JP3925645B2 - Load cell - Google Patents

Load cell Download PDF

Info

Publication number
JP3925645B2
JP3925645B2 JP2002368183A JP2002368183A JP3925645B2 JP 3925645 B2 JP3925645 B2 JP 3925645B2 JP 2002368183 A JP2002368183 A JP 2002368183A JP 2002368183 A JP2002368183 A JP 2002368183A JP 3925645 B2 JP3925645 B2 JP 3925645B2
Authority
JP
Japan
Prior art keywords
strain
load
measured
elastic member
load cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002368183A
Other languages
Japanese (ja)
Other versions
JP2004198294A (en
Inventor
伸幸 吉桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002368183A priority Critical patent/JP3925645B2/en
Publication of JP2004198294A publication Critical patent/JP2004198294A/en
Application granted granted Critical
Publication of JP3925645B2 publication Critical patent/JP3925645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Force In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はロードセルに関し、特に電子はかりや電子天びんの荷重センサとして用いるのに適したロードセルに関する。
【0002】
【従来の技術】
電子はかりや電子天びんの荷重センサとして用いられるロードセルにおいては、一般に、図3に例示するように、両端部に固定柱部311と可動柱部312を備えるとともに、これらを両端部に可撓部eを備えた互いに平行な上下2本の梁部313a,313bで連結してなる、ロバーバル型の起歪体31を用い、その各可撓部eにそれぞれ歪みゲージS1〜S4を貼着したものが多用されている。起歪体31は、その固定柱部311がはかりベースなどに固定され、可動柱部312に皿受けを介して測定皿が載せられる(例えば特許文献1参照)。
【0003】
各歪みゲージS1〜S4は、図4に示すようなホイトストンブリッジを形成すべく相互に結線され、被測定荷重Wが可動柱部312に作用することによる各可撓部eの歪みに起因する各歪みゲージS1〜S4の抵抗値変化により、ホイトストンブリッジの出力が被測定荷重に比例した値となって、測定値の演算に供される。すなわち、被測定荷重の負荷により、歪みゲージS1とS2にはそれぞれ圧縮歪みが、歪みゲージS3とS4にはそれぞれ引張歪みが生じる。圧縮歪みと引張歪みはほぼ同値となり、図4に示したホイトストンブリッジにより抵抗値の変化として被測定荷重Wが検出される。
【0004】
このようなロードセルにおいて、荷重の測定範囲を広げるためには、起歪体31の変形許容量、より詳しくは各可撓部eの弾性変形許容量を大きくすべく、各可撓部eを薄くするなどの対策が採られている。
【0005】
【特許文献1】
特開2001−343294号公報(第2頁,第4頁,図1)
【0006】
【発明が解決しようとする課題】
ところで、以上のように可撓部の弾性変形許容量を大きくしても、そこに貼着される歪みゲージの許容歪み量の制約があり、可撓部が大きく変形できるようにしても、その歪みゲージの許容歪み量の存在によって、荷重測定範囲を広げるには限界があった。
【0007】
本発明はこのような実情に鑑みてなされたもので、歪みゲージの許容歪み量を増大させることなく、より広い荷重測定範囲を得ることのできるロードセルの提供を目的としている。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、本発明のロードセルは、被測定荷重により変形する起歪体に複数の歪みゲージを貼着し、起歪体の無負荷状態を基準とした各歪みゲージの抵抗値変化から被測定荷重の大きさを検出するロードセルにおいて、無負荷状態の上記起歪体が、当該起歪体と同等の荷重−弾性変形の直線性を有する弾性部材により、被測定荷重の負荷方向と逆向きに所定の変形が与えられ、その逆向きの所定の変形状態における上記各歪みゲージの抵抗値を基準とてし被測定荷重の大きさを検出するよう構成されていることによって特徴づけられる(請求項1)。
【0009】
ここで、本発明においては、上記弾性部材として、上記起歪体と同材料・同形状の部材を用いる構成(請求項2)を好適に採用することができる。
【0010】
また、本発明においては、上記弾性部材を起歪体に対して一体に形成する構成(請求項3)を採用することもできる。
【0011】
本発明は、起歪体に被測定荷重の負荷方向とは逆向きの予荷重を与えて歪ませ、その予荷重の付与状態における歪みゲージの抵抗値を基準として被測定荷重を検出することによって、所期の目的を達成しようとするものである。
【0012】
すなわち、起歪体に被測定荷重の負荷方向と逆向きの変形を与えると、各歪みゲージには、被測定荷重の負荷時とそれぞれ逆向きの歪みが生じた状態となり、ホイトストンブリッジの出力は被測定荷重の測定時と極性が逆となる。このような逆向きの変形を、起歪体と同等の荷重−弾性変形の直線性を有する弾性部材によって、例えば各歪みゲージの許容歪み量相当量だけ付与しておき、無負荷状態においてホイトストンブリッジの出力が例えば−vであったとすると、被測定荷重を増大していくことにより、同出力は−vから0を経て+へと転じ、+vに到達した時点で各歪みゲージが許容歪み量に達する。つまり、歪みゲージの許容歪み量内で、従来の2倍の荷重測定範囲が得られる。
【0013】
ここで、起歪体に予荷重を与える弾性部材を、起歪体と同等の荷重−弾性変形の直線性を有するものとすることによって、荷重検出出力の直線性についても起歪体のみで予荷重を与えない場合と同等となって問題は生じない。
【0014】
そして、その予荷重を付与する弾性部材として、請求項2に係る発明のように、起歪体と同じ形状・材質のものとすれば、所要の荷重−弾性変形の直線性を容易に得ることができ、かつ、別設計の部材が不要となってコスト的にも有利となるという利点がある。
【0015】
また、請求項3に係る発明のように、弾性部材を起歪体と一体に形成すると、所要スペースを小さくすることが可能となる。
【0016】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の正面図である。なお、この図1においては、起歪体1および弾性部材2の変形量については誇張して示している。
【0017】
起歪体1は、従来と同等のロバーバル型のものであって、固定柱部11と可動柱部12を上下2本の梁部13a,13bで連結し、各梁部13a,13bの両端部にそれぞれ可撓部eを形成した構造を有している。また、各可撓部eにはそれぞれ歪みゲージS1〜S4が貼着されている。これらの各歪みゲージS1〜S4は、前記した図4と全く同様のホイトストンブリッジを形成するように相互に結線される。
【0018】
弾性部材2は起歪体1と全く同じ材質および形状であって、固定柱部21、可動柱部22、上下2本の梁部23a,23bを備えるとともに、各梁部23a,23bの両端部にはそれぞれ可撓部eが形成されている。従ってこの弾性部材2の荷重−弾性変形の直線性は、起歪体1と同じである。
【0019】
起歪体1および弾性部材2は、それぞれの固定柱部11および21の下面が例えば電子はかりのベースBに固着され、起歪体1の可動柱部12の下面に、弾性部材2の可動柱部22の上面が所定の予荷重を以て当接し、これにより、起歪体1は可動柱部12が上方に持ち上げられるように変形した状態となる。この弾性部材2の当接による起歪体1の変形により、各歪みゲージS1〜S4の歪み量がそれぞれ許容歪み量となるようにその予荷重が設定される。
【0020】
なお、被測定荷重を載せるための測定皿Pは、起歪体1の可動柱部12の上に皿受けPSを介して支持される。
【0021】
以上の実施の形態において、測定皿Pに何も載せない無負荷状態においては、歪みゲージS1およびS2には引張歪みが、歪みゲージS3およびS4には圧縮歪みがそれぞれ生じた状態となる。この状態において、各歪みゲージS1〜S4によるホイトストンブリッジの出力が−vであるとすると、測定皿P上に被測定荷重を0から次第に増大させていくと、各歪みゲージS1〜S4の歪み量は次第に小さくなって、やがて逆向きの歪みが生じる。この間、ホイトストンブリッジの出力は−vから漸次0に近づき、0を越えて+に転じる。そのホイトストンブリッジの出力が+vとなった時点で、各歪みゲージS1〜S4は無負荷状態とは逆の許容歪み量に達する。
【0022】
従って、以上の本発明の実施の形態によると、図3に示した従来のロードセルに比して、各歪みゲージS1〜S4の許容歪み量が同じであっても、荷重測定範囲を2倍とすることができる。
【0023】
ここで、以上の実施の形態においては、起歪体1と弾性部材2とを別部材により形成した例を示したが、これらを一体に形成することも可能である。
図2(A)はその例を示す正面図で、同図(B)はその右側面図である。なお、この図2においても、起歪体10および弾性部材20の変形量については誇張して示している。
【0024】
この例において、起歪体10の基本的な構成は、先の例と同様に固定柱部101、可動柱部102および上下2本の梁部103a,103bを備え、各梁部103a,103bの両端部にそれぞれ可撓部eを備えている。また、その各可撓部eにそれぞれ歪みゲージS1〜S4が貼着されている点も同等である。
【0025】
また、弾性部材20の基本的構造についても同様であり、固定柱部201、可動柱部202、およびこれらを連結する上下2本の梁部203a,203bを備え、その各梁部203a,203bの両端部には可撓部eが形成されている。
【0026】
この例の特徴は、起歪体10と弾性部材20の固定柱部101と201が、相互に一体となっている点であり、弾性部材20の梁部203a,204bおよび可動柱部202は、起歪体10の梁部103a,103bおよび可動柱部102の両側にそれぞれ位置している。つまり、実際には、一枚の所要の厚みのある板状の母材をロバーバル型の起歪体と同様に加工した後、その固定柱部を除いて、板状母材の厚みを3分割する方向のスリットを形成し、中央部分を起歪体10、その両側部分を弾性部材20としている。
【0027】
そして、両側の弾性部材20の可動柱部202の下面に、凸形の歪み付与具30の両端部分をねじ止めし、この歪み付与具30の中央の突起部分により起歪体10の可動柱部102の下面を押圧することにより、起歪体10に対して被測定荷重の負荷方向と逆向きの変形を与えている。
【0028】
この実施の形態において、両側の弾性部材20の合計の厚みを、起歪体10の厚みと同じにすることによって、先の実施の形態と同様の作用効果を奏することができる。しかも、この実施の形態においては、その長手方向への所要寸法が、図3に示した従来のロードセルと同等でいいという利点がある。
【0029】
【発明の効果】
以上のように、本発明によれば、弾性部材により起歪体に対して被測定荷重の負荷方向とは逆向きの変形を与えた状態を無負荷状態として、その状態における歪みゲージの抵抗値を基準として被測定荷重を検出するので、従来のロードセルに比して、同じ許容歪み量の歪みゲージを用いても、荷重測定範囲を最大で2倍にすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の正面図であり、各部の変形量を誇張して示す図である。
【図2】本発明の他の実施の形態の正面図(A)およびその右側面図(B)であり、同じく各部の変形量を誇張して示す図である。
【図3】従来のロードセルの構成例を示す正面図である。
【図4】ロードセルに貼着された各歪みゲージS1〜S4により形成されるホイトストンブリッジの説明図である。
【符号の説明】
1,10 起歪体
11,101 固定柱部
12,102 可動柱部
13a,13b,103a,103b 梁部
2,20 弾性部材
21,201 固定柱部
22,202 可動柱部
23a,23b,203a,203b 梁部
30 歪み付与具
e 可撓部
S1〜S4 歪みゲージ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a load cell, and more particularly to a load cell suitable for use as a load sensor for an electronic balance or an electronic balance.
[0002]
[Prior art]
In a load cell used as a load sensor for an electronic balance or an electronic balance, generally, as illustrated in FIG. 3, a fixed column portion 311 and a movable column portion 312 are provided at both ends, and flexible portions e are provided at both ends. The first and second parallel beam portions 313a and 313b connected to each other are used, and the strain gauges S1 to S4 are attached to the respective flexible portions e. It is used a lot. The strain generating body 31 has a fixed column portion 311 fixed to a scale base or the like, and a measurement plate is placed on the movable column portion 312 via a plate receiver (see, for example, Patent Document 1).
[0003]
The strain gauges S <b> 1 to S <b> 4 are connected to each other to form a Wheatstone bridge as shown in FIG. 4, and are caused by distortion of each flexible portion e caused by the measured load W acting on the movable column portion 312. Due to the change in resistance value of each strain gauge S1 to S4, the output of the Wheatstone bridge becomes a value proportional to the load to be measured, and is used for the calculation of the measured value. That is, due to the load to be measured, compressive strain is generated in the strain gauges S1 and S2, and tensile strain is generated in the strain gauges S3 and S4. The compressive strain and the tensile strain are almost the same value, and the measured load W is detected as a change in resistance value by the Wheatstone bridge shown in FIG.
[0004]
In such a load cell, in order to widen the measurement range of the load, in order to increase the deformation allowable amount of the strain generating body 31, more specifically, the elastic deformation allowable amount of each flexible portion e, each flexible portion e is thinned. Measures such as doing are taken.
[0005]
[Patent Document 1]
JP 2001-343294 A (2nd page, 4th page, FIG. 1)
[0006]
[Problems to be solved by the invention]
By the way, even if the elastic deformation allowable amount of the flexible portion is increased as described above, there is a restriction on the allowable strain amount of the strain gauge attached to the flexible portion. Due to the existence of the allowable strain amount of the strain gauge, there was a limit in extending the load measurement range.
[0007]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a load cell capable of obtaining a wider load measurement range without increasing the allowable strain amount of the strain gauge.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the load cell of the present invention has a plurality of strain gauges attached to a strain generating body deformed by a load to be measured, and the resistance value of each strain gauge based on the unloaded state of the strain generating body. In the load cell that detects the magnitude of the load to be measured from the change, the load generating direction of the load to be measured is determined by the elastic member having the same load-elastic deformation linearity as the strain generating body in the unloaded state. A predetermined deformation is given in the opposite direction, and the magnitude of the measured load is detected based on the resistance value of each strain gauge in the predetermined deformation state in the opposite direction. (Claim 1).
[0009]
Here, in this invention, the structure (Claim 2) using the same material and the same shape as the said strain body as the said elastic member can be employ | adopted suitably.
[0010]
In the present invention, a configuration in which the elastic member is integrally formed with the strain body (Claim 3) can also be adopted.
[0011]
The present invention applies strain to the strain generating body in a direction opposite to the load direction of the load to be measured and distorts it, and detects the load to be measured with reference to the resistance value of the strain gauge in the applied state of the preload. , Trying to achieve the intended purpose.
[0012]
In other words, if the strain body is deformed in the direction opposite to the load direction of the load to be measured, each strain gauge is in a state of being distorted in the direction opposite to that at the load of the load to be measured. Is opposite in polarity to the measurement of the load to be measured. Such deformation in the reverse direction is applied by an elastic member having linearity of load-elastic deformation equivalent to that of the strain generating body, for example, by an amount equivalent to the allowable strain amount of each strain gauge. For example, if the output of the bridge is -v, by increasing the load to be measured, the output changes from -v to + through 0, and when it reaches + v, each strain gauge has an allowable strain amount. To reach. That is, a load measurement range twice as large as that of the conventional one can be obtained within the allowable strain amount of the strain gauge.
[0013]
Here, since the elastic member that applies a preload to the strain generating body has the same load-elastic deformation linearity as the strain generating body, the linearity of the load detection output is also predicted only by the strain generating body. This is equivalent to the case where no load is applied, and no problem occurs.
[0014]
Then, if the elastic member for applying the preload is made of the same shape and material as the strain generating body as in the invention according to claim 2, the required load-linearity of elastic deformation can be easily obtained. And there is an advantage that a member with a different design is not required and the cost is advantageous.
[0015]
Further, if the elastic member is formed integrally with the strain body as in the invention according to claim 3, the required space can be reduced.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a front view of an embodiment of the present invention. In FIG. 1, the deformation amounts of the strain body 1 and the elastic member 2 are exaggerated.
[0017]
The strain body 1 is of the same Robertal type as in the prior art, wherein the fixed column portion 11 and the movable column portion 12 are connected by two upper and lower beam portions 13a, 13b, and both end portions of each beam portion 13a, 13b. Each has a structure in which a flexible portion e is formed. In addition, strain gauges S1 to S4 are attached to each flexible portion e. These strain gauges S1 to S4 are connected to each other so as to form a Wheatstone bridge exactly the same as that in FIG.
[0018]
The elastic member 2 has the same material and shape as the strain body 1, and includes a fixed column portion 21, a movable column portion 22, two upper and lower beam portions 23a and 23b, and both end portions of each beam portion 23a and 23b. Each is formed with a flexible portion e. Accordingly, the linearity of load-elastic deformation of the elastic member 2 is the same as that of the strain body 1.
[0019]
In the strain body 1 and the elastic member 2, the lower surfaces of the fixed column portions 11 and 21 are fixed to, for example, the base B of the electronic scale, and the movable column of the elastic member 2 is disposed on the lower surface of the movable column portion 12 of the strain body 1. The upper surface of the portion 22 comes into contact with a predetermined preload, whereby the strain body 1 is deformed so that the movable column portion 12 is lifted upward. The preload is set so that the strain amount of each of the strain gauges S1 to S4 becomes an allowable strain amount due to the deformation of the strain generating body 1 due to the contact of the elastic member 2.
[0020]
The measurement pan P for placing the load to be measured is supported on the movable column portion 12 of the strain body 1 via the tray receiver PS.
[0021]
In the above embodiment, in a no-load state where nothing is placed on the measurement pan P, tensile strain is generated in the strain gauges S1 and S2, and compressive strain is generated in the strain gauges S3 and S4. In this state, assuming that the output of the Wheatstone bridge by the strain gauges S1 to S4 is −v, if the load to be measured is gradually increased from 0 on the measurement dish P, the strain of each strain gauge S1 to S4 is increased. The amount gradually decreases and eventually reverse distortion occurs. During this time, the output of the Wheatstone bridge gradually approaches 0 from −v, and turns to + after exceeding 0. When the output of the Wheatstone bridge reaches + v, each of the strain gauges S1 to S4 reaches an allowable strain amount opposite to the no-load state.
[0022]
Therefore, according to the embodiment of the present invention described above, the load measurement range is doubled even if the allowable strain amount of each strain gauge S1 to S4 is the same as that of the conventional load cell shown in FIG. can do.
[0023]
Here, in the above-mentioned embodiment, although the example which formed the strain body 1 and the elastic member 2 by another member was shown, these can also be formed integrally.
FIG. 2A is a front view showing an example thereof, and FIG. 2B is a right side view thereof. In FIG. 2 as well, the deformation amounts of the strain body 10 and the elastic member 20 are exaggerated.
[0024]
In this example, the basic structure of the strain body 10 includes a fixed column portion 101, a movable column portion 102, and two upper and lower beam portions 103a and 103b, as in the previous example, and each of the beam portions 103a and 103b. The flexible portions e are provided at both ends. Moreover, the point by which the strain gauges S1-S4 are each affixed on each flexible part e is also equivalent.
[0025]
The same applies to the basic structure of the elastic member 20. The elastic member 20 includes a fixed column part 201, a movable column part 202, and two upper and lower beam parts 203a and 203b that connect the fixed column part 201, the movable column part 202, and the beam parts 203a and 203b. Flexible portions e are formed at both ends.
[0026]
The feature of this example is that the strain body 10 and the fixed column portions 101 and 201 of the elastic member 20 are integrated with each other. The beam portions 203a and 204b and the movable column portion 202 of the elastic member 20 are They are located on both sides of the beam portions 103 a and 103 b and the movable column portion 102 of the strain body 10. In other words, in practice, after a plate-shaped base material having a required thickness is processed in the same manner as a Robert-type strain body, the thickness of the plate-shaped base material is divided into three parts, except for the fixed column portion. A slit in the direction to be formed is formed, and the central portion is the strain body 10 and the both side portions are the elastic members 20.
[0027]
Then, both end portions of the convex strain applicator 30 are screwed to the lower surfaces of the movable column portions 202 of the elastic members 20 on both sides, and the movable column portion of the strain generating body 10 is formed by the central projecting portion of the strain applier 30. By pressing the lower surface of 102, the deformation body 10 is deformed in the direction opposite to the load direction of the load to be measured.
[0028]
In this embodiment, by making the total thickness of the elastic members 20 on both sides the same as the thickness of the strain body 10, the same effects as those of the previous embodiment can be achieved. In addition, this embodiment has an advantage that the required dimension in the longitudinal direction may be the same as that of the conventional load cell shown in FIG.
[0029]
【The invention's effect】
As described above, according to the present invention, the resistance value of the strain gauge in the state where the elastic member is deformed in the direction opposite to the load direction of the load to be measured is set to the unloaded state. As a reference, the load to be measured is detected, so that the load measuring range can be doubled at most even if a strain gauge having the same allowable strain amount is used as compared with the conventional load cell.
[Brief description of the drawings]
FIG. 1 is a front view of an embodiment of the present invention, and shows an exaggerated amount of deformation of each part.
FIG. 2 is a front view (A) and a right side view (B) of another embodiment of the present invention, and is also a diagram exaggerating the amount of deformation of each part.
FIG. 3 is a front view showing a configuration example of a conventional load cell.
FIG. 4 is an explanatory diagram of a Wheatstone bridge formed by strain gauges S1 to S4 attached to a load cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,10 Strain body 11,101 Fixed column part 12,102 Movable column part 13a, 13b, 103a, 103b Beam part 2,20 Elastic member 21,201 Fixed column part 22,202 Movable column part 23a, 23b, 203a, 203b Beam part 30 Strain imparting tool e Flexible part S1-S4 Strain gauge

Claims (3)

被測定荷重により変形する起歪体に複数の歪みゲージを貼着し、起歪体の無負荷状態を基準とした各歪みゲージの抵抗値変化から被測定荷重の大きさを検出するロードセルにおいて、
無負荷状態の上記起歪体が、当該起歪体と同等の荷重−弾性変形の直線性を有する弾性部材により、被測定荷重の負荷方向と逆向きに所定の変形が与えられ、その逆向きの所定の変形状態における上記各歪みゲージの抵抗値を基準として被測定荷重の大きさを検出するよう構成されていることを特徴とするロードセル。
In a load cell that attaches a plurality of strain gauges to a strain generating body that is deformed by a measured load, and detects the magnitude of the measured load from the resistance value change of each strain gauge based on the unloaded state of the strain generating body,
The strain body in the unloaded state is given a predetermined deformation in the direction opposite to the load direction of the load to be measured by the elastic member having the same load-elastic deformation linearity as the strain body, and the reverse direction. A load cell configured to detect the magnitude of a load to be measured on the basis of a resistance value of each strain gauge in a predetermined deformation state.
上記弾性部材が、上記起歪体と同材料・同形状の部材であることを特徴とする請求項1に記載のロードセル。The load cell according to claim 1, wherein the elastic member is a member having the same material and shape as the strain body. 上記弾性部材が、上記起歪体のと一体に形成されていることを特徴とする請求項1に記載のロードセル。The load cell according to claim 1, wherein the elastic member is formed integrally with the strain generating body.
JP2002368183A 2002-12-19 2002-12-19 Load cell Expired - Fee Related JP3925645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368183A JP3925645B2 (en) 2002-12-19 2002-12-19 Load cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368183A JP3925645B2 (en) 2002-12-19 2002-12-19 Load cell

Publications (2)

Publication Number Publication Date
JP2004198294A JP2004198294A (en) 2004-07-15
JP3925645B2 true JP3925645B2 (en) 2007-06-06

Family

ID=32764830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368183A Expired - Fee Related JP3925645B2 (en) 2002-12-19 2002-12-19 Load cell

Country Status (1)

Country Link
JP (1) JP3925645B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6370005B2 (en) * 2016-11-28 2018-08-08 株式会社アデック Mold load distribution measuring device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2004198294A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
US6886415B1 (en) Tactile sensor and gripping robot using the same
US10088937B2 (en) Touch input device including a moment compensated bending sensor for load measurement on platform supported by bending beams
US7347109B2 (en) Load cell with foil strain gauge
JP2006226858A (en) Fluctuation load sensor, and tactile sensor using the same
US10067009B2 (en) Rod-shaped force transducer with simplified adjustment
EP3759449A1 (en) Tripedal flexure member and load/torque measurement systems using same
EP0978714A3 (en) Load cell
EP1043573A1 (en) Shear beam load cell
JP3925645B2 (en) Load cell
JP5339495B2 (en) Load cell
JP2011191126A (en) Strain element, load cell, and multi-point type balance
JP2014109438A (en) Strain body, load cell and weighing apparatus
ATE321995T1 (en) WEIGHING DEVICE
JP2008309578A (en) Strain element for load cell, load cell unit using it, and weighing apparatus
JP4230241B2 (en) Touch sensor, gripping robot
JP2020024218A5 (en)
JPS5912326A (en) Load converter
US20030209089A1 (en) Weighing cell
CA2071223C (en) Mass-produced flat one-piece load cell and scales incorporating it
JP3818160B2 (en) Electronic scales
JPH02310437A (en) Load cell
JPS596372B2 (en) load cell
JP4399545B2 (en) Tactile sensor and multi-point tactile sensor
JP4192820B2 (en) Load cell
JP2001153735A (en) Load cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees