber compound can be obtained by kneading the above components using a kneading apparatus such as a known mixer, Banbury mixer, kneader mixer, two rolls, etc., and using this, press molding, roll molding, A molded product can be obtained by a conventionally known molding method such as extrusion molding or calendar molding.

本発明の組成物はいずれの形態でも用いることができる。例えば、シート状、テープ状、粒状等に成形したり、あるいはパテ状で用いることもできる。   The composition of the present invention can be used in any form. For example, it can be formed into a sheet shape, a tape shape, a granular shape, or can be used in a putty shape.

以下本発明を実施例により具体的に説明するが、これらの実施例は本発明を限定するものでない。なお、以下の説明における部および%は質量基準に基づく。   EXAMPLES The present invention will be specifically described below with reference to examples, but these examples do not limit the present invention. In addition, the part and% in the following description are based on a mass reference | standard.

「実施例1〜8」「比較例1〜7」
実施例及び比較例において、下記の材料を使用した。
a.ゴム:ブチルゴム(JSR(株)製、「ブチル268」)、EPDM(DSMジャパン(株)製、「ケルタン2630A」)、SBS(JSRシェル(株)、「クレイトンD1011」)。
b.水性ウレタンプレポリマー:(三井化学製、「EGH−401」)
c.膨張性黒鉛:(住金ケミカル(株)製、「SS−3」膨張開始温度260℃、「50LTE−U」膨張開始温度170℃)。
d.膨張性マイクロカプセル:(松本油脂製薬(株)「F−793」膨張開始温度110℃、「H−850」膨張開始温度155℃、「M−330」膨張開始温度105℃)。
e.ホウ酸:(BOR社製)
f.無機充填剤:(昭和電工(株)製、「ハイジライトH−42」)。
g.軟化剤:ナフテン系オイル(出光興産(株)製、「NP−24」)。
h.加工助剤:(理研ビタミン(株)製、「エマスター510P」)。
"Examples 1-8""Comparative Examples 1-7"
In the examples and comparative examples, the following materials were used.
a. Rubber: Butyl rubber (manufactured by JSR Corporation, “Butyl 268”), EPDM (manufactured by DSM Japan Co., Ltd., “Keltan 2630A”), SBS (JSR Shell Corporation, “Clayton D1011”).
b. Aqueous urethane prepolymer: (Mitsui Chemicals, "EGH-401")
c. Expandable graphite: (manufactured by Sumikin Chemical Co., Ltd., “SS-3” expansion start temperature 260 ° C., “50 LTE-U” expansion start temperature 170 ° C.).
d. Expandable microcapsules: (Matsumoto Yushi Seiyaku Co., Ltd. “F-793” expansion start temperature 110 ° C., “H-850” expansion start temperature 155 ° C., “M-330” expansion start temperature 105 ° C.).
e. Boric acid: (BOR)
f. Inorganic filler: (Showa Denko Co., Ltd., "Hijilite H-42").
g. Softener: Naphthenic oil (manufactured by Idemitsu Kosan Co., Ltd., “NP-24”).
h. Processing aid: (Riken Vitamin Co., Ltd., “Emaster 510P”).

