JP3730056B2 - Semiconductor raw material lump support jig, seed crystal, and method for producing single crystal using the same - Google Patents

Semiconductor raw material lump support jig, seed crystal, and method for producing single crystal using the same Download PDF

Info

Publication number
JP3730056B2
JP3730056B2 JP19637499A JP19637499A JP3730056B2 JP 3730056 B2 JP3730056 B2 JP 3730056B2 JP 19637499 A JP19637499 A JP 19637499A JP 19637499 A JP19637499 A JP 19637499A JP 3730056 B2 JP3730056 B2 JP 3730056B2
Authority
JP
Japan
Prior art keywords
semiconductor
raw material
support
single crystal
lump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19637499A
Other languages
Japanese (ja)
Other versions
JP2001019587A (en
Inventor
昭彦 小林
正樹 佐久間
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP19637499A priority Critical patent/JP3730056B2/en
Publication of JP2001019587A publication Critical patent/JP2001019587A/en
Application granted granted Critical
Publication of JP3730056B2 publication Critical patent/JP3730056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体原料塊支持治具およびこれを用いた単結晶の製造方法に係わり、特に半導体原料の供給方法を改善し単結晶化率の向上を図った半導体原料塊支持治具およびこれを用いた単結晶の製造方法に関する。
【0002】
【従来の技術】
一般に半導体ウェーハの製造方法は、多結晶半導体原料を溶融させ、この原料融液に単結晶よりなる種結晶を接触させ、種結晶から半導体単結晶を成長させる半導単結晶の製造方法が用いられている。
【0003】
例えば、チョクラルスキー法(以下、CZ法という。)によるインゴット状のシリコン単結晶の製造方法は、図24に示すように、単結晶製造装置91の炉部材収納室92内に設置された石英ルツボ93に不定形な小塊形状の原料の多結晶シリコンm0を充填し、石英ルツボ93の外周に設けられたヒータ94によって多結晶シリコンm0を完全に加熱溶融させた後、シードチャック95に取付けられた種結晶(シード結晶)S0をシリコン融液に浸し、種結晶S0と石英ルツボ93を逆方向に回転させ種結晶S0を引上げてシリコン単結晶Ig0を成長させるものである。
【0004】
一般に使用される原料の多結晶シリコンは不定形な小塊形状であるため、図24に示すように、石英ルツボ93に充填される小塊形状の多結晶シリコンm0は嵩張り、石英ルツボ93に一度に大量に充填することは難しい。また、一回の単結晶引上げ毎に高価な新品の石英ルツボ92を使用せねば成らず、引上げコストが上昇する。
【0005】
そこでコスト低減の方策として、図25に示すようないわゆる原料追加チャージ方式が提案されている。この追加チャージ方式は単結晶製造装置101をゲートバルブ102により炉部材収納室103と単結晶収納部104に適宜仕切り可能にし、ゲートバルブ102の開放状態で単結晶引上げ初期に炉部材収納室103に配置された石英ルツボ105に小塊形状の多結晶シリコンm0を充填し、さらに、この小塊形状の多結晶シリコンm0とは別個にシリコン塊M0を、このシリコン塊M0に設けられた支持溝111に取付ワイヤ106を巻回し、この取付ワイヤ106を引上げ用ワイヤ107に結びつけ、引上げ用ワイヤ107に支持し(図25(a))、小塊形状の多結晶シリコンm0を溶融させ石英ルツボ105の約80%程度までシリコン融液L0を満たし(図25(b))、このシリコン融液L0とは別個に引上げ用ワイヤ107を降下させて、シリコン融液L0にシリコン塊M0を接触させて追加溶融させ(図25(c))、シリコン融液L0が石英ルツボ105のほぼ全体に満される。
【0006】
一方、取付ワイヤ106に支持された未溶融部を残して多結晶シリコン塊M0を溶融させた後、取付ワイヤ106を上昇させ、完全にゲートバルブ102を閉じ、ゲートバルブ102により仕切られた単結晶収納部104内で,シリコン塊の残部を支持した取付ワイヤ106と種結晶支持手段108とを交換して取付けし、この種結晶支持手段108に種結晶S0が取付けられる(図25(d))。
【0007】
しかる後、ゲートバルブ102を開放し、種結晶S0を石英ルツボ105中で溶融状態のシリコン融液L0に接触させて、種結晶S0の下部に種結晶S0と同じ結晶方位を有する単結晶Ig0を成長させ(図25(e))、石英ルツボ105中にはシリコン融液L0がほとんど残らない状態とする(図25(f))。
【0008】
上記の単結晶製造装置101を用いた半導体単結晶の製造方法によれば、図24に示すような通常のCZ法の製造方法よりも石英ルツボ1個当たりのシリコン単結晶の生産量は増大する。
【0009】
しかし、この製造方法では、ヒータ109等が付勢された状態で単結晶製造装置101の稼働中に最低でも1回はゲートバルブ102を閉じて、炉部材収納室103と単結晶収納部104とを分離し、かつ、この単結晶収納部104を開放して未溶融部の多結晶シリコン塊M0を支持した取付ワイヤ106と種結晶支持手段108との取付けの交換を行い、さらに多結晶シリコン塊M0を支持した取付ワイヤ106の引上ワイヤ107への取付け、および種結晶支持手段108への種結晶S0の取付けを行わなければならず、単結晶収納部104は大気に曝される。大気に曝された単結晶収納部104を再度炉部材収納室103と連通させると、単結晶収納部104から塵埃などが落下し、単結晶Ig0の成長を阻害し単結晶化率(結晶欠陥が発生せず単結晶が得られる割合)を低減させる大きな要因になっている。また、ゲートバルブ102の開閉によるゲートバルブ室110からの塵埃などの落下も生じる。さらに、取付ワイヤ106にはシリコン塊の未融液部が残り不経済である。
【0010】
また、別のコスト低減の方策として、図26に示すようないわゆる原料のリチャージ方式がある。
【0011】
このリチャージ方式は単結晶製造装置121をゲートバルブ122により炉部材収納室123と単結晶収納部124に適宜仕切り可能にし、ゲートバルブ122の開放状態で単結晶Ig1を引上げて取出し、炉部材収納室123に配置された石英ルツボ125に溶融シリコンL1を残存させ(図26(a))、次に、ゲートバルブ122により仕切られた単結晶収納部124内で種結晶支持手段126をシリコン塊M1に設けられた支持溝127に巻回された取付ワイヤ128に交換して引上げ用ワイヤ129に取付け(図26(b))、この取付ワイヤ128に取付けられた多結晶シリコン塊M1を降下させシリコン融液L1に接触させて溶融させ、シリコン融液L1にする(図26(c))。
【0012】
多結晶シリコン塊M1の溶融に因りシリコン融液L1は石英ルツボ125のほぼ全体に満され、一方、多結晶シリコン塊M1の未溶融部を支持した取付ワイヤ128を上昇させ、ゲートバルブ122を閉じ、ゲートバルブ122により仕切られた単結晶収納部124内で多結晶シリコン塊M1の未溶融部を支持した取付ワイヤ128と種結晶支持手段126とを交換して取付け、この種結晶支持手段126に種結晶S1が取付けられる(図26(d))。
【0013】
しかる後、ゲートバルブ122を開放し、種結晶S1を石英ルツボ125中で溶融状態の多結晶シリコンM1に接触させて、種結晶S1に単結晶Ig1を成長させる(図26(e))。
【0014】
しかし、この製造方法でも、ヒータ130等が付勢された状態で単結晶製造装置121の稼働中に2回はゲートバルブ122を閉じて、炉部材収納室123と単結晶収納部124とを分離し、かつこの単結晶収納部124を開放して、種結晶支持手段126と多結晶シリコン塊M1の未溶融部を支持した取付ワイヤ128の交換、および逆に新しいシリコン塊M1が支持された取付ワイヤ128と種結晶支持手段126の交換を行う必要があるため、単結晶収納部124は2回も大気に曝される。また、取付ワイヤ128にはシリコン塊の未溶融部が残り不経済である。
【0015】
従って、このリチャージ方式は追加チャージ方式に比べてさらに塵埃などの落下により炉部材収納室123を汚損し、単結晶Ig0の成長を阻害し単結晶化率を低減させる大きな要因となる虞があった。
【0016】
さらに、上述した追加チャージ方式、リチャージ方式とも引上げ装置内のガス置換を必要とするため、1回の引上げに要するサイクルタイムは通常のCZ法よりも長くなる問題点がある。
【0017】
【発明が解決しようとする課題】
そこで、半導体原料塊の供給時、半導体単結晶製造装置内を汚染することがなく、単結晶化率の向上が図れ、かつ1回の引上げに要するサイクルタイムも長くならず、さらに、半導体原料塊を未溶融部が残らず完全に溶融できる多結晶原料支持治具およびこれを用いた単結晶の製造方法が要望されていた。
【0018】
本発明は上述した事情を考慮してなされたもので、半導体原料塊の供給時、半導体単結晶製造装置内を汚染することがなく、単結晶化率の向上が図れ、かつ1回の引上げに要するサイクルタイムも長くならず、さらに、半導体原料塊を未溶融部が残らず完全に溶融できる多結晶原料支持治具およびこれを用いた単結晶の製造方法を提供することを目的とする。
【0019】
【課題を解決するための手段】
上記目的を達成するためになされた本願請求項1の発明は、上端に引上げ用ワイヤが取付けられ下端に種結晶が取付けられる取付部材と、この取付部材に設けられ半導体原料塊を支持する支持手段と、この支持手段と半導体原料塊との支持状態を解除する半導体製の動作制御手段とを有し、上記支持手段は、取付部材に開閉動作可能に設けられ開動作または閉動作により半導体原料塊と係合し支持する複数個の支持体で形成され、上記動作制御手段は、上記支持体と上記半導体原料塊の係合位置よりも深く半導体原料塊の上部に断面を横断して切込まれた落下用切欠部と、支持部材に設けられた連結子間に橋設され切欠部内に収容された固形半導体多結晶または単結晶からなり、上記半導体原料塊を溶融させる途中で前記動作制御手段の溶融に因り、支持手段による半導体原料塊の支持を解除して、半導体原料塊を容器内に落下、溶融させると共に、単結晶成長部を露出させることを特徴とする半導体原料塊支持治具であることを要旨としている。
【0020】
本願請求項2の発明では、上記支持手段は、取付部材に開閉動作可能に設けられ、半導体原料塊を支持している状態では支持体間に種結晶を収納し、半導体原料塊の容器内への落下、溶融状態では種結晶を露出させていることを特徴とする請求項1に記載の半導体原料塊支持治具であることを要旨としている。
【0021】
本願請求項の発明では、上記支持体は、一端に爪部が設けられ、他端に重りが取付けられた支持部材を、その中間部で取付部材に設けられた軸に回動自在に取付けたことを特徴とする請求項または2に記載の半導体原料塊支持治具であることを要旨としている。
【0022】
本願請求項の発明では、上記支持体は、動作した支持体の重りが種結晶の上方に位置して静止するように、偏倚した中間部で軸に取付けられていることを特徴とする請求項ないしのいずれか1項に記載の半導体原料塊支持治具であることを要旨としている。
【0023】
本願請求項の発明では、上記爪部は、半導体原料塊の側面部に設けられた支持溝に係合することを特徴とする請求項ないしのいずれか1項に記載の半導体原料塊支持治具であることを要旨としている。
【0024】
本願請求項6の発明では、上記落下用切欠部は、断面が楔形状または矩形形状であることを特徴とする請求項5に記載の半導体原料塊支持治具であることを要旨としている。
【0025】
本願請求項7の発明は、容器内に収容された半導体原料融液に、引上げ用ワイヤに取付けられた種結晶を接触させて、種結晶から半導体単結晶を成長させる半導体単結晶の製造方法において、上端に引上げ用ワイヤが取付けられ下端に種結晶が取付けられる取付部材と、この取付部材に設けられ半導体原料塊を支持する支持手段と、この支持手段と半導体原料塊との支持状態を解除する半導体製の動作制御手段とを有し、上記支持手段は、取付部材に開閉動作可能に設けられ開動作または閉動作により半導体原料塊と係合し支持する複数個の支持体で形成され、上記動作制御手段は、上記支持体と上記半導体原料塊の係合位置よりも深く半導体原料塊の上部に断面を横断して切込まれた落下用切欠部と、支持部材に設けられた連結子間に橋設され切欠部内に収容された固形半導体多結晶または単結晶からなり、上記半導体原料塊を溶融させる途中で前記動作制御手段の溶融に因り、支持手段による半導体原料塊の支持を解除して、半導体原料塊を容器内に落下、溶融させると共に、単結晶成長部を露出させる半導体原料塊支持治具により半導体原料塊を支持する工程と、前記半導体原料塊を溶融させる途中で動作制御手段の溶融に因り支持手段との係合状態を解除して半導体原料塊を容器内に落下させ溶融させる工程と、前記容器内の半導体原料融液に前記種結晶を接触させて単結晶を成長させる工程とを有することを特徴とする半導体単結晶の製造方法であることを要旨としている。
【0026】
本願請求項の発明では、上記半導体原料塊支持治具に支持された半導体原料塊を溶融させる工程に先行する前工程として、予め容器内に半導体融液を収容させておく工程を有することを特徴とする請求項に記載の半導体単結晶の製造方法であることを要旨としている。
【0027】
本願請求項の発明では、上記予め容器内に半導体融液を収容させておく工程は、半導体単結晶の製造の初期に容器内に半導体原料を溶融させる工程であることを特徴とする請求項に記載の半導体単結晶の製造方法であることを要旨としている。
【0028】
本願請求項10の発明では、上記予め容器内に半導体融液を収容させておく工程は、先行して行われる半導体単結晶の製造において半導体原料融液を残存させておく工程であることを特徴とする請求項に記載の半導体単結晶の製造方法であることを要旨としている。
【0029】
【発明の実施の形態】
以下、本発明に係わる多結晶原料支持治具およびと種結晶ならびにこれを用いた単結晶の製造方法について添付図面に基づき説明する。
【0030】
図1に示すような本発明に係わる半導体単結晶の製造方法に用いられる単結晶製造装置、例えばCZ法による単結晶引上げ装置1は、炉部材収納室2とこの炉部材収納室2の上方に連接して設けられた単結晶収納部3とで形成されている。炉部材収納室2内にはヒータ4により加熱され黒鉛ルツボ5に内装された容器例えば石英ルツボ6が設けられており、この石英ルツボ6内で原料の多結晶が加熱溶融される。黒鉛ルツボ5は炉体7を貫通し、モータ(図示せず)に結合されて回転されるルツボ回転軸8に取付けられている。
【0031】
また、単結晶収納部3には昇降自在に設けられたワイヤ9の下端に本発明に係わる半導体原料塊支持治具10が設けられている。
【0032】
図2ないし図4に示すように、半導体原料塊支持治具10は、一端11aに引上げ用ワイヤ9が取付けられ他端11bに種結晶Sが取付けられた取付部材11と、この取付部材11に設けられ半導体原料塊Mを支持する支持手段、例えば一対の支持体12、12と、この支持体12、12と半導体原料塊Mとの支持状態を解除する、例えば支持体12、12間に橋設された動作制御手段13とを有している。
【0033】
支持体12、12は、一端に爪部14、14が設けられた支持部材15、15と、この支持部材15、15の回転軸16、16から内方に約30°折曲して位置する他端に設けられた重り17、17と、支持部材15、15と平行に延伸し、爪部18、18が設けられた他の支持部材19、19とを有している。
【0034】
支持体15、15、19、19は、回転軸16,16を中心に回動するように、その中間部で取付部材11に設けられ矩形形状に組立てられた軸受部材20に回転軸16、16を介して回動自在に取付けられ、図5および図6に示すように、動作制御手段13が溶融され支持体12、12が動作した状態で、支持部材15、15の重り17、17が種結晶Sの上方に位置して静止するように、偏倚した中間部で回転軸16、16に取付けられている。支持部材15、15、19、19の長さは単結晶引上げ時、単結晶収納部3の内径を考慮して決定されており、単結晶引上げ中爪部14、14、18、18が単結晶収納部3の壁面に当らないようになっている。また、各々の支持部材15、15に設けられた重り17、17は、軸受部材20の対角線上に配設されており、各々の重り17、17の回動が干渉されないようになっている。
【0035】
爪部14、14、18、18は支持部材15、15、19、19から90°折曲して形成されており、図2に示すように、支持体12、12による半導体原料塊Mの支持は、支持部材15、15、19、19に設けられた4個の爪部14、14、18、18を半導体原料塊Mの側面部に設けられた支持溝21に係合することにより行われている。
【0036】
動作制御手段13は、支持体12、12に設けられ平行に垂下する一対の連結子22、22が挿入される取付孔(図示せず)が設けられた例えば、U字形状の固形半導体多結晶製であり、上記のように一対の連結子22、22間に橋設され、かつ、半導体原料塊Mの上部にその断面を横断して設けられ、支持溝21の位置よりも深く切込まれた矩形形状の切欠部23内に収容されている。
【0037】
なお、種結晶Sの取付部材11への取付けは、取付部材11および種結晶Sに各々設けられた取付孔(図示せず)に係合ピン(図示せず)を挿入して行われる。
【0038】
次に、本発明に係わる半導体原料塊支持治具および半導体単結晶の製造方法を用いたいわゆる原料追加チャージ方式を説明する。
【0039】
図7は追加チャージ方式の半導体単結晶の製造工程図で、単結晶引上げ装置1の炉部材収納室2内に設置された石英ルツボ6に小塊形状の原料の多結晶シリコンmを充填し、さらに単結晶収納部3のワイヤ9に取付けられた半導体原料塊支持治具10の取付部材11に種結晶Sを取付け、しかる後、図2ないし図4に示すように、半導体原料塊Mを垂直に保持しながら、種結晶Sを一対の支持体12、12間に収納し、かつ、一対の連結子22、22を切欠部23に収納するように支持部材15、15、19、19を垂下し、平行にして爪部14、14、18、18を支持溝21に係合し半導体原料塊Mを一対の支持体12、12で支持した後、切欠部23内で一対の連結子22、22を動作制御手段13の取付孔に挿入して、支持部材15、15、19、19の開放動作を抑え、半導体原料塊支持治具10により半導体原料塊Mを支持する(図7(a))。
【0040】
次に、石英ルツボ6の外周に設けたヒータ4を付勢して、多結晶シリコンmを完全に加熱溶融され、多結晶シリコン塊Mの溶融より先に予め石英ルツボ6の約80%程度までシリコン融液Lを満す(図7(b))。さらに、小塊形状の多結晶シリコンmとは別個に用意し、既に単結晶収納部3に収納され半導体原料塊支持治具10により支持された半導体原料塊Mを降下してシリコン融液Lに接触させ追加溶融させる。この半導体原料塊Mを溶融させる工程において、半導体原料塊Mは順次溶融されるが、図3および図4に示すように、溶融が切欠部23に達し、さらに図5に示すように、U字形状の多結晶半導体の動作制御手段13が溶融されると、重り17、17により生じる力により支持体12、12は開放動作して、半導体原料塊支持治具10と半導体原料塊M(残部)との係合状態は解除され半導体原料塊Mは石英ガラスルツボ6内に落下し溶融される。従って、半導体原料塊Mは全て融液L中に落下して溶融される。
【0041】
半導体原料塊Mの溶融が完了するとシリコン融液Lは石英ルツボ6のほぼ全体に満される。一方、支持体12、12が開放動作すると、図6に示すように、爪部14、14、18、18は上方に跳ね上がり、重り17、17が下方になる。しかし、支持部材15、15は偏倚した位置で取付部材11に回動自在に取付けられているので、単結晶Sが最下位に露出し、引上げ時の種結晶の機能を果たせる状態になる(図7(d))。
【0042】
しかる後、単結晶引上げ装置1内を単結晶引上げ条件に適合させ、種結晶Sを石英ルツボ6中で溶融状態のシリコン融液Lに接触させて、種結晶Sに単結晶Igを成長させる(図7(e))。
【0043】
さらに単結晶インゴットIgを成長させて引上げを完了させるが、石英ルツボ6内には再使用可能な溶融シリコンLは残存していない(図7(e))。
【0044】
上述した本発明に係わる半導体単結晶の製造方法によれば、原料半導体塊Mを支持し種結晶Sが取付けられた原料半導体支持治具10を用いることにより、種結晶支持手段と原料半導体塊支持治具の交換のために、炉体8または単結晶収納部3を開放する必要がなく、原料半導体塊Mを追加原料として溶融できて、石英ルツボ6に汚染のない十分なシリコン融液Lの供給が可能となり、一度に大容量のシリコン単結晶Igを高単結晶化率で引上げることができる。
【0045】
また、単結晶引上げ装置1を炉部材収納室2と単結晶収納部3とに適宜仕切るゲートバルブも不要となり、ゲートバルブの開閉に伴い単結晶収納部3から塵埃などが落下して、溶融シリコン融液Lが汚染されることもなくなり、単結晶Igの成長が阻害されることもなく、単結晶化率の高率化も図れる。
【0046】
さらに、引上げ工程における最初の小塊形状の原料半導体mと原料半導体塊Mとを同時に装填する時、および引上げられた単結晶インゴットIgの取出し時以外に、一連の工程中に炉体7または単結晶収納部3を開放する必要がないため、ガス置換も不必要であり、1回の引上げに要するサイクルタイムも通常のCZ法よりも長くなることがない。
【0047】
原料半導体塊Mは残部を半導体原料塊支持治具に未溶融部を残すことなく、全て溶融させることができるので経済的である。
【0048】
次に、半導体原料塊支持治具および半導体単結晶の製造方法を用いた他の実施形態であるいわゆるリチャージ方式を説明する。上述した実施形態と同一部分には同一符号を付して説明する。
【0049】
図8はリチャージ方式の半導体単結晶の製造工程を示すもので、成長した単結晶Igを引上げ、一方、石英ルツボ6に溶融シリコンLを残存させると共にヒータ4の付勢を継続して溶融シリコンLの溶融状態を保つ(図8(a))。
【0050】
次に、単結晶収納部3に設けられたゲートバルブ31を閉じて単結晶Igを取出すと共に、上述した実施形態で用い図7に示したと同様の構造を有し、ワイヤ9に取付けられた本発明に係わる半導体原料塊支持治具10の取付部材11に種結晶Sを取付ける。しかる後、図2ないし図4に示すように、半導体原料塊Mを垂直に保持し、一対の連結子22、22が切欠部23に収納されるように支持部材15、15、19、19を垂下し、平行にして爪部14、14、18、18を支持溝21に係合させ半導体原料塊Mを一対の支持体12、12で支持した後、切欠部23内で一対の連結子22、22を動作制御手段13の取付孔に挿入して、支持部材15、15、19、19の開放動作を抑え、半導体原料塊支持治具10により半導体原料塊Mを支持する(図8(b))。
【0051】
次に、ゲートバルブ31を開いて多結晶シリコン塊Mをシリコン融液mに浸して溶融させる(図8(c))。この半導体原料塊Mを溶融させる工程において、半導体原料塊Mは順次溶融されるが、図3および図4に示すように、溶融が切欠部23に達し、さらに図5に示すように、U字形状の多結晶半導体の動作制御手段13が溶融されると、重り17、17によって生じる力により支持体12、12は開放動作して、半導体原料塊支持治具10と半導体原料塊M(残部)との係合状態は解除され半導体原料塊Mは容器内に落下し溶融される。従って、半導体原料塊Mは全て融液L中に落下して溶融される。
【0052】
半導体原料塊Mの溶融が完了するとシリコン融液Lは石英ルツボ6のほぼ全体に満され、一方、支持体12、12が開放動作すると、図6に示すように、単結晶Sが最下位に露出し、引上げ時の種結晶の機能を果たせる状態になる(図8(d))。
【0053】
しかる後、単結晶引上げ装置1a内を単結晶引上げ条件に適合させ、種結晶Sを石英ルツボ6中で溶融状態のシリコン融液Lに接触させて、種結晶Sに単結晶Igを成長させる(図8(e))。
【0054】
さらに単結晶インゴットIgを成長させて引上げを完了させるが、石英ルツボ6等に耐久力があり、さらに新規の単結晶の引上げを行なう場合には、再使用可能な溶融シリコンLを残存させる(図8(a))。
【0055】
本実施形態の半導体単結晶の製造方法によれば、原料半導体塊Mを支持し種結晶Sが取付けられた原料半導体支持治具10を用いることにより、種結晶支持手段と原料半導体塊支持治具の交換のために、単結晶収納部3を開放は1回で済む。従って、シリコン単結晶Igの高単結晶化率で引上げることが可能となり、半導体単結晶の製造コスト低減化に寄与する。このため、従来のリチャージ法では少なくとも2回であったゲートバルブの開閉回数を低減させ、開閉に伴う炉内への汚染のおそれを低減しつつ十分なシリコン融液の供給が可能となり、シリコン単結晶を高単結晶化率で引上げることができる。原料半導体塊Mは残部を半導体原料塊支持治具に未溶融部を残すことなく、全て溶融させることができるので経済的である。
【0056】
次に、本発明に係わる半導体原料塊支持治具の他の実施形態について説明する。上述した実施形態と同一部分には同一符号を付して説明する。
【0057】
図9ないし図12に示すように、半導体原料塊支持治具41は、一端42aに引上げ用ワイヤ9が取付けられ他端42bに種結晶Sが取付けられた取付部材42と、この取付部材42に設けられ半導体原料塊Mを支持する支持手段、例えば一対の支持体43、43と、この支持体43、43間に配設され半導体原料塊Mに設けられた動作制御手段44とを有している。
【0058】
各々の支持体43、43は、一端に2個の爪部45、46が設けられた支持部材47、47と、この支持部材47、47の回転軸48、48から外方に約30°折曲して位置する他端に設けられた重り49、49とを有している。
【0059】
支持部材47、47は、回転軸48、48を中心に回動するように、その中間部で取付部材42に設けられ矩形形状の軸受部材50に回転軸48、48を介して回動自在に取付けられ、図11および図12に示すように、動作制御手段44が溶融され支持体43、43が動作した状態で、支持部材47、47の重り49、49が種結晶Sの上方に位置して静止するように、偏倚した中間部で回転軸48、48に取付けられている。
【0060】
重り49、49は支持部材47、47の爪部45、45、46、46側を閉動作させるものであり、取付部材42に取付けられた矩形形状の軸受部材50の対角線上に配設されており、各々の重り49、49の回動が干渉されないようになっている。
【0061】
爪部45、45、46、46は支持部材47、47から90°折曲して形成されており、半導体原料塊Mの支持は、4個の爪部45、45、46、46を支持溝51に係合することにより行われている。
【0062】
動作制御手段44は半導体原料塊Mの上部に設けられ、中心線cに沿って断面を横断して切欠され、支持溝51の位置よりも深く切込まれた先細の楔形状の切欠部52により形成されている。従って、図13および図14に示すように、半導体原料塊Mの溶融が進行し、溶融面が動作制御手段44の下端に達すると、支持部材47、47の爪部45、45、46、46により閉方向の力により半導体原料塊M(残部)は切欠部52を縮小する方向に押圧され、支持溝51と爪部45、45、46、46の係合が外れて、支持部材47、47による半導体原料塊Mの支持が解除され、半導体原料塊M(残部)は完全に落下するようになっている。
【0063】
このとき、図10および図12に示すように、支持溝51と爪部45、45、46、46の係合は動作制御手段44を形成する切欠部52の中心軸線cまたはこの中心軸線dと直交する線上から外した位置で行なわれるようになっているので、より確実に支持溝51と爪部45、45、46、46の係合が外れ易くなっている。
【0064】
なお、動作制御手段44を形成する切欠部52は、断面が楔形状に限らず、矩形形状であってもよい。
【0065】
本実施形態の原料半導体支持治具41を原料追加チャージ方式の単結晶の製造方法に用いれば、種結晶支持手段と原料半導体塊支持治具の交換のために、炉体8または単結晶収納部3を開放する必要がなく、原料半導体塊Mを追加原料として溶融でき、石英ルツボ6に汚染のない十分なシリコン融液Lの供給が可能となり、一度に大容量のシリコン単結晶Igを高単結晶化率で引上げることができる。
【0066】
また、単結晶引上げ装置1をゲートバルブにより炉部材収納室2と単結晶収納部3とに適宜仕切るゲートバルブも不要となり、また、ゲートバルブの開閉に伴い単結晶収納部3から塵埃などが落下して、溶融シリコン融液Lが汚染されることもなくなり、単結晶Igの成長が阻害されることもなく、単結晶化率の高率化も図れる。
【0067】
さらに、引上げ工程における最初の小塊形状の原料半導体mと原料半導体塊Mとを同時に装填する時、および引上げられた単結晶インゴットIgの取出し時以外に、一連の工程中に炉体7または単結晶収納部3を開放する必要がないため、ガス置換も不必要であり、1回の引上げに要するサイクルタイムも通常のCZ法よりも長くなることがない。
【0068】
原料半導体塊Mは残部を半導体原料塊支持治具に残すことなく、全て溶融させることができるので経済的である。
【0069】
また、リチャージ方式に用いれば、原料半導体塊Mを支持し種結晶Sが取付けられた原料半導体支持治具41を用いることにより、種結晶支持手段と原料半導体塊支持治具の交換のために、単結晶収納部3の開放は1回で済む。従って、シリコン単結晶Igを高単結晶化率で引上げることが可能となり、半導体単結晶の製造コスト低減化に寄与する。このため、従来のリチャージ法では少なくとも2回であったゲートバルブの開閉回数を低減させ、開閉に伴う炉内への汚染のおそれを低減しつつ十分なシリコン融液の供給が可能となり、シリコン単結晶を高単結晶化率で引上げることができる。
【0070】
さらに、本発明に係わる半導体原料塊支持治具の他の実施形態について説明する。上述した第1の実施形態と同一部分には同一符号を付して説明する。
【0071】
図15および図16に示すように、半導体原料塊支持治具61は、タングステンやモリブデン等の金属または金属化合物もしくは炭素または炭素化合物等からなり、その一端62aに引上げ用ワイヤ9が取付けられ他端62bに種結晶Sが取付けられた取付部材62と、この取付部材62に設けられ半導体原料塊Mを支持する支持手段、例えば半導体原料塊Mに設けられた係合部63に係合する支持部64と、半導体原料塊Mに設けられた動作制御手段65とを有している。
【0072】
支持部64は、取付部材62から膨出し断面積が順次増大するような末広形状、例えば円錐体の一部を有する形状に形成されている。
【0073】
動作制御手段65は、半導体原料塊Mの上部に設けられ、かつ、中心線cに沿って切欠された細長のU字形状切欠部66と、この切欠部66の上部に設けられ、断面形状が取付部材62の円錐体部を有する形状と同一の末広形状をなす係合部63とで形成されている。U字形状切欠部66は取付部材62に取付けられた種結晶Sが収納されるに十分な深さを有している。
【0074】
従って、図17および図18に示すように、半導体原料塊Mの溶融が進行し、溶融面が動作制御手段65の下端部65dに達すると、半導体原料塊M(残部)には自重により切欠部66を拡大する方向に力が働き、係合部63と支持部64の係合が外れて、原料半導体塊支持治具61による半導体原料塊Mの支持が解除され、半導体原料塊M(残部)は完全に落下するようになっている。図19に示すように露出した種結晶Sを融液に接触させて、単結晶Igを成長させる。
【0075】
なお、図20に示すように、支持部71は、円錐体の一部形状を利用したものに限らず、球面部を有するものでもよく、また、図21(a)〜(c)に示すように、支持部72は取付部材73から分割可能に形成されていてもよい。支持部71が球面部で形成されていれば、係合部63の断面形状が如何なる形状であっても、係合部63と支持部71の係合が外れ易い。また、支持部72を分割方式にすれば、支持部72が劣化した場合には、この支持部72のみを交換すれば再使用が可能である。
【0076】
さらに、支持部71、72を半導体原料と同じ材質で形成すえば、原料塊Mと支持部71、72とが接触することによる汚染を防ぐことができ好適である。
【0077】
本実施形態の原料半導体支持治具61を原料追加チャージ方式の単結晶の製造方法に用いれば、上述した実施形態の原料半導体支持治具と同様に、石英ルツボ6に汚染のない十分なシリコン融液Lの供給が可能となり、一度に大容量のシリコン単結晶Igを高単結晶化率で引上げることができる。また、ゲートバルブの開閉に伴い単結晶収納部3から塵埃などが落下して、溶融シリコン融液Lが汚染されることもなくなり、単結晶Igの成長が阻害されることもなく、単結晶化率の高率化も図れる。
【0078】
さらに、ガス置換も不必要であり、1回の引上げに要するサイクルタイムも通常のCZ法よりも長くなることがなく、また、原料半導体塊Mは残部を半導体原料塊支持治具に未溶融部を残すことなく、全て溶融させることができるので経済的である。さらに、支持部64を取付部材62に膨出して形成したので、可動部分がなく構造が簡単で経済的な半導体原料塊支持治具を提供することができる。また、支持部72を分割方式にすれば、支持部72が劣化した場合には、この支持部72のみを交換することで半導体原料塊支持治具61全体を交換することなく、元に復することができ経済的である。さらに、単結晶引上げ完了毎に汚染除去のための化学エッチングを行なう必要がある場合には、種結晶Sのみを行なえばよく、半導体原料塊支持治具61が薬品によりエッチングされることもなく、長寿命化が実現できる。
【0079】
また、リチャージ方式に用いれば、上述した実施形態の原料半導体支持治具と同様に、シリコン単結晶Igを高単結晶化率で引上げることが可能となり、半導体単結晶の製造コスト低減化に寄与する。さらに、開閉に伴う炉内への汚染のおそれを低減しつつ十分なシリコン融液の供給が可能となり、シリコン単結晶を高単結晶化率で引上げることができる。
【0080】
さらに、本発明に係わる種結晶について説明する。
【0081】
図22および図23に示すように、本発明に係わる種結晶S1は、下部に単結晶成長部S1aと、この単結晶成長部S1aの上方に設けられ、半導体原料塊Mに設けられた動作制御手段81に係合し、かつ、断面積が順次増大するような末広形状、例えば球面部で形成された支持部82とを有し、単結晶の成長と半導体原料塊Mを支持する2機能を有している。
【0082】
動作制御手段81は、半導体原料塊Mの上部に設けられた係合孔83とこの係合孔83に連通し、かつ、この係合孔83の直径よりも大きな直径を有し、半導体原料塊Mを長手方向に貫通する貫通孔84と、支持部82が係合孔83と係合状態にあるとき、単結晶成長部S1aが達する位置よりも下まで達する分割溝85とを有している。この分割溝85は半導体原料塊Mの断面を横断して形成されており、半導体原料塊Mがこの分割溝85まで溶融されると、半導体原料塊M(残部)は分割するようになっている。
【0083】
半導体原料塊Mの単結晶S1への取付けは、単結晶成長部S1aを下にした状態で種結晶S1を貫通孔84に貫通させ、支持部82を係合孔83に係合させた後、種結晶S1を取付部材(図示せず)に固定して行なう。
【0084】
従って、図22に示すように、半導体原料塊Mの溶融時、半導体原料塊Mの溶融が進行し、溶融面lが半導体原料塊Mの分割溝85の下端に達すると、半導体原料塊M(残部)には自重により係合孔83を拡大する方向に力が働き、係合孔83と支持部82の係合が外れて、種結晶S1による半導体原料塊Mの支持が解除され、半導体原料塊M(残部)は完全に落下するようになっている。半導体原料塊Mの落下により、種結晶S1(単結晶成長部S1a)は露出する。
【0085】
本実施形態の種結晶S1を原料追加チャージ方式の単結晶の製造方法に用いれば、上述した第一の実施形態の原料半導体支持治具と同様に、石英ルツボ6に汚染のない十分なシリコン融液Lの供給が可能となり、一度に大容量のシリコン単結晶Igを高単結晶化率で引上げることができる。また、ゲートバルブの開閉に伴い単結晶収納部3から塵埃などが落下して、溶融シリコン融液Lが汚染されることもなくなり、単結晶Igの成長が阻害されることもなく、単結晶化率の高率化も図れる。さらに、ガス置換も不必要であり、1回の引上げに要するサイクルタイムも通常のCZ法よりも長くなることがなく、また、原料半導体塊Mは残部を半導体原料塊支持治具に残すことなく、全て溶融させることができるので経済的である。さらに、支持部82を単結晶S1に一体的に膨出して形成したので、可動部分がなく構造が簡単で経済的な半導体原料塊支持治具として使用できる。
【0086】
また、リチャージ方式に用いれば、上述した実施形態の原料半導体支持治具と同様に、シリコン単結晶Igの高単結晶化率で引上げることが可能となり、半導体単結晶の製造コスト低減化に寄与する。さらに、開閉に伴う炉内への汚染のおそれを低減しつつ十分なシリコン融液の供給が可能となり、シリコン単結晶を高単結晶化率で引上げることができる。
【0087】
なお、支持部82は、円錐体の一部形状を利用したものに限らず、球面部を有するものでもよい。
【0088】
また、図25に示すように、断面積が順次増大するような末広形状、例えば球面部で形成された支持部86を離間して複数個設けると共に、原料半導体塊Mの上部に断面を横断する矩形形状の切欠部87を設け、かつ、この切欠部87の上方に平行に係合溝条88を設け、さらに、係合溝条88に連通する係合孔89を設け、この係合孔89に支持部86を係合させるようにしてもよい。
【0089】
支持部86が球面部に形成されていれば、係合孔89の断面形状が如何なる形状であっても、係合孔89と支持部86の係合が外れ易い。また、支持部86を離間して複数個設ければ、複数回に追加溶融にも容易に対応でき便利である。
【0090】
【実施例】
試験1:図3に示すような半導体原料塊支持治具を用いて、直径127mm、重量15kg、長さ600mmの棒状シリコン多結晶を溶融させ、従来例と比較した。
【0091】
結果:実施例は棒状多結晶原料を15kg全て溶融させることができた。また、棒状多結晶原料の溶融が完了した後、支持体が種結晶よりも上方に上がるため、棒状多結晶原料支持治具と種結晶とを交換する作業をせずに、引続き単結晶の育成に移行することができた。
【0092】
これに対して、ワイヤ巻き付けによる支持方法の従来例では、棒状多結晶原料を約12kgまで溶融できたが、残りの約3kg分は溶融させることができなかった。また、棒状多結晶原料を溶融させた後、種結晶を取付ける為の作業に約1.5時間を必要とした.
試験2:図11に示すような半導体原料塊支持治具を用いて、直径127mm、重量15kg、長さ600mmの棒状シリコン多結晶を溶融させ、従来例と比較した。
【0093】
結果:上述した試験1と同様の結果を得た。
【0094】
試験3:図16に示すような半導体原料塊支持治具を用いて、直径140mm、重量27kg、長さ約860mmの棒状シリコン多結晶を溶融させ、従来例と比較した。
【0095】
結果:実施例は棒状多結晶原料を27kg全て溶融させることができた。また、棒状多結晶原料の溶融が完了した後、支持体が種結晶よりも上方に上がるため、棒状多結晶原料支持治具と種結晶とを交換する作業をせずに、引続き単結晶の育成に移行することができた。
【0096】
これに対して、ワイヤ巻き付けによる支持方法の従来例では、棒状多結晶原料を約25kgまで溶融できたが、残りの約2kg分は溶融させることができなかった。また、棒状多結晶原料を溶融させた後、種結晶を取付ける為の作業に約1.5時間を必要とした.
試験4:図23に示すような種結晶を用い、棒状シリコン多結晶を原料追加チャージ方式により溶融させて、単結晶の製造を行った。
【0097】
結果:棒状多結晶原料支持治具と種結晶との交換作業が必要でなく、従来例に比べて約60分単結晶引上げ時間を短縮することができた。
【0098】
【発明の効果】
本発明に係わる半導体原料塊支持治具およびこれを用いた単結晶の製造方法によれば、半導体原料塊の供給時、半導体単結晶製造装置内を汚染することがなく、単結晶化率の向上が図れ、かつ1回の引上げに要するサイクルタイムも長くならず、さらに、半導体原料塊を完全に溶融できる多結晶原料支持治具およびと種結晶ならびにこれを用いた単結晶の製造方法を提供することができる。
【0099】
即ち、種結晶が取付けられた支持手段により半導体原料塊を支持し、半導体原料塊の溶融途中で支持状態を解除する半導体製の動作制御手段の溶融に因り、半導体原料塊の支持を解除して、半導体原料塊を容器内に落下、溶融させるので、本発明に係わる原料半導体支持治具を原料追加チャージ方式の単結晶の製造方法に用いれば、種結晶支持手段と原料半導体塊支持治具の交換のために、炉体または単結晶収納部を開放する必要がなく、原料半導体塊を追加原料として溶融できて、石英ルツボに汚染のない十分なシリコン融液の供給が可能となり、一度に大容量のシリコン単結晶を高単結晶化率で引上げることができる。また、単結晶引上げ装置をゲートバルブにより炉部材収納室と単結晶収納部とを適宜仕切るゲートバルブも不要となり、また、ゲートバルブの開閉に伴い単結晶収納部から塵埃などが落下して、溶融シリコン融液が汚染されることもなくなり、単結晶の成長が阻害されることもなく、単結晶化率の高率化も図れる。
【0100】
さらに、引上げ工程における最初の小塊形状の原料半導体と原料半導体塊とを同時に装填する時、および引上げられた単結晶インゴットの取出し時以外に、一連の工程中に炉体または単結晶収納部を開放する必要がないため、ガス置換も不必要であり、1回の引上げに要するサイクルタイムも通常のCZ法よりも長くなることがない。また、原料半導体塊は残部を半導体原料塊支持治具に残すことなく、全て溶融させることができるので経済的である。
【0101】
また、リチャージ方式に用いれば、原料半導体塊を支持し種結晶が取付けられた原料半導体支持治具を用いることにより、種結晶支持手段と原料半導体塊支持治具の交換のために、単結晶収納部の開放は1回で済む。従って、シリコン単結晶の高単結晶化率で引上げることが可能となり、半導体単結晶の製造コスト低減化に寄与する。このため、従来のリチャージ法では少なくとも2回であったゲートバルブの開閉回数を低減させ、開閉に伴う炉内への汚染のおそれを低減しつつ十分なシリコン融液の供給が可能となり、シリコン単結晶を高単結晶化率で引上げることができる。
【0102】
また、支持手段は取付部材に開閉動作可能に設けられ開動作または閉動作により半導体原料塊を挟むように支持する複数個の支持体で形成されているので、半導体原料塊を確実に支持できると共に、支持体間に種結晶を収納することができ、省スペース化が図れる。
【0103】
また、支持体は一端に爪部が設けられ、他端に重りが取付けられた支持部材を、その中間部で取付部材に設けられた回転軸に回動自在に取付けたので、半導体原料塊を確実に支持できると共に、重りの作用で支持体により自動的に半導体原料塊の支持解除を行うことができる。
【0104】
また、支持体は動作した支持体の重りが種結晶の上方に位置して静止するように偏倚した中間部で回転軸に取付けたので、種結晶を確実に最下に位置させることができる。
【0105】
また、爪部が半導体原料塊の側面部に設けられた支持溝に係合することにより、簡単な形状で容易かつ確実に原料半導体塊を半導体原料塊支持治具で支持、解放することができる。
【0106】
また、動作制御手段は支持溝の位置よりも深く半導体原料塊の上部に断面を横断して切込まれた落下用切欠部で形成されているので、半導体原料塊の溶融途中で確実に半導体原料塊を落下、溶融させることができる。
【0107】
また、落下用切欠部は断面が楔形状または矩形形状であるので、簡単な構造にもかかわらず、半導体原料塊を確実に落下、溶融させることができる。
【0108】
また、動作制御手段は支持部材に設けられた連結子間に橋設される固形半導体多結晶または単結晶であり、かつ、支持溝の位置よりも深く切込まれた切欠部内に収容されているので、半導体原料塊の溶融途中で確実に半導体原料塊を落下、溶融させることができ、さらに半導体製であるので、不純物にはならず、単結晶化率を低下させることもない。
【0109】
また、上端に引上げ用ワイヤが取付けられ下端に種結晶が取付けられる取付部材と、この取付部材に設けられ半導体原料塊を支持する支持手段と、この支持手段と半導体原料塊との支持状態を解除する半導体製の動作制御手段とを有する半導体原料塊支持治具により半導体原料塊を支持する工程を有する半導体単結晶の製造方法を原料追加チャージ方式の単結晶の製造方法に用いれば、種結晶支持手段と原料半導体塊支持治具の交換のために、炉体または単結晶収納部を開放する必要がなく、原料半導体塊を追加原料として溶融できて、石英ルツボに汚染のない十分なシリコン融液の供給が可能となり、一度に大容量のシリコン単結晶を高単結晶化率で引上げることができる。また、単結晶引上げ装置をゲートバルブにより炉部材収納室と単結晶収納部とを適宜仕切るゲートバルブも不要となり、また、ゲートバルブの開閉に伴い単結晶収納部から塵埃などが落下して、溶融シリコン融液が汚染されることもなくなり、単結晶の成長が阻害されることもなく、単結晶化率の高率化も図れる。
【0110】
さらに、引上げ工程における最初の小塊形状の原料半導体と原料半導体塊とを同時に装填する時、および引上げられた単結晶インゴットの取出し時以外に、一連の工程中に炉体または単結晶収納部を開放する必要がないため、ガス置換も不必要であり、1回の引上げに要するサイクルタイムも通常のCZ法よりも長くなることがない。また、原料半導体塊は残部を半導体原料塊支持治具に残すことなく、全て溶融させることができるので経済的である。
【0111】
また、リチャージ方式に用いれば、原料半導体塊を支持し種結晶が取付けられた原料半導体支持治具を用いることにより、種結晶支持手段と原料半導体塊支持治具の交換のために、単結晶収納部の開放は1回で済む。従って、シリコン単結晶の高単結晶化率で引上げることが可能となり、半導体単結晶の製造コスト低減化に寄与する。このため、従来のリチャージ法では少なくとも2回であったゲートバルブの開閉回数を低減させ、開閉に伴う炉内への汚染のおそれを低減しつつ十分なシリコン融液の供給が可能となり、シリコン単結晶を高単結晶化率で引上げることができる。
【図面の簡単な説明】
【図1】 本発明に係わる半導体単結晶の製造方法の一実施形態を示す説明図。
【図2】 本発明に係わる半導体原料塊支持治具の一実施形態による半導体原料塊の支持状態を示し、(a)はその平面図、(b)は(a)のC−C'矢視断面図。
【図3】 本発明に係わる半導体原料塊支持治具の一実施形態の正面図。
【図4】 本発明に係わる半導体原料塊支持治具の一実施形態の側面図。
【図5】 本発明に係わる半導体原料塊支持治具の一実施形態の動作状態を示す説明図。
【図6】 本発明に係わる半導体原料塊支持治具の一実施形態の動作状態を示す説明図。
【図7】 (a)〜(f)は各々本発明に係わる半導体単結晶の製造方法を原料追加チャージ方式の単結晶の製造方法に用いた一実施形態の製造工程図。
【図8】 (a)〜(e)は各々本発明に係わる半導体単結晶の製造方法をリチャージ方式の単結晶の製造方法に用いた一実施形態の製造工程図。
【図9】 本発明に係わる半導体原料塊支持治具の他の実施形態の平面図。
【図10】 本発明に係わる半導体原料塊支持治具の他の実施形態の半導体原料塊の支持状態を示し、(a)はその平面図、(b)はその縦断面図。
【図11】 本発明に係わる半導体原料塊支持治具の他の実施形態の正面図。
【図12】 本発明に係わる半導体原料塊支持治具の他の実施形態の側面図。
【図13】 本発明に係わる半導体原料塊支持治具の他の実施形態の動作状態を示す説明図。
【図14】 本発明に係わる半導体原料塊支持治具の他の実施形態の動作状態を示す説明図。
【図15】 本発明に係わる半導体原料塊支持治具の他の実施形態の正面図。
【図16】 本発明に係わる半導体原料塊支持治具の他の実施形態の支持状態を示し、(a)はその平面図、(b)はその縦断面図。
【図17】 本発明に係わる半導体原料塊支持治具の他の実施形態の動作状態を示す説明図。
【図18】 本発明に係わる半導体原料塊支持治具の他の実施形態の動作状態を示す説明図。
【図19】 本発明に係わる半導体原料塊支持治具の他の実施形態を用いた単結晶引上げ状態の説明図。
【図20】 本発明に係わる半導体原料塊支持治具の他の実施形態の変形例を示す説明図。
【図21】 (a)〜(c)は本発明に係わる半導体原料塊支持治具の他の実施形態の変形例を示す説明図。
【図22】 本発明に係わる半導体原料塊支持治具の他の実施形態の断面図。
【図23】 本発明に係わる半導体原料塊支持治具の他の実施形態の変形例を示す断面図。
【図24】 従来の半導体単結晶の製造方法の単結晶の製造方法。
【図25】 (a)〜(f)は各々従来の原料追加チャージ方式の単結晶の製造方法の製造工程図。
【図26】 (a)〜(e)は各々従来のリチャージ方式の単結晶の製造方法の製造工程図。
【符号の説明】
1 単結晶製造装置
2 炉部材収納室
3 単結晶収納部
4 ヒータ
5 黒鉛ルツボ
6 石英ルツボ
7 炉体
8 ルツボ回転軸
9 引上げ用ワイヤ
10 半導体原料塊支持治具
11 取付部材
11a 一端
11b 他端
12 支持体
13 動作制御手段
14 爪部
15 支持部材
16 回転軸
17 重り
18 爪部
19 支持部材
20 軸受部材
21 支持溝
22 連結子
23 切欠部
M 半導体原料塊(多結晶シリコン塊)
S 種結晶
41 半導体原料塊支持治具
42 取付部材
42a 一端
42b 他端
43 支持体
44 動作制御手段
45 爪部
46 爪部
47 支持部材
48 回転軸
49 重り
50 軸受部材
51 支持溝
52 切欠部
61 半導体原料塊支持治具
62 取付部材
62a 一端
62b 他端
63 係合部
64 支持部
65 動作制御手段
65d 下端部
66 切欠部
71 支持部
72 支持部
81 動作制御手段
82 支持部
83 係合孔
84 貫通孔
85 分割溝
86 支持部
87 切欠部
88 係合溝条
89 係合孔
S1 種結晶
S1a 単結晶成長部
[0001]
BACKGROUND OF THE INVENTION
  The present invention supports semiconductor raw material lumpJig and thisIn particular, it is related to a method of manufacturing a single crystal using silicon, and in particular, the semiconductor material lump support has been improved by improving the method of supplying semiconductor raw materials and improving the single crystallization rate.Jig and toolThe present invention relates to a method for producing a single crystal using the same.
[0002]
[Prior art]
  Generally, a semiconductor wafer manufacturing method uses a semiconductor single crystal manufacturing method in which a polycrystalline semiconductor raw material is melted, a seed crystal made of a single crystal is brought into contact with the raw material melt, and a semiconductor single crystal is grown from the seed crystal. ing.
[0003]
  For example, a method for producing an ingot-shaped silicon single crystal by the Czochralski method (hereinafter referred to as CZ method) is a quartz installed in a furnace member storage chamber 92 of a single crystal production apparatus 91 as shown in FIG. The crucible 93 is filled with polycrystalline silicon m0, which is an irregularly shaped lump-shaped material, and the polycrystalline silicon m0 is completely heated and melted by the heater 94 provided on the outer periphery of the quartz crucible 93, and then attached to the seed chuck 95. The obtained seed crystal (seed crystal) S0 is immersed in a silicon melt, and the seed crystal S0 and the quartz crucible 93 are rotated in the opposite directions to pull up the seed crystal S0 to grow a silicon single crystal Ig0.
[0004]
  Since generally used polycrystalline silicon has an irregular small lump shape, the small lump shaped polycrystalline silicon m0 filled in the quartz crucible 93 is bulky, and the quartz crucible 93 has a bulky shape as shown in FIG. It is difficult to fill a large amount at once. In addition, an expensive new quartz crucible 92 must be used for each single crystal pulling, which increases the pulling cost.
[0005]
  Therefore, as a cost reduction measure, a so-called raw material additional charge method as shown in FIG. 25 has been proposed. In this additional charging method, the single crystal manufacturing apparatus 101 can be appropriately divided into a furnace member storage chamber 103 and a single crystal storage portion 104 by the gate valve 102, and the single crystal pulling up is performed in the furnace member storage chamber 103 at the initial stage of pulling the single crystal with the gate valve 102 opened. The arranged quartz crucible 105 is filled with the small chunk-shaped polycrystalline silicon m0, and the silicon chunk M0 is separated from the small chunk-shaped polycrystalline silicon m0, and the support groove 111 provided in the silicon chunk M0. The attachment wire 106 is wound around the wire, and the attachment wire 106 is tied to the pulling wire 107 and supported by the pulling wire 107 (FIG. 25 (a)), and the polycrystalline silicon m0 having a small lump shape is melted. The silicon melt L0 is filled to about 80% (FIG. 25B), and the pulling wire 107 is connected separately from the silicon melt L0. So made, by contacting the silicon chunk M0 silicon melt L0 is added melted (FIG. 25 (c)), the silicon melt L0 is fully on substantially the entire quartz crucible 105.
[0006]
  On the other hand, after the polycrystalline silicon lump M0 is melted while leaving the unmelted portion supported by the mounting wire 106, the mounting wire 106 is raised, the gate valve 102 is completely closed, and the single crystal partitioned by the gate valve 102 is separated. In the storage section 104, the mounting wire 106 that supports the remainder of the silicon lump and the seed crystal support means 108 are replaced and attached, and the seed crystal S0 is attached to the seed crystal support means 108 (FIG. 25 (d)). .
[0007]
  Thereafter, the gate valve 102 is opened, the seed crystal S0 is brought into contact with the molten silicon melt L0 in the quartz crucible 105, and a single crystal Ig0 having the same crystal orientation as the seed crystal S0 is formed below the seed crystal S0. Growing is performed (FIG. 25E), so that almost no silicon melt L0 remains in the quartz crucible 105 (FIG. 25F).
[0008]
  According to the semiconductor single crystal manufacturing method using the above-described single crystal manufacturing apparatus 101, the production amount of silicon single crystal per quartz crucible increases as compared with the normal CZ method manufacturing method as shown in FIG. .
[0009]
  However, in this manufacturing method, the gate valve 102 is closed at least once during operation of the single crystal manufacturing apparatus 101 with the heater 109 and the like energized, and the furnace member storage chamber 103 and the single crystal storage unit 104 And the mounting of the mounting wire 106 supporting the unmelted polycrystalline silicon block M0 and the seed crystal support means 108 is exchanged by opening the single crystal storage unit 104, and further the polycrystalline silicon block The attachment wire 106 supporting M0 must be attached to the pull-up wire 107, and the seed crystal S0 must be attached to the seed crystal support means 108, and the single crystal storage portion 104 is exposed to the atmosphere. When the single crystal storage unit 104 exposed to the atmosphere is brought into communication with the furnace member storage chamber 103 again, dust and the like fall from the single crystal storage unit 104, thereby inhibiting the growth of the single crystal Ig0 and reducing the single crystallization rate (crystal defects). This is a major factor in reducing the ratio of single crystals that do not occur. Further, dust or the like also falls from the gate valve chamber 110 due to opening and closing of the gate valve 102. Further, an unmelted portion of silicon lump remains on the attachment wire 106, which is uneconomical.
[0010]
  As another cost reduction measure, there is a so-called raw material recharging method as shown in FIG.
[0011]
  In this recharging method, the single crystal production apparatus 121 can be appropriately divided into a furnace member storage chamber 123 and a single crystal storage portion 124 by a gate valve 122, and the single crystal Ig1 is pulled up and taken out with the gate valve 122 opened, and the furnace member storage chamber The molten silicon L1 is left in the quartz crucible 125 arranged at 123 (FIG. 26A), and then the seed crystal support means 126 is made into the silicon lump M1 in the single crystal storage part 124 partitioned by the gate valve 122. The mounting wire 128 wound around the provided support groove 127 is replaced and attached to the pulling wire 129 (FIG. 26 (b)), and the polycrystalline silicon lump M1 attached to the mounting wire 128 is lowered to melt the silicon. The silicon melt L1 is melted by contacting with the liquid L1 (FIG. 26C).
[0012]
  Due to the melting of the polycrystalline silicon lump M1, the silicon melt L1 fills almost the entire quartz crucible 125, while the attachment wire 128 supporting the unmelted portion of the polycrystalline silicon lump M1 is raised and the gate valve 122 is closed. The mounting wire 128 supporting the unmelted portion of the polycrystalline silicon lump M1 and the seed crystal support means 126 are exchanged and mounted in the single crystal storage part 124 partitioned by the gate valve 122, and the seed crystal support means 126 is attached to the seed crystal support means 126. A seed crystal S1 is attached (FIG. 26 (d)).
[0013]
  Thereafter, the gate valve 122 is opened, and the seed crystal S1 is brought into contact with the polycrystalline silicon M1 in a molten state in the quartz crucible 125 to grow a single crystal Ig1 on the seed crystal S1 (FIG. 26E).
[0014]
  However, this manufacturing method also separates the furnace member storage chamber 123 and the single crystal storage portion 124 by closing the gate valve 122 twice while the single crystal manufacturing apparatus 121 is in operation with the heater 130 and the like energized. In addition, the single crystal storage portion 124 is opened to replace the mounting wire 128 that supports the seed crystal support means 126 and the unmelted portion of the polycrystalline silicon lump M1, and conversely, the new silicon lump M1 is supported. Since it is necessary to exchange the wire 128 and the seed crystal support means 126, the single crystal storage portion 124 is exposed to the atmosphere twice. In addition, an unmelted portion of the silicon lump remains on the attachment wire 128, which is uneconomical.
[0015]
  Therefore, this recharge method may further damage the furnace member storage chamber 123 due to the fall of dust and the like, and may hinder the growth of the single crystal Ig0 and reduce the single crystallization rate as compared with the additional charge method. .
[0016]
  Further, since the additional charging method and the recharging method described above require gas replacement in the pulling apparatus, there is a problem that the cycle time required for one pulling is longer than that of the normal CZ method.
[0017]
[Problems to be solved by the invention]
  Therefore, when supplying the semiconductor raw material lump, the inside of the semiconductor single crystal manufacturing apparatus is not contaminated, the single crystallization rate can be improved, the cycle time required for one pulling is not increased, and the semiconductor raw material lump is further increased. Polycrystalline raw material support that can be completely melted without leaving any unmelted partJig and thisThere has been a demand for a method of producing a single crystal using the above.
[0018]
  The present invention has been made in consideration of the above-mentioned circumstances. When supplying the semiconductor raw material lump, the inside of the semiconductor single crystal manufacturing apparatus is not contaminated, the single crystallization rate can be improved, and the pulling can be performed once. Supports polycrystalline raw material that does not increase the cycle time required and can completely melt the semiconductor raw material lump without leaving unmelted partsJig and thisIt aims at providing the manufacturing method of the single crystal using this.
[0019]
[Means for Solving the Problems]
  In order to achieve the above object, the invention of claim 1 of the present application includes an attachment member in which a pulling wire is attached to the upper end and a seed crystal is attached to the lower end, and a support means provided on the attachment member for supporting the semiconductor raw material lump. And a semiconductor operation control means for releasing the support state of the support means and the semiconductor raw material lump,The support means is formed of a plurality of supports that are provided on the attachment member so as to be capable of opening and closing and are engaged with and supported by the semiconductor raw material lump by an opening operation or a closing operation, and the operation control means includes the support and the semiconductor A solid notch that is bridged between the notch for dropping cut across the cross section in the upper part of the semiconductor raw material lump deeper than the engaging position of the raw material lump and the connector provided in the support member and accommodated in the notch Consisting of polycrystalline semiconductor or single crystal,In the middle of melting the semiconductor raw material lump, due to the melting of the operation control means, the support of the semiconductor raw material lump by the supporting means is released, and the semiconductor raw material lump is dropped into the container and melted.At the same time, the single crystal growth part is exposed.It is a semiconductor raw material lump support jig characterized byIt is said.
[0020]
  Claim 2 of the present applicationIn the invention, the support means is provided on the attachment member so as to be capable of opening and closing, and in the state of supporting the semiconductor raw material block, the seed crystal is stored between the supports, and the semiconductor raw material block is dropped and melted into the container. The seed crystal is exposed in the state.1The gist of the present invention is the semiconductor material lump support jig described.
[0021]
  Claim of this application3In the invention, the support body is characterized in that a support member having a claw portion provided at one end and a weight attached to the other end is rotatably attached to a shaft provided in the attachment member at an intermediate portion thereof. Claim1Alternatively, the gist is the semiconductor raw material lump support jig described in 2.
[0022]
  Claim of this application4In the invention, the support body is attached to the shaft at a biased intermediate portion so that the weight of the operated support body is positioned above the seed crystal and is stationary.1Or3The gist of the semiconductor raw material lump support jig described in any one of the above.
[0023]
  Claim of this application5In this invention, the said claw part engages with the support groove provided in the side part of the semiconductor raw material lump.1Or4It is the semiconductor raw material lump support jig according to any one of the aboveIt is said.
[0024]
  Claim 6 of the present applicationIn the invention, the dropping notch portion is a semiconductor raw material lump support jig according to claim 5, characterized in that the cross section has a wedge shape or a rectangular shape.It is said.
[0025]
  Claim 7 of the present applicationIn the manufacturing method of a semiconductor single crystal in which a semiconductor single crystal is grown from a seed crystal by bringing a seed crystal attached to a pulling wire into contact with a semiconductor raw material melt contained in a container, the semiconductor crystal is pulled upward. Mounting member to which a wire is attached and a seed crystal is attached to the lower end, a supporting means provided on the mounting member for supporting the semiconductor raw material lump, and a semiconductor operation for releasing the supporting state between the supporting means and the semiconductor raw material lump Control means,The support means is formed of a plurality of supports that are provided on the attachment member so as to be capable of opening and closing and are engaged with and supported by the semiconductor raw material lump by an opening operation or a closing operation, and the operation control means includes the support and the semiconductor A solid notch that is bridged between the notch for dropping cut across the cross section in the upper part of the semiconductor raw material lump deeper than the engaging position of the raw material lump and the connector provided in the support member and accommodated in the notch Consisting of polycrystalline semiconductor or single crystal,In the middle of melting the semiconductor raw material lump, due to the melting of the operation control means, the support of the semiconductor raw material lump by the supporting means is released, and the semiconductor raw material lump is dropped into the container and melted.At the same time, the single crystal growth part is exposed.The step of supporting the semiconductor raw material lump by the semiconductor raw material lump supporting jig, and releasing the engagement state with the supporting means due to the melting of the operation control means in the middle of melting the semiconductor raw material lump, and placing the semiconductor raw material lump in the container The gist of the present invention is a method for producing a semiconductor single crystal, comprising a step of dropping and melting, and a step of growing the single crystal by bringing the seed crystal into contact with the semiconductor raw material melt in the container. .
[0026]
  Claim of this application8According to the invention, as a pre-step preceding the step of melting the semiconductor raw material lump supported by the semiconductor raw material lump support jig, a step of storing the semiconductor melt in a container in advance is provided. Term7The method is the method for producing a semiconductor single crystal described in 1.
[0027]
  Claim of this application9In the invention, the step of storing the semiconductor melt in the container in advance is a step of melting the semiconductor raw material in the container in the initial stage of manufacturing the semiconductor single crystal.8The method is the method for producing a semiconductor single crystal described in 1.
[0028]
  Claim of this application10In this invention, the step of storing the semiconductor melt in the container in advance is a step of leaving the semiconductor raw material melt in the production of the semiconductor single crystal performed in advance.9The method is the method for producing a semiconductor single crystal described in 1.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, a polycrystalline raw material support jig, a seed crystal, and a method for producing a single crystal using the same according to the present invention will be described with reference to the accompanying drawings.
[0030]
  A single crystal manufacturing apparatus used in the method for manufacturing a semiconductor single crystal according to the present invention as shown in FIG. 1, for example, a single crystal pulling apparatus 1 by the CZ method is provided in a furnace member storage chamber 2 and above the furnace member storage chamber 2. It is formed with the single crystal storage part 3 provided in a connected manner. In the furnace member storage chamber 2, a container such as a quartz crucible 6 heated by a heater 4 and housed in a graphite crucible 5 is provided, and a polycrystalline raw material is heated and melted in the quartz crucible 6. The graphite crucible 5 passes through the furnace body 7 and is attached to a crucible rotating shaft 8 which is coupled to a motor (not shown) and rotated.
[0031]
  In addition, a semiconductor raw material lump support jig 10 according to the present invention is provided at the lower end of a wire 9 provided in the single crystal storage unit 3 so as to be movable up and down.
[0032]
  As shown in FIGS. 2 to 4, the semiconductor raw material lump support jig 10 includes an attachment member 11 having a pulling wire 9 attached to one end 11 a and a seed crystal S attached to the other end 11 b, A supporting means provided to support the semiconductor raw material mass M, for example, a pair of supports 12 and 12 and the support state of the support materials 12 and 12 and the semiconductor raw material mass M is released. For example, a bridge between the support materials 12 and 12 And an operation control means 13 provided.
[0033]
  The support bodies 12 and 12 are positioned by bending about 30 ° inward from the support members 15 and 15 provided with the claw portions 14 and 14 at one end and the rotation shafts 16 and 16 of the support members 15 and 15. It has weights 17 and 17 provided at the other end, and other support members 19 and 19 that extend in parallel with the support members 15 and 15 and are provided with claw portions 18 and 18.
[0034]
  The support members 15, 15, 19, and 19 are provided on the mounting member 11 at the intermediate portion thereof so that the support members 15, 15, 19, and 19 are rotated around the rotation shafts 16 and 16. As shown in FIGS. 5 and 6, the weights 17 and 17 of the support members 15 and 15 are seeded in a state where the operation control means 13 is melted and the support bodies 12 and 12 are operated. It is attached to the rotating shafts 16 and 16 at a biased intermediate portion so as to be positioned above the crystal S and to be stationary. The lengths of the support members 15, 15, 19, and 19 are determined in consideration of the inner diameter of the single crystal storage portion 3 when the single crystal is pulled, and the single crystal pulling middle claw portions 14, 14, 18, and 18 are It does not hit the wall surface of the storage unit 3. Moreover, the weights 17 and 17 provided in each support member 15 and 15 are arrange | positioned on the diagonal of the bearing member 20, and rotation of each weight 17 and 17 is prevented from interfering.
[0035]
  The claw portions 14, 14, 18, 18 are formed by bending 90 ° from the support members 15, 15, 19, 19, and as shown in FIG. 2, the semiconductor raw material mass M is supported by the supports 12, 12. Is performed by engaging the four claw portions 14, 14, 18, 18 provided on the support members 15, 15, 19, 19 with the support grooves 21 provided on the side surfaces of the semiconductor raw material mass M. ing.
[0036]
  The operation control means 13 is, for example, a U-shaped solid semiconductor polycrystal provided with attachment holes (not shown) into which a pair of connectors 22, 22 provided parallel to the support bodies 12, 12 are inserted. As described above, it is bridged between the pair of connectors 22 and 22 and is provided above the semiconductor raw material block M so as to cross its cross section, and is cut deeper than the position of the support groove 21. The rectangular cutout 23 is accommodated.
[0037]
  The seed crystal S is attached to the attachment member 11 by inserting engagement pins (not shown) into attachment holes (not shown) provided in the attachment member 11 and the seed crystal S, respectively.
[0038]
  Next, a so-called raw material additional charging method using the semiconductor raw material lump support jig and the semiconductor single crystal manufacturing method according to the present invention will be described.
[0039]
  FIG. 7 is a manufacturing process diagram of an additional charge type semiconductor single crystal, in which a quartz crucible 6 installed in the furnace member storage chamber 2 of the single crystal pulling apparatus 1 is filled with polycrystalline silicon m as a small lump shape raw material, Further, the seed crystal S is attached to the attachment member 11 of the semiconductor raw material lump supporting jig 10 attached to the wire 9 of the single crystal storage unit 3, and then the semiconductor raw material mass M is vertically aligned as shown in FIGS. The supporting members 15, 15, 19, 19 are suspended so that the seed crystal S is accommodated between the pair of supports 12, 12 and the pair of connectors 22, 22 is accommodated in the notch 23. Then, after the claw portions 14, 14, 18, 18 are engaged with the support groove 21 in parallel and the semiconductor raw material mass M is supported by the pair of supports 12, 12, the pair of connectors 22, 22 is inserted into the mounting hole of the operation control means 13, and the support member 15 is inserted. Suppressing the opening operation of 15,19,19, for supporting a semiconductor material mass M by the semiconductor material mass support jig 10 (FIG. 7 (a)).
[0040]
  Next, the heater 4 provided on the outer periphery of the quartz crucible 6 is energized to completely heat and melt the polycrystalline silicon m. The silicon melt L is filled (FIG. 7B). Further, a semiconductor material lump M prepared separately from the small lump-shaped polycrystalline silicon m and already stored in the single crystal storage unit 3 and supported by the semiconductor material lump support jig 10 is prepared.DescendIt is brought into contact with the silicon melt L and further melted. In the step of melting the semiconductor raw material mass M, the semiconductor raw material mass M is sequentially melted, but as shown in FIGS. 3 and 4, the melting reaches the notch 23, and further, as shown in FIG. When the operation control means 13 of the polycrystalline semiconductor having the shape is melted, the supports 12 and 12 are opened by the force generated by the weights 17 and 17, so that the semiconductor material lump support jig 10 and the semiconductor material lump M (remainder) The semiconductor material block M is dropped into the quartz glass crucible 6 and melted. Therefore, all of the semiconductor raw material mass M falls into the melt L and is melted.
[0041]
  When the melting of the semiconductor raw material mass M is completed, the silicon melt L fills almost the entire quartz crucible 6. On the other hand, when the support bodies 12 and 12 are opened, the claw portions 14, 14, 18 and 18 jump upward and the weights 17 and 17 are lowered as shown in FIG. 6. However, since the support members 15 and 15 are pivotally attached to the attachment member 11 at a biased position, the single crystal S is exposed at the lowest position, and a state in which the function of the seed crystal at the time of pulling can be performed (FIG. 7 (d)).
[0042]
  Thereafter, the inside of the single crystal pulling apparatus 1 is adapted to the single crystal pulling conditions, and the seed crystal S is brought into contact with the molten silicon melt L in the quartz crucible 6 to grow the single crystal Ig on the seed crystal S ( FIG. 7 (e)).
[0043]
  Further, the single crystal ingot Ig is grown to complete the pulling, but no reusable molten silicon L remains in the quartz crucible 6 (FIG. 7 (e)).
[0044]
  According to the semiconductor single crystal manufacturing method according to the present invention described above, the seed crystal support means and the source semiconductor lump support are supported by using the source semiconductor support jig 10 that supports the source semiconductor lump M and has the seed crystal S attached thereto. It is not necessary to open the furnace body 8 or the single crystal storage part 3 for exchanging the jig, the raw material semiconductor mass M can be melted as an additional raw material, and a sufficient silicon melt L free from contamination of the quartz crucible 6 can be obtained. Supply becomes possible, and a large volume of silicon single crystal Ig can be pulled at a high single crystallization rate at a time.
[0045]
  In addition, a gate valve for appropriately partitioning the single crystal pulling apparatus 1 into the furnace member storage chamber 2 and the single crystal storage unit 3 is not necessary, and dust or the like falls from the single crystal storage unit 3 as the gate valve is opened and closed, thereby causing molten silicon. The melt L is not contaminated, the growth of the single crystal Ig is not hindered, and the single crystallization rate can be increased.
[0046]
  Furthermore, the furnace body 7 or the single unit during the series of processes other than the time of loading the initial small-bulk shaped raw material semiconductor m and the raw material semiconductor lump M in the pulling process at the same time and taking out the pulled single crystal ingot Ig. Since it is not necessary to open the crystal storage unit 3, gas replacement is unnecessary, and the cycle time required for one pulling does not become longer than that of the normal CZ method.
[0047]
  Since the raw material semiconductor mass M can be completely melted without leaving the unmelted portion in the semiconductor raw material mass support jig, it is economical.
[0048]
  Next, a so-called recharge method, which is another embodiment using a semiconductor raw material lump support jig and a method for manufacturing a semiconductor single crystal, will be described. The same parts as those in the above-described embodiment will be described with the same reference numerals.
[0049]
  FIG. 8 shows a manufacturing process of a recharge-type semiconductor single crystal. The grown single crystal Ig is pulled up, while the molten silicon L remains in the quartz crucible 6 and the heater 4 is continuously energized. The molten state is maintained (FIG. 8A).
[0050]
  Next, the gate valve 31 provided in the single crystal storage unit 3 is closed to take out the single crystal Ig, and the book used in the above-described embodiment and having the same structure as shown in FIG. The seed crystal S is attached to the mounting member 11 of the semiconductor material lump support jig 10 according to the invention. Thereafter, as shown in FIGS. 2 to 4, the support members 15, 15, 19, 19 are held so that the semiconductor raw material mass M is held vertically and the pair of connectors 22, 22 are accommodated in the cutouts 23. After hanging down and in parallel, the claw portions 14, 14, 18, 18 are engaged with the support grooves 21 to support the semiconductor raw material mass M with the pair of supports 12, 12, and then the pair of connectors 22 within the notch portion 23. , 22 are inserted into the mounting holes of the operation control means 13, and the opening operation of the support members 15, 15, 19, 19 is suppressed, and the semiconductor raw material mass M is supported by the semiconductor raw material mass support jig 10 (FIG. 8B). )).
[0051]
  Next, the gate valve 31 is opened, and the polycrystalline silicon lump M is immersed in the silicon melt m to be melted (FIG. 8C). In the step of melting the semiconductor raw material mass M, the semiconductor raw material mass M is sequentially melted, but as shown in FIGS. 3 and 4, the melting reaches the notch 23, and further, as shown in FIG. When the operation control means 13 of the polycrystalline semiconductor having the shape is melted, the supports 12 and 12 are opened by the force generated by the weights 17 and 17, so that the semiconductor material lump support jig 10 and the semiconductor material lump M (remainder) The state of engagement with is released, and the semiconductor raw material mass M falls into the container and is melted. Therefore, all of the semiconductor raw material mass M falls into the melt L and is melted.
[0052]
  When the melting of the semiconductor raw material mass M is completed, the silicon melt L fills almost the entire quartz crucible 6, while when the supports 12 and 12 are opened, the single crystal S is placed at the bottom as shown in FIG. It will be exposed and will be in the state which can fulfill the function of the seed crystal at the time of pulling (FIG.8 (d)).
[0053]
  Thereafter, the inside of the single crystal pulling apparatus 1a is adapted to the single crystal pulling conditions, and the seed crystal S is brought into contact with the molten silicon melt L in the quartz crucible 6 to grow the single crystal Ig on the seed crystal S ( FIG. 8 (e)).
[0054]
  Further, the single crystal ingot Ig is grown to complete the pulling, but the quartz crucible 6 or the like has durability, and when a new single crystal is pulled, the reusable molten silicon L remains (see FIG. 8 (a)).
[0055]
  According to the method for manufacturing a semiconductor single crystal of the present embodiment, the seed crystal support means and the source semiconductor lump support jig are supported by using the source semiconductor support jig 10 that supports the source semiconductor lump M and to which the seed crystal S is attached. For the replacement, the single crystal storage unit 3 needs to be opened only once. Therefore, the silicon single crystal Ig can be pulled at a high single crystallization rate, which contributes to a reduction in manufacturing cost of the semiconductor single crystal. For this reason, the number of times of opening and closing the gate valve, which was at least twice in the conventional recharging method, is reduced, and a sufficient amount of silicon melt can be supplied while reducing the risk of contamination into the furnace due to opening and closing. The crystal can be pulled at a high single crystallization rate. Since the raw material semiconductor mass M can be completely melted without leaving the unmelted portion in the semiconductor raw material mass support jig, it is economical.
[0056]
  Next, another embodiment of the semiconductor material lump support jig according to the present invention will be described. The same parts as those in the above-described embodiment will be described with the same reference numerals.
[0057]
  As shown in FIGS. 9 to 12, the semiconductor raw material lump support jig 41 includes a mounting member 42 having a pulling wire 9 attached to one end 42a and a seed crystal S attached to the other end 42b. A support means provided for supporting the semiconductor raw material mass M, for example, a pair of support bodies 43, 43, and an operation control means 44 provided between the support bodies 43, 43 and provided in the semiconductor raw material mass M are provided. Yes.
[0058]
  Each of the support bodies 43, 43 has a support member 47, 47 provided with two claw portions 45, 46 at one end, and is folded about 30 ° outward from the rotation shafts 48, 48 of the support member 47, 47. And weights 49, 49 provided at the other end bent and positioned.
[0059]
  The support members 47 and 47 are provided at the intermediate portion of the mounting member 42 so as to rotate about the rotation shafts 48 and 48, and can be freely rotated via the rotation shafts 48 and 48 to the rectangular bearing member 50. 11 and 12, the weights 49, 49 of the support members 47, 47 are positioned above the seed crystal S in a state where the operation control means 44 is melted and the supports 43, 43 are operated. Are attached to the rotating shafts 48 and 48 at a biased intermediate portion.
[0060]
  The weights 49, 49 close the claws 45, 45, 46, 46 of the support members 47, 47, and are arranged on the diagonal line of the rectangular bearing member 50 attached to the attachment member 42. Thus, the rotation of the weights 49, 49 is not interfered.
[0061]
  The claw portions 45, 45, 46, 46 are formed by bending 90 degrees from the support members 47, 47, and the support of the semiconductor raw material lump M is supported by the four claw portions 45, 45, 46, 46. This is done by engaging 51.
[0062]
  The operation control means 44 is provided on the upper part of the semiconductor raw material mass M, and is cut out across the cross section along the center line c, and is formed by a tapered wedge-shaped cutout 52 cut deeper than the position of the support groove 51. Is formed. Accordingly, as shown in FIGS. 13 and 14, when the melting of the semiconductor raw material mass M proceeds and the molten surface reaches the lower end of the operation control means 44, the claw portions 45, 45, 46, 46 of the support members 47, 47. Thus, the semiconductor raw material mass M (remaining part) is pressed in the direction of reducing the notch 52 by the force in the closing direction, the engagement between the support groove 51 and the claw parts 45, 45, 46, 46 is released, and the support members 47, 47. The support of the semiconductor raw material mass M is released, and the semiconductor raw material mass M (remaining part) is completely dropped.
[0063]
  At this time, as shown in FIGS. 10 and 12, the engagement between the support groove 51 and the claw portions 45, 45, 46, 46 is performed with the central axis c of the notch 52 forming the operation control means 44 or the central axis d. Since it is performed at a position removed from the orthogonal line, the engagement between the support groove 51 and the claw portions 45, 45, 46, 46 is more easily released.
[0064]
  The cutout 52 forming the operation control means 44 is not limited to a wedge shape in cross section, and may be a rectangular shape.
[0065]
  If the raw material semiconductor support jig 41 of the present embodiment is used in a raw material additional charge type single crystal manufacturing method, the furnace body 8 or the single crystal storage portion is used to replace the seed crystal support means and the raw material semiconductor lump support jig. 3 can be melted as an additional raw material, and a sufficient amount of silicon melt L without contamination can be supplied to the quartz crucible 6, and a large amount of silicon single crystal Ig can be produced at a time. The crystallization rate can be increased.
[0066]
  In addition, a gate valve for appropriately partitioning the single crystal pulling apparatus 1 into the furnace member storage chamber 2 and the single crystal storage unit 3 by a gate valve is not necessary, and dust or the like falls from the single crystal storage unit 3 when the gate valve is opened and closed. Thus, the molten silicon melt L is not contaminated, the growth of the single crystal Ig is not inhibited, and the single crystallization rate can be increased.
[0067]
  Furthermore, the furnace body 7 or the single unit during the series of processes other than the time of loading the initial small-bulk shaped raw material semiconductor m and the raw material semiconductor lump M in the pulling process at the same time and taking out the pulled single crystal ingot Ig. Since it is not necessary to open the crystal storage unit 3, gas replacement is unnecessary, and the cycle time required for one pulling does not become longer than that of the normal CZ method.
[0068]
  Since the raw material semiconductor mass M can be completely melted without leaving the remainder on the semiconductor raw material mass support jig, it is economical.
[0069]
  In addition, if used in the recharge method, by using the raw material semiconductor support jig 41 that supports the raw material semiconductor mass M and to which the seed crystal S is attached, for the replacement of the seed crystal support means and the raw material semiconductor mass support jig, The single crystal storage unit 3 can be opened only once. Therefore, it becomes possible to pull up the silicon single crystal Ig at a high single crystallization rate, which contributes to a reduction in manufacturing cost of the semiconductor single crystal. For this reason, the number of times of opening and closing the gate valve, which was at least twice in the conventional recharging method, is reduced, and a sufficient amount of silicon melt can be supplied while reducing the risk of contamination into the furnace due to opening and closing. The crystal can be pulled at a high single crystallization rate.
[0070]
  Further, another embodiment of the semiconductor raw material lump support jig according to the present invention will be described. The same parts as those in the first embodiment described above will be described with the same reference numerals.
[0071]
  As shown in FIGS. 15 and 16, the semiconductor raw material lump support jig 61 is made of a metal such as tungsten or molybdenum, a metal compound, carbon, a carbon compound, or the like, and has a pull-up wire 9 attached to one end 62a thereof. An attachment member 62 having a seed crystal S attached to 62b and a support means provided on the attachment member 62 for supporting the semiconductor raw material mass M, for example, a support portion engaging with an engaging portion 63 provided on the semiconductor raw material mass M 64 and an operation control means 65 provided in the semiconductor raw material mass M.
[0072]
  The support portion 64 is formed in a divergent shape such that the bulging cross-sectional area gradually increases from the mounting member 62, for example, a shape having a part of a cone.
[0073]
  The operation control means 65 is provided at the upper part of the semiconductor raw material block M, and is provided at the upper part of the elongated U-shaped notch part 66 cut out along the center line c, and has a cross-sectional shape. The attachment member 62 is formed of an engagement portion 63 having a divergent shape that is the same as the shape having the conical portion. The U-shaped notch 66 has a depth sufficient to accommodate the seed crystal S attached to the attachment member 62.
[0074]
  Accordingly, as shown in FIGS. 17 and 18, when the melting of the semiconductor raw material mass M progresses and the molten surface reaches the lower end portion 65d of the operation control means 65, the semiconductor raw material mass M (remaining portion) is notched due to its own weight. A force acts in the direction of enlarging 66, the engagement between the engaging portion 63 and the support portion 64 is disengaged, the support of the semiconductor raw material mass M by the raw material semiconductor mass supporting jig 61 is released, and the semiconductor raw material mass M (remainder) Is supposed to fall completely. As shown in FIG. 19, the exposed seed crystal S is brought into contact with the melt to grow a single crystal Ig.
[0075]
  As shown in FIG. 20, the support portion 71 is not limited to the one using the partial shape of the cone, and may have a spherical portion, as shown in FIGS. 21 (a) to (c). In addition, the support portion 72 may be formed so as to be split from the attachment member 73. If the support portion 71 is formed of a spherical portion, the engagement between the engagement portion 63 and the support portion 71 can be easily disengaged regardless of the cross-sectional shape of the engagement portion 63. Further, if the support portion 72 is divided, the support portion 72 can be reused by replacing only the support portion 72 when the support portion 72 deteriorates.
[0076]
  Furthermore, if the support portions 71 and 72 are formed of the same material as the semiconductor raw material, it is preferable because contamination due to the contact between the raw material mass M and the support portions 71 and 72 can be prevented.
[0077]
  If the raw material semiconductor support jig 61 of this embodiment is used in the method for manufacturing a single crystal of the raw material additional charge method, the silicon crucible 6 is not contaminated with sufficient silicon fusion like the raw material semiconductor support jig of the above-described embodiment. The liquid L can be supplied, and a large volume of silicon single crystal Ig can be pulled at a high single crystallization rate at a time. In addition, when the gate valve is opened and closed, dust or the like falls from the single crystal storage unit 3 and the molten silicon melt L is not contaminated, and the growth of the single crystal Ig is not hindered. The rate can be increased.
[0078]
  Furthermore, gas replacement is not required, the cycle time required for one pulling is not longer than that of the normal CZ method, and the raw material semiconductor mass M is used as a semiconductor raw material mass support jig for the unmelted portion. It is economical because all can be melted without leaving. Furthermore, since the support portion 64 is formed by bulging the mounting member 62, a semiconductor raw material lump support jig having no movable part and a simple structure can be provided. Further, if the support portion 72 is divided, if the support portion 72 is deteriorated, it is restored by replacing only the support portion 72 without replacing the entire semiconductor raw material lump support jig 61. Can be economical. Further, when it is necessary to perform chemical etching for removing contamination every time the pulling of the single crystal is completed, it is only necessary to perform the seed crystal S, and the semiconductor raw material lump support jig 61 is not etched by the chemical. Long life can be realized.
[0079]
  In addition, if used for the recharge method, it is possible to pull up the silicon single crystal Ig at a high single crystallization rate as in the case of the raw material semiconductor support jig of the above-described embodiment, which contributes to reducing the manufacturing cost of the semiconductor single crystal. To do. Furthermore, it becomes possible to supply a sufficient silicon melt while reducing the risk of contamination into the furnace due to opening and closing, and the silicon single crystal can be pulled at a high single crystallization rate.
[0080]
  Furthermore, the seed crystal concerning this invention is demonstrated.
[0081]
  As shown in FIG. 22 and FIG. 23, the seed crystal S1 according to the present invention is provided with a single crystal growth portion S1a in the lower portion and an operation control provided in the semiconductor material block M above the single crystal growth portion S1a. It has a divergent shape that engages with the means 81 and has a gradually increasing cross-sectional area, for example, a support portion 82 formed of a spherical portion, and has two functions of supporting the growth of the single crystal and the semiconductor raw material mass M. Have.
[0082]
  The operation control means 81 communicates with the engagement hole 83 provided in the upper part of the semiconductor raw material mass M and the engagement hole 83 and has a diameter larger than the diameter of the engagement hole 83, and the semiconductor raw material mass A through-hole 84 that penetrates M in the longitudinal direction and a dividing groove 85 that reaches below the position where the single crystal growth portion S1a reaches when the support portion 82 is engaged with the engagement hole 83. . The dividing groove 85 is formed across the cross section of the semiconductor raw material mass M, and when the semiconductor raw material mass M is melted to the dividing groove 85, the semiconductor raw material mass M (remainder) is divided. .
[0083]
  The semiconductor raw material mass M is attached to the single crystal S1 after the seed crystal S1 is passed through the through hole 84 with the single crystal growth portion S1a facing down, and the support portion 82 is engaged with the engagement hole 83. The seed crystal S1 is fixed to an attachment member (not shown).
[0084]
  Therefore, as shown in FIG. 22, when the semiconductor raw material mass M is melted, the melting of the semiconductor raw material mass M proceeds, and when the melting surface l reaches the lower end of the dividing groove 85 of the semiconductor raw material mass M, the semiconductor raw material mass M ( The remaining portion) exerts a force in the direction in which the engagement hole 83 is enlarged by its own weight, the engagement hole 83 and the support portion 82 are disengaged, the support of the semiconductor raw material mass M by the seed crystal S1 is released, and the semiconductor raw material The lump M (residue) is completely dropped. The seed crystal S <b> 1 (single crystal growth portion S <b> 1 a) is exposed when the semiconductor raw material mass M falls.
[0085]
  If the seed crystal S1 of the present embodiment is used in the method of manufacturing a single crystal of the raw material additional charge method, the silicon crucible 6 is not contaminated with sufficient silicon fusion as in the raw material semiconductor support jig of the first embodiment described above. The liquid L can be supplied, and a large volume of silicon single crystal Ig can be pulled at a high single crystallization rate at a time. In addition, when the gate valve is opened and closed, dust or the like falls from the single crystal storage unit 3 and the molten silicon melt L is not contaminated, and the growth of the single crystal Ig is not hindered. The rate can be increased. Further, gas replacement is unnecessary, the cycle time required for one pulling is not longer than that of the normal CZ method, and the raw material semiconductor mass M is not left in the semiconductor raw material mass support jig. It is economical because all can be melted. Furthermore, since the support portion 82 is formed by bulging integrally with the single crystal S1, it can be used as a semiconductor raw material lump support jig that has no moving parts and has a simple structure and is economical.
[0086]
  In addition, if used in the recharge method, it is possible to pull up the silicon single crystal Ig at a high single crystallization rate as in the case of the raw material semiconductor support jig of the above-described embodiment, which contributes to reducing the manufacturing cost of the semiconductor single crystal. To do. Furthermore, it becomes possible to supply a sufficient silicon melt while reducing the risk of contamination into the furnace due to opening and closing, and the silicon single crystal can be pulled at a high single crystallization rate.
[0087]
  Note that the support portion 82 is not limited to one using a partial shape of a cone, and may have a spherical portion.
[0088]
  In addition, as shown in FIG. 25, a plurality of support portions 86 each having a divergent shape, for example, a spherical portion, whose cross-sectional area gradually increases are provided apart from each other, and the cross section is crossed above the raw material semiconductor mass M. A rectangular cutout portion 87 is provided, an engagement groove 88 is provided in parallel above the cutout portion 87, an engagement hole 89 communicating with the engagement groove 88 is provided, and the engagement hole 89 is provided. You may make it engage the support part 86 with.
[0089]
  If the support portion 86 is formed as a spherical surface portion, the engagement between the engagement hole 89 and the support portion 86 is easily disengaged regardless of the shape of the cross section of the engagement hole 89. Further, if a plurality of support portions 86 are provided apart from each other, it is convenient because it can easily cope with additional melting multiple times.
[0090]
【Example】
  Test 1: Using a semiconductor raw material lump support jig as shown in FIG. 3, a rod-like silicon polycrystal having a diameter of 127 mm, a weight of 15 kg, and a length of 600 mm was melted and compared with a conventional example.
[0091]
  Result: In the example, all 15 kg of the rod-shaped polycrystalline material could be melted. In addition, after the melting of the rod-shaped polycrystalline raw material is completed, the support is raised above the seed crystal, so that the single crystal is continuously grown without replacing the rod-shaped polycrystalline material supporting jig and the seed crystal. Was able to migrate to.
[0092]
  On the other hand, in the conventional example of the support method by wire winding, the rod-shaped polycrystalline raw material could be melted up to about 12 kg, but the remaining about 3 kg could not be melted. In addition, after melting the rod-shaped polycrystalline raw material, it took about 1.5 hours for the work to attach the seed crystal.
Test 2: A rod-shaped silicon polycrystal having a diameter of 127 mm, a weight of 15 kg, and a length of 600 mm was melted using a semiconductor raw material lump support jig as shown in FIG. 11 and compared with the conventional example.
[0093]
  Results: The same results as in Test 1 described above were obtained.
[0094]
  Test 3: Using a semiconductor raw material lump supporting jig as shown in FIG. 16, a rod-like silicon polycrystal having a diameter of 140 mm, a weight of 27 kg, and a length of about 860 mm was melted and compared with a conventional example.
[0095]
  Result: In the example, all 27 kg of rod-shaped polycrystalline raw material could be melted. In addition, after the melting of the rod-shaped polycrystalline raw material is completed, the support is raised above the seed crystal, so that the single crystal is continuously grown without replacing the rod-shaped polycrystalline material supporting jig and the seed crystal. Was able to migrate to.
[0096]
  On the other hand, in the conventional example of the support method by wire winding, the rod-shaped polycrystalline material could be melted up to about 25 kg, but the remaining about 2 kg could not be melted. In addition, after melting the rod-shaped polycrystalline raw material, it took about 1.5 hours for the work to attach the seed crystal.
Test 4: Using a seed crystal as shown in FIG. 23, a rod-like silicon polycrystal was melted by a raw material additional charge method to produce a single crystal.
[0097]
  Result: The replacement work of the rod-shaped polycrystalline material support jig and the seed crystal was not necessary, and the single crystal pulling time could be shortened by about 60 minutes as compared with the conventional example.
[0098]
【The invention's effect】
  Semiconductor raw material lump support jig according to the present inventionAnd thisAccording to the single crystal manufacturing method used, the semiconductor single crystal manufacturing apparatus is not contaminated when the semiconductor raw material block is supplied, the single crystallization rate can be improved, and the cycle time required for one pulling is also increased. Further, it is possible to provide a polycrystalline raw material supporting jig and a seed crystal that can completely melt the semiconductor raw material lump, and a single crystal manufacturing method using the same.
[0099]
  That is, the support of the semiconductor raw material lump is supported by the support means to which the seed crystal is attached, and the support of the semiconductor raw material lump is released due to the melting of the semiconductor operation control means that releases the support state during the melting of the semiconductor raw material lump. Since the semiconductor raw material lump falls and melts in the container, if the raw material semiconductor support jig according to the present invention is used in the method for producing a single crystal of the raw material additional charge method, the seed crystal support means and the raw material semiconductor lump support jig There is no need to open the furnace body or single crystal storage for replacement, the raw material semiconductor mass can be melted as an additional raw material, and a sufficient silicon melt without contamination of the quartz crucible can be supplied. Capacitive silicon single crystals can be pulled at a high single crystallization rate. In addition, a gate valve that appropriately separates the furnace member storage chamber from the single crystal storage unit by the gate valve of the single crystal pulling device is not necessary, and dust etc. falls from the single crystal storage unit as the gate valve opens and closes and melts. The silicon melt is not contaminated, the growth of the single crystal is not hindered, and the single crystallization rate can be increased.
[0100]
  Furthermore, the furnace body or the single crystal storage part is not changed during a series of processes other than when the initial small-bulk-shaped raw material semiconductor and the raw material semiconductor mass are simultaneously loaded in the pulling process and when the pulled single crystal ingot is taken out. Since it is not necessary to open, gas replacement is unnecessary, and the cycle time required for one pulling does not become longer than that of the normal CZ method. Moreover, since the raw material semiconductor lump can be completely melted without leaving the remaining part on the semiconductor raw material lump support jig, it is economical.
[0101]
  In addition, when used in the recharge method, a single crystal can be accommodated for replacement of the seed crystal support means and the raw material semiconductor lump support jig by using the raw semiconductor support jig that supports the raw material semiconductor lump and to which the seed crystal is attached. The part can be opened only once. Accordingly, it is possible to increase the silicon single crystal at a high single crystallization rate, which contributes to a reduction in manufacturing cost of the semiconductor single crystal. For this reason, the number of times of opening and closing the gate valve, which was at least twice in the conventional recharge method, is reduced, and a sufficient amount of silicon melt can be supplied while reducing the risk of contamination into the furnace due to opening and closing. The crystal can be pulled at a high single crystallization rate.
[0102]
  In addition, the support means is provided on the mounting member so as to be capable of opening and closing, and is formed by a plurality of supports that support the semiconductor raw material mass so as to sandwich the semiconductor raw material mass by an opening operation or a closing operation. In addition, the seed crystal can be stored between the supports, and space can be saved.
[0103]
  In addition, since the support member is provided with a claw portion at one end and a weight attached to the other end, the support member is pivotally attached to the rotation shaft provided at the attachment member at the intermediate portion thereof, so that the semiconductor raw material lump is attached. In addition to being able to reliably support, the support of the semiconductor raw material lump can be automatically released by the support by the action of the weight.
[0104]
  Further, since the support is attached to the rotating shaft at an intermediate portion biased so that the weight of the operated support is positioned above the seed crystal and is stationary, the seed crystal can be surely positioned at the lowest position.
[0105]
  Further, by engaging the claw portion with the support groove provided on the side surface portion of the semiconductor raw material lump, the raw material semiconductor lump can be easily and reliably supported and released by the semiconductor raw material lump support jig. .
[0106]
  In addition, since the operation control means is formed by a dropping notch that is cut across the cross section in the upper part of the semiconductor raw material lump deeper than the position of the support groove, the semiconductor raw material is surely in the middle of melting of the semiconductor raw material lump. The mass can be dropped and melted.
[0107]
  Further, since the notch for dropping has a wedge shape or rectangular shape in cross section, the semiconductor raw material lump can be reliably dropped and melted despite the simple structure.
[0108]
  Further, the operation control means is a solid semiconductor polycrystal or single crystal bridged between the connectors provided on the support member, and is accommodated in a notch portion that is cut deeper than the position of the support groove. Therefore, the semiconductor raw material lump can be surely dropped and melted during the melting of the semiconductor raw material lump, and since it is made of a semiconductor, it does not become an impurity and reduces the single crystallization rate.There is nothing.
[0109]
  In addition, a mounting member to which a pulling wire is attached at the upper end and a seed crystal is attached to the lower end, a support means for supporting the semiconductor raw material lump provided on the mounting member, and a support state between the support means and the semiconductor raw material lump are released. If a semiconductor single crystal manufacturing method having a step of supporting a semiconductor raw material block with a semiconductor raw material block support jig having a semiconductor operation control means is used for the single crystal manufacturing method of the raw material additional charge method, the seed crystal support It is not necessary to open the furnace body or the single crystal housing part for replacing the means and the raw material semiconductor lump support jig, and the silicon melt can be melted as an additional raw material without contaminating the quartz crucible. Therefore, a large-capacity silicon single crystal can be pulled at a high single crystallization rate at a time. In addition, a gate valve that appropriately separates the furnace member storage chamber from the single crystal storage unit by the gate valve of the single crystal pulling device is not necessary, and dust etc. falls from the single crystal storage unit as the gate valve opens and closes and melts. The silicon melt is not contaminated, the growth of the single crystal is not hindered, and the single crystallization rate can be increased.
[0110]
  Furthermore, the furnace body or the single crystal storage part is not changed during a series of processes other than when the initial small-bulk-shaped raw material semiconductor and the raw material semiconductor mass are simultaneously loaded in the pulling process and when the pulled single crystal ingot is taken out. Since it is not necessary to open, gas replacement is unnecessary, and the cycle time required for one pulling does not become longer than that of the normal CZ method. Moreover, since the raw material semiconductor lump can be completely melted without leaving the remaining part on the semiconductor raw material lump support jig, it is economical.
[0111]
  In addition, when used in the recharge method, a single crystal can be accommodated for replacement of the seed crystal support means and the raw material semiconductor lump support jig by using the raw semiconductor support jig that supports the raw material semiconductor lump and to which the seed crystal is attached. The part can be opened only once. Accordingly, it is possible to increase the silicon single crystal at a high single crystallization rate, which contributes to a reduction in manufacturing cost of the semiconductor single crystal. For this reason, the number of times of opening and closing the gate valve, which was at least twice in the conventional recharge method, is reduced, and a sufficient amount of silicon melt can be supplied while reducing the risk of contamination into the furnace due to opening and closing. The crystal can be pulled at a high single crystallization rate.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of a method for producing a semiconductor single crystal according to the present invention.
FIGS. 2A and 2B show a supporting state of a semiconductor raw material lump according to an embodiment of a semiconductor raw material lump supporting jig according to the present invention, wherein FIG. 2A is a plan view thereof, and FIG. Sectional drawing.
FIG. 3 is a front view of an embodiment of a semiconductor material lump support jig according to the present invention.
FIG. 4 is a side view of an embodiment of a semiconductor material lump support jig according to the present invention.
FIG. 5 is an explanatory view showing an operating state of an embodiment of a semiconductor raw material lump support jig according to the present invention.
FIG. 6 is an explanatory view showing an operating state of an embodiment of a semiconductor raw material lump support jig according to the present invention.
FIGS. 7A to 7F are manufacturing process diagrams of an embodiment in which a method for manufacturing a semiconductor single crystal according to the present invention is used in a method for manufacturing a single crystal of a material additional charge method, respectively.
FIGS. 8A to 8E are manufacturing process diagrams of an embodiment in which a semiconductor single crystal manufacturing method according to the present invention is used for a recharge type single crystal manufacturing method.
FIG. 9 is a plan view of another embodiment of a semiconductor raw material lump support jig according to the present invention.
FIGS. 10A and 10B show a support state of a semiconductor raw material lump according to another embodiment of the semiconductor raw material lump supporting jig according to the present invention, in which FIG. 10A is a plan view and FIG. 10B is a longitudinal sectional view thereof.
FIG. 11 is a front view of another embodiment of a semiconductor raw material lump support jig according to the present invention.
FIG. 12 is a side view of another embodiment of a semiconductor material lump support jig according to the present invention.
FIG. 13 is an explanatory view showing an operating state of another embodiment of a semiconductor raw material lump support jig according to the present invention.
FIG. 14 is an explanatory view showing an operating state of another embodiment of a semiconductor raw material lump support jig according to the present invention.
FIG. 15 is a front view of another embodiment of a semiconductor material lump support jig according to the present invention.
FIGS. 16A and 16B show a support state of another embodiment of a semiconductor raw material lump support jig according to the present invention, wherein FIG. 16A is a plan view and FIG. 16B is a longitudinal sectional view thereof.
FIG. 17 is an explanatory view showing an operating state of another embodiment of a semiconductor raw material lump support jig according to the present invention.
FIG. 18 is an explanatory view showing an operating state of another embodiment of a semiconductor raw material lump support jig according to the present invention.
FIG. 19 is an explanatory view of a single crystal pulling state using another embodiment of a semiconductor raw material lump support jig according to the present invention.
FIG. 20 is an explanatory view showing a modification of another embodiment of a semiconductor raw material lump support jig according to the present invention.
FIGS. 21A to 21C are explanatory views showing a modification of another embodiment of the semiconductor raw material lump support jig according to the present invention. FIGS.
FIG. 22 is a cross-sectional view of another embodiment of a semiconductor raw material lump support jig according to the present invention.
FIG. 23 is a cross-sectional view showing a modification of another embodiment of the semiconductor material lump support jig according to the present invention.
FIG. 24 shows a method for manufacturing a single crystal in a conventional method for manufacturing a semiconductor single crystal.
FIGS. 25A to 25F are manufacturing process diagrams of a conventional single-crystal manufacturing method using a material addition charge method, respectively.
FIGS. 26A to 26E are manufacturing process diagrams of a conventional recharge type single crystal manufacturing method.
[Explanation of symbols]
1 Single crystal production equipment
2 Furnace material storage room
3 Single crystal storage
4 Heater
5 Graphite crucible
6 Quartz crucible
7 Furnace
8 Crucible rotation axis
9 Pulling wire
10 Semiconductor raw material lump support jig
11 Mounting member
11a one end
11b The other end
12 Support
13 Operation control means
14 nails
15 Support member
16 Rotating shaft
17 Weight
18 Nail
19 Support member
20 Bearing member
21 Support groove
22 connector
23 Notch
M Semiconductor raw material block (polycrystalline silicon block)
S seed crystal
41 Semiconductor raw material lump support jig
42 Mounting member
42a one end
42b The other end
43 Support
44 Operation control means
45 nails
46 nails
47 Support member
48 Rotating shaft
49 Weight
50 Bearing member
51 Support groove
52 Notch
61 Semiconductor raw material lump support jig
62 Mounting member
62a one end
62b The other end
63 engaging part
64 Supporting part
65 Operation control means
65d lower end
66 Notch
71 Supporting part
72 Supporting part
81 Operation control means
82 Supporting part
83 engagement hole
84 Through hole
85 Dividing groove
86 Supporting part
87 Notch
88 engaging groove
89 engagement hole
S1 seed crystal
S1a single crystal growth part

Claims (10)

上端に引上げ用ワイヤが取付けられ下端に種結晶が取付けられる取付部材と、この取付部材に設けられ半導体原料塊を支持する支持手段と、この支持手段と半導体原料塊との支持状態を解除する半導体製の動作制御手段とを有し、上記支持手段は、取付部材に開閉動作可能に設けられ開動作または閉動作により半導体原料塊と係合し支持する複数個の支持体で形成され、上記動作制御手段は、上記支持体と上記半導体原料塊の係合位置よりも深く半導体原料塊の上部に断面を横断して切込まれた落下用切欠部と、支持部材に設けられた連結子間に橋設され切欠部内に収容された固形半導体多結晶または単結晶からなり、上記半導体原料塊を溶融させる途中で前記動作制御手段の溶融に因り、支持手段による半導体原料塊の支持を解除して、半導体原料塊を容器内に落下、溶融させると共に、単結晶成長部を露出させることを特徴とする半導体原料塊支持治具。A mounting member to which a pulling wire is attached at the upper end and a seed crystal is attached to the lower end, a supporting means for supporting the semiconductor raw material lump provided on the mounting member, and a semiconductor for releasing the support state between the supporting means and the semiconductor raw material lump The support means is formed of a plurality of supports that are provided on the attachment member so as to be openable and closable, and are engaged with and supported by the semiconductor raw material lump by an opening operation or a closing operation. The control means includes a notch for dropping cut across the cross section in the upper part of the semiconductor raw material lump deeper than the engagement position of the support and the semiconductor raw material lump, and a connector provided on the support member. It consists of a solid semiconductor polycrystal or a single crystal that is bridged and accommodated in the notch, and due to the melting of the operation control means in the middle of melting the semiconductor raw material lump, the support of the semiconductor raw material lump by the supporting means is released, Half Dropping the body material mass into the container, the melted semiconductor material mass support jig, characterized in that exposing the single crystal growth section. 上記支持手段は、取付部材に開閉動作可能に設けられ、半導体原料塊を支持している状態では支持体間に種結晶を収納し、半導体原料塊の容器内への落下、溶融状態では種結晶を露出させていることを特徴とする請求項に記載の半導体原料塊支持治具。The support means is provided on the mounting member so as to be openable and closable, and stores the seed crystal between the supports when the semiconductor raw material lump is supported, and the seed crystal falls when the semiconductor raw material lump falls into the container or melts. The semiconductor raw material lump supporting jig according to claim 1 , wherein the semiconductor raw material lump supporting jig is exposed. 上記支持体は、一端に爪部が設けられ、他端に重りが取付けられた支持部材を、その中間部で取付部材に設けられた軸に回動自在に取付けたことを特徴とする請求項または2に記載の半導体原料塊支持治具。The support is characterized in that a support member having a claw portion at one end and a weight attached to the other end is rotatably attached to a shaft provided on the attachment member at an intermediate portion thereof. The semiconductor raw material lump support jig of 1 or 2. 上記支持体は、動作した支持体の重りが種結晶の上方に位置して静止するように、偏倚した中間部で軸に取付けられていることを特徴とする請求項ないしのいずれか1項に記載の半導体原料塊支持治具。The support, as the weight of the support and operation is still positioned above the seed crystal, any one of claims 1, characterized in that attached to the shaft by biasing the intermediate portion 3 1 The semiconductor raw material lump support jig described in the item. 上記爪部は、半導体原料塊の側面部に設けられた支持溝に係合することを特徴とする請求項ないしのいずれか1項に記載の半導体原料塊支持治具。The claw portion is a semiconductor raw material mass support jig according to any one of claims 1 to 4, characterized in that engaging the support groove provided on the side surface portion of the semiconductor material mass. 上記落下用切欠部は、断面が楔形状または矩形形状であることを特徴とする請求項5に記載の半導体原料塊支持治具。  6. The semiconductor material lump support jig according to claim 5, wherein the dropping notch has a wedge-shaped or rectangular cross section. 容器内に収容された半導体原料融液に、引上げ用ワイヤに取付けられた種結晶を接触させて、種結晶から半導体単結晶を成長させる半導体単結晶の製造方法において、上端に引上げ用ワイヤが取付けられ下端に種結晶が取付けられる取付部材と、この取付部材に設けられ半導体原料塊を支持する支持手段と、この支持手段と半導体原料塊との支持状態を解除する半導体製の動作制御手段とを有し、上記支持手段は、取付部材に開閉動作可能に設けられ開動作または閉動作により半導体原料塊と係合し支持する複数個の支持体で形成され、上記動作制御手段は、上記支持体と上記半導体原料塊の係合位置よりも深く半導体原料塊の上部に断面を横断して切込まれた落下用切欠部と、支持部材に設けられた連結子間に橋設され切欠部内に収容された固形半導体多結晶または単結晶からなり、上記半導体原料塊を溶融させる途中で前記動作制御手段の溶融に因り、支持手段による半導体原料塊の支持を解除して、半導体原料塊を容器内に落下、溶融させると共に、単結晶成長部を露出させる半導体原料塊支持治具により半導体原料塊を支持する工程と、前記半導体原料塊を溶融させる途中で動作制御手段の溶融に因り支持手段との係合状態を解除して半導体原料塊を容器内に落下させ溶融させる工程と、前記容器内の半導体原料融液に前記種結晶を接触させて単結晶を成長させる工程とを有することを特徴とする半導体単結晶の製造方法。In a method for manufacturing a semiconductor single crystal in which a semiconductor single crystal is grown from a seed crystal by bringing the seed crystal attached to the pulling wire into contact with the semiconductor raw material melt contained in the container, the pulling wire is attached to the upper end. A mounting member on which a seed crystal is attached to the lower end, a support means for supporting the semiconductor raw material lump provided on the mounting member, and a semiconductor operation control means for releasing the support state of the support means and the semiconductor raw material lump. And the support means is formed by a plurality of supports that are provided on the attachment member so as to be capable of opening and closing and are engaged with and supported by the semiconductor raw material lump by an opening operation or a closing operation. And a dropping notch cut into the upper part of the semiconductor raw material lump deeper than the engagement position of the semiconductor raw material lump and a connector provided on the support member and accommodated in the notch Is Solid consists semiconductor polycrystal or single crystal, due to the melting of the operation control means in the course of melting the semiconductor material mass, to release the support of the semiconductor material mass by the support means, dropping semiconductor material mass into the container, A step of supporting the semiconductor raw material lump by the semiconductor raw material lump supporting jig that melts and exposes the single crystal growth part, and an engagement state with the support means due to melting of the operation control means in the middle of melting the semiconductor raw material lump And a step of dropping the semiconductor raw material lump into the container and melting it, and a step of bringing the seed crystal into contact with the semiconductor raw material melt in the container to grow a single crystal. Crystal production method. 上記半導体原料塊支持治具に支持された半導体原料塊を溶融させる工程に先行する前工程として、予め容器内に半導体融液を収容させておく工程を有することを特徴とする請求項に記載の半導体単結晶の製造方法。8. The method according to claim 7 , further comprising a step of storing a semiconductor melt in a container in advance as a pre-step preceding the step of melting the semiconductor raw material lump supported by the semiconductor raw material lump support jig. A method for producing a semiconductor single crystal. 上記予め容器内に半導体融液を収容させておく工程は、半導体単結晶の製造の初期に容器内に半導体原料を溶融させる工程であることを特徴とする請求項に記載の半導体単結晶の製造方法。Step allowed to accommodate semiconductor melt to the advance vessel, semiconductor manufacturing monocrystalline initially according to claim 8, characterized in that the step of melting the semiconductor material into the container of semiconductor single crystal Production method. 上記予め容器内に半導体融液を収容させておく工程は、先行して行われる半導体単結晶の製造において半導体原料融液を残存させておく工程であることを特徴とする請求項に記載の半導体単結晶の製造方法。Step allowed to accommodate semiconductor melt to the advance vessel, according to claim 9, characterized in that in the production of semiconductor single crystals performed prior is a step to be allowed to leave the semiconductor material melt A method for producing a semiconductor single crystal.
JP19637499A 1999-07-09 1999-07-09 Semiconductor raw material lump support jig, seed crystal, and method for producing single crystal using the same Expired - Fee Related JP3730056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19637499A JP3730056B2 (en) 1999-07-09 1999-07-09 Semiconductor raw material lump support jig, seed crystal, and method for producing single crystal using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19637499A JP3730056B2 (en) 1999-07-09 1999-07-09 Semiconductor raw material lump support jig, seed crystal, and method for producing single crystal using the same

Publications (2)

Publication Number Publication Date
JP2001019587A JP2001019587A (en) 2001-01-23
JP3730056B2 true JP3730056B2 (en) 2005-12-21

Family

ID=16356811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19637499A Expired - Fee Related JP3730056B2 (en) 1999-07-09 1999-07-09 Semiconductor raw material lump support jig, seed crystal, and method for producing single crystal using the same

Country Status (1)

Country Link
JP (1) JP3730056B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835247B2 (en) 2000-10-31 2004-12-28 Advanced Silicon Materials Llc Rod replenishment system for use in single crystal silicon production
WO2003042435A1 (en) 2001-11-13 2003-05-22 Advanced Silicon Materials Llc System for increasing charge size for single crystal silicon production
JP4699976B2 (en) * 2006-09-29 2011-06-15 Sumco Techxiv株式会社 Raw material supply equipment

Also Published As

Publication number Publication date
JP2001019587A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
EP0286133B1 (en) Monocrystal rod and method of pulling same from a melt and apparatus therefor
JP5777336B2 (en) Recharging method of polycrystalline silicon raw material
JP4103593B2 (en) Recharge tube for solid polycrystalline raw material and method for producing single crystal using the same
JP3730056B2 (en) Semiconductor raw material lump support jig, seed crystal, and method for producing single crystal using the same
EP0786022A1 (en) Cast dopant for crystal growing
JP2004035357A (en) Raw material feeding device in single crystal pulling apparatus, raw material for manufacturing single crystal semiconductor, and raw material feeding vessel
JP3722264B2 (en) Manufacturing method of semiconductor single crystal
JP4562139B2 (en) Single crystal pulling apparatus and raw silicon filling method
JPH02120294A (en) Recharger
KR100777337B1 (en) Method of manufacturing silicon single crystal ingot
JP4626424B2 (en) Single crystal puller
JP3572998B2 (en) Method for manufacturing single crystal silicon
JP2008087995A (en) Single crystal pulling apparatus
JP4327333B2 (en) Semiconductor raw material lump support jig, semiconductor raw material lump, and method for producing semiconductor single crystal using the same
JP3770287B2 (en) Method for producing silicon single crystal
JP2721242B2 (en) Silicon single crystal pulling method
JPS63319287A (en) Single crystal pulling up device
KR100581045B1 (en) Method for porducing silicon single crystal
JP3624633B2 (en) Single crystal puller
EP4130348A1 (en) Device and method for producing a monocrystalline silicon rod
JP3721450B2 (en) Polycrystalline raw material and polycrystalline raw material support jig
JPH0840794A (en) Recharging method in process for producing single crystal silicon
JP2004338978A (en) Silicon single crystal pulling equipment, and method for pulling silicon single crystal
JPH0733584A (en) Recharging method in pulling up semiconductor single crystal
JPS6041037B2 (en) Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees