JP3731622B2 - Optical waveguide device - Google Patents

Optical waveguide device Download PDF

Info

Publication number
JP3731622B2
JP3731622B2 JP25274896A JP25274896A JP3731622B2 JP 3731622 B2 JP3731622 B2 JP 3731622B2 JP 25274896 A JP25274896 A JP 25274896A JP 25274896 A JP25274896 A JP 25274896A JP 3731622 B2 JP3731622 B2 JP 3731622B2
Authority
JP
Japan
Prior art keywords
optical waveguide
electrode layer
ground electrode
substrate
signal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25274896A
Other languages
Japanese (ja)
Other versions
JPH1096880A (en
Inventor
正治 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25274896A priority Critical patent/JP3731622B2/en
Publication of JPH1096880A publication Critical patent/JPH1096880A/en
Application granted granted Critical
Publication of JP3731622B2 publication Critical patent/JP3731622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電気光学効果を利用して導波光制御を行う光導波路デバイスに関する。
【0002】
光導波路デバイスは、光通信の高速化・大容量化に欠かせないキーデバイスとして注目されている。高速通信網の拡充には、10GHzを越える高周波信号に対する応答特性に優れ且つ安価な光導波路デバイスが必要である。
【0003】
【従来の技術】
光通信においては、光ファイバからなる伝送路内に、変調器・スイッチなどの光導波路デバイスが必要に応じて挿入される。光導波路デバイスは、電気光学材料の基板の表層部に幅数μmの光導波路を形成し、その後に絶縁層と導電膜からなる電極とを順に基板上に設けた光機能デバイスであり、通常は筐体内に納めた状態で使用される。
【0004】
光導波路デバイスでは、広帯域化及び低電圧駆動を実現するため、電極構造として、コプレーナ導波型電極構造(CPW:CoPlanar Waveguide)又は非対称コプレーナ・ストリップ電極構造(CPS:CoPlanar Strip)が採用されている。これらの構造は、ともに、幅の小さい第1の進行波電極(信号電極)と幅の大きい第2の進行波電極(接地電極)とを同一平面上に配置したものである。CPWでは信号電極の両側に接地電極が設けられており、CPSでは信号電極の片側に接地電極が設けられている。
【0005】
光導波路の延長方向(光伝播方向)における基板の両端には、光ファイバが接続される。このため、信号電極及び接地電極と外部回路との接続は、光導波路の幅方向における基板の一端側で行われる。つまり、信号電極は、光導波路に沿って延びる主部とその両端から幅方向に基板の端部まで延びる引出し部とからなる凹字状にパターニングされており、使用時には引出し部の先端が筐体側と導電接続される。接地電極も、筐体側との導電接続のために、信号電極の主部の近傍から基板の端部まで延長されている。
【0006】
【発明が解決しようとする課題】
従来の光導波路デバイスでは、光応答特性(S21)の周波数依存性(周波数特性)を測定すると、10GHz〜20GHzの範囲内の特定の周波数で特性の顕著な低下(リップル)が見られた。
【0007】
本発明は、周波数特性が良好で安価な光導波路デバイスの提供を目的としている。
【0008】
【課題を解決するための手段】
リップルの原因として、共振による電力損失が考えられる。共振の防止には、基準電位の設定(いわゆる接地)の強化、すなわち接地用導体の大型化が有効である。一般のプリント回路においては、基板の裏面にベタ電極を設け、表側の配線パターンとスルーホールなどで接続することにより、接地を強化する手法が用いられている。しかし、光導波路デバイスにおいては、電気光学材料の基板にスルーホールを形成することは極めて困難であり、裏面にベタ電極を設けることもコストの大幅な上昇を招いてしまう。これらのことから、リップルを低減するために、基板上の接地電極を外部導体と接続することによって接地を強化する。
【0009】
接続の手法としては、リボン又はワイヤなどのジャンパ導体の圧着(ボンディング)がコスト面で好適である。より少ないジャンパ導体の圧着で十分な接地状態を得るために圧着の部位を模索した。それにより、信号電極の屈曲部分(主部の両端)の近傍が最適であることが判った。ジャンパ導体の長さを最小にするため、外部導体を接地電極上の圧着位置にできるだけ近づけるのが望ましい。
【0010】
信号電極の主部の両端のどちらか一方の近傍において接地電極を外部導体と接続すれば、所望の特性が得られる場合もある。ただし、量産性の上では、どちらか一方の接続が有効か否かをチェックするよりも、主部の両端のそれぞれの近傍において接地電極を外部導体と接続する方が有利である。また、幅の広いジャンパ導体を用いて、接地電極のうちの主部の全長にわたる広範囲の領域と外部導体と接続することも可能である。
【0011】
請求項1の発明のデバイスは、表層部に光導波路が形成された電気光学材料の基板と、前記基板の表面を覆う絶縁層と、前記光導波路に沿った主部及び前記主部の一端及び他端のそれぞれから前記光導波路の幅方向の一端側である外部接続側へ延びる引出し部からなる信号電極層と、信号電極層を囲む平面視凹字形状の接地電極層とを有し、前記信号電極層及び接地電極層が前記絶縁層の上に形成された光導波路デバイスであって、前記接地電極層が、前記光導波路に対する前記外部接続側の反対側において、ジャンパ導体によって外部導体と電気的に接続されており、前記ジャンパ導体は、前記接地電極層における前記信号電極層の前記主部の一端及び他端のそれぞれに近接した計2個の屈曲形状領域のみの表面に圧着されたものである。
【0012】
請求項2の発明の光導波路デバイスでは、前記外部導体が前記基板を収納する筐体である。
【0015】
【発明の実施の形態】
図1は本発明に係る変調器ユニットUの外観図である。
変調器ユニットUは、光導波路デバイスである変調器1、及び長さが数cmの細長い四角柱状の金属製の筐体2などから構成されており、光ファイバ3A,3Bからなる光伝送路内に挿入した状態で使用される。筐体2の側面には2個のコネクタ21,22が取付けられている。使用時には、一方のコネクタ21を介して変調器1と高周波信号源7とが接続され、他方のコネクタ21を介して変調器1と50Ω程度の終端抵抗8とが接続される。
【0016】
図2は変調器1の模式図である。図2(A)は電極の平面形状を示し、図2(B)は図2(A)のb−b矢視断面の構造を示している。また、図3は変調器ユニットUの要部の断面図である。
【0017】
変調器1は、電気光学材料からなる基板11、光導波路12、信号電極層13、接地電極層14,15、及びバッファ層16から構成されている。基板11はZカットのLiNbO3 結晶である。基板11の外形寸法は、例えば1mm(X)×60mm(Y)×1mm(Z)である。
【0018】
光導波路12は、互いに平行な一対の分波路121,122を有したマッハツェンダ型導波路であり、基板11の表層部にチタンを熱拡散させることによって形成されている。光導波路12の幅は約7μmである。信号電極層13及び接地電極層14,15は、厚さ20〜30μmの金の厚膜であり、金の蒸着膜(厚さ0.2μm程度)を下地とする電解めっき法によって形成されている。バッファ層16は電極金属による光吸収を防止するための絶縁層(厚さ1.3μm程度)であり、基板表面のほぼ全域を被覆するように設けられている。バッファ層16の材質は二酸化珪素である。マッハツェンダ型導波路において、一方の分波路11に電界を加えると、導波光の位相がシフトし、他方の分波路12を伝播する導波光との間に位相差が生じる。位相の異なる導波光を合成することにより、位相差に応じた強度の出力光が得られる。位相のシフト量は、印加電圧と信号電極層13の伝播方向M1の長さ(電極長)Lとに依存する。
【0019】
本実施形態における変調器1の電極パターンは、信号電極層13の両側に接地電極層14,15を配置したコプレーナ導波路型であり、分波路121,122の配列方向(幅方向)M2における基板11の一端側(外部接続側)で外部回路と接続するようにパターニングされている。すなわち、信号電極層13は、分波路121に沿って延びる直線状の主部131と、主部131の一端及び他端のそれぞれから基板11の外部接続側の端部まで延びる引出し部132とからなる。各引出し部132の先端部分は接続端子とするために膨大化されている。また、接地電極層14は主部131の近傍から外部接続側の端部まで拡がっており、接地電極層15の両端部分が外部接続側の端部まで延長されている。接地電極層14は信号電極層13によって3方が囲まれ、信号電極層13は接地電極層15によって3方が囲まれている。
【0020】
信号電極13の主部131の長さLは約4mmであり、幅w13は5μmである。主部131と各接地電極層14,15との間隙寸法は20μmである。接地電極14の最大幅w14は655μmであり、接地電極15の最小幅w15は300μmである。また、引出し部132の膨大部分の幅は200μm程度とされ、基板11の外部接続側の端部における電極間距離は600μm程度とされている。
【0021】
以上の構成の変調器1は、筐体2の内部に納められ、基板11の裏面と筐体2の内底面とが接着剤90(図3参照)で接合される。光導波路12は両端において図示しない光ファイバと光学的に接合され、信号電極層13及び接地電極層14,15は筐体2に設けられた図示しない外部接続端子と電気的に接続される。筐体2の外部接続端子は、上述のコネクタ21,22の所定の端子と接続されている。変調器1と筐体2の外部接続端子との接続は、金リボン31〜36の圧着によって行われる。信号電極層13の一方の引出し部132は金リボン31を介して高周波信号源7と接続され、他方の引出し部132は金リボン32を介して終端抵抗8と接続される。また、接地電極層14は金リボン33,34を介し、接地電極層15は金リボン35,36を介して、それぞれ外部の接地ラインと接続される。
【0022】
このような動作の上で不可欠の配線接続に加えて、周波数特性を改善するために、変調器1では幅方向M2における外部接続側の反対側においても、接地電極層15と筐体2とが、金リボン37,38の圧着によって電気的に接続されている。各金リボン37,38の幅は500μmであり、厚さが30μmである。
【0023】
接地電極層15における金リボン37,38の圧着位置は、信号電極層13の主部131の一端及び他端のそれぞれに近接した屈曲形状領域E1,E2に選定されている。圧着面の大きさは500μm×200μm程度である。また、金リボン37,38の長さを最小限とするため、基板11の側面11sと筐体2との対向距離(図3参照)は100μm以下に設定されている。なお、図3のように、筐体2は内側面に段差を有した本体2aとその開口を塞ぐ蓋体2bとから構成されている。そして、金リボン37,38は本体2aの段差部の上面に接合されている。
【0024】
図4は変調器1の周波数特性を示すグラフである。
図中の実線が示すように、接地電極層15の屈曲形状領域E1,E2を筐体2と接続することにより、接地が強化されて共振が抑えられ、0〜20GHzの範囲でなだらかな特性が得られた。これに対し、図中の破線が示すように、金リボン37,38による外部導体(筐体2)との接続を省略した場合には、リップルが生じた。
【0025】
以上の実施形態によれば、外部回路との接続のための配線と同じ圧着によって接地が強化されるので、特性改善のための特別の工程が不要であり、特性改善に伴うコスト上昇を最小限とすることができる。
【0026】
上述の実施形態において、接地電極14を省略し、非対称コプレーナ・ストリップ電極構造にしてもよい。良好な特性が得られる場合には、屈曲形状領域E1,E2の一方のみを筐体2と接続してもよい。さらに、圧着の信頼性が確保できる場合には、幅の広いジャンパ導体(金リボンなど)を用いて、屈曲形状領域E1と屈曲形状領域E2とに跨がる広範囲の領域を筐体2と接続してもよい。なお、変調器1に限らず、スイッチなどの他の光導波路デバイスにも本発明は適用可能である。基板材料、各部の形状、寸法条件などは本発明の主旨に沿って種々変更することができる。
【0027】
【発明の効果】
請求項1又は請求項2の発明によれば、周波数特性が改善されかつ量産に適した光導波路デバイスを得ることができ、周波数特性良好な導波光制御を安価に実現することができる。
【図面の簡単な説明】
【図1】本発明に係る変調器ユニットの外観図である。
【図2】変調器の模式図である。
【図3】変調器ユニットの要部の断面図である。
【図4】変調器の周波数特性を示すグラフである。
【符号の説明】
1 変調器(光導波路デバイス)
2 筐体(外部導体)
11 基板
13 信号電極層
15 接地電極層
16 バッファ層(絶縁層)
37,38 金リボン(ジャンパ導体)
121 分波路(光導波路)
131 主部
132 引出し部
E1,E2 屈曲形状領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical waveguide device that performs guided light control using an electro-optic effect.
[0002]
Optical waveguide devices are attracting attention as key devices indispensable for speeding up and increasing the capacity of optical communications. In order to expand the high-speed communication network, an optical waveguide device having excellent response characteristics for high-frequency signals exceeding 10 GHz and an inexpensive cost is required.
[0003]
[Prior art]
In optical communication, an optical waveguide device such as a modulator or a switch is inserted into a transmission line made of an optical fiber as necessary. An optical waveguide device is an optical functional device in which an optical waveguide having a width of several μm is formed on a surface layer portion of a substrate of an electro-optic material, and then an insulating layer and an electrode made of a conductive film are sequentially provided on the substrate. Used in a state of being housed in a housing.
[0004]
In an optical waveguide device, a coplanar waveguide electrode structure (CPW: CoPlanar Waveguide) or an asymmetric coplanar strip electrode structure (CPS: CoPlanar Strip) is adopted as an electrode structure in order to realize a wide band and low voltage drive. . In both of these structures, a first traveling wave electrode (signal electrode) having a small width and a second traveling wave electrode (ground electrode) having a large width are arranged on the same plane. In the CPW, ground electrodes are provided on both sides of the signal electrode, and in the CPS, a ground electrode is provided on one side of the signal electrode.
[0005]
Optical fibers are connected to both ends of the substrate in the extending direction of the optical waveguide (light propagation direction). For this reason, the connection between the signal electrode and the ground electrode and the external circuit is performed on one end side of the substrate in the width direction of the optical waveguide. In other words, the signal electrode is patterned in a concave shape consisting of a main portion extending along the optical waveguide and a lead portion extending from both ends thereof to the end portion of the substrate in the width direction. And conductively connected. The ground electrode is also extended from the vicinity of the main part of the signal electrode to the end of the substrate for conductive connection with the housing side.
[0006]
[Problems to be solved by the invention]
In the conventional optical waveguide device, when the frequency dependence (frequency characteristic) of the optical response characteristic (S 21 ) is measured, a remarkable deterioration (ripple) of the characteristic is observed at a specific frequency within the range of 10 GHz to 20 GHz.
[0007]
An object of the present invention is to provide an inexpensive optical waveguide device having good frequency characteristics.
[0008]
[Means for Solving the Problems]
As a cause of the ripple, power loss due to resonance can be considered. In order to prevent resonance, it is effective to strengthen the setting of the reference potential (so-called grounding), that is, to increase the size of the grounding conductor. In a general printed circuit, a method is used in which grounding is strengthened by providing a solid electrode on the back surface of a substrate and connecting the front wiring pattern with a through-hole. However, in an optical waveguide device, it is extremely difficult to form a through hole in a substrate made of an electro-optic material, and providing a solid electrode on the back surface also causes a significant increase in cost. From these things, in order to reduce a ripple, grounding is strengthened by connecting the ground electrode on a board | substrate with an external conductor.
[0009]
As a connection method, a crimping (bonding) of a jumper conductor such as a ribbon or a wire is preferable in terms of cost. In order to obtain a sufficient grounding state with less crimping of the jumper conductor, the crimping part was searched. Thereby, it was found that the vicinity of the bent portion of the signal electrode (both ends of the main portion) is optimal. In order to minimize the length of the jumper conductor, it is desirable to place the outer conductor as close as possible to the crimping position on the ground electrode.
[0010]
If the ground electrode is connected to the external conductor in the vicinity of either one of both ends of the main portion of the signal electrode, desired characteristics may be obtained. However, in terms of mass productivity, it is more advantageous to connect the ground electrode to the external conductor in the vicinity of both ends of the main part than to check whether one of the connections is effective. In addition, it is possible to connect a wide area over the entire length of the main part of the ground electrode and the external conductor using a wide jumper conductor.
[0011]
The device of the invention of claim 1 is a substrate of an electro-optic material having an optical waveguide formed on a surface layer portion, an insulating layer covering the surface of the substrate, a main portion along the optical waveguide, and one end of the main portion; A signal electrode layer comprising a lead portion extending from each of the other ends to the external connection side which is one end side in the width direction of the optical waveguide, and a ground electrode layer having a concave shape in plan view surrounding the signal electrode layer, An optical waveguide device in which a signal electrode layer and a ground electrode layer are formed on the insulating layer, wherein the ground electrode layer is electrically connected to an external conductor by a jumper conductor on a side opposite to the external connection side with respect to the optical waveguide. The jumper conductors are pressure-bonded to the surface of only a total of two bent regions adjacent to one end and the other end of the main portion of the signal electrode layer in the ground electrode layer. It is.
[0012]
In the optical waveguide device according to a second aspect of the present invention, the outer conductor is a housing that houses the substrate.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an external view of a modulator unit U according to the present invention.
The modulator unit U is composed of a modulator 1 which is an optical waveguide device, a long rectangular pillar-shaped metal casing 2 having a length of several centimeters, and the like, and is included in an optical transmission path composed of optical fibers 3A and 3B. Used when inserted in Two connectors 21 and 22 are attached to the side surface of the housing 2. In use, the modulator 1 and the high-frequency signal source 7 are connected via one connector 21, and the modulator 1 and a termination resistor 8 of about 50Ω are connected via the other connector 21.
[0016]
FIG. 2 is a schematic diagram of the modulator 1. 2A shows the planar shape of the electrode, and FIG. 2B shows the structure of the cross section taken along the line bb in FIG. 2A. FIG. 3 is a cross-sectional view of a main part of the modulator unit U.
[0017]
The modulator 1 includes a substrate 11 made of an electro-optic material, an optical waveguide 12, a signal electrode layer 13, ground electrode layers 14 and 15, and a buffer layer 16. The substrate 11 is a Z-cut LiNbO 3 crystal. The external dimensions of the substrate 11 are, for example, 1 mm (X) × 60 mm (Y) × 1 mm (Z).
[0018]
The optical waveguide 12 is a Mach-Zehnder type waveguide having a pair of parallel waveguides 121 and 122, and is formed by thermally diffusing titanium in the surface layer portion of the substrate 11. The width of the optical waveguide 12 is about 7 μm. The signal electrode layer 13 and the ground electrode layers 14 and 15 are thick gold films having a thickness of 20 to 30 μm, and are formed by an electrolytic plating method using a gold deposited film (thickness of about 0.2 μm) as a base. . The buffer layer 16 is an insulating layer (thickness of about 1.3 μm) for preventing light absorption by the electrode metal, and is provided so as to cover almost the entire surface of the substrate. The material of the buffer layer 16 is silicon dioxide. In the Mach-Zehnder type waveguide, when an electric field is applied to one of the branch waveguides 1 2 1, the phase of the guided light shifts, and a phase difference is generated between the waveguide light propagating through the other branch waveguide 1 2 2. By combining the guided light beams having different phases, output light having an intensity corresponding to the phase difference can be obtained. The amount of phase shift depends on the applied voltage and the length (electrode length) L of the signal electrode layer 13 in the propagation direction M1.
[0019]
The electrode pattern of the modulator 1 in this embodiment is a coplanar waveguide type in which the ground electrode layers 14 and 15 are arranged on both sides of the signal electrode layer 13, and the substrate in the arrangement direction (width direction) M <b> 2 of the splitters 121 and 122. 11 is patterned so as to be connected to an external circuit on one end side (external connection side). That is, the signal electrode layer 13 includes a linear main portion 131 that extends along the branch 121 and a lead-out portion 132 that extends from one end and the other end of the main portion 131 to the end on the external connection side of the substrate 11. Become. The leading end portion of each drawer portion 132 is enlarged to be a connection terminal. The ground electrode layer 14 extends from the vicinity of the main portion 131 to the end on the external connection side, and both end portions of the ground electrode layer 15 are extended to the end on the external connection side. The ground electrode layer 14 is surrounded on three sides by the signal electrode layer 13, and the signal electrode layer 13 is surrounded on the three sides by the ground electrode layer 15.
[0020]
The length L of the main portion 131 of the signal electrode 13 is about 4 mm, and the width w13 is 5 μm. The gap dimension between the main part 131 and each ground electrode layer 14 and 15 is 20 μm. The maximum width w14 of the ground electrode 14 is 655 μm, and the minimum width w15 of the ground electrode 15 is 300 μm. Further, the width of the enormous portion of the lead-out portion 132 is about 200 μm, and the distance between the electrodes at the end of the substrate 11 on the external connection side is about 600 μm.
[0021]
The modulator 1 having the above configuration is housed in the housing 2 and the back surface of the substrate 11 and the inner bottom surface of the housing 2 are joined by an adhesive 90 (see FIG. 3). The optical waveguide 12 is optically joined to an optical fiber (not shown) at both ends, and the signal electrode layer 13 and the ground electrode layers 14 and 15 are electrically connected to external connection terminals (not shown) provided in the housing 2. External connection terminals of the housing 2 are connected to predetermined terminals of the connectors 21 and 22 described above. Connection between the modulator 1 and the external connection terminal of the housing 2 is performed by crimping the gold ribbons 31 to 36. One lead portion 132 of the signal electrode layer 13 is connected to the high-frequency signal source 7 via the gold ribbon 31, and the other lead portion 132 is connected to the termination resistor 8 via the gold ribbon 32. The ground electrode layer 14 is connected to an external ground line via gold ribbons 33 and 34, and the ground electrode layer 15 is connected to an external ground line via gold ribbons 35 and 36, respectively.
[0022]
In order to improve the frequency characteristics in addition to the wiring connection indispensable in such an operation, the modulator 1 includes the ground electrode layer 15 and the housing 2 on the side opposite to the external connection side in the width direction M2. The gold ribbons 37 and 38 are electrically connected by crimping. The gold ribbons 37 and 38 have a width of 500 μm and a thickness of 30 μm.
[0023]
The crimping positions of the gold ribbons 37 and 38 in the ground electrode layer 15 are selected in the bent regions E1 and E2 close to the one end and the other end of the main portion 131 of the signal electrode layer 13, respectively. The size of the crimping surface is about 500 μm × 200 μm. Further, in order to minimize the length of the gold ribbons 37 and 38, the facing distance (see FIG. 3) between the side surface 11s of the substrate 11 and the housing 2 is set to 100 μm or less. As shown in FIG. 3, the housing 2 is composed of a main body 2 a having a step on the inner surface and a lid 2 b that closes the opening. The gold ribbons 37 and 38 are joined to the upper surface of the step portion of the main body 2a.
[0024]
FIG. 4 is a graph showing the frequency characteristics of the modulator 1.
As shown by the solid line in the figure, by connecting the bent regions E1 and E2 of the ground electrode layer 15 to the housing 2, the grounding is strengthened and resonance is suppressed, and the characteristics are gentle in the range of 0 to 20 GHz. Obtained. On the other hand, as indicated by the broken line in the figure, when the connection with the external conductor (housing 2) by the gold ribbons 37 and 38 is omitted, a ripple occurs.
[0025]
According to the above embodiment, since the grounding is strengthened by the same crimping as the wiring for connection to the external circuit, a special process for improving the characteristics is unnecessary, and the cost increase due to the characteristics improvement is minimized. It can be.
[0026]
In the above-described embodiment, the ground electrode 14 may be omitted and an asymmetric coplanar strip electrode structure may be used. When good characteristics are obtained, only one of the bent regions E1 and E2 may be connected to the housing 2. Further, when the reliability of the crimping can be ensured, a wide area extending over the bent shape region E1 and the bent shape region E2 is connected to the housing 2 using a wide jumper conductor (gold ribbon or the like). May be. The present invention can be applied not only to the modulator 1 but also to other optical waveguide devices such as a switch. The substrate material, the shape of each part, dimensional conditions, and the like can be variously changed in accordance with the gist of the present invention.
[0027]
【The invention's effect】
According to the invention of claim 1 or claim 2, it is possible to frequency characteristics can be obtained an optical waveguide device suitable for improved and mass production and low cost good guided light control of the frequency characteristic.
[Brief description of the drawings]
FIG. 1 is an external view of a modulator unit according to the present invention.
FIG. 2 is a schematic diagram of a modulator.
FIG. 3 is a cross-sectional view of a main part of a modulator unit.
FIG. 4 is a graph showing frequency characteristics of a modulator.
[Explanation of symbols]
1 Modulator (optical waveguide device)
2 Housing (outer conductor)
11 Substrate 13 Signal electrode layer 15 Ground electrode layer 16 Buffer layer (insulating layer)
37,38 Gold ribbon (jumper conductor)
121 splitter (optical waveguide)
131 Main part 132 Drawer part E1, E2 Bending shape area

Claims (2)

表層部に光導波路が形成された電気光学材料の基板と、前記基板の表面を覆う絶縁層と、前記光導波路に沿った主部及び前記主部の一端及び他端のそれぞれから前記光導波路の幅方向の一端側である外部接続側へ延びる引出し部からなる信号電極層と、信号電極層を囲む平面視凹字形状の接地電極層とを有し、前記信号電極層及び接地電極層が前記絶縁層の上に形成された光導波路デバイスであって、
前記接地電極層が、前記光導波路に対する前記外部接続側の反対側において、ジャンパ導体によって外部導体と電気的に接続されており、
前記ジャンパ導体は、前記接地電極層における前記信号電極層の前記主部の一端及び他端のそれぞれに近接した計2個の屈曲形状領域のみの表面に圧着されてなる
ことを特徴とする光導波路デバイス。
The substrate of the electro-optic material in which the optical waveguide is formed in the surface layer portion, the insulating layer covering the surface of the substrate, the main portion along the optical waveguide, and one end and the other end of the main portion of the optical waveguide A signal electrode layer including a lead portion extending to the external connection side, which is one end side in the width direction, and a ground electrode layer having a concave shape in plan view surrounding the signal electrode layer, and the signal electrode layer and the ground electrode layer are An optical waveguide device formed on an insulating layer,
The ground electrode layer is electrically connected to the external conductor by a jumper conductor on the side opposite to the external connection side with respect to the optical waveguide,
The optical waveguide is characterized in that the jumper conductor is crimped to the surface of only a total of two bent regions adjacent to one end and the other end of the main part of the signal electrode layer in the ground electrode layer. device.
前記外部導体は前記基板を収納する筐体である
請求項1記載の光導波路デバイス。
The optical waveguide device according to claim 1 , wherein the outer conductor is a housing that houses the substrate .
JP25274896A 1996-09-25 1996-09-25 Optical waveguide device Expired - Lifetime JP3731622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25274896A JP3731622B2 (en) 1996-09-25 1996-09-25 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25274896A JP3731622B2 (en) 1996-09-25 1996-09-25 Optical waveguide device

Publications (2)

Publication Number Publication Date
JPH1096880A JPH1096880A (en) 1998-04-14
JP3731622B2 true JP3731622B2 (en) 2006-01-05

Family

ID=17241740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25274896A Expired - Lifetime JP3731622B2 (en) 1996-09-25 1996-09-25 Optical waveguide device

Country Status (1)

Country Link
JP (1) JP3731622B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8270777B2 (en) 2007-11-01 2012-09-18 Sumitomo Osaka Cement Co., Ltd. Optical modulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8270777B2 (en) 2007-11-01 2012-09-18 Sumitomo Osaka Cement Co., Ltd. Optical modulator

Also Published As

Publication number Publication date
JPH1096880A (en) 1998-04-14

Similar Documents

Publication Publication Date Title
USRE46932E1 (en) Optical modulator module
EP1335238A1 (en) Optical phase modulator with electrode arrangement having a wideband transmission response
JP4027109B2 (en) Optical module equipped with an element that changes the optical phase by the electro-optic effect
US20030016896A1 (en) Electro-optic waveguide devices
JP3043614B2 (en) Waveguide type optical device
JPH06130338A (en) Optical waveguide device
JP3731622B2 (en) Optical waveguide device
JP4107890B2 (en) Optical waveguide device
JP3995537B2 (en) Light modulator
US20020131745A1 (en) Electro-optic waveguide devices
WO2002037149A1 (en) Low-loss electrode structures for optical modulation applications
US20220334415A1 (en) Optical modulator and optical transmission apparatus using same
JP2885218B2 (en) Light control device
JP2011232583A (en) Optical modulator module
JP4105017B2 (en) Waveguide type dielectric filter
CN211206992U (en) Optical modulator and optical transmission device using the same
JP4105011B2 (en) Waveguide type dielectric filter
CN110320679B (en) Optical waveguide element module
US11953767B2 (en) Optical modulator and optical transmission apparatus using same
JP2849369B2 (en) Packaging structure of waveguide type optical device
JP3366777B2 (en) Optical waveguide device
US20220342241A1 (en) Optical modulator and optical transmission apparatus using same
JP2538575Y2 (en) Coplanar electrode holding structure
JPH05257104A (en) Optical control element
JPS61190322A (en) Optical switch

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

EXPY Cancellation because of completion of term