(1)ゴム成分含有組成物
表1に示す成分を3リットルニーダーを用いて均一に混練することによって、熱膨張性防火用組成物を調整した。次いで、各混合物をロールで厚さ8mmのシート状に成形した。各実施例について、シート成形性、硬度及び可撓性とともに、加熱時の熱膨張性及び形状保持性を評価した。その結果を表1に示す。
(2)水性ウレタンプレポリマー含有組成物
表2に示す配合量で、ホウ酸、膨張性黒鉛及び膨張性マイクロカプセルの混合物に水を加えて、スラリーを調製した。このスラリーに水性ウレタンプレポリマーを加えて攪拌混合し、寸法12cm×12cm×17cmの型に注入して発泡成形させ、型とともにオーブン中100℃で1時間養生した後、脱型した。得られた発泡硬化体をさらにオーブン中50℃で2日間養生することにより、水分を蒸発させてスポンジ状の成形体を得た。
(1) Rubber component-containing composition A heat-expandable fireproofing composition was prepared by uniformly kneading the components shown in Table 1 using a 3 liter kneader. Subsequently, each mixture was formed into a sheet shape having a thickness of 8 mm with a roll. About each Example, the thermal expansibility at the time of heating and shape retainability were evaluated with sheet moldability, hardness, and flexibility. The results are shown in Table 1.
(2) Aqueous urethane prepolymer-containing composition Water was added to a mixture of boric acid, expansive graphite, and expansive microcapsules in the amount shown in Table 2 to prepare a slurry. Aqueous urethane prepolymer was added to this slurry, mixed with stirring, poured into a mold having dimensions of 12 cm × 12 cm × 17 cm, foam-molded, cured in an oven at 100 ° C. for 1 hour, and then demolded. The obtained foamed cured product was further cured in an oven at 50 ° C. for 2 days to evaporate the water and obtain a sponge-like molded product.

各実施例で得られた組成物について、硬度、熱膨張性、形状保持性を評価した。その結果を表2に示す。   The composition obtained in each example was evaluated for hardness, thermal expansibility, and shape retention. The results are shown in Table 2.

各物性の測定方法を以下に示す。
シート成形性:得られた混練物をロールで厚さ8mmのシートに成形し、得られたシートの外観等を観察した。ひび割れ等の問題がないシートを○、シートにひび割れ、ちぎれ等が生じたものを△、混練物がロールに付着し、シート成形ができなかったものを×とした。
表面硬度:シート成形体にC型ゴム硬度計(高分子計器(株)製)を当てた直後の指示を読み取ることにより測定した。
可撓性:ロール上でシート成型した8mm厚シートから1号ダンベルに打ち抜き、両端を45度の角度に持ち上げ、曲がった時の亀裂発生の程度を、亀裂なしの場合を○(良)、亀裂ありの場合を×(悪)として評価した。
熱膨張性:耐火レンガと耐火レンガの隙間10mmの間に試験片の下部50mmが埋まるように上部20mmが突き出るように挿入し設置し、この状態のままギアオーブン中にて、140℃、170℃、200℃及び300℃の各温度で0.5時間熱処理した。10mmの隙間が完全に閉塞した場合は○(良)、そうでない場合は×(悪)、その中間を△と評価した。
形状保持性:熱膨張性評価治具を用いて、上部に突き出た20mmの試験片の300℃で0.5時間熱処理後の形状安定性と変形度合いを、指触と目視で評価した。指触で形崩れしにくく変形の小さい場合は○、指触ですぐに形崩れし変形する場合は×と評価した。
結果を表1,表2にまとめた。
The measuring method of each physical property is shown below.
Sheet formability: The obtained kneaded material was formed into a sheet having a thickness of 8 mm with a roll, and the appearance and the like of the obtained sheet were observed. A sheet having no problems such as cracks was evaluated as ◯, a sheet having cracks, tears or the like was evaluated as Δ, and a kneaded product adhered to the roll and could not be formed into sheets.
Surface hardness: Measured by reading an instruction immediately after applying a C-type rubber hardness meter (manufactured by Kobunshi Keiki Co., Ltd.) to the sheet molding.
Flexibility: 8mm thick sheet formed on a roll is punched into No. 1 dumbbell, both ends are lifted to a 45 degree angle, the degree of cracking when bent, ○ (good) when there is no crack, crack The case where there was was evaluated as x (bad).
Thermal expansibility: Inserted and installed with the upper 20 mm protruding so that the lower 50 mm of the test piece is buried between the 10 mm gap between the refractory bricks and the refractory bricks. , Heat treatment at 200 ° C. and 300 ° C. for 0.5 hours. When the gap of 10 mm was completely closed, it was evaluated as ◯ (good), otherwise x (bad), and the middle was evaluated as Δ.
Shape retention: Using a thermal expansion evaluation jig, the shape stability and degree of deformation after heat treatment at 300 ° C. for 0.5 hours of a 20 mm test piece protruding upward was evaluated by touch and visual observation. The evaluation was ○ when the shape was not easily deformed by a finger touch and the deformation was small, and × when the shape was deformed immediately after touching the finger.
The results are summarized in Tables 1 and 2.

Figure 2005054163
Figure 2005054163

Figure 2005054163
Figure 2005054163

Figure 2005054163
Figure 2005054163

Figure 2005054163
Figure 2005054163

Claims (7)

熱可塑性エラストマーを少なくとも20質量%以上含有するゴム成分及び/又は軟質ウレタンフォーム、熱膨張剤として膨張性黒鉛及び膨張性マイクロカプセル、無機系形崩れ防止剤としてホウ酸及び/又は無機充填剤とからなることを特徴とする熱膨張性防火用組成物。   From a rubber component and / or a flexible urethane foam containing at least 20% by mass or more of a thermoplastic elastomer, expansive graphite and expansive microcapsules as a thermal expansion agent, boric acid and / or an inorganic filler as an inorganic deformation preventing agent A thermally expandable fireproofing composition characterized by comprising: 熱可塑性エラストマーがビニル芳香族化合物を主体とする重合体ブロックと共役ジエン化合物を主体とする重合体ブロックとからなるスチレン系エラストマーであることを特徴とする請求項1に記載された熱膨張性防火用組成物。   2. The heat-expandable fireproofing according to claim 1, wherein the thermoplastic elastomer is a styrenic elastomer comprising a polymer block mainly composed of a vinyl aromatic compound and a polymer block mainly composed of a conjugated diene compound. Composition. 軟質ウレタンフォームが、水性ウレタンプレポリマーから得られるものである請求項1に記載された熱膨張性防火用組成物。   The heat-expandable fireproofing composition according to claim 1, wherein the flexible urethane foam is obtained from an aqueous urethane prepolymer. ゴム成分又は軟質ウレタンフォーム100質量部に対し、膨張性黒鉛5〜100質量部、熱膨張性マイクロカプセル5〜100質量部、ホウ酸10〜200質量部、及び/又は無機充填剤10〜300質量部からなり、かつ合計が500質量部以下であることを特徴とする請求項1〜3のいずれか1項に記載された熱膨張性防火用組成物。   5 to 100 parts by mass of expandable graphite, 5 to 100 parts by mass of thermally expandable microcapsules, 10 to 200 parts by mass of boric acid, and / or 10 to 300 parts by mass of an inorganic filler with respect to 100 parts by mass of the rubber component or flexible urethane foam. The heat-expandable fireproofing composition according to any one of claims 1 to 3, wherein the heat-expandable fireproofing composition according to any one of claims 1 to 3 is formed. 膨張性マイクロカプセルの膨張開始温度が70℃〜170℃であり、且つ膨張性黒鉛より膨張開始温度が低いことを特徴とする請求項1〜4のいずれか1項に記載された熱膨張性防火用組成物。   The expansion start temperature of the expandable microcapsule is 70 ° C to 170 ° C, and the expansion start temperature is lower than that of the expandable graphite, The thermally expandable fire prevention according to any one of claims 1 to 4, Composition. 無機充填剤が水酸化アルミニウムであることを特徴とする請求項1〜5のいずれか1項に記載された熱膨張性防火用組成物。   The thermally expandable fireproofing composition according to any one of claims 1 to 5, wherein the inorganic filler is aluminum hydroxide. ホウ酸と熱膨張剤との質量比率が1:5〜10:1でありかつ膨張性黒鉛と膨張性マイクロカプセルとの質量比率が1:1〜10:1であることを特徴とする請求項1〜6のいずれか1項に記載された熱膨張性防火用組成物。
The mass ratio of boric acid and thermal expansion agent is 1: 5 to 10: 1, and the mass ratio of expandable graphite to expandable microcapsules is 1: 1 to 10: 1. The composition for heat-expandable fire prevention described in any one of 1-6.
JP2003343168A 2003-07-24 2003-10-01 Thermally expandable fire protection composition Expired - Fee Related JP3779291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343168A JP3779291B2 (en) 2003-07-24 2003-10-01 Thermally expandable fire protection composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003278987 2003-07-24
JP2003343168A JP3779291B2 (en) 2003-07-24 2003-10-01 Thermally expandable fire protection composition

Publications (2)

Publication Number Publication Date
JP2005054163A true JP2005054163A (en) 2005-03-03
JP3779291B2 JP3779291B2 (en) 2006-05-24

Family

ID=34380063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343168A Expired - Fee Related JP3779291B2 (en) 2003-07-24 2003-10-01 Thermally expandable fire protection composition

Country Status (1)

Country Link
JP (1) JP3779291B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257118A (en) * 2005-03-15 2006-09-28 Denki Kagaku Kogyo Kk Spongy molding
JP2007161976A (en) * 2005-12-15 2007-06-28 Hiroshima Kasei Ltd Fire-resistant resin composition, fire-resistant resin strip, fire-resistant tape
JP2008214463A (en) * 2007-03-02 2008-09-18 Fujikura Kasei Co Ltd Low-temperature foaming fireproof coating material
JP2010533220A (en) * 2007-07-10 2010-10-21 ビーエーエスエフ ソシエタス・ヨーロピア Flame retardant elastic copolymer
JP4669573B1 (en) * 2010-07-07 2011-04-13 電気化学工業株式会社 Thermally expandable joint material for fire protection
WO2012026654A1 (en) * 2010-08-24 2012-03-01 제일모직 주식회사 Highly insulating polyurethane foam and method for manufacturing same
JP2012214647A (en) * 2011-03-31 2012-11-08 Sekisui Chem Co Ltd Reactively curing thermally expandable resin composition
JP2012214646A (en) * 2011-03-31 2012-11-08 Sekisui Chem Co Ltd Thermally expandable resin composition
JPWO2011151937A1 (en) * 2010-06-04 2013-07-25 株式会社古河テクノマテリアル Fire prevention structure of ship, construction method of fire prevention structure and addition / removal / replacement method of cable to temporary fire prevention structure
US9181411B2 (en) 2009-11-26 2015-11-10 Cheil Industries Inc. Rigid polyurethane foam having excellent insulating properties and method for preparing the same
JP2016117882A (en) * 2014-12-17 2016-06-30 株式会社古河テクノマテリアル Non-curable thermal expandable putty composition
US20180273727A1 (en) * 2015-09-29 2018-09-27 Wanhua Chemical Group Co., Ltd. Halogen-free flame retardant thermoplastic polyurethane elastomer composition and product and flame retardant package thereof
CN109415568A (en) * 2016-11-15 2019-03-01 北川工业株式会社 Heat transfer elastic composition and heat transfer formed body
JP2020104347A (en) * 2018-12-26 2020-07-09 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Method for producing foamable polyurethane resin molded article containing thermally expandable microcapsule by reaction injection molding method
JP2022000510A (en) * 2016-01-27 2022-01-04 積水化学工業株式会社 Fire-resistant resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3934612B2 (en) * 2004-01-21 2007-06-20 電気化学工業株式会社 Rubber composition and foam molded article using the rubber composition

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257118A (en) * 2005-03-15 2006-09-28 Denki Kagaku Kogyo Kk Spongy molding
JP2007161976A (en) * 2005-12-15 2007-06-28 Hiroshima Kasei Ltd Fire-resistant resin composition, fire-resistant resin strip, fire-resistant tape
JP2008214463A (en) * 2007-03-02 2008-09-18 Fujikura Kasei Co Ltd Low-temperature foaming fireproof coating material
JP2010533220A (en) * 2007-07-10 2010-10-21 ビーエーエスエフ ソシエタス・ヨーロピア Flame retardant elastic copolymer
US9181411B2 (en) 2009-11-26 2015-11-10 Cheil Industries Inc. Rigid polyurethane foam having excellent insulating properties and method for preparing the same
JPWO2011151937A1 (en) * 2010-06-04 2013-07-25 株式会社古河テクノマテリアル Fire prevention structure of ship, construction method of fire prevention structure and addition / removal / replacement method of cable to temporary fire prevention structure
JP4669573B1 (en) * 2010-07-07 2011-04-13 電気化学工業株式会社 Thermally expandable joint material for fire protection
JP2012017380A (en) * 2010-07-07 2012-01-26 Denki Kagaku Kogyo Kk Thermally expandable joint material for fire prevention
US9045608B2 (en) 2010-08-24 2015-06-02 Cheil Industries Inc. Highly insulating polyurethane foam and method for manufacturing same
WO2012026654A1 (en) * 2010-08-24 2012-03-01 제일모직 주식회사 Highly insulating polyurethane foam and method for manufacturing same
JP2012214646A (en) * 2011-03-31 2012-11-08 Sekisui Chem Co Ltd Thermally expandable resin composition
JP2012214647A (en) * 2011-03-31 2012-11-08 Sekisui Chem Co Ltd Reactively curing thermally expandable resin composition
JP2016117882A (en) * 2014-12-17 2016-06-30 株式会社古河テクノマテリアル Non-curable thermal expandable putty composition
US20180273727A1 (en) * 2015-09-29 2018-09-27 Wanhua Chemical Group Co., Ltd. Halogen-free flame retardant thermoplastic polyurethane elastomer composition and product and flame retardant package thereof
US11613627B2 (en) * 2015-09-29 2023-03-28 Wanhua Chemical Group Co., Ltd. Halogen-free flame retardant thermoplastic polyurethane elastomer composition and product and flame retardant package thereof
JP2022000510A (en) * 2016-01-27 2022-01-04 積水化学工業株式会社 Fire-resistant resin composition
JP2022048180A (en) * 2016-01-27 2022-03-25 積水化学工業株式会社 Fire-resistant resin composition
CN109415568A (en) * 2016-11-15 2019-03-01 北川工业株式会社 Heat transfer elastic composition and heat transfer formed body
JP2020104347A (en) * 2018-12-26 2020-07-09 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Method for producing foamable polyurethane resin molded article containing thermally expandable microcapsule by reaction injection molding method

Also Published As

Publication number Publication date
JP3779291B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
JP2005088559A (en) Thermal expansive fire prevention structural matter
JP3779291B2 (en) Thermally expandable fire protection composition
KR101763744B1 (en) Fire retardant elastic foam material
JP6147101B2 (en) Thermally expandable refractory resin composition
JP4669573B1 (en) Thermally expandable joint material for fire protection
WO2014162718A1 (en) Thermally expandable fire-resistant material and fireproof construction of resin sash using same
JP2015098773A (en) Fire-preventive construction of resin sash
JP2008138180A (en) Rubber mixture for thermally expansible joint filling material, thermally expansible joint filling material and joint for fire-resistant double-layer pipe
JP4490860B2 (en) Joint materials and gaskets
JP3927162B2 (en) Foam molding
JP4277029B2 (en) Foam molding
JP3934612B2 (en) Rubber composition and foam molded article using the rubber composition
JP2012214646A (en) Thermally expandable resin composition
JP6457725B2 (en) Resin sash fireproof structure
JP3813955B2 (en) Fire protection panel
JP4386441B2 (en) Fireproof joint material
JP2006087819A (en) Joint filling material and gasket for fire prevention
JP6460982B2 (en) Thermally expandable refractory resin composition
JP4238192B2 (en) Fireproof joint material and manufacturing method thereof
JP2014211079A (en) Fireproof construction of resin sash
JP6949452B2 (en) Fireproof structure of compartment through hole
JP6457726B2 (en) Resin sash fireproof structure
JP3455801B2 (en) Thermally expandable fire protection composition
JP4860672B2 (en) Fireproof joint material
JP2006052566A (en) Joint sealing material for fire prevention

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3779291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20060720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees