JP3730934B2 - Surgical microscope - Google Patents

Surgical microscope Download PDF

Info

Publication number
JP3730934B2
JP3730934B2 JP2002122972A JP2002122972A JP3730934B2 JP 3730934 B2 JP3730934 B2 JP 3730934B2 JP 2002122972 A JP2002122972 A JP 2002122972A JP 2002122972 A JP2002122972 A JP 2002122972A JP 3730934 B2 JP3730934 B2 JP 3730934B2
Authority
JP
Japan
Prior art keywords
observation
illumination
magnification
objective lens
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002122972A
Other languages
Japanese (ja)
Other versions
JP2003177326A (en
Inventor
朝規 石川
俊一郎 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002122972A priority Critical patent/JP3730934B2/en
Priority to US10/375,490 priority patent/US20030201378A1/en
Publication of JP2003177326A publication Critical patent/JP2003177326A/en
Application granted granted Critical
Publication of JP3730934B2 publication Critical patent/JP3730934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、観察する像の倍率を変更可能な手術用顕微鏡に関する。
【0002】
【従来の技術】
近年、手術の低侵襲化の要請に伴い、微細な処置を可能ならしめるため、手術用顕微鏡を用いた手術が多く行なわれるようになった。通常、手術用顕微鏡は、観察倍率を変更する機能を備えた光学系が内蔵されており、このため、例えば、脳神経外科手術においては、腫瘍の摘出や、奇形を呈した血管に対する奇形進行の防止処置、さらには血管の吻合等の、様々な処置を最適な倍率での観察の下で行なえる。
【0003】
また、手術部位は平坦な表面のものばかりではなく、術部が深く掘り下げた深部に位置するものも多い。そこで、特に深い穴を形成した術部の場合、術部を照明しようとする照明光が、穴の入口で遮られ易い。十分な照明光を深部まで到達させるため、照明光の光軸は術部を観察する観察光の光軸とより近いことが好ましい。
【0004】
このようなことから術部を照明するための照明光の光軸(以下、照明光軸と呼ぶ)を術部を観察する観察光の光軸(以下、観察光軸と呼ぶ)に近づけて配置し、または観察光軸と照明光軸を一致させて配置したものが、従来から種々提案されてきた。
【0005】
例えば、特開平8−257037号公報の手術用顕微鏡は、観察光学系の真下(光軸上)に半透過半反射部材を配置し、前記観察光学系の光軸と直交する方向から前記該半透過半反射部材に向けて照明光束を入射させ、観察光軸と照明光軸を一致させることによって、観察光軸と完全に一致した方向から照明光を術部に照射させるようにしている。
【0006】
また、特許第3,011,950号公報や特開平10−73769号公報の手術用顕微鏡は、術部が深い穴内に位置している場合において、その深い穴内に多くの照明光を照射させるために手術用顕微鏡に内蔵された光源から発せられた照明光の照射軸を2系統に分けると共に、観察光軸に対して左右対称なる位置にそれぞれの照明光の照射軸を固定的に配置して、定まった2方向から観察対象に向けて照明光を照射するようにしている。
【0007】
また、特公平6−44101号公報や特許第2891923号公報の手術用顕微鏡にあっては、対物レンズの物体対向面よりも上方に位置する部位から観察者の左右の眼にそれぞれ対応する左右一対の観察光束の中間領域を経て術部に照明光束を導くようにした照明光学系を構成し、前記左右一対の観察光束の間から術部を照明するようにしている。
【0008】
【発明が解決しようとする課題】
ところで、特開平8−257037号公報の手術用顕微鏡は、観察光学系の光軸上に半透過半反射部材を配置しているため、光源を発した照明光はその半分しか観察対象に導けず、さらに観察対象で反射して観察光学系に向かう照明光束も再び該半透過半反射部材を通り、前記観察光学系に入射することになるので、観察者の観察する明るさはさらに減り、光量はおよそ4分の1の光量になってしまう。従って、術者は暗い観察像のもとで手術を行なうか、又は観察に必要な光量に対して非常に明るい光量を発することのできる高価な高輝度光源を使用しなければならなかった。
【0009】
また、特公平6−44101号公報や特許第2891923号公報の手術用顕微鏡では、観察者の左右の眼に対応する左右の観察光学系を、中央に位置する照明光学系を避けて左右に配置しなければならないため、左右の観察光束の間隔が大きく離れてしまう。従って、照明光束が深い穴の底に到達したとしても、観察光束の方が、この穴の入口の縁で遮られてしまい、やはり穴の底を観察することができなかった。そればかりか、左右の観察光束の間隔が大きく離れてしまうので、顕微鏡自体の大型化さえ招いている。
【0010】
また、特許第3011950号公報や特開平10−73769号公報の手術用顕微鏡では観察光軸に対して左右対称の位置から観察対象に向けて照明光を照射するため、確かに一方向から照射する場合に比べて深い穴の内壁を明るく照らすことは可能であるが、観察光軸に対する照明光軸のなす角度自体は従来の顕微鏡と同じく何ら変わらないため、やはり深い穴の底にある術部に照明光を十分に到達させるには至っていない。
【0011】
本発明は前記事情に着眼してなされたものであり、その目的とするところは、照明光のロスや顕微鏡の大型化を招くこと無く、特に観察者が深い底の術部を処置する場合であって高倍率の観察時においても術部に十分な照明光を到達させて良好な観察を行なうことができる手術用顕微鏡を提供することにある。
【0012】
【課題を解決するための手段および作用】
請求項1に係る発明は、観察対象からの光束が入射される対物レンズと、
前記対物レンズからの光束が入射され、前記観察対象の観察倍率を変更する変倍レンズ系と、
前記変倍レンズ系からの光束に基づいて形成される光学像を観察するための観察手段と、
前記対物レンズと前記観察対象との間の空間に配置され、前記観察対象に照明光を照射可能な照明光学系と、
前記変倍レンズ系の変倍動作に対応して前記照明光学系を構成する光学部材の中で前記対物レンズの光軸に最も近接した照明用光学部材と前記対物レンズの光軸との相対位置を変更する変更手段と、
を具備し、
前記変更手段によって移動する前記照明用光学部材の可動範囲は、低倍率観察時に前記照明用光学部材がその低倍率観察時の観察光束に干渉しない位置まで退く位置と、高倍率観察時に前記低倍率観察時の位置よりも観察光束に近づく位置とを有することを特徴とする手術用顕微鏡である。
【0013】
請求項2に係る発明は、観察対象からの光束が入射される対物レンズと、
前記対物レンズからの光束が入射され、前記観察対象の観察倍率を変更する変倍レンズ系と、
立体像を得るための視差を有した2つの観察光束を形成する観察光学系と、
前記観察光学系からの前記2つの観察光束に基づいて形成される光学像を観察するための観察手段と、
前記対物レンズと前記観察対象との間の空間に配置され、前記観察対象に照明光を照射可能な照明光学系と、
前記変倍レンズ系の変倍動作に対応して前記照明光学系を構成する光学部材の中で前記対物レンズの光軸に最も近接した照明用光学部材が前記対物レンズの2つの観察光束の間に出し入れ自在であり、前記照明用光学部材と前記対物レンズの光軸との相対位置を変更する変更手段と、
前記変更手段によって移動する前記照明用光学部材の可動範囲は、低倍率観察時に前記照明用光学部材が前記2つの観察光束から干渉しない所まで退く位置と、高倍率観察時に前記照明用光学部材が前記2つの観察光束の間に入り込む位置とを有することを特徴とする手術用顕微鏡である。
【0014】
請求項3に係る発明は、前記変更手段は、前記変倍レンズ系の動作に基づいた低倍率観察から高倍率観察への変倍動作に連動して前記照明用光学部材を移動することを特徴とする請求項1または請求項2に記載の手術用顕微鏡である。
【0015】
上記の構成によれば、観察像の倍率が高いときは、観察光束を遮ることなく、照明光学系をより対物レンズに近づけることができ、倍率が低いときに比べて観察光軸に対して近い位置から照明光を観察対象に照射することが可能である。
また、請求項1に係わる発明では上記に加え、照明光は対物レンズを通らないので、対物レンズの表面反射による照明光に起因するフレアーが生じない。
【0016】
【発明の実施の形態】
(第1の実施形態)
図1及び図2を参照しながら本発明の第1の実施形態に係わる手術用顕微鏡について説明する。図1及び図2はいずれも手術用顕微鏡を側方から見た概略的な構成を示すが、図1は低倍率で観察対象を観察している状態を示し、図2は高倍率で観察対象を観察している状態を示す。
【0017】
この手術用顕微鏡のような実体顕微鏡の観察手段は、観察者の左右の眼に対応した視差を与えるべく対物レンズより後方の光学系は左右一対の観察光学系を構成しているが、図1及び図2においては手術用顕微鏡を側方から見た図であるため、その片方の観察光学系のみが表されている。
【0018】
図1及び図2において示す符号1は、観察光学系(観察手段)の対物レンズであり、この対物レンズ1は観察対象(術部)2を焦点位置とする。対物レンズ1はこれに入射した光束をアフォーカルな光束として変倍レンズ系3に出射する。図1及び図2のように手術用顕微鏡を側方から見たときは前記対物レンズ1と変倍レンズ系3の光軸(観察光軸L1)は左右一対のものが同一直線で一致して見える。
【0019】
前記対物レンズ1と前記観察対象2との間における光束の画角は低倍率で観察している場合(図1)と、高倍率で観察している場合(図2)とでは異なっており、低倍率で観察している図1のときの画角は「A」であり、高倍率で観察している図2のときの画角は「A’」である。一般に手術用顕微鏡では瞳の位置が対物レンズ1から離れた位置にあるため、高倍率で観察する状態における光束の画角「A’」に対して低倍率で観察しているときの光束の画角「A」の幅が広い。
【0020】
観察光学系の変倍レンズ系3は前記対物レンズ1から入射した光束についてアフォーカル変倍を行なって再びアフォーカル光束として接眼光学系4に出射するものである。
【0021】
接眼光学系4は結像レンズ5と接眼レンズ6を含んで構成される。結像レンズ5は前記光軸L1上に配置され、これには前記変倍レンズ系3から出射されたアフォーカルな光束が入射される。前記結像レンズ5から出射される光束は反射部材8及び反射部材9を経て結像位置7に結像される。接眼レンズ6は前記結像位置7に結ばれた像を拡大して術者に観察させる。
【0022】
前記変倍レンズ系3は3つのレンズ3a,3b,3cを備え、特に両端のレンズ3a及び3cは図示しない固定レンズ枠を介して鏡体ハウジング10に固着され、中間に位置するレンズ3bは前記観察光軸L1に沿って移動可能な移動レンズ枠11に固着されている。前記移動レンズ枠11はガイド軸12a及び12bによって前記観察光軸L1に沿って移動すべく案内される。前記移動レンズ枠11には該ガイド軸12a及び12bが貫通する図示しない嵌合孔が設けられている。ガイド軸12a及び12bは鏡体ハウジング10内において観察光軸L1の左右に配設され、且つ観察光軸L1と平行に配設されている。ガイド軸12a及び12bの両端は前記鏡体ハウジング10に支持されている。
【0023】
鏡体ハウジング10内には一方のガイド軸12aに隣接し、そのガイド軸12aに平行に回転中心軸を配置したカム筒13が設置され、このカム筒13は鏡体ハウジング10に図1中矢印B方向へ回転自在に支持されている。カム筒13の外周にはカム溝14が形成され、このカム溝14には前記移動レンズ枠11に一方端が埋設固着された従動ピン15の他方突出端が嵌り込んで係合している。カム筒13は図示しない外部の入力手段によって制御されるモーター16によって回転駆動される。モーター16は前記カム筒13と同軸上に配置した出力軸17を有してなり、この出力軸17が前記カム筒13に同軸的に連結されている。モーター16の本体は前記鏡体ハウジング10に固着されている。
【0024】
一方、前記鏡体ハウジング10の前面には後述する照明光学系の照明光源等を収納する略筒状の照明ハウジング21が傾斜角度を変更自在に取り付けられている。この照明ハウジング21内には反射鏡22を備えた照明光源23、コンデンサレンズ24、前記照明光源23から発せられた照明光の出射方向を観察対象2に向かわせるための反射部材25等が設けられている。図1及び図2に示すように、該反射部材25から出射して前記観察対象2に向かう照明光束の光軸(照明光軸)L2は照明ハウジング21内に配置された反射鏡22と照明光源23及びコンデンサレンズ24による光学系の光軸L3に比べて鏡体ハウジング10近くに片偏って隣接する。そして、この照明光学系は前記対物レンズ1と前記観察対象2との間の空間に配置され、その空間の側方から照明光を導入し、反射部材25により前記観察対象2に向けて照射するようになっている。
【0025】
反射部材25を組み込んだ照明ハウジング21の先端部21aは他のハウジング部分よりも前記鏡体ハウジング10側に向かって突き出すように屈曲しており、その先端部21aは前記対物レンズ1と観察対象2の間の空間において観察光軸L1に向かって突き出している。照明光学系に関係する光軸L2,L3は平行である。尚、前記反射部材25はミラーでもプリズムであってもよい。
【0026】
次に、照明ハウジング21の傾斜角度を変更し、照明角度Xを変更することにより前記対物レンズ1の観察光軸L1との相対位置を変更する照明光照射角度変更手段について説明する。照明ハウジング21の上端側と下端側には従動ピン31a,31bが設けられ、各従動ピン31a,31bは前記鏡体ハウジング10から突設された翼状部位32a,32bに形成された長孔33a,33bにそれぞれ対応するものが別々に嵌め込まれている。翼状部位32a,32bに形成された長孔33a,33bは各々、観察対象2の一点に中心を一致させた円弧形状に形成されている。前記長孔33a,33bにはそれぞれ対応する前記従動ピン31a,31bがスライド自在に嵌着されており、これによって、前記照明ハウジング21は前記鏡体ハウジング10に支持されると同時に観察対象2の位置を中心として傾動自在である。
【0027】
鏡体ハウジング10と照明ハウジング21には向き合って各々バネ掛け部35,36が配設されている。バネ掛け部35,36には引っ張りバネ37が架設されている。つまり、引っ張りバネ37の一端は前記鏡体ハウジング10のバネ掛け部35に掛けられ、引っ張りバネ37の他端は前記照明ハウジング21のバネ掛け部36に掛けられている。引っ張りバネ37は照明ハウジング21を鏡体ハウジング10に寄せるように常に牽引付勢している。
【0028】
前記変倍レンズ系3の移動レンズ枠11には規制用突出部38が一体に形成され、規制用突出部38は照明ハウジング21に向けて突出している。そして規制用突出部38は鏡体ハウジング10の側壁に開口された窓39を通り突き抜け、該鏡体ハウジング10の外部に露出し、その先端は前記照明ハウジング21の側面に突き当たって接している。規制用突出部38の長さは、それ自体変わらないが、移動レンズ枠11と共に上下に移動することにより、照明ハウジング21を適宜傾動させる。そして、低倍率で観察しているときの画角「A」の幅の観察光束にも、高倍率で観察しているときの画角「A’」の幅の観察光束にも重ならない範囲で常に前記照明ハウジング21の先端部21aが観察光束に極力近くなるように規制すべき長さに設定される。すなわち、低倍率で観察している図1の状態では移動レンズ枠11が降下し、前記照明ハウジング21の押し出し量が変わることにより、前記照明ハウジング21の先端部21aが、画角が「A」の観察光束の領域に重ならないまでも、その観察光束の領域に極力近づき、高倍率で観察している図2の状態では画角が「A’」の観察光束の領域に重ならないまでも、その観察光束の領域に極力近くに位置する。
【0029】
次に、本実施形態の手術用顕微鏡の作用について説明する。照明光源23から出射された光はコンデンサレンズ24、反射部材25を介して、前記対物レンズ1と前記観察対象2との間で観察光軸L1の側方から斜めに観察対象2を照明する。また、観察対象2で反射した照明光は対物レンズ1に入射した後、変倍レンズ系3及び結像レンズ5を通り、接眼レンズ6によって結像位置7に視差付きの状態で像が結ばれ、術者40はその像を拡大観察する。
【0030】
ところで、図1で示す低倍率での観察状態では前記観察光軸L1と前記照明光軸L2との成す角度Xが観察光束の画角Aの幅に応じて比較的大きい。この状態から高倍率で観察する状態に変換する場合は図示しない外部の入力手段によって、モーター16を駆動する。すると、モーター16に連結されたカム筒13が回転する。このカム筒13の回転すると、カム溝14に係合している従動ピン15を介して、ガイド軸12a,12bと嵌合した移動レンズ枠11が観察光軸L1に沿って上方へ移動し、その結果、移動レンズ枠11は図2に示された上方の位置に位置する。前記移動レンズ枠11の移動に伴って、該移動レンズ枠11と一体の突出部38も変位するので、該突出部38に当接している照明ハウジング21も傾動変位する。
【0031】
この照明ハウジング21が傾動変位する動作は以下の通りに行なわれる。まず、突出部38は前記観察光軸L1に対し平行に上方へ移動するため、突出部38は図2に示す如く、観察光軸L1に対して角度を有して傾斜して配置されている照明ハウジング21の側面からさらに離れるようになる。しかし、照明ハウジング21は前記引っ張りバネ37によって鏡体ハウジング10側へ引き寄せられるように付勢されているため、照明ハウジング21は前記突出部38の先端に接した状態で常に変位しようとする。また、前記従動ピン31a,31bが、前記円弧形状の長孔33aと33bに係合しているので、該従動ピン31a,31bは観察対象2の位置を中心とするべく形成された長孔33a,33bの円弧形状を辿る。その結果、前記照明光軸L2が常に観察対象2の中心を通るように前記照明ハウジング21は傾動する。
【0032】
そして、照明ハウジング21が図1の状態から図2の状態に変位する。すると、照明光軸L2と観察光軸L1とのなす角度は小さくなり、その角度を図2に記号Yで示す。この場合、前記照明ハウジング21の一部である最も突き出す先端部21aは前記観察光軸L1に近づく。しかし、この図2に示すように高倍率観察状態での観察光束の画角A’は図1に示す低倍率観察状態での観察光束の画角Aに対して小さいため、観察光束をけることはなく、観察を妨げない。従って、術者40は高倍率で観察対象2を明瞭に観察することができる。
【0033】
以上の如く、本実施形態の照明光照射角度変更手段によれば、術者が観察倍率を低倍率から高倍率に変更することに連動して観察光軸L1に対する照明光軸L2の角度が小さくなり、観察光軸L1に照明光軸L2が近づいていくことになるので、高倍率で観察することの多い深い穴となった術部中を観察する場合であっても観察対象2の部位に十分な照明光を照射して観察できる。また、各倍率の観察において照明光学系の部材が観察光束をけらない位置まで退避しているので観察を妨げることが無い。さらに、前記対物レンズ1と前記観察対象2との間の空間に照明光学系が配置されるため、照明光束は対物レンズ1の下に配置された反射部材25によって観察対象2に向けられ、対物レンズ1を通らないため、フレアー等の対物レンズ1の表面反射による観察系への悪影響が生じない。
【0034】
(第2の実施形態)
図3から図6を参照しながら本発明の第2の実施形態に係わる手術用顕微鏡について説明する。図3は観察対象を低倍率で観察しているときの手術用顕微鏡を側方から見た図であり、図4は図3で示す一部分を上方から見た図であり、図5は本実施形態の制御系を示すブロック図であり、図6は観察対象を高倍率で観察しているときの観察光学系の説明図である。本実施形態において前述した第1の実施形態のものと共通する構成部分については同一符号を付してその説明を省略する。
【0035】
本実施形態では鏡体ハウジング41に観察光学系と照明光学系の両方を内蔵する。変倍レンズ系3のレンズ3bを支持するレンズ枠42は第1の実施形態で記した移動レンズ枠11とは異なり、突出部38を有しない。また、カム筒13はその一端部分に第1ギヤ43を設けている。第1ギヤ43には第1モーター45の出力軸46に固定された第2ギヤ47が噛み合っている。第1モーター45は図示していない外部の入力手段によって制御され、駆動されたとき、第1ギヤ43及び第2ギヤ47を介してカム筒13を回転する。カム筒13の一端にはエンコーダー48の入力軸49が連結され、このエンコーダー48によって該カム筒13の回転角度を検出するようになっている。
【0036】
前記照明光学系は観察対象に照明光を照射可能なものであって、前記対物レンズ1と前記観察対象2との間の空間に配置されている。照明光学系はコンデンサレンズ24から出射された照明光を観察対象2に向かうべく偏向させるためのプリズムからなる反射部材51を設け、この反射部材51はプリズム枠52に支持されている。前記対物レンズ1の近辺でかつ対物レンズ1よりも下方に位置して前記対物レンズ1と前記観察対象2との間の空間に配置されている。
【0037】
前記プリズム枠52は紙面に垂直な方向に向かう回転軸53を有すると共に、プリズム枠52の回動端部には第3ギヤ54が形成されている。照明光学系を内蔵する照明ハウジング55には前記プリズム枠52の回転軸53を嵌合する嵌合孔56が設けられている。照明ハウジング55には前記嵌合孔56とは別の嵌合孔57が設けられており、該嵌合孔57には第4ギヤ58の回転軸59が嵌合している。第4ギヤ58は前記第3ギヤ54と噛み合う関係にあり、第4ギヤ58の回転軸59にはその軸中心と同軸上において配置された第2モーター61の出力軸が連結されている。前記第2モーター61は第1制御回路62によって前記エンコーダー48のカウンター値に応じた回転角度に制御される。
【0038】
前記鏡体ハウジング41には照明光軸63に平行に配置されるべく支持された2本のガイド軸64a,64bが設けられ、各ガイド軸64a,64bは各々前記照明ハウジング55に照明光軸63と平行に形成された嵌合孔65a,65bとスライド自在に嵌合している。従って、照明ハウジング55は各ガイド軸64a,64bに沿って照明光軸63の方向へ全体がスライド自在である。
【0039】
前記照明ハウジング55の外面にはラック71が設けられ、このラック71は鏡体ハウジング41に配設されたピニオン72に噛み合っている。ピニオン72の回転軸73は第3モーター67の出力軸に連結されている。そして、第3モーター67は前記エンコーダー48のカウンター値に応じて第2制御回路75によって回転角度が制御される。これによって、前記照明光学系を移動し、前記対物レンズ1の光軸との相対的位置を変更する変更手段を構成している。
【0040】
次に、本実施形態の照明光照射角度変更手段の作用について説明する。外部の入力手段によって第1モーター45が駆動されると、該第1モーター45の出力軸46に固定された第2ギヤ47が回転する。該第2ギヤ47の回転は第1ギヤ43に伝えられ、カム筒13が回転する。カム筒13が回転すると、変倍レンズ系3のレンズ3bを支持したレンズ枠42が移動させられるために観察倍率の変更が行われる。このとき、カム筒13の回転した角度がエンコーダー48によって検出され、その情報は第1制御回路62及び第2制御回路75に伝達される。第1制御回路62と第2制御回路75はエンコーダー48から送られてきた情報を基に夫々が後述する所定の計算を行ない、得られた計算結果に基づく角度だけ第2モーター61と第3モーター67を回転させる。
【0041】
まず、第2モーター61が回転すると、第4ギヤ58が回転し、その回転は第3ギヤ54に伝達される。これによって、前記プリズム枠52は回転軸53を中心として回転するので、プリズム枠52に支持された反射部材51も同時に回転する。従って、該反射部材51から出射される照明光76の角度は図3の矢印C方向に変更されることになる。
【0042】
また、第3モーター67が回転すると、照明ハウジング55のラック71に噛み合うピニオン72が回転し、それによって、照明ハウジング55がガイド軸64a,64bに沿って水平方向に移動する。また、前記反射部材51はプリズム枠52を介してその照明ハウジング55に支持されているため、照明ハウジング55と共に移動することになる。従って、図3に示すように該反射部材51から出射される照明光76の向きが矢印D方向に変わる。
【0043】
前述したように、第2モーター61と第3モーター67の回転によって、前記照明光学系と前記対物レンズ1の光軸との相対位置が変更され、同時に照明光軸L2は回転と水平移動を達成することになるが、いかなる状態においても常に照明光軸L2が観察対象2へ向かうように、前記第1制御回路62と前記第2制御回路75が前記第2モーター61と第3モーター67の回転角度を制御する。従って、低倍率の観察状態を示した先の図3に記載した観察光軸L1と照明光軸L2とのなす角度X’は図6に示す高倍率の観察状態においては前記角度X’に比して小さい角度Y’となる。
【0044】
以上の如く、本実施形態の照明光照射角度変更手段によれば、第1の実施形態と同様に術者40が観察倍率を低倍率から高倍率に変更する操作に連動して観察光軸L1に対する照明光軸L2の角度が近づいていくことになる。このため、高倍率で観察することの多い深い穴の中の術部を観察する場合にも観察対象部位に十分に照明光を照射した状態で観察を行なうことができるとともに、低倍率での観察においては照明光学系の部材によって観察光束の通過を妨げることが無い。さらに、照明光束は対物レンズ1の下に配置された照明光学系の反射部材51によって観察対象に向けられ、対物レンズ1を通らないため、フレアー等の対物レンズ1の表面反射による観察系への悪影響が生じない。照明ハウジング55を鏡体ハウジング41に内蔵しているので装置全体がコンパクトになる。
【0045】
(第3の実施形態)
図7及び図8を参照しながら本発明の第3の実施形態に係わる手術用顕微鏡について説明する。図7は観察対象部位を低倍率で観察する状態での手術用顕微鏡を側方から見た説明図であり、図8は観察対象部位を高倍率で観察する状態での手術用顕微鏡を側方から見た説明図である。本実施形態において、第1の実施形態及び第2の実施形態に共通する構成部分については同一符号を付し、それらの説明を省略する。
【0046】
本実施形態に係わる手術用顕微鏡では反射部材51を支持するプリズム枠52の回転軸53を支持する前記嵌合孔56が移動部材81に設けられる。この移動部材81は水平に配置したボールネジ82に支持されている。ボールネジ82は鏡体ハウジング10に設けた軸受部83a,83bによって両端が支持される。また、ボールネジ82は照明光学系の照明光軸63と平行である。
【0047】
ボールネジ82の一端にはモーター84の出力軸が連結されていて、モーター84の回転する角度は前記エンコーダー48からの情報によって制御されるようになっている。移動部材81はボールネジ82にねじ込まれるネジ孔85と平面部86が形成されている。平面部86は前記鏡体ハウジング10に設けられたガイド平面87に面接合しており、これにより移動部材81自体の回転が阻止される。両面部86,87は前記ボールネジ82の軸に平行であるため、移動部材81の移動を阻止することはない。ボールネジ82をモーター84によって回転することにより、移動部材81は照明光学系の照明光軸63と平行な方向に移動するのみであり、平面部86とガイド平面87が接しているため、前記移動部材81が前記ボールネジ82に対して回転しない。
【0048】
図8及び図9に示すように反射部材51を支持するプリズム枠52の一端と移動部材81には引っ張りバネ88が架設されている。プリズム枠52の一端と移動部材81にはそれぞれ引っ張りバネ88を掛けるバネ掛け部91,92が設けられている。引っ張りバネ88の一端はプリズム枠52のバネ掛け部91に掛けられ、引っ張りバネ88の他端は移動部材81のバネ掛け部92に掛けられる。このため、プリズム枠52は移動部材81側に引かれ、図7中Fで示す向きに回動するように付勢されている。
【0049】
プリズム枠52の他方の下方端には一体に規制片93が突設されている。この規制片93は前記鏡体ハウジング41に設けられた位置決めピン94に当り、前記引っ張りバネ88の付勢作用によって前記規制片93が位置決めピン94に対して常に当接する。位置決めピン94との当接作用によって前記プリズム枠52は前記回転軸53を中心とする回転する向きの回転角度が規制されている。ここで、該位置決めピン94の位置は前記移動部材81がボールネジ82の回転によって移動させられるいかなる位置であっても、常に反射部材51から出射される照明光束が観察対象2に向かう態勢にある位置になるように規制する特定の場所に配設されている。前記照明光学系は対物レンズ1と観察対象2との間の空間に配置され、前記観察対象2に照明光を照射可能である。
【0050】
次に、本実施形態の照明光照射角度変更手段の作用について説明する。エンコーダー48からの情報によってモーター84が回転すると、前記ボールネジ82はモーター84の出力軸に固定されているため、同じ角度だけ回転する。ボールネジ82が回転すると、該ボールネジ82と螺合するネジ部95を有する移動部材81は照明光軸63と平行な図7に示す矢印E方向へ移動する。
【0051】
このように移動部材81が移動すると、該移動部材81に支持された前記プリズム枠52も共に移動しようとするが、前記規制片93が前記位置決めピン94に当接しているため、該プリズム枠52は移動と同時に回転軸53を中心とする矢印F方向への回転を生じ、その結果、図7に示した低倍率の観察状態であったものが、図8に示す高倍率の観察状態に変更させられる。
【0052】
以上説明した如く、本実施形態の照明光照射角度変更手段によれば、前述した第1の実施形態及び第2の実施形態と同様観察倍率が低倍率から高倍率に変更されることに連動して観察光軸に対して照明光軸が近づいていくことになるので、高倍率で観察することの多い深い穴の中を観察する場合でも観察対象部位に十分に照明光を照射でき、明るい照明状態で観察することができるとともに、低倍率での観察においても照明光学系の部材によって観察光束をけり、観察を妨げることが無い。さらに、照明光束は対物レンズ1の下に配置された反射部材51によって観察対象に向けられていて対物レンズ1は通過しないため、フレアー等の対物レンズ1の表面反射による観察系への悪影響が生じない。また、照明系を移動させるためのモーターの数が1つで済むなど、照明光の照射角度変更手段を安価に構成することができる。
【0053】
(第4の実施形態)
図9を参照しながら本発明の第4の実施形態に係わる手術用顕微鏡について説明する。図9は手術用顕微鏡を側方から見た図であり、図10はこれを下方から見た図である。本実施形態において、前述した第1〜3の実施形態のものと共通する構成部分については同一符号を付してその説明を省略する。ここでは前記対物レンズ1と前記観察対象2との間の空間に配置され、前記観察対象に向けて照明光を照射するようにした照明光学系を中心に説明する。
【0054】
図9において、L1’及びL1”はそれぞれ立体視するための視差を有した左右の観察光束の中心軸をそれぞれ示しており、同図9(b)中で示す符号100,101は低倍率観察時におけるこれらの観察光束L1’及びL1”の径をそれぞれ表している。また、同図9(b)中で示す符号102,103は高倍率観察時におけるこれらの観察光束L1’及びL1”の径を表している。
【0055】
同図9中で示す符号104は照明手段の照明光源23から出射された光の進む方向を観察対象2へ向けて折り曲げるための反射部材である。該反射部材104は接着などによってプリズム枠105に固定的に保持されている。プリズム枠105は図示しないガイド軸などの水平移動機構によって支持されており、前記観察光束L1に直交する水平な向きに移動自在な変更手段を構成する。プリズム枠105の一部、例えば後端にはレバー106が形成されており、該レバー106は図示していない顕微鏡本体の外部に突き出しており、このレバー106を用いてプリズム枠105を移動操作できるようになっている。また、このレバー106の操作に観察系が連動して高倍率及び低倍率に変わる制御が行なわれる。
【0056】
図9(b)に示すように、反射部材104には左右の観察光束L1’及びL1”の中間位置に向けて突き出した突出部120が一体に延長形成され、この突出部120も照明光学系を構成する一部の反射部材としての機能の一部を担う。突出部120の形状は左右の観察光束L1’及びL1”の中心位置の間に向けて突き出し、先端側の幅が狭い、例えば、図9(b)に示すような三角形のものである。そして、突出部120は前記2つの観察光束L1’及びL1”の間に挿入できるようにした光学素子を構成する。
【0057】
次に、観察者が低倍率にて観察対象2を観察する場合、前記反射部材104は図9中実線にて表された位置に配置されている。立体視を形成するための左右の観察光束L1’及びL1”は高倍時においての場合よりも大きいが、前記反射部材104が観察光軸L1から後退した位置にあるため、反射部材104が観察光束L1’及びL1”を遮ることはない。
【0058】
また、高倍率で観察対象2を観察すべく変倍レンズ系3を制御したい場合には観察者はレバー106を図中矢印G方向に移動させる。その結果、前記反射部材104は図9中破線で表された位置へとその配置が変更され、反射部材104は観察光束L1’及びL1”を遮ることがない位置までその観察光軸L1’及びL1”に近づく。しかし、高倍時においては立体視を形成するための左右の観察光束L1’及びL1”は低倍時の場合よりも小さいため、前記反射部材104が観察光軸L1’及びL1”により近くまで近づくことができる。
【0059】
以上説明した如く、本実施形態によれば、対物レンズ1に近接する照明光学系の反射部材104の一部を2つの観察光束L1’及びL1”の間に入り込み、2つの観察光束L1’及びL1”を避け得る効果的な形状としているため、術者が観察倍率を低倍率から高倍率に変更した場合において変更手段によって照明光束の位置を、より観察光束L1’及びL1”の近くにより近づけることができる。従って、高倍率で観察することの多い深い穴の中を観察する場合にあっても観察対象部位に照明光を十分に照射した状態で観察することができると共に低倍率での観察においても照明光学系の部材によって観察光束L1’及びL1”の通過を妨げない。
【0060】
また、反射部材104の突出部120は左右の観察光束L1’及びL1”をけらない範囲でその観察光束L1’及びL1”の間に入り込むため、観察光束L1’及びL1”が占めない領域に突出部120を位置させることができ、その観察光束L1’及びL1”の間のデッドスペースを有効に利用し、反射効率を高めると同時に突出部120のない場合に比べて照明光束の中心が観察光束L1’及びL1”に近づけることができる。
【0061】
前述した実施形態と同様に観察倍率が低倍率から高倍率に変更されることに連動して観察光軸に対して照明光軸が近づいていくことになる。従って、高倍率で観察することの多い深い穴の中を観察する場合でも観察対象部位に十分に照明光を照射できる。また、低倍率での観察においても照明光学系の部材によって観察光束をけり、観察を妨げることがない。
【0062】
(第5の実施形態)
図10及び図11を参照しながら本発明の第5の実施形態に係わる手術用顕微鏡について説明する。図10(a)は観察対象2を低倍率で観察しているときの状態の手術用顕微鏡を側方から見た概略図であり、図10(b)はこれを下方から見た概略図である。図11(a)は観察対象を高倍率で観察しているときの状態の手術用顕微鏡を側方から見た概略図であり、図11(b)はこれを下方から見た図である。尚、本実施形態において前述した第1〜4の実施形態のものと共通する構成部分については同一符号を付してその説明を省略する。ここでは前記対物レンズ1と前記観察対象2との間の空間に配置され、前記観察対象に照明光を照射可能な照明光学系を中心に説明する。
【0063】
同図中符号107は照明手段においての照明光源23から出射された光を観察対象2へ向けて折り曲げるための反射部材であり、この反射部材107は前記低倍率観察時における観察光束L1’及びL1”の径100及び101に近接すべく固定的に配設されている。ここで、前記反射部材107を出射して観察対象2へ向かう光束の光軸をL3で示す。
【0064】
前記反射部材107の下方には平面から見た外形が平行四辺形のプリズム108が配設されている。この平行四辺形プリズム108は接着などによってプリズム枠109に取着保持されている。プリズム枠109は観察光束L1に対して直交する水平な向きに移動自在なものであり、後述する変更手段によって観察光束L1に対して直交する水平な向きに移動させられるようになっている。図10(b)に示すように平行四辺形プリズム108の左右幅は高倍率観察時における観察光束L1’及びL1”の間にその観察光束L1’及びL1”をけることなく入り込める大きさである。そして、この平行四辺形プリズム108は前記2つの観察光束L1’及びL1”の間に挿入できるようにした前記照明光学系の光学素子を構成している。
【0065】
前記プリズム枠109の底面にはラック110が形成されている。このプリズム枠109の下側には前記ラック110に噛み合うピニオン111が配置されている。ピニオン111の回転軸112は図示していない顕微鏡本体に回転可能に支持されている。前記回転軸112は顕微鏡本体の外部に突き出しており、その突出端部には図示しない回転操作つまみが固定されている。
【0066】
次に、本実施形態の作用について説明する。観察者が観察対象2を低倍率で観察するとき、平行四辺形プリズム108は図11で示された位置、すなわち反射部材107の出射面121と重ならない位置にある。従って、照明光源23から出射された光は平行四辺形プリズム108には入射されず、その結果、観察光軸L1と照明光軸L3とのなす角度X’である。
【0067】
観察者が変倍レンズ系3を制御し、観察対象2を高倍率で観察する場合においては観察者は前記図示しない操作つまみを図11(a)中矢印H方向に回転させる。操作つまみに与えられた回転によりピニオン111が回転するので、ピニオン111に噛み合うラック110を備えたプリズム枠109は図中11(a)中矢印J方向に移動する。これにより、前記平行四辺形プリズム108は前記対物レンズ1の下方領域に入り込み、図10で示す状態、即ち平行四辺形プリズム108の入射面113が前記反射部材107の下方に位置し、且つ平行四辺形プリズム108の先端に形成された2つ目の反射面114が観察光軸L1上に配置された状態となる。
【0068】
観察対象2を高倍率で観察すると、前記光束の径102及び103は低倍率で観察した場合の光束の径100及び101に対してその径は小さく、前記平行四辺形プリズム108はこれらの光束を遮ることなく、その光束の間に配置され得る。従って、反射部材107を出射した照明光束の一部は、前記平行四辺形プリズム108に入射することになり、入射した光束は該平行四辺形プリズム108で2回反射された後、前記観察光軸L1と同じ軸を持つ光束として観察対象2へ向けて出射する。
【0069】
以上説明した如く、本実施形態によれば、術者が観察倍率を低倍率に変更した場合に観察光束に対する照明光束の位置を近づけることができるので、高倍率で観察することの多い深い穴の中を観察する場合にも観察対象部位に十分に照明光を照射した状態で観察することができると共に、低倍率での観察においても照明光学系の部材によって観察光束の通過を妨げることがない。特に、本実施形態においては、高倍率で観察する場合、実態顕微鏡の観察光学系を構成する左右一対の光学系の間から照明光を観察対象に向けることができるので、深い穴の中を観察する場合の照明効果は格段に向上する。
【0070】
尚、本発明は前述した各実施形態に限定されるものではなく、他の形態にも適用が可能である。前述した説明によれば、以下に列挙する事項及び以下に列挙した事項を任意に組み合わせた事項のものが得られる。
【0071】
(付記1)観察対象からの光束が入射される対物レンズと、
前記対物レンズからの光束が入射され、前記観察対象の観察倍率を変更する変倍レンズ系と、
前記変倍レンズ系からの光束に基づいて形成される光学像を観察するための観察手段と、
前記対物レンズと前記観察対象との間の空間に配置され、前記観察対象に照明光を照射可能な照明光学系と、
前記照明光学系の少なくとも一部と前記対物レンズの光軸との相対位置を変更する変更手段と、を具備する手術用顕微鏡。
【0072】
(付記2)観察対象からの光束が入射される対物レンズと、
前記観察対象に照明光を照射する照明光学系と、
前記対物レンズからの光束が入射され、前記観察対象の観察倍率を変更する変倍レンズ系と、
立体像を得るための視差を有した2つの観察光束を形成する観察光学系と、
前記観察光学系からの前記2つの観察光束に基づいて形成される光学像を観察するための観察手段と、
前記変倍レンズ系の前記観察対象に対する変倍動作に伴い前記2つの観察光束の間に前記照明光学系の少なくとも一つの光学素子を挿入し、前記光学素子と前記対物レンズの光軸との相対位置を変更する変更手段と、を具備する手術用顕微鏡。
【0073】
(付記3)前記変更手段は、前記変倍レンズ系の動作に基づいた低倍率観察から高倍率観察への変倍動作に連動して、前記照明光学系の少なくとも一部を前記対物レンズの光軸に近づけるべく変位させることを特徴とする、付記1または付記2に記載の手術用顕微鏡。
【0074】
(付記4)前記変更手段は、前記対物レンズの光軸に対する観察対象に向かう照明光軸の相対角度および相対距離を変更することを特徴とする、付記1または付記2に記載の手術用顕微鏡。
【0075】
(付記5)前記変更手段は、前記照明光学系から出射される照明光を、前記観察対象の略中心位置を基準に傾斜させるべく、前記照明光学系の全体が前記観察対象の略中心を基準に円弧状に移動することを特徴とする、付記1または付記2に記載の手術用顕微鏡。
【0076】
(付記6)前記変更手段は、前記照明光学系の有する反射部材を、該反射部材から照射され、前記観察対象に向かう照明光の光軸と前記対物レンズの光軸の相対的な角度を変更すべく回転させるとともに、且つ前記照明光学系の全体または一部を、前記対物レンズの光軸に対して直交する方向に移動させ、これら回転及び移動によって前記照明光の光軸を前記観察対象の略中心を基準に傾斜させるようにした、付記1または付記2に記載の手術用顕微鏡。
【0077】
(付記7)前記視差を有した2つの観察光軸の間に挿入される照明光学系を構成する部材の幅は、前記2つの観察光束それぞれの有する光束径の間の間隔よりも小さい、付記2に記載の手術用顕微鏡。
【0078】
(付記8)前記視差を有した2つの観察光束の間に挿入される照明光学系を構成する部材は、前記2つの観察光束を避けるべく先端に近づくほど細くなる形状をなしている、付記2に記載の手術用顕微鏡。
【0079】
(付記9)観察対象からの光束が入射され、アフォーカルな光束を形成する対物レンズと、複数のレンズ群からなり、前記対物レンズからの光束を入射し、前記複数のレンズ群に含まれる移動レンズを変位させることによって変倍を行なう変倍レンズ系と、前記変倍レンズ系からの光束を入射して像を結像する結像レンズ及びこの結像された像を拡大する接眼レンズとを含んだ接眼光学系とからなる観察光学系と、
前記観察対象に照明光を照射する照明光学系と、
前記変倍レンズ系の有する移動レンズの変位に伴って、前記観察光学系の観察光軸に対する前記照明光学系の照明光軸の相対角度を変更させると共に、低倍率の観察時に比べて高倍率の観察時に照明光軸を観察光軸に近づけるようにした照明光照射角度変更手段を具備したことを特徴とする手術用顕微鏡。
【0080】
(付記10)前記照明光照射角度変更手段は、前記変倍レンズ系の有する移動レンズの変位に伴い、前記照明光学系の部材を、前記観察光学系の光軸に対する距離が変化するように変位する、付記9に記載の手術用顕微鏡。
【0081】
(付記11)前記照明光照射角度変更手段は、前記照明光学系から出射される照明光を、前記観察対象の略中心位置を基準に傾斜させるべく、照明光学系の全体が前記観察対象の略中心を基準に円弧状に移動する、付記9、10に記載の手術用顕微鏡。
【0082】
(付記12)前記照明光照射角度変更手段は、前記照明光学系の有する反射部材を、該反射部材から照射され前記観察対象に向かう照明光の光軸と前記対物レンズの光軸の相対的な角度を変更すべく回転させると共に、且つ前記反射部材を含まない照明光学系の部材を、前記対物レンズの光軸に対して直交する方向に移動させ、これら回転及び移動によって前記照明光の光軸を前記観察対象の略中心を基準に傾斜させるようにした、付記9、10,11に記載の手術用顕微鏡。
【0083】
(付記13)前記照明光学系は、前記対物レンズより下部に配設された反射部材を有するとともに、前記照明光源から出射された照明光は、前記反射部材によって観察対象に向かうべく偏向される、付記9、10,11,12に記載の手術用顕微鏡。
【0084】
【発明の効果】
以上説明したように、本発明によれば、高倍率時において観察することの多い、深く細い穴の中でも十分に照明光を術部に到達させることができるとともに、低倍率での観察においては照明光学系によって観察光束の通過を妨げることが無いために、術者は常に明るい視野を確保しながら手術を行なうことができる。従って、従来に比べて格段に手術効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係わる手術用顕微鏡の観察対象を低倍率で観察しているときの側方から見た説明図。
【図2】同じく本発明の第1の実施形態に係わる手術用顕微鏡の観察対象を高倍率で観察しているときの側方から見た説明図。
【図3】本発明の第2の実施形態に係わる手術用顕微鏡の観察対象を低倍率で観察しているときの側方から見た説明図。
【図4】同じく本発明の第2の実施形態に係わる手術用顕微鏡の一部分を上方から見た図。
【図5】同じく本発明の第2の実施形態に係わる手術用顕微鏡の制御系を示すブロック図。
【図6】同じく本発明の第2の実施形態に係わる手術用顕微鏡の観察対象を高倍率で観察したときの観察光学系の説明図。
【図7】本発明の第3の実施形態に係わる手術用顕微鏡の観察対象を低倍率で観察しているときの側方から見た説明図。
【図8】同じく本発明の第3の実施形態に係わる手術用顕微鏡の観察対象を高倍率で観察しているときの側方から見た説明図。
【図9】(a)は本発明の第4の実施形態に係わる手術用顕微鏡を側方から見た説明図、(b)はこれを下方から見た説明図。
【図10】(a)は本発明の第4の実施形態に係わる手術用顕微鏡を側方から見た説明図、(b)はこれを下方から見た説明図。
【図11】(a)は本発明の第4の実施形態に係わる手術用顕微鏡を側方から見た説明図、(b)はこれを下方から見た説明図。
【符号の説明】
L1…観察光軸
L2…照明光軸
A…画角
Y…角度
1…対物レンズ
2…観察対象
3…変倍レンズ系
4…接眼光学系
8…反射部材
10…鏡体ハウジング
11…移動レンズ枠
13…カム筒
15…従動ピン
16…モーター
21…照明ハウジング
23…照明光源
24…コンデンサレンズ
25…反射部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surgical microscope capable of changing the magnification of an image to be observed.
[0002]
[Prior art]
In recent years, with the demand for minimally invasive surgery, surgery using a surgical microscope has been frequently performed in order to enable fine treatment. Usually, a surgical microscope has an optical system with a function of changing the observation magnification. For this reason, for example, in neurosurgery, the removal of a tumor and the prevention of malformation of a deformed blood vessel are prevented. Various treatments, such as treatments and even vascular anastomoses, can be performed under observation at the optimum magnification.
[0003]
In addition, the surgical site is not limited to a flat surface, but is often located in a deep part where the surgical part has been dug down. Therefore, particularly in the case of a surgical part in which a deep hole is formed, the illumination light for illuminating the surgical part is easily blocked at the entrance of the hole. In order to allow sufficient illumination light to reach the deep part, the optical axis of the illumination light is preferably closer to the optical axis of the observation light for observing the surgical site.
[0004]
For this reason, the optical axis of the illumination light for illuminating the surgical site (hereinafter referred to as the illumination optical axis) is placed close to the optical axis of the observation light for observing the surgical site (hereinafter referred to as the observation optical axis). Various types have been proposed in the past in which the observation optical axis and the illumination optical axis are aligned.
[0005]
For example, in a surgical microscope disclosed in Japanese Patent Application Laid-Open No. 8-257037, a semi-transmissive semi-reflective member is disposed directly below the observation optical system (on the optical axis), and the semi-transmission member is viewed from a direction perpendicular to the optical axis of the observation optical system. The illumination light beam is incident on the transmissive semi-reflective member, and the observation optical axis and the illumination optical axis are made to coincide with each other, so that the illumination light is irradiated onto the surgical site from a direction completely coincident with the observation optical axis.
[0006]
In addition, the surgical microscope disclosed in Japanese Patent No. 3,011,950 and Japanese Patent Application Laid-Open No. 10-73769 irradiates a large amount of illumination light in the deep hole when the surgical part is located in the deep hole. The illumination light emitted from the light source incorporated in the surgical microscope is divided into two systems, and the illumination light illumination axes are fixedly arranged at positions symmetrical to the observation optical axis. The illumination light is emitted from two determined directions toward the observation target.
[0007]
In the surgical microscope disclosed in Japanese Patent Publication No. 6-44101 and Japanese Patent No. 2891923, a pair of left and right eyes respectively corresponding to the left and right eyes of the observer from a portion located above the object facing surface of the objective lens. The illumination optical system is configured to guide the illumination light beam to the surgical site through the intermediate region of the observation light beam, and the surgical site is illuminated from between the pair of left and right observation light beams.
[0008]
[Problems to be solved by the invention]
By the way, the surgical microscope disclosed in JP-A-8-257037 has a transflective member disposed on the optical axis of the observation optical system, so that only half of the illumination light emitted from the light source can be guided to the observation target. Further, the illumination light beam that is reflected by the observation target and travels toward the observation optical system also passes through the semi-transmissive / semi-reflective member and is incident on the observation optical system. Therefore, the brightness observed by the observer is further reduced, and the amount of light is reduced. Will be about one-fourth the amount of light. Therefore, the surgeon must operate under a dark observation image or use an expensive high-intensity light source capable of emitting a very bright light amount with respect to the light amount necessary for observation.
[0009]
In the surgical microscopes of Japanese Patent Publication No. 6-44101 and Japanese Patent No. 2891923, the left and right observation optical systems corresponding to the left and right eyes of the observer are arranged on the left and right sides avoiding the illumination optical system located at the center. Therefore, the distance between the left and right observation light beams is greatly separated. Therefore, even if the illumination light beam reaches the bottom of the deep hole, the observation light beam is blocked by the edge of the entrance of the hole, and the bottom of the hole cannot be observed. In addition, the distance between the left and right observation light beams is greatly separated, and the microscope itself is even larger.
[0010]
In addition, in the surgical microscope disclosed in Japanese Patent No. 3011950 and Japanese Patent Laid-Open No. 10-73769, the illumination light is irradiated from the position symmetrical with respect to the observation optical axis toward the observation target. It is possible to brightly illuminate the inner wall of the deep hole as compared with the case, but the angle made by the illumination optical axis with respect to the observation optical axis itself is the same as in conventional microscopes, so the surgical site at the bottom of the deep hole is still The illumination light has not reached enough.
[0011]
The present invention has been made with the above circumstances in mind, and the object of the present invention is in the case where an observer treats a deep surgical site without losing illumination light or enlarging the microscope. An object of the present invention is to provide a surgical microscope capable of performing satisfactory observation by allowing sufficient illumination light to reach the surgical site even during high-magnification observation.
[0012]
[Means and Actions for Solving the Problems]
The invention according to claim 1 includes an objective lens into which a light beam from an observation target is incident;
A variable power lens system that receives a light beam from the objective lens and changes an observation magnification of the observation target; and
Observation means for observing an optical image formed based on the light flux from the zoom lens system;
An illumination optical system that is disposed in a space between the objective lens and the observation target and that can irradiate the observation target with illumination light;
The relative position between the optical member for illumination closest to the optical axis of the objective lens and the optical axis of the objective lens among the optical members constituting the illumination optical system corresponding to the zooming operation of the variable magnification lens system Change means to change
Comprising
The movable range of the illumination optical member moved by the changing means includes a position where the illumination optical member retracts to a position where the illumination optical member does not interfere with an observation light beam at the low magnification observation, and the low magnification at the high magnification observation. The surgical microscope has a position closer to the observation light beam than a position at the time of observation.
[0013]
The invention according to claim 2 includes an objective lens into which a light beam from an observation target is incident;
A variable power lens system that receives a light beam from the objective lens and changes an observation magnification of the observation target; and
An observation optical system that forms two observation light beams having parallax to obtain a stereoscopic image;
Observation means for observing an optical image formed on the basis of the two observation light beams from the observation optical system;
An illumination optical system that is disposed in a space between the objective lens and the observation target and that can irradiate the observation target with illumination light;
Among the optical members constituting the illumination optical system corresponding to the magnification operation of the variable magnification lens system, the illumination optical member closest to the optical axis of the objective lens is between the two observation light beams of the objective lens. Change means that is freely removable, and changes a relative position between the optical member for illumination and the optical axis of the objective lens;
The movable range of the illumination optical member moved by the changing means includes a position where the illumination optical member retracts to a position where it does not interfere with the two observation light beams at low magnification observation, and the illumination optical member at the high magnification observation. A surgical microscope characterized by having a position that enters between the two observation light beams.
[0014]
The invention according to claim 3 is characterized in that the changing means moves the illumination optical member in conjunction with a zooming operation from low magnification observation to high magnification observation based on the operation of the zoom lens system. The surgical microscope according to claim 1 or 2.
[0015]
According to the above configuration, when the magnification of the observation image is high, the illumination optical system can be brought closer to the objective lens without blocking the observation light beam, and closer to the observation optical axis than when the magnification is low. It is possible to irradiate the observation target with illumination light from the position.
In the invention according to claim 1, in addition to the above, since the illumination light does not pass through the objective lens, flare caused by the illumination light due to surface reflection of the objective lens does not occur.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
A surgical microscope according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. 1 and 2 both show a schematic configuration of the surgical microscope viewed from the side, but FIG. 1 shows a state in which the observation object is observed at a low magnification, and FIG. 2 shows an observation object at a high magnification. The state of observing is shown.
[0017]
In the observation means of a stereoscopic microscope such as this surgical microscope, the optical system behind the objective lens forms a pair of left and right observation optical systems in order to give parallax corresponding to the left and right eyes of the observer. In FIG. 2 and FIG. 2, since the surgical microscope is viewed from the side, only one observation optical system is shown.
[0018]
Reference numeral 1 shown in FIGS. 1 and 2 is an objective lens of an observation optical system (observation means), and this objective lens 1 has an observation target (operation part) 2 as a focal position. The objective lens 1 emits the incident light beam to the variable power lens system 3 as an afocal light beam. When the surgical microscope is viewed from the side as shown in FIG. 1 and FIG. 2, the optical axis (observation optical axis L1) of the objective lens 1 and the variable power lens system 3 are aligned on the same straight line. appear.
[0019]
The angle of view of the light beam between the objective lens 1 and the observation object 2 is different between when observing at a low magnification (FIG. 1) and when observing at a high magnification (FIG. 2). The angle of view in FIG. 1 observed at a low magnification is “A”, and the angle of view in FIG. 2 observed at a high magnification is “A ′”. In general, in a surgical microscope, the position of the pupil is away from the objective lens 1, so the image of the light beam when observing at a low magnification with respect to the field angle “A ′” of the light beam in a state of observing at a high magnification. The width of the corner “A” is wide.
[0020]
The magnifying lens system 3 of the observation optical system performs afocal magnifying on the light beam incident from the objective lens 1 and emits it again to the eyepiece optical system 4 as an afocal light beam.
[0021]
The eyepiece optical system 4 includes an imaging lens 5 and an eyepiece lens 6. The imaging lens 5 is disposed on the optical axis L1, and an afocal light beam emitted from the zoom lens system 3 is incident on the imaging lens 5. The light beam emitted from the imaging lens 5 is imaged at the imaging position 7 through the reflecting member 8 and the reflecting member 9. The eyepiece 6 enlarges the image connected to the imaging position 7 and allows the operator to observe it.
[0022]
The variable magnification lens system 3 includes three lenses 3a, 3b, and 3c. Particularly, the lenses 3a and 3c at both ends are fixed to the mirror housing 10 via a fixed lens frame (not shown), and the lens 3b positioned in the middle is It is fixed to a movable lens frame 11 that is movable along the observation optical axis L1. The moving lens frame 11 is guided by the guide shafts 12a and 12b to move along the observation optical axis L1. The moving lens frame 11 is provided with a fitting hole (not shown) through which the guide shafts 12a and 12b penetrate. The guide shafts 12a and 12b are disposed on the left and right of the observation optical axis L1 in the mirror housing 10, and are disposed in parallel with the observation optical axis L1. Both ends of the guide shafts 12 a and 12 b are supported by the mirror housing 10.
[0023]
A cam cylinder 13 is installed in the lens body housing 10 adjacent to one of the guide shafts 12a and having a rotation center axis disposed in parallel to the guide shaft 12a. The cam tube 13 is attached to the lens body housing 10 with an arrow in FIG. It is supported rotatably in the B direction. A cam groove 14 is formed on the outer periphery of the cam cylinder 13, and the other protruding end of a driven pin 15 having one end embedded and fixed to the moving lens frame 11 is fitted into and engaged with the cam groove 14. The cam cylinder 13 is rotationally driven by a motor 16 controlled by an external input means (not shown). The motor 16 has an output shaft 17 arranged coaxially with the cam cylinder 13, and the output shaft 17 is coaxially connected to the cam cylinder 13. The main body of the motor 16 is fixed to the mirror housing 10.
[0024]
On the other hand, a substantially cylindrical illumination housing 21 that houses an illumination light source of an illumination optical system, which will be described later, is attached to the front surface of the mirror housing 10 so that the inclination angle can be changed. In the illumination housing 21, an illumination light source 23 having a reflecting mirror 22, a condenser lens 24, a reflection member 25 for directing the emission direction of illumination light emitted from the illumination light source 23 toward the observation object 2, and the like are provided. ing. As shown in FIGS. 1 and 2, the optical axis (illumination optical axis) L2 of the illumination light beam emitted from the reflecting member 25 and directed toward the observation object 2 is a reflecting mirror 22 and an illumination light source arranged in the illumination housing 21. Compared with the optical axis L3 of the optical system by the lens 23 and the condenser lens 24, the lens housing 10 is adjacent to the mirror housing 10 with a partial deviation. The illumination optical system is disposed in a space between the objective lens 1 and the observation object 2, introduces illumination light from the side of the space, and irradiates the observation object 2 with the reflecting member 25. It is like that.
[0025]
The front end portion 21a of the illumination housing 21 incorporating the reflecting member 25 is bent so as to protrude toward the mirror housing 10 with respect to the other housing portions, and the front end portion 21a is formed with the objective lens 1 and the observation object 2. Projecting toward the observation optical axis L1. Optical axes L2 and L3 related to the illumination optical system are parallel. The reflecting member 25 may be a mirror or a prism.
[0026]
Next, an illumination light irradiation angle changing unit that changes the relative position of the objective lens 1 with respect to the observation optical axis L1 by changing the tilt angle of the illumination housing 21 and changing the illumination angle X will be described. Driven pins 31 a and 31 b are provided on the upper end side and the lower end side of the illumination housing 21, and the driven pins 31 a and 31 b are elongated holes 33 a and 32 a formed in wing-like portions 32 a and 32 b protruding from the lens body housing 10. Those corresponding to 33b are fitted separately. Each of the long holes 33a and 33b formed in the wing-like portions 32a and 32b is formed in an arc shape whose center coincides with one point of the observation object 2. The corresponding follower pins 31a and 31b are slidably fitted in the elongated holes 33a and 33b, respectively, so that the illumination housing 21 is supported by the mirror housing 10 and at the same time the observation object 2 is mounted. Can be tilted around the position.
[0027]
The spring housing portions 35 and 36 are disposed on the mirror housing 10 and the illumination housing 21 so as to face each other. A tension spring 37 is installed on the spring hooks 35 and 36. That is, one end of the tension spring 37 is hung on the spring hook 35 of the mirror housing 10, and the other end of the tension spring 37 is hung on the spring hook 36 of the illumination housing 21. The tension spring 37 always pulls and urges the illumination housing 21 toward the mirror housing 10.
[0028]
A restricting protrusion 38 is integrally formed on the movable lens frame 11 of the variable magnification lens system 3, and the restricting protrusion 38 protrudes toward the illumination housing 21. The restricting protrusion 38 passes through the window 39 opened in the side wall of the mirror housing 10, is exposed to the outside of the mirror housing 10, and its tip abuts against and contacts the side surface of the illumination housing 21. Although the length of the restricting protrusion 38 is not changed per se, the illumination housing 21 is appropriately tilted by moving up and down together with the moving lens frame 11. In addition, the observation light beam having the width of the angle of view “A” when observing at a low magnification and the observation light beam having a width of the angle of view “A ′” when observing at a high magnification are not overlapped. The length to be regulated is always set so that the tip 21a of the illumination housing 21 is as close as possible to the observation light beam. That is, in the state of FIG. 1 in which observation is performed at a low magnification, the movable lens frame 11 is lowered, and the amount of push of the illumination housing 21 is changed, so that the front end portion 21a of the illumination housing 21 has an angle of view “A”. 2 in the state of FIG. 2 where the observation light beam is as close as possible to the observation light beam region and is observed at a high magnification, even if it does not overlap the observation light beam region of “A ′”. It is located as close as possible to the area of the observation beam.
[0029]
Next, the operation of the surgical microscope of this embodiment will be described. The light emitted from the illumination light source 23 illuminates the observation object 2 obliquely from the side of the observation optical axis L1 between the objective lens 1 and the observation object 2 via the condenser lens 24 and the reflection member 25. The illumination light reflected from the observation object 2 enters the objective lens 1, passes through the variable power lens system 3 and the imaging lens 5, and an image is formed with parallax at the imaging position 7 by the eyepiece 6. The surgeon 40 magnifies and observes the image.
[0030]
Incidentally, in the observation state at a low magnification shown in FIG. 1, the angle X formed by the observation optical axis L1 and the illumination optical axis L2 is relatively large according to the width of the field angle A of the observation light beam. When converting from this state to a state in which observation is performed at a high magnification, the motor 16 is driven by an external input means (not shown). Then, the cam cylinder 13 connected to the motor 16 rotates. When the cam cylinder 13 rotates, the movable lens frame 11 fitted to the guide shafts 12a and 12b moves upward along the observation optical axis L1 through the driven pin 15 engaged with the cam groove 14. As a result, the moving lens frame 11 is located at the upper position shown in FIG. As the moving lens frame 11 moves, the protrusion 38 integrated with the moving lens frame 11 is also displaced, so that the illumination housing 21 in contact with the protrusion 38 is also tilted and displaced.
[0031]
The operation of tilting and displacing the illumination housing 21 is performed as follows. First, since the protruding portion 38 moves upward in parallel with the observation optical axis L1, the protruding portion 38 is disposed at an angle with respect to the observation optical axis L1, as shown in FIG. Further away from the side surface of the lighting housing 21. However, since the illumination housing 21 is urged so as to be pulled toward the mirror housing 10 by the tension spring 37, the illumination housing 21 always tends to be displaced in contact with the tip of the protruding portion 38. Further, since the driven pins 31a and 31b are engaged with the arc-shaped elongated holes 33a and 33b, the driven pins 31a and 31b are elongated holes 33a formed so as to be centered on the position of the observation object 2. , 33b. As a result, the illumination housing 21 tilts so that the illumination optical axis L2 always passes through the center of the observation object 2.
[0032]
Then, the illumination housing 21 is displaced from the state of FIG. 1 to the state of FIG. Then, the angle formed by the illumination optical axis L2 and the observation optical axis L1 becomes small, and the angle is indicated by the symbol Y in FIG. In this case, the most protruding tip 21a, which is a part of the illumination housing 21, approaches the observation optical axis L1. However, as shown in FIG. 2, the field angle A ′ of the observation light beam in the high magnification observation state is smaller than the field angle A of the observation light beam in the low magnification observation state shown in FIG. It does not interfere with observation. Therefore, the operator 40 can clearly observe the observation object 2 at a high magnification.
[0033]
As described above, according to the illumination light irradiation angle changing means of this embodiment, the angle of the illumination optical axis L2 with respect to the observation optical axis L1 is reduced in conjunction with the operator changing the observation magnification from the low magnification to the high magnification. Thus, since the illumination optical axis L2 approaches the observation optical axis L1, even when observing the inside of a surgical site that has become a deep hole that is often observed at a high magnification, It can be observed by irradiating with sufficient illumination light. Further, since the illumination optical system member is retracted to a position where the observation light beam is not displaced in observation at each magnification, observation is not hindered. Furthermore, since an illumination optical system is disposed in the space between the objective lens 1 and the observation object 2, the illumination light beam is directed to the observation object 2 by the reflecting member 25 disposed under the objective lens 1, and the objective Since the lens 1 does not pass, there is no adverse effect on the observation system due to surface reflection of the objective lens 1 such as flare.
[0034]
(Second Embodiment)
A surgical microscope according to a second embodiment of the present invention will be described with reference to FIGS. 3 is a side view of the surgical microscope when the observation target is observed at a low magnification, FIG. 4 is a view of a part shown in FIG. 3 from above, and FIG. FIG. 6 is an explanatory diagram of an observation optical system when observing an observation target at a high magnification. In the present embodiment, the same components as those of the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
[0035]
In the present embodiment, both the observation optical system and the illumination optical system are built in the mirror housing 41. Unlike the moving lens frame 11 described in the first embodiment, the lens frame 42 that supports the lens 3b of the variable magnification lens system 3 does not have the protruding portion 38. The cam cylinder 13 is provided with a first gear 43 at one end thereof. A second gear 47 fixed to the output shaft 46 of the first motor 45 is engaged with the first gear 43. When the first motor 45 is controlled and driven by an external input means (not shown), the cam cylinder 13 is rotated via the first gear 43 and the second gear 47. An input shaft 49 of an encoder 48 is connected to one end of the cam cylinder 13, and the rotation angle of the cam cylinder 13 is detected by the encoder 48.
[0036]
The illumination optical system can irradiate the observation target with illumination light, and is disposed in a space between the objective lens 1 and the observation target 2. The illumination optical system is provided with a reflecting member 51 made of a prism for deflecting the illumination light emitted from the condenser lens 24 toward the observation object 2, and the reflecting member 51 is supported by the prism frame 52. Near the objective lens 1 and below the objective lens 1, the objective lens 1 is disposed in a space between the objective lens 1 and the observation object 2.
[0037]
The prism frame 52 has a rotation shaft 53 that extends in a direction perpendicular to the paper surface, and a third gear 54 is formed at the rotating end of the prism frame 52. A fitting hole 56 for fitting the rotation shaft 53 of the prism frame 52 is provided in the illumination housing 55 containing the illumination optical system. The illumination housing 55 is provided with a fitting hole 57 different from the fitting hole 56, and the rotation shaft 59 of the fourth gear 58 is fitted into the fitting hole 57. The fourth gear 58 is in meshing relation with the third gear 54, and the output shaft of the second motor 61 disposed on the same axis as the shaft center is connected to the rotation shaft 59 of the fourth gear 58. The second motor 61 is controlled by the first control circuit 62 at a rotation angle corresponding to the counter value of the encoder 48.
[0038]
The mirror housing 41 is provided with two guide shafts 64a and 64b supported so as to be arranged in parallel to the illumination optical axis 63. The guide shafts 64a and 64b are respectively connected to the illumination housing 55 and the illumination optical axis 63. Are slidably fitted to fitting holes 65a and 65b formed in parallel with the fitting holes 65a and 65b. Accordingly, the entire illumination housing 55 is slidable in the direction of the illumination optical axis 63 along the guide shafts 64a and 64b.
[0039]
A rack 71 is provided on the outer surface of the illumination housing 55, and the rack 71 is engaged with a pinion 72 provided in the mirror housing 41. The rotation shaft 73 of the pinion 72 is connected to the output shaft of the third motor 67. The rotation angle of the third motor 67 is controlled by the second control circuit 75 according to the counter value of the encoder 48. This constitutes a changing means for moving the illumination optical system and changing the relative position of the objective lens 1 with respect to the optical axis.
[0040]
Next, the operation of the illumination light irradiation angle changing means of this embodiment will be described. When the first motor 45 is driven by external input means, the second gear 47 fixed to the output shaft 46 of the first motor 45 rotates. The rotation of the second gear 47 is transmitted to the first gear 43, and the cam cylinder 13 rotates. When the cam cylinder 13 rotates, the lens frame 42 supporting the lens 3b of the variable magnification lens system 3 is moved, so that the observation magnification is changed. At this time, the rotation angle of the cam cylinder 13 is detected by the encoder 48, and the information is transmitted to the first control circuit 62 and the second control circuit 75. The first control circuit 62 and the second control circuit 75 each perform a predetermined calculation to be described later based on the information sent from the encoder 48, and the second motor 61 and the third motor by an angle based on the obtained calculation result. 67 is rotated.
[0041]
First, when the second motor 61 rotates, the fourth gear 58 rotates, and the rotation is transmitted to the third gear 54. As a result, the prism frame 52 rotates around the rotation axis 53, and the reflecting member 51 supported by the prism frame 52 also rotates simultaneously. Therefore, the angle of the illumination light 76 emitted from the reflecting member 51 is changed in the direction of arrow C in FIG.
[0042]
Further, when the third motor 67 rotates, the pinion 72 that meshes with the rack 71 of the illumination housing 55 rotates, whereby the illumination housing 55 moves in the horizontal direction along the guide shafts 64a and 64b. Further, since the reflection member 51 is supported by the illumination housing 55 via the prism frame 52, the reflection member 51 moves together with the illumination housing 55. Therefore, the direction of the illumination light 76 emitted from the reflecting member 51 is changed to the arrow D direction as shown in FIG.
[0043]
As described above, the relative position between the illumination optical system and the optical axis of the objective lens 1 is changed by the rotation of the second motor 61 and the third motor 67, and at the same time, the illumination optical axis L2 achieves rotation and horizontal movement. However, the first control circuit 62 and the second control circuit 75 rotate the second motor 61 and the third motor 67 so that the illumination optical axis L2 is always directed to the observation object 2 in any state. Control the angle. Therefore, the angle X ′ formed by the observation optical axis L1 and the illumination optical axis L2 shown in FIG. 3 showing the low magnification observation state is larger than the angle X ′ in the high magnification observation state shown in FIG. Thus, a small angle Y ′ is obtained.
[0044]
As described above, according to the illumination light irradiation angle changing means of the present embodiment, the observation optical axis L1 is interlocked with the operation of the surgeon 40 changing the observation magnification from the low magnification to the high magnification as in the first embodiment. The angle of the illumination optical axis L2 with respect to becomes closer. For this reason, even when observing a surgical site in a deep hole that is often observed at a high magnification, observation can be performed with the illumination light sufficiently irradiated to the site to be observed, and observation at a low magnification. In, the passage of the observation light beam is not hindered by the members of the illumination optical system. Furthermore, since the illumination light beam is directed to the observation target by the reflecting member 51 of the illumination optical system disposed under the objective lens 1 and does not pass through the objective lens 1, the illumination light flux is directed to the observation system by surface reflection of the objective lens 1 such as flare. There is no adverse effect. Since the illumination housing 55 is built in the mirror housing 41, the entire apparatus becomes compact.
[0045]
(Third embodiment)
A surgical microscope according to a third embodiment of the present invention will be described with reference to FIGS. FIG. 7 is an explanatory view of the surgical microscope in a state where the observation target part is observed at a low magnification, and FIG. 8 is a side view of the surgical microscope in a state where the observation target part is observed at a high magnification. It is explanatory drawing seen from. In the present embodiment, components common to the first embodiment and the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0046]
In the surgical microscope according to the present embodiment, the fitting member 56 that supports the rotating shaft 53 of the prism frame 52 that supports the reflecting member 51 is provided in the moving member 81. The moving member 81 is supported by a ball screw 82 disposed horizontally. Both ends of the ball screw 82 are supported by bearing portions 83 a and 83 b provided in the mirror housing 10. The ball screw 82 is parallel to the illumination optical axis 63 of the illumination optical system.
[0047]
An output shaft of a motor 84 is connected to one end of the ball screw 82, and the rotation angle of the motor 84 is controlled by information from the encoder 48. The moving member 81 is formed with a screw hole 85 screwed into the ball screw 82 and a flat portion 86. The plane portion 86 is surface-bonded to a guide plane 87 provided in the lens body housing 10, thereby preventing the moving member 81 itself from rotating. Since both surface portions 86 and 87 are parallel to the axis of the ball screw 82, the movement of the moving member 81 is not prevented. By rotating the ball screw 82 by the motor 84, the moving member 81 only moves in a direction parallel to the illumination optical axis 63 of the illumination optical system, and the plane portion 86 and the guide plane 87 are in contact with each other. 81 does not rotate with respect to the ball screw 82.
[0048]
As shown in FIGS. 8 and 9, a tension spring 88 is installed on one end of the prism frame 52 that supports the reflecting member 51 and the moving member 81. One end of the prism frame 52 and the moving member 81 are provided with spring hook portions 91 and 92 for hooking a tension spring 88, respectively. One end of the tension spring 88 is hooked on the spring hooking portion 91 of the prism frame 52, and the other end of the tension spring 88 is hooked on the spring hooking portion 92 of the moving member 81. Therefore, the prism frame 52 is pulled toward the moving member 81 and is urged so as to rotate in the direction indicated by F in FIG.
[0049]
A restricting piece 93 is integrally projected at the other lower end of the prism frame 52. The restricting piece 93 hits the positioning pin 94 provided on the mirror housing 41, and the restricting piece 93 always abuts against the positioning pin 94 by the urging action of the tension spring 88. The rotation angle of the prism frame 52 in the direction of rotation about the rotation shaft 53 is regulated by the contact action with the positioning pin 94. Here, the position of the positioning pin 94 is a position where the illumination light beam emitted from the reflecting member 51 is always directed to the observation object 2 regardless of the position at which the moving member 81 is moved by the rotation of the ball screw 82. It is arranged at a specific place to be regulated so as to become. The illumination optical system is disposed in a space between the objective lens 1 and the observation target 2 and can irradiate the observation target 2 with illumination light.
[0050]
Next, the operation of the illumination light irradiation angle changing means of this embodiment will be described. When the motor 84 is rotated by the information from the encoder 48, the ball screw 82 is fixed to the output shaft of the motor 84, and thus rotates by the same angle. When the ball screw 82 rotates, the moving member 81 having the screw portion 95 screwed with the ball screw 82 moves in the direction of arrow E shown in FIG.
[0051]
When the moving member 81 moves in this way, the prism frame 52 supported by the moving member 81 also tries to move together. However, since the restricting piece 93 is in contact with the positioning pin 94, the prism frame 52 is moved. Simultaneously with the movement, rotation occurs in the direction of arrow F about the rotation axis 53. As a result, the low magnification observation state shown in FIG. 7 is changed to the high magnification observation state shown in FIG. Be made.
[0052]
As described above, according to the illumination light irradiation angle changing means of the present embodiment, the observation magnification is changed from the low magnification to the high magnification in the same manner as the first embodiment and the second embodiment described above. As the illumination optical axis approaches the observation optical axis, even when observing inside a deep hole that is often observed at high magnification, the illumination light can be sufficiently irradiated to the observation target part, and bright illumination In addition to being able to observe in a state, even in observation at a low magnification, the observation optical flux is cast by the member of the illumination optical system and observation is not hindered. Further, since the illumination light beam is directed to the observation target by the reflecting member 51 disposed below the objective lens 1 and does not pass through the objective lens 1, there is an adverse effect on the observation system due to surface reflection of the objective lens 1 such as flare. Absent. Further, the illumination light irradiation angle changing means can be configured at low cost, for example, only one motor is required to move the illumination system.
[0053]
(Fourth embodiment)
A surgical microscope according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 9 is a view of the surgical microscope as viewed from the side, and FIG. 10 is a view of the operation microscope as viewed from below. In the present embodiment, components common to those in the first to third embodiments described above are denoted by the same reference numerals and description thereof is omitted. Here, an explanation will be given focusing on an illumination optical system that is arranged in a space between the objective lens 1 and the observation object 2 and that irradiates illumination light toward the observation object.
[0054]
In FIG. 9, L1 ′ and L1 ″ indicate the central axes of the left and right observation light beams each having a parallax for stereoscopic viewing, and reference numerals 100 and 101 shown in FIG. The diameters of these observation light beams L1 ′ and L1 ″ at the time are respectively shown. Further, reference numerals 102 and 103 shown in FIG. 9B represent the diameters of these observation light beams L1 ′ and L1 ″ at the time of high magnification observation.
[0055]
Reference numeral 104 shown in FIG. 9 denotes a reflecting member for bending the traveling direction of light emitted from the illumination light source 23 of the illumination means toward the observation object 2. The reflecting member 104 is fixedly held on the prism frame 105 by adhesion or the like. The prism frame 105 is supported by a horizontal movement mechanism such as a guide shaft (not shown), and constitutes changing means that can move in a horizontal direction orthogonal to the observation light beam L1. A lever 106 is formed at a part of the prism frame 105, for example, at the rear end. The lever 106 protrudes outside the microscope main body (not shown), and the prism frame 105 can be moved by using the lever 106. It is like that. In addition, the observation system is interlocked with the operation of the lever 106, and control to change between high magnification and low magnification is performed.
[0056]
As shown in FIG. 9B, the reflecting member 104 is integrally formed with a protrusion 120 protruding toward the intermediate position between the left and right observation light beams L1 ′ and L1 ″, and this protrusion 120 is also an illumination optical system. The shape of the protrusion 120 protrudes between the center positions of the left and right observation light beams L1 ′ and L1 ″, and the width on the tip side is narrow, for example, FIG. 9B shows a triangular shape. The protrusion 120 constitutes an optical element that can be inserted between the two observation light beams L1 ′ and L1 ″.
[0057]
Next, when the observer observes the observation object 2 at a low magnification, the reflecting member 104 is arranged at a position represented by a solid line in FIG. The left and right observation light beams L1 ′ and L1 ″ for forming a stereoscopic view are larger than those at the time of high magnification, but the reflection member 104 is at a position retracted from the observation optical axis L1, so that the reflection member 104 is the observation light beam. L1 ′ and L1 ″ are not blocked.
[0058]
Further, when it is desired to control the variable power lens system 3 to observe the observation object 2 at a high magnification, the observer moves the lever 106 in the direction of arrow G in the figure. As a result, the arrangement of the reflecting member 104 is changed to the position indicated by the broken line in FIG. 9, and the reflecting member 104 has its observation optical axis L1 ′ and the position where it does not block the observation light beams L1 ′ and L1 ″. It approaches L1 ". However, at the time of high magnification, the left and right observation light beams L1 ′ and L1 ″ for forming a stereoscopic view are smaller than those at the time of low magnification, so that the reflecting member 104 comes closer to the observation optical axes L1 ′ and L1 ″. be able to.
[0059]
As described above, according to the present embodiment, a part of the reflecting member 104 of the illumination optical system close to the objective lens 1 enters between the two observation light beams L1 ′ and L1 ″, and the two observation light beams L1 ′ and L1 ′ and Since the shape is effective to avoid L1 ″, when the operator changes the observation magnification from the low magnification to the high magnification, the position of the illumination light beam is made closer to the observation light beams L1 ′ and L1 ″ by the changing means. Therefore, even when observing inside a deep hole that is often observed at a high magnification, it is possible to observe the portion to be observed with sufficient illumination light and to observe at a low magnification. In FIG. 5, the illumination optical system members do not hinder the passage of the observation light beams L1 ′ and L1 ″.
[0060]
Further, since the protrusion 120 of the reflecting member 104 enters between the observation light beams L1 ′ and L1 ″ within a range that does not block the left and right observation light beams L1 ′ and L1 ″, the projection light beam L1 ′ and L1 ″ do not occupy the region. The protrusion 120 can be positioned, and the dead space between the observation light beams L1 ′ and L1 ″ can be effectively used to improve the reflection efficiency and at the same time the center of the illumination light beam can be observed compared to the case without the protrusion 120. It can be brought close to the light beams L1 ′ and L1 ″.
[0061]
As in the embodiment described above, the illumination optical axis approaches the observation optical axis in conjunction with the observation magnification being changed from a low magnification to a high magnification. Therefore, even when observing a deep hole that is often observed at a high magnification, it is possible to sufficiently irradiate the observation target site with illumination light. Further, even in observation at a low magnification, the observation light beam is scattered by the member of the illumination optical system, and observation is not hindered.
[0062]
(Fifth embodiment)
A surgical microscope according to a fifth embodiment of the present invention will be described with reference to FIGS. 10 and 11. FIG. 10A is a schematic view of the surgical microscope in a state where the observation object 2 is being observed at a low magnification, as viewed from the side, and FIG. 10B is a schematic view of the microscope viewed from below. is there. FIG. 11A is a schematic view of the surgical microscope in a state where the observation target is being observed at a high magnification, as viewed from the side, and FIG. 11B is a view of the microscope from below. In addition, in this embodiment, the same code | symbol is attached | subjected about the component which is common in the thing of the 1st-4th embodiment mentioned above, and the description is abbreviate | omitted. Here, an explanation will be given focusing on an illumination optical system that is disposed in a space between the objective lens 1 and the observation object 2 and that can irradiate the observation object with illumination light.
[0063]
In the figure, reference numeral 107 denotes a reflecting member for bending the light emitted from the illumination light source 23 in the illuminating means toward the observation object 2, and the reflecting member 107 is the observation light beams L1 ′ and L1 during the low magnification observation. ”Is fixedly disposed so as to be close to the diameters 100 and 101. Here, an optical axis of a light beam that is emitted from the reflecting member 107 and travels toward the observation object 2 is denoted by L3.
[0064]
Below the reflecting member 107, a prism 108 having a parallelogram shape as viewed from above is disposed. The parallelogram prism 108 is attached and held to the prism frame 109 by bonding or the like. The prism frame 109 is movable in a horizontal direction orthogonal to the observation light beam L1, and is moved in a horizontal direction orthogonal to the observation light beam L1 by a changing unit described later. As shown in FIG. 10B, the horizontal width of the parallelogram prism 108 is such that the observation light beams L1 ′ and L1 ″ can enter without observing the observation light beams L1 ′ and L1 ″ during high magnification observation. . The parallelogram prism 108 constitutes an optical element of the illumination optical system that can be inserted between the two observation light beams L1 ′ and L1 ″.
[0065]
A rack 110 is formed on the bottom surface of the prism frame 109. A pinion 111 that meshes with the rack 110 is disposed below the prism frame 109. The rotation shaft 112 of the pinion 111 is rotatably supported by a microscope body (not shown). The rotating shaft 112 protrudes to the outside of the microscope main body, and a rotation operation knob (not shown) is fixed to the protruding end portion.
[0066]
Next, the operation of this embodiment will be described. When the observer observes the observation object 2 at a low magnification, the parallelogram prism 108 is at the position shown in FIG. 11, that is, the position not overlapping the emission surface 121 of the reflecting member 107. Therefore, the light emitted from the illumination light source 23 is not incident on the parallelogram prism 108, and as a result, is an angle X ′ formed by the observation optical axis L1 and the illumination optical axis L3.
[0067]
When the observer controls the zoom lens system 3 and observes the observation object 2 at a high magnification, the observer rotates the operation knob (not shown) in the direction of arrow H in FIG. Since the pinion 111 is rotated by the rotation given to the operation knob, the prism frame 109 having the rack 110 that meshes with the pinion 111 moves in the direction of arrow J in FIG. As a result, the parallelogram prism 108 enters the lower region of the objective lens 1, and the state shown in FIG. 10, that is, the incident surface 113 of the parallelogram prism 108 is located below the reflecting member 107 and the parallelogram. The second reflecting surface 114 formed at the tip of the shaped prism 108 is placed on the observation optical axis L1.
[0068]
When the observation object 2 is observed at a high magnification, the light beam diameters 102 and 103 are smaller than the light beam diameters 100 and 101 when observed at a low magnification, and the parallelogram prism 108 reflects these light beams. It can be placed between the luminous fluxes without blocking. Therefore, a part of the illumination light beam emitted from the reflecting member 107 is incident on the parallelogram prism 108, and the incident light beam is reflected twice by the parallelogram prism 108 and then the observation optical axis. It emits toward the observation object 2 as a light beam having the same axis as L1.
[0069]
As described above, according to the present embodiment, when the operator changes the observation magnification to a low magnification, the position of the illumination light beam with respect to the observation light beam can be brought close, so that a deep hole often observed at a high magnification can be obtained. In the case of observing the inside, it is possible to observe with the illumination light sufficiently irradiated to the observation target portion, and also in the observation at a low magnification, the passage of the observation light beam is not hindered by the member of the illumination optical system. In particular, in this embodiment, when observing at a high magnification, the illumination light can be directed to the observation target from between a pair of left and right optical systems constituting the observation optical system of the actual microscope, so that observation is performed in a deep hole. The lighting effect is greatly improved.
[0070]
The present invention is not limited to the above-described embodiments, and can be applied to other forms. According to the above description, the items listed below and items obtained by arbitrarily combining the items listed below can be obtained.
[0071]
(Appendix 1) an objective lens into which a light beam from an observation target is incident;
A variable power lens system that receives a light beam from the objective lens and changes an observation magnification of the observation target; and
Observation means for observing an optical image formed based on the light flux from the zoom lens system;
An illumination optical system that is disposed in a space between the objective lens and the observation target and that can irradiate the observation target with illumination light;
A surgical microscope comprising: changing means for changing a relative position between at least a part of the illumination optical system and the optical axis of the objective lens.
[0072]
(Appendix 2) an objective lens into which a light beam from an observation target is incident;
An illumination optical system for illuminating the observation object with illumination light;
A variable power lens system that receives a light beam from the objective lens and changes an observation magnification of the observation target; and
An observation optical system that forms two observation light beams having parallax to obtain a stereoscopic image;
Observation means for observing an optical image formed on the basis of the two observation light beams from the observation optical system;
At least one optical element of the illumination optical system is inserted between the two observation light beams in accordance with a magnification operation for the observation target of the magnification lens system, and a relative position between the optical element and the optical axis of the objective lens And a changing means for changing the operating microscope.
[0073]
(Supplementary Note 3) The changing means moves at least a part of the illumination optical system to the light of the objective lens in conjunction with a zooming operation from low magnification observation to high magnification observation based on the operation of the zoom lens system. The surgical microscope according to appendix 1 or appendix 2, wherein the surgical microscope is displaced so as to approach the axis.
[0074]
(Additional remark 4) The said change means changes the relative angle and relative distance of the illumination optical axis which goes to the observation object with respect to the optical axis of the said objective lens, The surgical microscope of Additional remark 1 or Additional remark 2 characterized by the above-mentioned.
[0075]
(Supplementary Note 5) The changing unit is configured so that the entire illumination optical system is based on the approximate center of the observation target so that the illumination light emitted from the illumination optical system is tilted with respect to the approximate center position of the observation target. The surgical microscope according to Supplementary Note 1 or Supplementary Note 2, wherein the surgical microscope moves in a circular arc shape.
[0076]
(Additional remark 6) The said change means changes the relative angle of the optical axis of the illumination light which irradiates the reflective member which the said illumination optical system has from this reflective member toward the said observation object, and the said objective lens And the whole or a part of the illumination optical system is moved in a direction orthogonal to the optical axis of the objective lens, and the rotation and movement of the optical axis of the illumination light is performed on the object to be observed. The surgical microscope according to Supplementary Note 1 or Supplementary Note 2, which is inclined with respect to a substantially center.
[0077]
(Supplementary note 7) The width of the member constituting the illumination optical system inserted between the two observation optical axes having the parallax is smaller than the interval between the light beam diameters of the two observation light beams. 2. The surgical microscope according to 2.
[0078]
(Supplementary note 8) The member constituting the illumination optical system inserted between the two observation light beams having the parallax has a shape that becomes thinner toward the tip so as to avoid the two observation light beams. The surgical microscope described.
[0079]
(Additional remark 9) It consists of the objective lens which forms the afocal light beam by the light beam from the observation object and a plurality of lens groups, the light beam from the objective lens is incident, and the movement included in the plurality of lens groups A variable power lens system that performs variable power by displacing the lens, an imaging lens that forms an image by entering a light beam from the variable power lens system, and an eyepiece that expands the formed image An observation optical system including an eyepiece optical system included,
An illumination optical system for illuminating the observation object with illumination light;
Along with the displacement of the moving lens of the zoom lens system, the relative angle of the illumination optical axis of the illumination optical system with respect to the observation optical axis of the observation optical system is changed, and the high magnification is higher than that at the time of low magnification observation. An operating microscope comprising illumination light irradiation angle changing means for bringing an illumination optical axis closer to an observation optical axis during observation.
[0080]
(Supplementary Note 10) The illumination light irradiation angle changing means displaces the member of the illumination optical system so that the distance from the optical axis of the observation optical system changes in accordance with the displacement of the moving lens of the variable power lens system. The operating microscope according to appendix 9.
[0081]
(Supplementary Note 11) The illumination light irradiation angle changing means is configured so that the illumination optical system as a whole is substantially the same as the observation target so that the illumination light emitted from the illumination optical system is tilted with reference to the approximate center position of the observation target. The surgical microscope according to appendices 9 and 10, which moves in an arc shape with respect to the center.
[0082]
(Additional remark 12) The illumination light irradiation angle changing means is configured such that the reflection member of the illumination optical system has a relative relationship between an optical axis of illumination light irradiated from the reflection member and directed to the observation target and an optical axis of the objective lens. A member of the illumination optical system that is rotated to change the angle and does not include the reflecting member is moved in a direction perpendicular to the optical axis of the objective lens, and the optical axis of the illumination light is rotated and moved. The surgical microscope according to appendices 9, 10, and 11, wherein the angle is tilted with respect to the approximate center of the observation target.
[0083]
(Additional remark 13) The said illumination optical system has a reflection member arrange | positioned below the said objective lens, and the illumination light radiate | emitted from the said illumination light source is deflected so that it may go to an observation object by the said reflection member, The operating microscope according to appendices 9, 10, 11, 12.
[0084]
【The invention's effect】
As described above, according to the present invention, illumination light can reach the surgical site sufficiently even in deep and narrow holes that are often observed at high magnification, and illumination is possible at low magnification. Since the optical system does not hinder the passage of the observation light beam, the operator can always perform the operation while ensuring a bright field of view. Therefore, the surgical efficiency can be significantly improved as compared with the conventional case.
[Brief description of the drawings]
FIG. 1 is an explanatory view seen from the side when observing an observation target of a surgical microscope according to a first embodiment of the present invention at a low magnification.
FIG. 2 is an explanatory view seen from the side when observing the observation target of the surgical microscope according to the first embodiment of the present invention at a high magnification.
FIG. 3 is an explanatory view seen from the side when observing an observation target of a surgical microscope according to a second embodiment of the present invention at a low magnification.
FIG. 4 is a view of a part of a surgical microscope according to the second embodiment of the present invention as viewed from above.
FIG. 5 is a block diagram showing a control system of a surgical microscope according to the second embodiment of the present invention.
FIG. 6 is an explanatory diagram of an observation optical system when an observation target of a surgical microscope according to the second embodiment of the present invention is observed at a high magnification.
FIG. 7 is an explanatory view seen from the side when observing an observation target of a surgical microscope according to the third embodiment of the present invention at a low magnification.
FIG. 8 is an explanatory view seen from the side when observing an observation target of a surgical microscope according to the third embodiment of the present invention at a high magnification.
9A is an explanatory view of a surgical microscope according to a fourth embodiment of the present invention viewed from the side, and FIG. 9B is an explanatory view of the surgical microscope viewed from below.
10A is an explanatory view of a surgical microscope according to a fourth embodiment of the present invention viewed from the side, and FIG. 10B is an explanatory view of the surgical microscope viewed from below.
11A is an explanatory view of a surgical microscope according to a fourth embodiment of the present invention as viewed from the side, and FIG. 11B is an explanatory view of the microscope as viewed from below.
[Explanation of symbols]
L1 ... Observation optical axis
L2: Illumination optical axis
A ... Angle of view
Y ... Angle
1 ... Objective lens
2 ... Observation target
3 ... Variable lens system
4 ... Eyepiece optical system
8 ... Reflection member
10 ... Mirror housing
11 ... Moving lens frame
13 ... Cam cylinder
15 ... Follower pin
16 ... Motor
21 ... Lighting housing
23. Illumination light source
24 ... Condenser lens
25 ... Reflection member

Claims (3)

観察対象からの光束が入射される対物レンズと、
前記対物レンズからの光束が入射され、前記観察対象の観察倍率を変更する変倍レンズ系と、
前記変倍レンズ系からの光束に基づいて形成される光学像を観察するための観察手段と、
前記対物レンズと前記観察対象との間の空間に配置され、前記観察対象に照明光を照射可能な照明光学系と、
前記変倍レンズ系の変倍動作に対応して前記照明光学系を構成する光学部材の中で前記対物レンズの光軸に最も近接した照明用光学部材と前記対物レンズの光軸との相対位置を変更する変更手段と、
を具備し、
前記変更手段は、低倍率観察時に前記照明用光学部材を前記観察光束に干渉しない位置まで退かせると共に、高倍率観察時には前記照明用光学部材を前記低倍率観察時の位置よりも前記観察光束に近づく位置に移動させることを特徴とする手術用顕微鏡。
An objective lens into which the light beam from the observation target is incident;
A variable power lens system that receives a light beam from the objective lens and changes an observation magnification of the observation target; and
Observation means for observing an optical image formed based on the light flux from the zoom lens system;
An illumination optical system that is disposed in a space between the objective lens and the observation target and that can irradiate the observation target with illumination light;
The relative position between the optical member for illumination closest to the optical axis of the objective lens and the optical axis of the objective lens among the optical members constituting the illumination optical system corresponding to the zooming operation of the variable magnification lens system Change means to change
Comprising
The changing means retracts the illuminating optical member to a position where it does not interfere with the observation light beam during low-magnification observation, and causes the illumination optical member to move to the observation light beam more than the position during low-magnification observation during high-magnification observation. A surgical microscope characterized by being moved to an approaching position.
観察対象からの光束が入射される対物レンズと、
前記対物レンズからの光束が入射され、前記観察対象の観察倍率を変更する変倍レンズ系と、
立体像を得るための視差を有した2つの観察光束を形成する観察光学系と、
前記観察光学系からの前記2つの観察光束に基づいて形成される光学像を観察するための観察手段と、
前記対物レンズと前記観察対象との間の空間に配置され、前記観察対象に照明光を照射可能な照明光学系と、
前記変倍レンズ系の変倍動作に対応して前記照明光学系を構成する光学部材の中で前記対物レンズの光軸に最も近接した照明用光学部材が前記対物レンズの2つの観察光束の間に出し入れ自在であり、前記照明用光学部材と前記対物レンズの光軸との相対位置を変更する変更手段と、
を具備し、
前記変更手段は、低倍率観察時に前記照明用光学部材を前記2つの観察光束から干渉しない所まで退かせると共に、高倍率観察時には前記照明用光学部材を前記2つの観察光束の間に入り込む位置に移動させることを特徴とする手術用顕微鏡。
An objective lens into which the light beam from the observation target is incident;
A variable power lens system that receives a light beam from the objective lens and changes an observation magnification of the observation target; and
An observation optical system that forms two observation light beams having parallax to obtain a stereoscopic image;
Observation means for observing an optical image formed on the basis of the two observation light beams from the observation optical system;
An illumination optical system that is disposed in a space between the objective lens and the observation target and that can irradiate the observation target with illumination light;
Among the optical members constituting the illumination optical system corresponding to the magnification operation of the variable magnification lens system, the illumination optical member closest to the optical axis of the objective lens is between the two observation light beams of the objective lens. Change means that is freely removable, and changes a relative position between the optical member for illumination and the optical axis of the objective lens;
Comprising
The changing means moves the illumination optical member to a position where it does not interfere with the two observation light beams during low magnification observation, and moves the illumination optical member to a position where the illumination optical member enters between the two observation light beams during high magnification observation. A surgical microscope characterized by being caused to cause.
前記変更手段は、前記変倍レンズ系の動作に基づいた低倍率観察から高倍率観察への変倍動作に連動して前記照明用光学部材を移動することを特徴とする請求項1または請求項2に記載の手術用顕微鏡。  2. The illumination optical member according to claim 1, wherein the changing unit moves the illumination optical member in conjunction with a zooming operation from low magnification observation to high magnification observation based on an operation of the zoom lens system. 2. The surgical microscope according to 2.
JP2002122972A 2001-10-05 2002-04-24 Surgical microscope Expired - Lifetime JP3730934B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002122972A JP3730934B2 (en) 2001-10-05 2002-04-24 Surgical microscope
US10/375,490 US20030201378A1 (en) 2002-04-24 2003-02-27 Operating microscope

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001310231 2001-10-05
JP2001-310231 2001-10-05
JP2002122972A JP3730934B2 (en) 2001-10-05 2002-04-24 Surgical microscope

Publications (2)

Publication Number Publication Date
JP2003177326A JP2003177326A (en) 2003-06-27
JP3730934B2 true JP3730934B2 (en) 2006-01-05

Family

ID=26623769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002122972A Expired - Lifetime JP3730934B2 (en) 2001-10-05 2002-04-24 Surgical microscope

Country Status (1)

Country Link
JP (1) JP3730934B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218206A (en) * 2005-02-14 2006-08-24 Olympus Corp Microscope for operation
JP2007233248A (en) * 2006-03-03 2007-09-13 Nippon Telegr & Teleph Corp <Ntt> Optical observation device
DE102007051909A1 (en) * 2007-10-29 2009-04-30 Leica Microsystems (Schweiz) Ag Lighting device for a light microscope and light microscope with such a lighting device
US20230254563A1 (en) * 2022-02-04 2023-08-10 Lumileds Llc Parallax correction for illumination system and method

Also Published As

Publication number Publication date
JP2003177326A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
US7283298B2 (en) Stereoscopic microscope
JP5066094B2 (en) Optical medical treatment system and method using virtual image aiming device
US4871245A (en) Surgical microscope
US8382743B2 (en) Ophthalmic laser treatment apparatus
EP1736097A1 (en) Ophthalmic apparatus
JP3597896B2 (en) Switchable illumination device for operating microscope
JP5043604B2 (en) Stereo microscope
JP2006296806A (en) Microscope apparatus for surgery
JP3534733B2 (en) Fixed high magnification switching microscope
JP2744615B2 (en) Binocular microscope
JP5562713B2 (en) Ophthalmic laser treatment device
JP3730934B2 (en) Surgical microscope
JP3552737B2 (en) Surgical microscope
JP2001142003A (en) Microscope for operation
JP6639668B2 (en) Illumination field stop for use in a microscope and related methods and systems
US20030201378A1 (en) Operating microscope
JP2003195176A (en) Confocal microscope
CN107874740A (en) A kind of handheld slit lamp microscope
JP3537433B1 (en) Fixed high magnification switching microscope
JPH10123425A (en) Fluorescence microscope with zooming function
JP3571112B2 (en) microscope
JP2005013474A (en) Fundus oculi measuring instrument and fundus oculi rheometer
JP3006910B2 (en) Laser irradiation device
JP4472284B2 (en) Surgical microscope
JP2002131652A (en) Stereomicroscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051007

R151 Written notification of patent or utility model registration

Ref document number: 3730934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term