JP3731051B2 - Sensor for measuring pressure distribution and frictional force distribution - Google Patents

Sensor for measuring pressure distribution and frictional force distribution Download PDF

Info

Publication number
JP3731051B2
JP3731051B2 JP2002269741A JP2002269741A JP3731051B2 JP 3731051 B2 JP3731051 B2 JP 3731051B2 JP 2002269741 A JP2002269741 A JP 2002269741A JP 2002269741 A JP2002269741 A JP 2002269741A JP 3731051 B2 JP3731051 B2 JP 3731051B2
Authority
JP
Japan
Prior art keywords
pressure
sensor
distribution
frictional force
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002269741A
Other languages
Japanese (ja)
Other versions
JP2003098022A (en
Inventor
滋 佐藤
肇 杉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002269741A priority Critical patent/JP3731051B2/en
Publication of JP2003098022A publication Critical patent/JP2003098022A/en
Application granted granted Critical
Publication of JP3731051B2 publication Critical patent/JP3731051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、面状の圧力分布及び摩擦力分布を測定するためのセンサに関するものである。
【0002】
【従来の技術】
面状の圧力分布計測法としては、従来から、ロードセルを測定面上に必要数配置し、その出力を増幅器により適宜増幅して計測する方法や、本発明者らが既に特許第2034846号(特許文献1)において明らかにしているように、面状の感圧導電性ゴムにより形成した感圧素子をマトリクス状に配置し、所要の走査回路やスイッチング回路、信号処理回路などと組み合わせることにより計測する方法が知られている。また、本発明者らが既に特許第2053811号(特許文献2)において明らかにしたように、後者の方法における材料の可撓性を利用して、手袋に類似した形状に検出部を構成することをもって、人間の手の操作力分布を測定する方法も知られている。
【0003】
一方、摩擦力の計測方法としては、ロードセルによる3分力計などを用いる方法が一般的に普及しているほか、本発明者らがすでに特許第1646028号(特許文献3)において明らかにしたように、弾性体のスペーサを介して対向させた一対の面圧力センサにより、作用する力の重心位置のずれを測定することをもって、摩擦係数を検出し、別途適宜測定した面圧力に該摩擦係数を乗ずることによって摩擦力を計測する方法が知られている。特に、上記3分力計を多数配列すれば、圧力分布と摩擦力分布とを同時に計測することも場合によって可能であるが、検出部が堅く寸法も小型化が困難なため、たとえば人間が物体を操作する場合のように、測定対象となる接触面の一方乃至両方が柔軟性を有していたり、易損性であったりする場合や、人間の手のような狭い範囲での測定には、対応できなかった。
【特許文献1】
特公平7−58223号公報
【特許文献2】
特公平7−86439号公報
【特許文献3】
特公平3−47699号公報
【0004】
【発明が解決しようとする課題】
本発明の解決課題は、上述の事情に鑑み、構造が比較的簡単で、かつ必要に応じて柔軟性を有する材料で構成可能な圧力分布及び摩擦力分布測定用センサを提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するための本発明による圧力分布及び摩擦力分布測定用のセンサは、相互に嵌合する形状の多数の凹凸を対向面に有する一対の圧板と、それらの圧板の対向面間に挟まれたシート状の感圧導電性素材とを有し、かつ上記圧板の対向面の凹凸の例えば頂面、底面及びそれらの中間平面にそれぞれ対向する電極を配設して検出部を構成し、上記各検出部における電極間の導電性を検出する検出手段を設け、検出した導電性に基づいて、圧板の外側面であるセンサ面に垂直方向に作用する圧力分布及び該センサ面と平行に作用する摩擦力分布をそれぞれ測定可能にしたことを特徴とするものである。
【0006】
また、本発明によるセンサは、上記構成のセンサにおけるシート状の感圧導電性素材及び電極に代えて、圧板の対向面間における電極の配設位置に薄型の圧力検出素子を挟設せしめることにより、一対の圧板の対向面の各部分に作用する圧力を測定可能に構成したことを特徴とするものである。
すなわち、上記本発明によるセンサは、相互に嵌合する形状の多数の凹凸を対向面に有する一対の圧板と、それらの圧板の対向面の凹凸の例えば頂面、底面及びそれらの中間平面の間に挟まれた薄型の圧力検出素子により構成される検出部とを有し、上記各検出部における圧力検出素子出力を検出する検出手段を設け、検出した圧力に基づいて、圧板の外側面であるセンサ面に垂直方向に作用する圧力分布、及び該センサ面と平行に作用する摩擦力分布をそれぞれ測定可能にしたことを特徴とするものである。
【0007】
さらに、本発明のセンサは、前記構成のセンサにおける感圧導電性素材及び電極に代えて、対向面に相互に嵌合する形状の多数の凹凸を有する一対の圧板の間に、圧力分布記録フィルムを挟設し、その圧力分布記録フィルムの記録に基づいて上述した面状の圧力分布及び摩擦力分布を測定可能にしたことを特徴とするものである。
すなわち、上記本発明のセンサは、相互に嵌合する形状の多数の凹凸を対向面に有する一対の圧板と、それらの圧板の対向面間に挟設された圧力分布記録フィルムにより構成される検出部とを有し、上記圧力分布記録フィルムの記録に基づいて、圧板の外側面であるセンサ面に垂直方向に作用する圧力分布、及び該センサ面と平行に作用する摩擦力分布をそれぞれ測定可能にしたことを特徴とするものである。
【0008】
上記構成のセンサにおいては、例えば圧板の対向面の凹凸にセンサ面に平行な底面及び頂面を設けず、相互に嵌合する傾斜面のみよって該凹凸を形成することができ、また、圧板の対向面の凹凸の中途にセンサ面に平行な第三面を設けることができる。
【0009】
上記の構成を有する面状の圧力分布及び摩擦力分布測定用のセンサによれば、それを作業機械の作用面や人間の体表面などに装着し、各電極等の配設様態に応じた処理回路を接続することにより、当該作用面や体表面と接触する対象物との間の圧力分布及び摩擦力分布を同時的に計測することができる。
また、前記圧力分布記録フィルムを用いる場合には、同様にそのセンサを作業機械の作用面や人間の体表面などに取り付け、作業後に圧力記録フィルムを取り出して、記録された圧力記録を適宜解析することにより、当該作用面や体表面と接触する対象物との間の最大圧力分布及び最大摩擦力分布を測定することができる。
【0010】
【発明の実施の形態】
以下に本発明の実施例を図面を参照しながら詳述する。
図1は、本発明の検出原理を説明するための断面図である。本発明に係るセンサは、面状の圧力分布及び摩擦力分布を測定するためのセンサであり、図1ではそのセンサを1次元のものとして表現しているが、実際には面状として2次元的に構成されるものである。
【0011】
図1に示すセンサは、対向面に相互に嵌合する形状の多数の凹凸を有する一対の圧板1,2と、それらの圧板1,2のほぼ一定間隔の対向面間に挟まれたシート状の感圧導電性素材3とを有し、上記圧板1,2の対向面の凹凸の頂面11、底面12及びそれらの間の中間平面13に、感圧導電性素材3を挟んで互いに対向する電極Aと電極Aとにより構成される検出部A、同様に対向する電極Bと電極Bにより構成される検出部B、電極Cと電極Cにより構成される検出部C、電極Dと電極Dにより構成される検出部Dを配設している。上記頂面11と底面12との間の中間平面13は、図示したように、圧板1,2の外側面であるセンサ面1a,2aに対して角度θだけ傾斜する傾斜面とすることもできるが、上記センサ面1a,2aに垂直な側面とすることもできる。
そして、上記圧板1,2の対向する各電極間には、感圧導電性素材3の導電性に基づいて圧力分布及び摩擦力分布を測定するため、その測定手段として上記各電極の配設様態に応じた処理回路が接続される。
【0012】
上記構成を有するセンサは、感圧導電性素材3の各部分に配した検出部A〜Dによって、圧板1,2に作用する圧力分布及び摩擦力分布を測定できるようにしたものであり、更に具体的には、上記圧板1,2の対向面における凹凸の頂面11、底面12及びそれらの間の中間平面(傾斜面)13において、センサ面1a,2aに垂直方向に作用する圧力pの分布を測定し、凹凸の中間平面(傾斜面または側面)においてセンサ面1a,2aと平行方向に作用する摩擦力tの分布を測定するものである。
【0013】
すなわち、検出部の近傍において単位面積当たり圧力p及び摩擦力tが作用している場合には、センサ面1a,2aに平行な底面及び頂面に設けられた検出部B及び検出部Dにおいて、各検出部に垂直に作用する力は圧力pに由来する力のみであり、かつ両検出部においてその値は等しく、そのため、検出部B及び検出部Dにおいて圧力を測定すれば、圧力pを直接求めることができる。
【0014】
一方、中間平面に設けられた検出部A及び検出部Cに作用する力は、次のように表すことができる。すなわち、検出部A及び検出部Cにおいて圧力pにより作用する力をそれぞれFp1、Fp2とし、lを検出部AないしDの面積とすると、それらの大きさは、
Fp1=Fp2=p・l
であって、その方向は圧力pの方向と同一である。同様にして、検出部A及び検出部Cにおいて摩擦力tにより作用する力をそれぞれFt1,Ft2とすると、その大きさは
Ft1=Ft2=t・l
であって、その方向は摩擦力tの方向と同一である。
【0015】
而して、検出部A及び検出部Cにおいて、圧力pに由来してそれらの検出部に垂直の方向に作用する力をそれぞれNp1,Np2とすると、
Np1=Fp1cosθ=p・lcosθ、
Np2=Fp2cosθ=p・lcosθ
であり、一方、検出部A及び検出部Cにおいて、摩擦力tに由来してそれらの検出部に垂直方向に作用する力をそれぞれNt1,Nt2とすると、
Nt1=Ft1sinθ=t・lsinθ、
Nt2=−Ft2sinθ=−t・lsinθ
である。
【0016】
そして、検出部A及び検出部Cにおいて作用するそれらの検出部に垂直方向の力は、圧力pに由来して当該部分に垂直に作用する力Np1,Np2と、摩擦力tに由来して当該部分に垂直に作用する力Nt1,Nt2との和になるから、それぞれをN1,N2とすれば、
N1=Np1+Nt1=p・lcosθ+t・lsinθ、
N2=Np2+Nt2=p・lcosθ−t・lsinθ
である。
【0017】
したがって、検出部A及び検出部Cにおいて作用する圧力を、それぞれp1,p2とすれば、
p1=N1/l=pcosθ+tsinθ、
p2=N2/l=pcosθ−tsinθ
である。
【0018】
そして、検出部A及び検出部Cにおいてそれぞれ圧力を測定すれば、上記p1,p2を得ることができ、p1からp2を減じて圧板の対向面の形状によって定まる定数2sinθで除すれば、摩擦力tを得ることができる。すなわち、
t=(p1−p2)/2sinθ
として摩擦力tを計測することができる。
【0019】
このとき、前記p2の式において、tsinθがpcosθよりも大きくなると、この式は成り立たなくなり、p2=0になるが、tは摩擦力であるため、圧力pに最大静止摩擦係数μを乗じた値より大きくなることはないから、測定対象となる面の材質等に応じてθを適宜選択して設計することにより、tsinθがpcosθよりも大きくならないようにすることができる。
【0020】
この点をさらに詳述すると、最大静止摩擦係数の定義から、
t≦μp
であり、これを上記のp2の式に適用すると、
p2≧pcosθ−μpsinθ=p(cosθ−μsinθ)
である。
しかも、本発明は負圧を対象とするものではなく、p≧0の場合を対象としているので、
cosθ−μsinθ≧0
であれば、常にp2≧0が成立することになり、したがって、0<θ<90°の範囲で、tanθ<1/μであるようにθを設計すれば、常に上述の方法で摩擦力tを得ることができる。
【0021】
一方、θ=90°の場合には、検出部A及び検出部Cは圧板の対向面の凹凸の側面に設置されることとなり、これらの検出部には圧力pの影響は現れず、摩擦力tに対向する方向にある検出部、図1の場合でいえば検出部Aのみに摩擦力tが直接作用することとなるから、それを容易に検出することができる。
なお、p1とp2とを加えあわせて圧板1,2の対向面の形状によって定まる定数2cosθで除すれば、圧力pを得ることができる。すなわち、
p=(p1+p2)/2cosθ
として圧力pを計測することができる。
したがって、0<θ<90°の範囲では検出部B及び検出部Dを省略しても圧力pを求めることは可能であり、つまり、圧板1,2の対向面の凹凸に、センサ面1a,2aに平行な底面及び頂面を設けず、相互に嵌合する傾斜面のみよって圧板対向面の凹凸を形成することができる。この場合、2次元的な面状センサに構成するに当たり、たとえば圧板1,2の対向面の凹凸形状を図2に示すような形状とすることにより実現可能である。
【0022】
また、2次元的な面状センサに構成するに当たり、図3に示すように圧板1,2の対向面の凹凸における頂面11と底面12の中途に、センサ面に平行な第三面14を設けることにより、一対の圧板の対向面の凹凸形状を有効に利用することができる。すなわち、上記第三面14を設けない場合には、図4に示すように圧板の凹凸の頂面21と底面22との間に検出部を設置できない無効な空間25が生じるが、上記第三面14を設けることによりこれを廃し、圧板対向面のすべての部分に検出部を設置することが可能になる。
【0023】
以上においては、各々の検出部が対向する一対の電極とシート状の感圧導電性素材とによって構成されている実施例について説明したが、検出部において一対の電極を対向させることに代えて、図5に示すようなくし形の電極を同一面状に並置させることも可能である。これを図1の検出部Aの場合に即して説明すると、電極A1を廃し、電極A2に代えて同じ場所にくし形の電極E1,E2を並置することにより、電極E1,E2と感圧導電性素材3とによって検出部Aを構成することができる。
【0024】
また、上記センサにおける圧板1,2及び感圧導電性素材3には柔軟性を持たせることができるが、センサに柔軟性を持たせる必要のない場合には、上記第1実施例において用いている各検出部の一対の電極とシート状の感圧導電性素材に代えて、薄型の圧力検出素子を使用することもできる(第2実施例)。
【0025】
上記第1実施例及び第2実施例においては、刻一刻の圧力分布及び摩擦力分布を検出することができるが、任意の期間における圧力分布及び摩擦力分布のそれぞれの最大値を記録する場合には、圧板1,2を含むセンサ全体を分解組立可能に構成し、かつ第1実施例の一対の電極とシート状の感圧導電性素材を用いることに代えて、圧力記録フィルムを使用することができる(第3実施例)。
この第3実施例によって、面状の圧力分布及び摩擦力分布測定用センサを記録器としても使用することが可能になる。この場合には、測定の都度圧力記録フィルムを交換する必要があるが、電極及び配線を要しないため、時間的な変化を無視して最大値のみの測定が必要な用途には、簡便に利用可能である。
【0026】
【発明の効果】
以上説明したように、本発明の圧力分布及び摩擦力分布測定用センサは、構造が比較的簡単で小型化が容易であり、かつ必要に応じて柔軟性を有する材料で構成可能である。したがって、たとえば人間が物体を操作する場合のように、測定対象となる接触面の一方乃至両方が柔軟性を有していたり、易損性であったりする場合にも適用でき、人間の手のような狭い範囲における圧力分布及び摩擦力分布を測定することも容易に可能になる。
【図面の簡単な説明】
【図1】本発明の測定原理を説明するための断面図である。
【図2】圧板の対向面の形状の他の形状例を示す斜視図である。
【図3】圧板の対向面の凹凸に第三面を設けた形状例を示す斜視図である。
【図4】圧板の対向面の凹凸の中途に第三面を設けない場合に検出部を設置できない無効な空間が生じる状態を示す部分斜視図である。
【図5】同一面状にくし形電極を並置させて構成した検出部の構成を示す斜視図である。
【符号の説明】
1,2 圧板
1a,2a センサ面
3 感圧導電性素材
11,21 頂面
12,22 底面
13 中間平面
14 第三面
25 無効な空間
A1 〜D1,A2 〜D2 電極
A〜D 検出部
p 圧力
t 摩擦力
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sensor for measuring a planar pressure distribution and a frictional force distribution.
[0002]
[Prior art]
As a planar pressure distribution measuring method, conventionally, a required number of load cells are arranged on a measurement surface, and the output thereof is appropriately amplified by an amplifier, and the present inventors have already disclosed Patent No. 2034846 (Patent No. As clarified in the literature 1), measurement is performed by arranging pressure-sensitive elements made of planar pressure-sensitive conductive rubber in a matrix and combining them with the required scanning circuit, switching circuit, signal processing circuit, etc. The method is known. Further, as already disclosed in Japanese Patent No. 2053811 (Patent Document 2), the present inventors configure the detection unit in a shape similar to a glove using the flexibility of the material in the latter method. Therefore, a method for measuring the operating force distribution of a human hand is also known.
[0003]
On the other hand, as a method for measuring the frictional force, a method using a three-component force meter using a load cell is generally widespread, and the present inventors have already made clear in Patent No. 1646028 (Patent Document 3). In addition, the friction coefficient is detected by measuring the displacement of the center of gravity position of the acting force by a pair of surface pressure sensors opposed to each other through the spacer of the elastic body, and the friction coefficient is added to the surface pressure measured separately. A method for measuring the frictional force by multiplying is known. In particular, if a large number of the above three component force meters are arranged, it is possible in some cases to simultaneously measure the pressure distribution and the frictional force distribution. For example, when one or both of the contact surfaces to be measured are flexible or fragile, such as when operating the , Could not respond.
[Patent Document 1]
Japanese Patent Publication No. 7-58223 [Patent Document 2]
Japanese Patent Publication No. 7-86439 [Patent Document 3]
Japanese Examined Patent Publication No. 3-47699
[Problems to be solved by the invention]
An object of the present invention is to provide a sensor for measuring pressure distribution and frictional force distribution, which is relatively simple in structure and can be made of a material having flexibility as necessary.
[0005]
[Means for Solving the Problems]
A sensor for measuring pressure distribution and frictional force distribution according to the present invention for solving the above-described problems is provided between a pair of pressure plates having a large number of concavities and convexities in a shape to be fitted to each other on the opposing surfaces, and the opposing surfaces of these pressure plates. The detection unit is configured by disposing the sandwiched sheet-like pressure-sensitive conductive material and arranging electrodes facing the concave and convex portions of the opposing surface of the pressure plate, for example, the top surface, the bottom surface, and the intermediate plane between them. The detection means for detecting the conductivity between the electrodes in each of the detection units is provided, and based on the detected conductivity, the pressure distribution acting in the direction perpendicular to the sensor surface which is the outer surface of the pressure plate and the sensor surface in parallel It is characterized in that the distribution of acting friction force can be measured.
[0006]
In addition, the sensor according to the present invention has a thin pressure detection element sandwiched between the opposing positions of the pressure plate in place of the sheet-like pressure-sensitive conductive material and electrodes in the sensor having the above-described configuration. The pressure acting on each part of the opposing surfaces of the pair of pressure plates is configured to be measurable.
That is, the sensor according to the present invention includes a pair of pressure plates having a large number of concavities and convexities that are fitted to each other on the opposing surface and the concavities and convexities of the confronting surfaces of the pressure plates, for example, between the top surface, the bottom surface, and their intermediate planes. And a detecting unit configured to detect a pressure detecting element output in each of the detecting units, and is an outer surface of the pressure plate based on the detected pressure. The pressure distribution acting in the direction perpendicular to the sensor surface and the frictional force distribution acting in parallel with the sensor surface can be measured.
[0007]
Furthermore, the sensor according to the present invention has a pressure distribution recording film between a pair of pressure plates having a large number of concavities and convexities that are fitted to each other in place of the pressure-sensitive conductive material and electrodes in the sensor having the above-described configuration. The planar pressure distribution and the frictional force distribution described above can be measured based on the recording of the pressure distribution recording film.
That is, the sensor of the present invention is a detection constituted by a pair of pressure plates having a large number of concavities and convexities that are fitted to each other on the opposing surface, and a pressure distribution recording film sandwiched between the opposing surfaces of the pressure plates. Based on the recording of the pressure distribution recording film, the pressure distribution acting in the direction perpendicular to the sensor surface, which is the outer surface of the pressure plate, and the friction force distribution acting in parallel with the sensor surface can be measured. It is characterized by that.
[0008]
In the sensor having the above configuration, for example, the concave and convex portions on the opposing surface of the pressure plate are not provided with the bottom surface and the top surface parallel to the sensor surface, and the concave and convex portions can be formed only by the inclined surfaces that are fitted to each other. A third surface parallel to the sensor surface can be provided in the middle of the unevenness of the opposing surface.
[0009]
According to the surface pressure distribution and friction force distribution measurement sensor having the above-described configuration, the sensor is mounted on the working surface of a work machine or the surface of a human body, and processing according to the arrangement state of each electrode or the like. By connecting the circuit, it is possible to simultaneously measure the pressure distribution and the frictional force distribution between the working surface and the object in contact with the body surface.
Further, when the pressure distribution recording film is used, similarly, the sensor is attached to the working surface of the work machine or the surface of the human body, the pressure recording film is taken out after the work, and the recorded pressure record is appropriately analyzed. Thus, the maximum pressure distribution and the maximum frictional force distribution between the working surface and the object in contact with the body surface can be measured.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail below with reference to the drawings.
FIG. 1 is a cross-sectional view for explaining the detection principle of the present invention. The sensor according to the present invention is a sensor for measuring a planar pressure distribution and a frictional force distribution. In FIG. 1, the sensor is expressed as a one-dimensional one. It is constructed.
[0011]
The sensor shown in FIG. 1 is a sheet-like sandwiched between a pair of pressure plates 1 and 2 having a large number of concavities and convexities that fit into opposite surfaces, and the pressure plates 1 and 2 facing each other at substantially constant intervals. The pressure-sensitive conductive material 3 and the pressure plate 1 and 2 are opposed to each other with the pressure-sensitive conductive material 3 sandwiched between the concave and convex top surfaces 11 and the bottom surface 12 and the intermediate plane 13 therebetween. Detector A composed of electrode A 1 and electrode A 2 to be detected, detector B similarly composed of electrode B 1 and electrode B 2 facing each other, detector C composed of electrode C 1 and electrode C 2 is disposed a detection unit D constituted by the electrodes D 1 and the electrode D 2. The intermediate plane 13 between the top surface 11 and the bottom surface 12 can be an inclined surface that is inclined by an angle θ with respect to the sensor surfaces 1a and 2a, which are the outer surfaces of the pressure plates 1 and 2, as shown. However, it may be a side surface perpendicular to the sensor surfaces 1a and 2a.
And between each electrode which the said pressure plates 1 and 2 oppose, in order to measure pressure distribution and frictional force distribution based on the electroconductivity of the pressure-sensitive conductive material 3, the arrangement | positioning aspect of each said electrode is used as the measurement means. A processing circuit corresponding to the above is connected.
[0012]
The sensor having the above configuration is configured to measure the pressure distribution and the frictional force distribution acting on the pressure plates 1 and 2 by the detection units A to D arranged in each part of the pressure-sensitive conductive material 3, Specifically, the pressure p acting on the sensor surfaces 1a and 2a in the direction perpendicular to the top and bottom surfaces 11, the bottom surface 12 and the intermediate plane (inclined surface) 13 between the concavities and convexities on the opposing surfaces of the pressure plates 1 and 2 is described. The distribution is measured, and the distribution of the frictional force t acting in the direction parallel to the sensor surfaces 1a and 2a is measured on the concave / convex intermediate plane (inclined surface or side surface).
[0013]
That is, when the pressure p and the frictional force t are applied in the vicinity of the detection unit, in the detection unit B and the detection unit D provided on the bottom surface and the top surface parallel to the sensor surfaces 1a and 2a, The force acting perpendicularly to each detection unit is only the force derived from the pressure p, and the value is the same in both detection units. Therefore, if the pressure is measured in the detection unit B and the detection unit D, the pressure p is directly applied. Can be sought.
[0014]
On the other hand, the force acting on the detection unit A and the detection unit C provided on the intermediate plane can be expressed as follows. That is, when the forces acting on the detection part A and the detection part C by the pressure p are Fp1 and Fp2, respectively, and l is the area of the detection parts A to D, their sizes are:
Fp1 = Fp2 = p · l
The direction is the same as the direction of the pressure p. Similarly, assuming that the forces acting on the detection unit A and the detection unit C by the frictional force t are Ft1 and Ft2, respectively, the magnitudes are Ft1 = Ft2 = t · l.
And the direction is the same as the direction of the frictional force t.
[0015]
Thus, in the detection unit A and the detection unit C, when the forces derived from the pressure p and acting in the direction perpendicular to the detection units are Np1 and Np2, respectively,
Np1 = Fp1 cos θ = p · l cos θ,
Np2 = Fp2cosθ = p · lcosθ
On the other hand, in the detection unit A and the detection unit C, when the forces acting in the vertical direction on the detection units derived from the frictional force t are Nt1 and Nt2, respectively,
Nt1 = Ft1sinθ = t · lsinθ,
Nt2 = −Ft2sinθ = −t · lsinθ
It is.
[0016]
Then, the forces in the direction perpendicular to the detection units acting in the detection unit A and the detection unit C are derived from the forces Np1 and Np2 acting on the part perpendicular to the pressure p and the frictional force t. Since it is the sum of forces Nt1 and Nt2 acting perpendicularly to the part, if N1 and N2 respectively,
N1 = Np1 + Nt1 = p · lcos θ + t · lsin θ,
N2 = Np2 + Nt2 = p · l cos θ−t · l sin θ
It is.
[0017]
Therefore, if the pressures acting on the detection unit A and the detection unit C are p1 and p2, respectively,
p1 = N1 / l = pcosθ + tsinθ,
p2 = N2 / l = pcosθ-tsinθ
It is.
[0018]
Then, if the pressure is measured at each of the detection part A and the detection part C, the above-mentioned p1 and p2 can be obtained. t can be obtained. That is,
t = (p1-p2) / 2sin θ
The frictional force t can be measured as
[0019]
At this time, in the formula of p2, when t sin θ becomes larger than p cos θ, this formula does not hold and p2 = 0. Since it does not become larger, it is possible to prevent tsin θ from becoming larger than p cos θ by appropriately selecting and designing θ according to the material of the surface to be measured.
[0020]
To elaborate further on this point, from the definition of the maximum static friction coefficient:
t ≦ μp
And applying this to the above equation for p2,
p2 ≧ pcos θ−μpsin θ = p (cos θ−μsin θ)
It is.
Moreover, the present invention is not intended for negative pressure, but for the case of p ≧ 0.
cos θ−μ sin θ ≧ 0
Therefore, p2 ≧ 0 is always established. Therefore, if θ is designed so that tan θ <1 / μ within the range of 0 <θ <90 °, the frictional force t is always obtained by the above-described method. Can be obtained.
[0021]
On the other hand, in the case of θ = 90 °, the detection unit A and the detection unit C are installed on the uneven surface of the opposing surface of the pressure plate, and the influence of the pressure p does not appear on these detection units, and the frictional force Since the frictional force t directly acts only on the detection unit in the direction opposite to t, that is, in the case of FIG. 1, the detection unit A, it can be easily detected.
Note that the pressure p can be obtained by adding p1 and p2 and dividing by the constant 2 cos θ determined by the shape of the opposing surfaces of the pressure plates 1 and 2. That is,
p = (p1 + p2) / 2 cos θ
The pressure p can be measured as
Accordingly, in the range of 0 <θ <90 °, the pressure p can be obtained even if the detection unit B and the detection unit D are omitted. That is, the sensor surfaces 1a, The unevenness of the pressure plate facing surface can be formed only by the inclined surfaces fitted to each other without providing the bottom surface and the top surface parallel to 2a. In this case, when forming a two-dimensional planar sensor, for example, the concave and convex shapes of the opposing surfaces of the pressure plates 1 and 2 can be realized as shown in FIG.
[0022]
In forming a two-dimensional surface sensor, a third surface 14 parallel to the sensor surface is formed in the middle of the top surface 11 and the bottom surface 12 of the concavities and convexities of the opposing surfaces of the pressure plates 1 and 2 as shown in FIG. By providing, the uneven | corrugated shape of the opposing surface of a pair of pressure plate can be utilized effectively. That is, when the third surface 14 is not provided, an invalid space 25 in which a detection unit cannot be installed between the uneven top surface 21 and the bottom surface 22 of the pressure plate as shown in FIG. By providing the surface 14, this can be eliminated, and the detection unit can be installed in all parts of the pressure plate facing surface.
[0023]
In the above, the embodiment has been described in which each detection unit is configured by a pair of electrodes facing each other and a sheet-like pressure-sensitive conductive material, but instead of facing the pair of electrodes in the detection unit, As shown in FIG. 5, it is also possible to arrange the comb-shaped electrodes in the same plane. This will be explained in the case of the detection unit A in FIG. 1. The electrode A1 is eliminated, and the electrodes E1 and E2 and the pressure sensitive sensor are arranged in parallel at the same place instead of the electrode A2. The detection part A can be constituted by the conductive material 3.
[0024]
In addition, the pressure plates 1 and 2 and the pressure-sensitive conductive material 3 in the sensor can be flexible, but if the sensor does not need to be flexible, it is used in the first embodiment. Instead of the pair of electrodes and the sheet-like pressure-sensitive conductive material of each detection unit, a thin pressure detection element can be used (second embodiment).
[0025]
In the first and second embodiments, the instantaneous pressure distribution and frictional force distribution can be detected, but when the maximum values of the pressure distribution and the frictional force distribution in an arbitrary period are recorded. Is configured so that the entire sensor including the pressure plates 1 and 2 can be disassembled and assembled, and a pressure recording film is used instead of using the pair of electrodes and the sheet-like pressure-sensitive conductive material of the first embodiment. (Third embodiment).
This third embodiment makes it possible to use a planar pressure distribution and frictional force distribution measuring sensor as a recorder. In this case, it is necessary to replace the pressure recording film each time it is measured. However, since electrodes and wiring are not required, it can be easily used for applications that require measurement of only the maximum value while ignoring temporal changes. Is possible.
[0026]
【The invention's effect】
As described above, the pressure distribution and frictional force distribution measurement sensor of the present invention can be made of a material that has a relatively simple structure, can be easily downsized, and has flexibility as required. Therefore, the present invention can be applied to a case where one or both of the contact surfaces to be measured are flexible or fragile, for example, when a human operates an object. It is also possible to easily measure pressure distribution and frictional force distribution in such a narrow range.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining the measurement principle of the present invention.
FIG. 2 is a perspective view showing another example of the shape of the opposing surface of the pressure plate.
FIG. 3 is a perspective view showing a shape example in which a third surface is provided on the concavity and convexity of the opposing surface of the pressure plate.
FIG. 4 is a partial perspective view showing a state in which an invalid space in which a detection unit cannot be installed when a third surface is not provided in the middle of the unevenness of the opposing surface of the pressure plate.
FIG. 5 is a perspective view showing a configuration of a detection unit configured by arranging comb electrodes on the same plane.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2 Pressure plate 1a, 2a Sensor surface 3 Pressure-sensitive conductive material 11, 21 Top surface 12, 22 Bottom surface 13 Intermediate plane 14 Third surface 25 Invalid space A1-D1, A2-D2 Electrode A-D Detection part p Pressure t Friction force

Claims (3)

面状の圧力分布及び摩擦力分布を測定するためのセンサであって、
面状に広がった相互に嵌合する形状の多数の凹凸を対向面に有し、その対向面が同一の形状である一対の圧板と、それらの圧板の対向面間に挟まれたシート状の感圧導電性素材とを有し、
上記一対の圧板の対向面の凹凸を傾斜面によって形成されたものとし、
上記凹凸の傾斜面にそれぞれ対向する電極を配設して検出部を構成し、
上記各検出部における電極間の導電性を検出する検出手段を設け、
検出した導電性に基づいて、圧板の外側面であるセンサ面に垂直方向に作用する圧力分布及び該センサ面と平行に作用する摩擦力分布をそれぞれ測定する
ことを特徴とする圧力分布及び摩擦力分布測定用センサ。
A sensor for measuring a planar pressure distribution and a frictional force distribution,
A sheet-like sandwiched between a pair of pressure plates that have a large number of concavities and convexities that fit into each other and spread in a planar shape on the opposing surface, and the opposing surfaces have the same shape, and the opposing surfaces of those pressure plates A pressure-sensitive conductive material,
The concavities and convexities on the opposing surfaces of the pair of pressure plates are formed by inclined surfaces,
An electrode facing each of the inclined surfaces of the irregularities is arranged to constitute a detection unit,
A detection means for detecting the conductivity between the electrodes in each of the detection units is provided,
Based on the detected conductivity, the pressure distribution acting in the direction perpendicular to the sensor surface which is the outer surface of the pressure plate and the friction force distribution acting parallel to the sensor surface are measured, respectively. Sensor for distribution measurement.
面状の圧力分布及び摩擦力分布を測定するためのセンサであって、
面状に広がった相互に嵌合する形状の多数の凹凸を対向面に有し、その対向面が同一の形状である一対の圧板と、それらの圧板の対向面間に挟まれた薄型の圧力検出素子シートにより構成される検出部とを有し、
上記一対の圧板の対向面の凹凸を傾斜面によって形成されたものとし、
上記各検出部における圧力を検出する検出手段を設け、
検出した圧力に基づいて、圧板の外側面であるセンサ面に垂直方向に作用する圧力分布及び該センサ面と平行に作用する摩擦力分布をそれぞれ測定する
ことを特徴とする圧力分布及び摩擦力分布測定用センサ。
A sensor for measuring a planar pressure distribution and a frictional force distribution,
A thin pressure sandwiched between opposing surfaces of a pair of pressure plates that have a large number of concavities and convexities that extend in a planar shape and that fit into each other on the opposing surface, and the opposing surfaces have the same shape. A detection unit configured by a detection element sheet,
The concavities and convexities on the opposing surfaces of the pair of pressure plates are formed by inclined surfaces,
A detection means for detecting the pressure in each of the detection units is provided,
A pressure distribution and a friction force distribution characterized by measuring a pressure distribution acting in a direction perpendicular to the sensor surface, which is the outer surface of the pressure plate, and a friction force distribution acting parallel to the sensor surface based on the detected pressure, respectively. Sensor for measurement.
面状の圧力分布及び摩擦力分布を測定するためのセンサであって、
面状に広がった相互に嵌合する形状の多数の凹凸を対向面に有し、その対向面が同一の形状である一対の圧板と、それらの圧板の対向面間に挟設された圧力分布記録フィルムにより構成される検出部とを有し、
上記一対の圧板の対向面の凹凸を傾斜面によって形成されたものとし、
上記圧力分布記録フィルムの記録に基づいて、圧板の外側面であるセンサ面に垂直方向に作用する圧力分布及び該センサ面と平行に作用する摩擦力分布をそれぞれ測定する
ことを特徴とする圧力分布及び摩擦力分布測定用センサ。
A sensor for measuring a planar pressure distribution and a frictional force distribution,
A pair of pressure plates that have a large number of concavities and convexities that extend in a planar shape and are fitted to each other on the opposing surface, and the pressure distribution that is sandwiched between the opposing surfaces of the pressure plates, the opposing surfaces having the same shape And a detection unit constituted by a recording film,
The concavities and convexities on the opposing surfaces of the pair of pressure plates are formed by inclined surfaces,
Based on the recording of the pressure distribution recording film, a pressure distribution acting in a direction perpendicular to a sensor surface which is an outer surface of the pressure plate and a friction force distribution acting in parallel with the sensor surface are respectively measured. And a sensor for measuring frictional force distribution.
JP2002269741A 2002-09-17 2002-09-17 Sensor for measuring pressure distribution and frictional force distribution Expired - Lifetime JP3731051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269741A JP3731051B2 (en) 2002-09-17 2002-09-17 Sensor for measuring pressure distribution and frictional force distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269741A JP3731051B2 (en) 2002-09-17 2002-09-17 Sensor for measuring pressure distribution and frictional force distribution

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000148088A Division JP3374179B2 (en) 2000-05-19 2000-05-19 Sensor for measuring pressure distribution and frictional force distribution

Publications (2)

Publication Number Publication Date
JP2003098022A JP2003098022A (en) 2003-04-03
JP3731051B2 true JP3731051B2 (en) 2006-01-05

Family

ID=19196899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269741A Expired - Lifetime JP3731051B2 (en) 2002-09-17 2002-09-17 Sensor for measuring pressure distribution and frictional force distribution

Country Status (1)

Country Link
JP (1) JP3731051B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4368392B2 (en) 2007-06-13 2009-11-18 東海ゴム工業株式会社 Deformation sensor system

Also Published As

Publication number Publication date
JP2003098022A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
EP0388346B1 (en) Touch sensing display screen apparatus
US8327721B2 (en) Sensor fabric for shape perception
KR20050120683A (en) Display screen seal
JPS6085342A (en) Measuring device for force
JP6673979B2 (en) Displacement detection type force sensor
Fiorillo A piezoresistive tactile sensor
JP2006226858A (en) Fluctuation load sensor, and tactile sensor using the same
JP2008129231A5 (en)
CA2600414A1 (en) Neutron detector and neutron imaging sensor
WO2020154077A1 (en) Tripedal flexure member and load/torque measurement systems using same
JP3731051B2 (en) Sensor for measuring pressure distribution and frictional force distribution
JP3694740B2 (en) Thin pressure sensor and human body information measuring apparatus using the same
JP3374179B2 (en) Sensor for measuring pressure distribution and frictional force distribution
EP2060894A1 (en) Strain gauge sensor
JP2009222556A (en) Shearing stress sensor and distribution type shearing stress sensor
KR102256241B1 (en) Shear and Normal Force Sensor and Manufacturing Method thereof
JPS6271828A (en) Detector for surface pressure distribution
JP3489317B2 (en) Surface pressure distribution detector
JPH0663881B2 (en) Pressure sensor
JP3925645B2 (en) Load cell
JPH071210B2 (en) Piezoelectric pressure distribution sensor
JPH0347699B2 (en)
JPH03287032A (en) Piezoelectric pressure distribution sensor
JPWO2005052601A1 (en) Acceleration detector
JP3079214B2 (en) Accelerometer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Ref document number: 3731051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term