JP3729931B2 - Tilt angle detector - Google Patents

Tilt angle detector Download PDF

Info

Publication number
JP3729931B2
JP3729931B2 JP12368496A JP12368496A JP3729931B2 JP 3729931 B2 JP3729931 B2 JP 3729931B2 JP 12368496 A JP12368496 A JP 12368496A JP 12368496 A JP12368496 A JP 12368496A JP 3729931 B2 JP3729931 B2 JP 3729931B2
Authority
JP
Japan
Prior art keywords
light
bubble
bubble tube
angle detector
tilt angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12368496A
Other languages
Japanese (ja)
Other versions
JPH09304060A (en
Inventor
琢己 平川
Original Assignee
株式会社ソキア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソキア filed Critical 株式会社ソキア
Priority to JP12368496A priority Critical patent/JP3729931B2/en
Publication of JPH09304060A publication Critical patent/JPH09304060A/en
Application granted granted Critical
Publication of JP3729931B2 publication Critical patent/JP3729931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基準平面設定装置に用いられる傾斜角検知器に関する。
【0002】
【従来の技術】
例えば特開平5−322563号公報により、回転ヘッドを備えた基準平面設定装置が知られている。このような基準平面設定装置は回転ヘッドの側面から回転ヘッドの回転軸線に対して直角方向にレーザ光を照射し、周りの壁面等に基準となる1つの平面を設定するために用いられる。回転軸線を垂直に設定すると基準平面は水平面となり、基準平面設定装置を横に倒して回転軸線を水平にすると垂直な基準平面を設定することができる。従って、基準平面設定装置には回転軸線に直交する互いに直角な2方向についての傾斜を検知し回転軸線を鉛直にするための傾斜角検知器と、基準平面設定装置を横転した際に回転軸線を水平にするための傾斜角検知器とが内蔵されている。
【0003】
このような傾斜角検知器としては、例えば、特開平2−42311号公報により、内側が略球形に窪んだ凹レンズが埋め込まれた気泡管や円筒形状に窪んだレンズ板が嵌め込まれた円形気泡管に光源からの光を透過させ、透過光を受光する光電センサで求めた気泡の影の位置からX−Y方向の傾斜角を検知するようにしたものが知られている。
【0004】
また、磁性流体と共に気泡が封入された棒状気泡管に、気泡を挟んで対向する1対の誘導コイルを巻回し、棒状気泡管が傾斜して気泡が一方の誘導コイル側に移動すると、該一方の誘導コイルのコアに相当する部分の磁性流体量が減少してインダクタンスが変化することに着目し、該インダクタンスの変化量から傾斜角を検知するようにした傾斜角検知器が知られている。
【0005】
また、液体状の誘電体と共に気泡が封入された気泡管の内面に、気泡を挟んで対向する1対の検知電極と、両検知電極の対向方向と直角方向に間隔を存して配置したベース電極とを有し、気泡の移動による検知電極とベース電極との間の静電容量の変化から傾斜角を検知するようにした傾斜角検知器が知られている。
【0006】
また、特公平3−45322号公報により、液面が形成されるように内部に略半分の量の透明な液体を充填した密閉容器に、透明な入出光面と、該入出光面の一辺に直交する反射面とを設けると共に、該入出光面に対向する光源と、該光源から照射し入出光面を通って液面で反射し、次に反射面で反射し、再び液面で反射した後入出光面から出てきた光を受光する受光センサとを備え、液面の傾きによる受光センサの受光位置の変化から傾斜角を検知する傾斜角検知器が知られている。
【0007】
【発明が解決しようとする課題】
上記従来の傾斜角検知器は、1つの検知器で1方向もしくは互いに直角な2方向の傾斜しか検知することしかできないため、基準平面設定装置のように3方向についての傾斜を検知する必要がある場合には、少なくとも2個の傾斜角検知器を用いなければならず、そのため基準平面設定装置が大型化するという不具合が生じる。
【0008】
本発明は、3方向の傾斜を検知し得る小型の傾斜角検知器を提供することを課題とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明は、内側が略球形に窪んだ凹レンズが嵌め込まれた気泡管と少なくとも1方向の気泡の動きを許容するレンズ板が嵌め込まれた気泡管とを、凹レンズとレンズ板とが互いに直角になるように相互に位置決めすると共に、両気泡管に光源からの光を透過させ、透過光を受光する光電センサで求めた各気泡管内の気泡の影の位置から傾斜角を検知する傾斜角検知器において、上記光源と光電センサとの内の少なくとも一方を共用したことを特徴とする。
【0010】
尚、気泡管に互いに直角な2面を形成すると共に、一方の面に内側が略球形に窪んだ凹レンズを嵌め込むと共に他方の面に少なくとも1方向の気泡の動きを許容するレンズ板を嵌め込み、気泡管を共用してもよく、その場合には更に、上記光源と光電センサとの内の少なくとも一方を共用できる。
【0011】
ところで、気泡管を供給する場合に、気泡管に磁性流体を充填し、凹レンズの中央を挟んで対向する2対の誘導コイルを、対向する方向が互いに直角になるように巻回すると共に、レンズ板の中央を挟んで上記1方向に対向する1対の誘導コイルを巻回する。
【0012】
あるいは、気泡管を共用する場合に、凹レンズの中央を挟んで対向する2対の検知電極を、対向する方向が互いに直角になるように設けると共に、レンズ板の中央を挟んで上記1方向に対向する1対の検知電極を設け、各検知電極との間に静電容量が生じるようにベース電極を設ける。
【0013】
一方、内部に非充填の空間が形成される量の透明な液体を充填した密閉容器に透明な入出光面と、該入出光面の一辺に交わる反射面とを設けると共に、該入出光面に対向する光源と、該光源から照射し入出光面を通って液面で反射し、次に反射面で反射し、再び液面で反射した後入出光面から出てきた光を受光する受光センサとを備え、受光センサの受光位置から傾斜角を検知する傾斜角検知器において、上記入出光面の上記一辺の対辺に交わる上記反射面に対して平行な第2の反射面を設けたことを特徴とする。
【0014】
尚、上記反射面の上記入出光面との交辺の対辺に交わる上記入出光面に対して平行な第2の入出光面を設けるようにしてもよい。
【0015】
気泡管に光源からの光を透過して光電センサで受光するものでは、光源と光電センサとの内の少なくとも一方を共用することにより部品点数を少なくすることができ、これにより傾斜角検知器全体が小さくなる。
【0016】
ところで、基準平面設定装置では同時に3方向の傾斜角を検知することはなく通常は回転ヘッドの回転軸線に直交する互いに直角な2方向の傾斜角を検知し、横転させた状態では1方向、即ち回転軸線方向の傾斜角を検知すればよい。そこで、気泡管に互いに直角な2面を設け、一方の面で互いに直角な2方向についての傾斜角を検知し、他方の面で1方向の傾斜角を検知するようにして気泡管を共用する。尚、このように気泡管を共用する場合には光源や光電センサを共用することにより更に小型化を図ることができる。
【0017】
ところで、気泡管内に磁性流体を充填し誘導コイルのインダクタンスの変化から傾斜角を検知するものや、液体状の誘電体を充填し検知電極とベース電極との間の静電容量の変化から傾斜角を検知するものでも気泡管を共用することができ、該共用により傾斜角検知器を小型化することができる。
【0018】
尚、透明な液体を充填しその液体の液面で光を反射させて傾斜角を検知するものでは、入出光面の一辺とその対辺とに各々交わる互いに平行な第1と第2の1対の反射面を設けることにより、第1の反射面での反射による傾斜角の検知と、第2の反射面側に90度回転させた状態での第2の反射面での反射による横転時の傾斜角の検知とを行うことができる。
【0019】
さらに、第1の入出光面と、反射面の第1の入出光面との交辺の対辺に交わる第1の入出光面に対して平行な第2の入出光面を有し、第1の入出光面に対応して光源と受光センサとを有する第1のセンサユニットと、第2の入出光面に対応して送光部と受光部とを有する第2のセンサユニットとを設けてもよい。
このように反射面の入出光面との交辺の対辺に交わる入出光面に平行な第2の入出光面を設ける場合には第2の入出光面側に90度回転させることにより横転時の傾斜角の検知を行うことができる。
【0020】
【発明の実施の形態】
図1を参照して、1は第1の気泡管であり、少なくとも一面11は透明もしくは半透明に形成されており、また該一面11に対向する面には円形の窓穴12が気泡管1の内部空間に連通するように形成されている。そして、気泡管1内に気泡が形成される量の透明な液体を充填し、該窓穴12を片面が球形に窪んだ凹レンズL1で塞ぐ。すると凹レンズL1が上面になる状態(図示の状態)では気泡は凹レンズL1の中央に位置し、X軸方向またはY軸方向に気泡管1が傾くと気泡は凹レンズL1に対して相対的に移動する。そこで、凹レンズL1の上面に4分割された光電センサS1を取り付け、光源3からの光をコリメータレンズ31を介して平行にした後上記一面11に照射するようにした。気泡が凹レンズL1の中央に位置している状態では4分割された光電センサS1の各セルの出力はすべて同一であるが、気泡が凹レンズL1に対して移動すると、気泡の影がいずれかのセルにかかり、そのセルの出力が低下する。従って、どのセルがどの程度の出力低下状態になったかということがわかれば気泡管1の傾斜方向及び傾斜角を求めることができる。また、第2の気泡管2を第1の気泡管1に対して90度回動した状態になるよう相対的に位置決めした状態で設け、第1の気泡管1に面する側面21を透明もしくは半透明に形成すると共に、該側面21に対向する面に矩形の窓穴22を開設した。そして、第2の気泡管2内に透明な液体を充填した後、片面が円筒形状に窪んだレンズ板L2で窓穴22を塞いだ。該レンズ板L2の円筒部分の曲率は凹レンズL1の曲率と同じに設定した。従って、凹レンズL1を用いた場合の感度とレンズ板L2を用いた場合の感度とは同じになる。そして、更にレンズ板L2の窪みの軸線方向に対向するように2分割された光電センサS2をレンズ板L2の外側面に取り付けた。また、上記コリメータレンズ31と第1の気泡管1との間にビームスプリッタ4を配設し、光源3からの光を第2の気泡管2に分岐させるようにした。従って、Y軸を中心に時計回りに90度回転させレンズ板L2の取付面が上面になるようにすると、気泡管2がZ軸方向に沿って傾くことにより気泡はレンズ板L2の窪みの軸線方向に沿って相対的に移動する。すると2分割された光電センサS2の両セルの内の一方の出力が低下し、該出力の低下量から気泡管2の傾斜方向及び傾斜角を知ることができる。ところで、図1に示した実施形態ではビームスプリッタ4をコリメータレンズ31と第1の気泡管1との間に配設したが、光源3とコリメータレンズ31との間に配設してもよい。但し、その場合にはビームスプリッタ4と第2の気泡管2との間に別途コリメータレンズ31を追加する必要がある。
【0021】
ところで、上記図1に示したものでは光源3を共用するものであったが、図2に示すように光電センサを共用するようにしてもよい。尚、図2に示すものでは4分割された光電センサS1を用いる。4分割された光電センサS1によって気泡の影の移動を検知することができるので、気泡の影のZ方向の移動量からZ軸の傾器量の検知もできる。また、図3に示すように光3及び光電センサの双方を共用するようにしてもよい。尚、図3において4は反射鏡、Aは気泡である。
【0022】
以上、図1乃至図3に示したものでは円形の気泡管を2個用いたが、図4に示すように、気泡管を共用し、1個の気泡管6を用いるようにしてもよい。該気泡管6は互いに直角な2面に各々窓穴を設け凹レンズL1とレンズ板L2とを嵌め込んだものである。従って、図4に示す状態では気泡は凹レンズL1の略中央に位置しているが、円形気泡管6を90度回転しレンズ板L2が上面になるようにすると円形気泡管6内を移動して気泡はレンズ板L2の下面に移動する。尚、図5に示すように光源3や気泡管及び光電センサを共用してもよい。
【0023】
ところで、図4に示したものでは気泡管6に光源3からの光を透過させ、気泡の影の位置から傾斜角を検知するものであったが、図6に示すように、気泡管6に磁性流体を充填するようにしてもよい。その場合には、凹レンズL1の中央を挟んで対峙する2対の誘導コイル(ヘルムホイルコイル)71・71・72・72と、レンズ板L2の中央を挟んで対峙する1対の誘導コイル73・73を気泡管6に巻回する。このように構成すると、気泡管が傾かず気泡が凹レンズL1またはレンズ板L2の中央に位置する場合には気泡を挟んで対峙する誘導コイルのインダクタンスは等しい値になる。ところが気泡管6が傾いて気泡が移動すると、気泡が移動した側の誘導コイルのコアに相当する部分の磁性流体の量が減少し、インダクタンスが変化する。従って、図6に示す状態では2対の誘導コイル71・71・72・72のインダクタンスの変化量から気泡管6の傾斜方向及び傾斜角を検知することができる。また、気泡管6を90度回転させレンズ板L2が上面になるようにすると1対の誘導コイル73・73のインダクタンスの変化量から気泡管の傾斜角を検知することができる。
【0024】
あるいは図7に示すように、気泡管6内に液体状の誘電体を充填すると共に、凹レンズL1及びレンズ板L2が取り付けられている面に対向する面の内側全面にわたってベース電極81を張り付けると共に、凹レンズL1の内面に4分割した検知電極82を張り付け、レンズ板L2の内面に2分割した検知電極83を張り付けてもよい。このように誘電体が充填された気泡管6内に検知電極82・83とベース電極81との間で静電容量(キャパシタンス)が発生する。次に気泡が移動すると、検知電極82または検知電極83のいずれかの部分に触れ、その部分の検知電極と誘電体との接触を断つ。すると静電容量が変化するので、該変化から傾斜方向や傾斜角を検知する。
【0025】
以上説明した実施形態はいずれも気泡管内の気泡の移動から気泡管の傾斜角を検知するものであったが、図8(A)(B)に示すように、例えば立方体からなる密閉容器9の一面に透明な入出光面91を形成すると共に、該入出光面91を挟み該入出光面91の一辺とその対辺とに各々交わる1対の面の一方を第1の反射面92とし、他方を第2の反射面93とした。そして該密閉容器9内には略半分の量の透明な液体Wを注入した。また、入出光面91の外側にはコリメータレンズ31を挟んでセンサユニット100を配設した。該センサユニット100は送光部と受光部とを備えており、送光部から照射された光はコリメータレンズ31から入出光面91を通って液体Wの液面WSで反射された後、反射面92に到達する。すると、光は該反射面92で反射され再び液面WSで反射された後入出光面91及びコリメータレンズ31を通ってセンサユニット100の受光部に帰ってくる。該受光部には例えば画像センサのように受光部に帰ってきた光の位置を検知することができるセンサが取り付けられている。従って、密閉容器9が傾くと液面WSが密閉容器9に対して相対的に傾斜し、受光部に帰ってくる光の位置が変化する。その変化の方向及び変化量を受光部のセンサで検知し、その結果から密閉容器の傾斜方向及び傾斜角を検知する。
【0026】
本実施形態のものでは入出光面91を挟んで対向し上記反射面92に対して平行な第2の反射面93を設けた。従って、Y軸を中心に90度回転させると図8(A)に示す状態から図8(B)に示す状態になり、センサユニット100の送光部から出た光は第2の反射面93で反射されて受光部へと戻っていく。
【0027】
ところで、図8に示すものでは密閉容器9に1つの入出光面91と入出光面91を挟んで互いに平行な2つの反射面92・93を設けたが、図9に示すように、1つの反射面92を挟み該反射面92の一辺とその対辺とに各々交わる1対の面の一方である第1の入出光面91に対して平行な他方の面である第2の入出光面94を設けるようにしてもよい。尚、そのように構成する場合には第1の入出光面91に対向して設けたセンサユニット100の他に第2の入出光面94に対向させて第2のセンサユニット101を設ける必要がある。該構成によれば、図9(A)に示す状態では第1のセンサユニット100から照射された光は第1の入出光面91を通って液面WS及び反射面92で反射され、再び液面WSで反射されたあと第1の入出光面91を通ってセンサユニット100に帰る。そして、密閉容器9を90度回転させると図9(B)に示す状態になり、第2のセンサユニット101から照射された光は第2の入出光面94を通って液面WS及び反射面92で反射され、再び液面WSで反射されたあと第2の入出光面94を通ってセンサユニット101に帰る。
【0028】
【発明の効果】
以上のように、本発明によると、基準平面設定装置に用いられる3方向の傾斜角を検知する傾斜角検知器を小型化することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の構成を示す分解斜視図
【図2】第2の実施の形態の構成を示す斜視図
【図3】第3の実施の形態の構成を示す図
【図4】第4の実施の形態の構成を示す分解斜視図
【図5】第5の実施の形態の構成を示す図
【図6】第6の実施の形態の構成を示す斜視図
【図7】第7の実施の形態の構成を示す斜視図
【図8】(A)第8の実施の形態の構成を示す斜視図
(B)90度回転時の状態を示す斜視図
【図9】(A)第9の実施の形態の構成を示す斜視図
(B)90度回転時の状態を示す斜視図
【符号の説明】
1 第1の気泡管
2 第2の気泡管
3 光源
4 ビームスプリッタ
6 気泡管
9 密閉容器
31 コリメータレンズ
71・72・73 誘導コイル
81 ベース電極
82・83 検知電極
91 第1の入出光面
92 第1の反射面
93 第2の反射面
94 第2の入出光面
100 第1のセンサユニット
101 第2のセンサユニット
L1 凹レンズ
L2 レンズ板
S1 光電センサ
S2 光電センサ
WS 液面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inclination angle detector used in a reference plane setting device.
[0002]
[Prior art]
For example, Japanese Patent Laid-Open No. 5-322563 discloses a reference plane setting device having a rotary head. Such a reference plane setting device is used to irradiate laser light in a direction perpendicular to the rotation axis of the rotary head from the side surface of the rotary head, and to set one reference plane on the surrounding wall surface or the like. When the rotation axis is set to be vertical, the reference plane becomes a horizontal plane, and when the reference plane setting device is tilted sideways and the rotation axis is made horizontal, a vertical reference plane can be set. Therefore, the reference plane setting device detects an inclination in two directions perpendicular to the rotation axis and makes the rotation axis vertical, and a rotation axis when the reference plane setting device is turned over. A tilt angle detector for leveling is incorporated.
[0003]
As such an inclination angle detector, for example, as disclosed in Japanese Patent Laid-Open No. 2-42311, a bubble tube in which a concave lens whose inner side is recessed in a substantially spherical shape is embedded, or a circular bubble tube in which a lens plate recessed in a cylindrical shape is fitted. A device is known in which the angle of inclination in the XY direction is detected from the position of the shadow of a bubble obtained by a photoelectric sensor that transmits light from a light source and receives transmitted light.
[0004]
In addition, when a pair of induction coils facing each other with a bubble interposed between them are wound around a rod-shaped bubble tube in which bubbles are enclosed with a magnetic fluid, the rod-shaped bubble tube is inclined and the bubble moves toward one induction coil. An inclination angle detector is known in which the amount of magnetic fluid in the portion corresponding to the core of the induction coil decreases and the inductance changes, and the inclination angle is detected from the amount of change in the inductance.
[0005]
In addition, on the inner surface of a bubble tube in which bubbles are sealed together with a liquid dielectric, a pair of detection electrodes opposed to each other with the bubbles interposed therebetween, and a base arranged in a direction perpendicular to the opposing direction of both detection electrodes An inclination angle detector having an electrode and detecting an inclination angle from a change in capacitance between a detection electrode and a base electrode due to movement of bubbles is known.
[0006]
Further, according to Japanese Patent Publication No. 3-45322, a sealed container filled with approximately half the amount of a transparent liquid so that a liquid surface is formed, a transparent light incident / exit surface, and one side of the light incident / exit light surface An orthogonal reflecting surface is provided, and a light source facing the light entrance / exit surface and a light source irradiated from the light source, reflected by the liquid surface through the light entrance / exit surface, then reflected by the reflective surface, and again reflected by the liquid surface There is known a tilt angle detector that includes a light receiving sensor that receives light emitted from a rear light incident / exiting surface and detects a tilt angle from a change in a light receiving position of the light receiving sensor due to a tilt of a liquid surface.
[0007]
[Problems to be solved by the invention]
Since the conventional inclination angle detector can only detect inclinations in one direction or two directions perpendicular to each other with one detector, it is necessary to detect inclinations in three directions like a reference plane setting device. In such a case, at least two inclination angle detectors must be used, which causes a problem that the reference plane setting device is enlarged.
[0008]
An object of the present invention is to provide a small tilt angle detector capable of detecting tilt in three directions.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention relates to a bubble tube in which a concave lens whose inside is recessed in a substantially spherical shape is fitted, and a bubble tube in which a lens plate that allows movement of bubbles in at least one direction is fitted, The lens plate is positioned relative to each other at right angles to each other, and light from the light source is transmitted through both bubble tubes, and the angle of inclination from the position of the bubble shadow in each bubble tube obtained by a photoelectric sensor that receives the transmitted light. In the inclination angle detector for detecting the light, at least one of the light source and the photoelectric sensor is shared.
[0010]
In addition, while forming two surfaces perpendicular to each other in the bubble tube, a concave lens whose inner surface is recessed in a substantially spherical shape is fitted on one surface, and a lens plate that allows movement of bubbles in at least one direction is fitted on the other surface, The bubble tube may be shared, and in that case, at least one of the light source and the photoelectric sensor can be shared.
[0011]
By the way, when supplying the bubble tube, the bubble tube is filled with a magnetic fluid, and two pairs of induction coils facing each other with the center of the concave lens sandwiched therebetween are wound so that the opposing directions are perpendicular to each other, and the lens A pair of induction coils facing in the one direction are wound around the center of the plate.
[0012]
Alternatively, when the bubble tube is shared, two pairs of detection electrodes facing each other across the center of the concave lens are provided so that the opposing directions are perpendicular to each other, and facing the one direction across the center of the lens plate a pair of detection electrodes provided provided a base electrode to the electrostatic capacitance is generated between the respective sensing electrodes.
[0013]
On the other hand, a sealed container filled with a transparent liquid in such an amount that an unfilled space is formed is provided with a transparent incident / exit light surface and a reflection surface intersecting one side of the incident / exit light surface, A light source sensor that receives the light emitted from the input / output surface after being reflected from the light source, reflected by the liquid surface through the light input / output surface, then reflected by the reflective surface, and reflected again by the liquid surface In a tilt angle detector that detects the tilt angle from the light receiving position of the light receiving sensor, a second reflecting surface parallel to the reflecting surface that intersects the opposite side of the one side of the light incident / exiting surface is provided. Features.
[0014]
In addition, you may make it provide the 2nd light-in / out light surface parallel to the said light-in / out light surface which cross | intersects the other side of an intersection with the top light-in / out light surface of the said reflective surface.
[0015]
In the case where the light from the light source is transmitted through the bubble tube and received by the photoelectric sensor, the number of parts can be reduced by sharing at least one of the light source and the photoelectric sensor. Becomes smaller.
[0016]
By the way, the reference plane setting device does not detect the inclination angles in the three directions at the same time, and normally detects the inclination angles in the two directions perpendicular to the rotation axis of the rotary head, and in one state, i.e. What is necessary is just to detect the inclination angle in the rotation axis direction. Therefore, the bubble tube is shared by providing two surfaces perpendicular to each other, detecting the inclination angle in two directions perpendicular to each other on one surface, and detecting the inclination angle in one direction on the other surface. . In addition, when sharing a bubble tube in this way, further miniaturization can be achieved by sharing a light source and a photoelectric sensor.
[0017]
By the way, filling the bubble tube with magnetic fluid and detecting the tilt angle from the change in inductance of the induction coil, or filling the liquid dielectric and tilt angle from the change in capacitance between the detection electrode and the base electrode It is possible to share the bubble tube even if it detects the inclination angle, and the inclination angle detector can be miniaturized.
[0018]
In the case of detecting a tilt angle by filling a transparent liquid and reflecting light at the liquid surface, the first and second pairs parallel to each other intersecting one side of the light incident / exiting surface and the opposite side thereof. By providing the reflection surface, the inclination angle is detected by reflection on the first reflection surface, and the rollover is caused by reflection on the second reflection surface in a state rotated 90 degrees toward the second reflection surface. The inclination angle can be detected.
[0019]
And a second light incident / exit surface parallel to the first light incident / exit surface intersecting the opposite side of the first light incident / exit light surface of the reflecting surface. A first sensor unit having a light source and a light receiving sensor corresponding to the light incident / exiting surface, and a second sensor unit having a light transmitting portion and a light receiving portion corresponding to the second light incident / exiting surface. Also good.
Thus, when providing the second incident / exiting surface parallel to the incident / exiting surface that intersects the opposite side of the intersecting side of the reflecting surface with the incident / exiting surface, it is rotated by turning 90 degrees toward the second incident / exiting surface. Can be detected.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1, reference numeral 1 denotes a first bubble tube, at least one surface 11 is formed to be transparent or translucent, and a circular window hole 12 is formed on the surface opposite to the one surface 11. It is formed so as to communicate with the internal space. Then, the bubble tube 1 is filled with a transparent liquid in such an amount that bubbles are formed, and the window hole 12 is closed with a concave lens L1 whose one surface is recessed in a spherical shape. Then, when the concave lens L1 is in the upper surface (the state shown in the figure), the bubble is positioned at the center of the concave lens L1, and when the bubble tube 1 is tilted in the X-axis direction or the Y-axis direction, the bubble moves relative to the concave lens L1. . Therefore, the photoelectric sensor S1 divided into four is attached to the upper surface of the concave lens L1, and the light from the light source 3 is collimated through the collimator lens 31 and then irradiated onto the one surface 11. In the state where the bubble is located at the center of the concave lens L1, the output of each cell of the photoelectric sensor S1 divided into four is the same, but when the bubble moves with respect to the concave lens L1, the shadow of the bubble is one of the cells. And the output of the cell decreases. Therefore, if it is known which cell is in what output reduction state, the inclination direction and inclination angle of the bubble tube 1 can be obtained. The second bubble tube 2 is provided in a relatively positioned state so as to be rotated by 90 degrees with respect to the first bubble tube 1, and the side surface 21 facing the first bubble tube 1 is transparent or In addition to being made translucent, a rectangular window hole 22 was opened on the surface facing the side surface 21. Then, after filling the second bubble tube 2 with a transparent liquid, the window hole 22 was closed with a lens plate L2 whose one surface was recessed in a cylindrical shape. The curvature of the cylindrical portion of the lens plate L2 was set to be the same as the curvature of the concave lens L1. Therefore, the sensitivity when the concave lens L1 is used is the same as the sensitivity when the lens plate L2 is used. Further, the photoelectric sensor S2 divided into two so as to face the axial direction of the depression of the lens plate L2 was attached to the outer surface of the lens plate L2. Further, a beam splitter 4 is disposed between the collimator lens 31 and the first bubble tube 1 so that the light from the light source 3 is branched to the second bubble tube 2. Accordingly, when the lens plate L2 is rotated 90 degrees clockwise around the Y axis so that the mounting surface of the lens plate L2 is on the upper surface, the bubble is inclined along the Z-axis direction, so that the bubble is the axis of the depression of the lens plate L2. Move relatively along the direction. Then, the output of one of the two cells of the photoelectric sensor S2 divided into two decreases, and the inclination direction and the inclination angle of the bubble tube 2 can be known from the reduction amount of the output. Incidentally, in the embodiment shown in FIG. 1, the beam splitter 4 is disposed between the collimator lens 31 and the first bubble tube 1, but may be disposed between the light source 3 and the collimator lens 31. In this case, however, it is necessary to add a collimator lens 31 separately between the beam splitter 4 and the second bubble tube 2.
[0021]
Incidentally, although the light source 3 is shared in the one shown in FIG. 1, the photoelectric sensor may be shared as shown in FIG. Note that the photoelectric sensor S1 divided into four is used in the one shown in FIG. Since the movement of the shadow of the bubble can be detected by the photoelectric sensor S1 divided into four, the amount of tilting of the Z axis can also be detected from the amount of movement of the shadow of the bubble in the Z direction. It is also possible to share both the light source 3 and the photoelectric sensor as shown in FIG. In FIG. 3, 4 is a reflecting mirror, and A is a bubble.
[0022]
1 to 3, two circular bubble tubes are used. However, as shown in FIG. 4, a single bubble tube 6 may be used in common with the bubble tube. The bubble tube 6 is provided with window holes on two surfaces perpendicular to each other and fitted with a concave lens L1 and a lens plate L2. Therefore, in the state shown in FIG. 4, the bubble is positioned at the approximate center of the concave lens L1, but when the circular bubble tube 6 is rotated 90 degrees so that the lens plate L2 is on the upper surface, the bubble moves inside the circular bubble tube 6. The bubbles move to the lower surface of the lens plate L2. In addition, as shown in FIG. 5, you may share the light source 3, a bubble tube, and a photoelectric sensor.
[0023]
Incidentally, in the case shown in FIG. 4, the light from the light source 3 is transmitted through the bubble tube 6 and the inclination angle is detected from the position of the bubble shadow. As shown in FIG. You may make it fill with a magnetic fluid. In that case, two pairs of induction coils (helm foil coils) 71, 71, 72, 72 facing each other across the center of the concave lens L1, and a pair of induction coils 73, facing each other across the center of the lens plate L2. 73 is wound around the bubble tube 6. With this configuration, when the bubble tube is not tilted and the bubble is positioned at the center of the concave lens L1 or the lens plate L2, the inductances of the induction coils facing each other with the bubble interposed therebetween are equal. However, when the bubble tube 6 is tilted and the bubble moves, the amount of magnetic fluid in the portion corresponding to the core of the induction coil on the side where the bubble has moved decreases, and the inductance changes. Therefore, in the state shown in FIG. 6, the inclination direction and the inclination angle of the bubble tube 6 can be detected from the amount of change in inductance of the two pairs of induction coils 71, 71, 72, 72. If the bubble tube 6 is rotated 90 degrees so that the lens plate L2 is on the upper surface, the inclination angle of the bubble tube can be detected from the amount of change in inductance of the pair of induction coils 73 and 73.
[0024]
Alternatively, as shown in FIG. 7, the bubble tube 6 is filled with a liquid dielectric, and the base electrode 81 is attached to the entire inner surface of the surface opposite to the surface to which the concave lens L1 and the lens plate L2 are attached. The detection electrode 82 divided into four may be attached to the inner surface of the concave lens L1, and the detection electrode 83 divided into two may be attached to the inner surface of the lens plate L2. Thus, electrostatic capacitance (capacitance) is generated between the detection electrodes 82 and 83 and the base electrode 81 in the bubble tube 6 filled with the dielectric. Next, when the bubble moves, either part of the detection electrode 82 or the detection electrode 83 is touched, and the contact between the detection electrode of that part and the dielectric is cut off. Then, since the capacitance changes, the inclination direction and the inclination angle are detected from the change.
[0025]
In any of the embodiments described above, the inclination angle of the bubble tube is detected from the movement of the bubbles in the bubble tube. However, as shown in FIGS. A transparent entrance / exit surface 91 is formed on one surface, and one of a pair of surfaces that intersects one side of the entrance / exit surface 91 and the opposite side across the entrance / exit surface 91 is a first reflection surface 92, and the other Was used as the second reflecting surface 93. Then, approximately half of the transparent liquid W was injected into the sealed container 9. Further, the sensor unit 100 is disposed outside the light incident / exit surface 91 with the collimator lens 31 interposed therebetween. The sensor unit 100 includes a light transmitter and a light receiver, and the light emitted from the light transmitter is reflected from the collimator lens 31 through the light entrance / exit surface 91 by the liquid surface WS of the liquid W and then reflected. A plane 92 is reached. Then, the light is reflected by the reflecting surface 92 and is reflected again by the liquid surface WS, and then returns to the light receiving portion of the sensor unit 100 through the input / output light surface 91 and the collimator lens 31. For example, an image sensor such as an image sensor that can detect the position of light returning to the light receiving unit is attached to the light receiving unit. Therefore, when the sealed container 9 is tilted, the liquid level WS is tilted relative to the sealed container 9, and the position of light returning to the light receiving unit changes. The direction and amount of change are detected by the sensor of the light receiving unit, and the tilt direction and tilt angle of the sealed container are detected from the result.
[0026]
In the present embodiment, a second reflecting surface 93 is provided opposite to the light incident / exiting surface 91 and parallel to the reflecting surface 92. Accordingly, when rotated 90 degrees around the Y axis, the state shown in FIG. 8A changes to the state shown in FIG. 8B, and the light emitted from the light transmitting portion of the sensor unit 100 is reflected on the second reflecting surface 93. Is reflected back to the light receiving part.
[0027]
By the way, in the case shown in FIG. 8, the sealed container 9 is provided with one input / output light surface 91 and two reflection surfaces 92 and 93 parallel to each other with the input / output light surface 91 interposed therebetween, but as shown in FIG. A second input / output light surface 94 that is the other surface parallel to the first light input / output surface 91 that is one of a pair of surfaces that intersect one side of the reflection surface 92 and the opposite side across the reflection surface 92. May be provided. In such a configuration, it is necessary to provide the second sensor unit 101 so as to face the second light entrance / exit surface 94 in addition to the sensor unit 100 provided facing the first light entrance / exit surface 91. is there. According to this configuration, in the state shown in FIG. 9A, the light emitted from the first sensor unit 100 passes through the first light entrance / exit surface 91 and is reflected by the liquid surface WS and the reflective surface 92, and again the liquid. After being reflected by the surface WS, the light returns to the sensor unit 100 through the first light entrance / exit surface 91. Then, when the sealed container 9 is rotated by 90 degrees, the state shown in FIG. 9B is obtained, and the light emitted from the second sensor unit 101 passes through the second incident / exit light surface 94 to the liquid surface WS and the reflective surface. After being reflected by the liquid 92 and again by the liquid surface WS, it returns to the sensor unit 101 through the second light entrance / exit surface 94.
[0028]
【The invention's effect】
As described above, according to the present invention, the tilt angle detector that detects the tilt angles in the three directions used in the reference plane setting device can be miniaturized.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a configuration of a first embodiment of the present invention. FIG. 2 is a perspective view showing a configuration of a second embodiment. FIG. 3 shows a configuration of a third embodiment. FIG. 4 is an exploded perspective view showing the configuration of the fourth embodiment. FIG. 5 is a view showing the configuration of the fifth embodiment. FIG. 6 is a perspective view showing the configuration of the sixth embodiment. 7 is a perspective view showing the configuration of the seventh embodiment. FIG. 8A is a perspective view showing the configuration of the eighth embodiment. FIG. 7B is a perspective view showing the state when rotated 90 degrees. (A) Perspective view showing the configuration of the ninth embodiment (B) Perspective view showing the state when rotated 90 degrees [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st bubble tube 2 2nd bubble tube 3 Light source 4 Beam splitter 6 Bubble tube 9 Sealed container 31 Collimator lens 71 * 72 * 73 Inductive coil 81 Base electrode 82 * 83 Detection electrode 91 1st incident / exit light surface 92 1st 1 reflective surface 93 2nd reflective surface 94 2nd incident / exit light surface 100 1st sensor unit 101 2nd sensor unit L1 Concave lens L2 Lens plate S1 Photoelectric sensor S2 Photoelectric sensor WS Liquid surface

Claims (6)

内側が略球形に窪んだ凹レンズが嵌め込まれた気泡管と少なくとも1方向の気泡の動きを許容するレンズ板が嵌め込まれた気泡管とを、凹レンズとレンズ板とが互いに直角になるように相互に位置決めすると共に、両気泡管に光源からの光を透過させ、透過光を受光する光電センサで求めた各気泡管内の気泡の影の位置から傾斜角を検知する傾斜角検知器において、上記光源と光電センサとの内の少なくとも一方を共用したことを特徴とする傾斜角検知器。  A bubble tube in which a concave lens whose inside is recessed in a substantially spherical shape is fitted and a bubble tube in which a lens plate allowing movement of the bubble in at least one direction are mutually connected so that the concave lens and the lens plate are perpendicular to each other. In the tilt angle detector for positioning and detecting the tilt angle from the position of the shadow of the bubble in each bubble tube obtained by a photoelectric sensor that transmits light from the light source to both bubble tubes and receives the transmitted light, the light source and An inclination angle detector characterized by sharing at least one of the photoelectric sensor. 液体と共に気泡が封入された気泡管に光を透過させる光源と透過光を受光する光電センサとを有し、光電センサで求めた気泡の影の位置から傾斜角を検知する傾斜角検知器において、気泡管に互いに直角な2面を形成すると共に、一方の面に内側が略球形に窪んだ凹レンズを嵌め込むと共に他方の面に少なくとも1方向の気泡の動きを許容するレンズ板を嵌め込んだことを特徴とする傾斜角検知器。  In a tilt angle detector that has a light source that transmits light to a bubble tube in which bubbles are enclosed with liquid and a photoelectric sensor that receives the transmitted light, and detects the tilt angle from the position of the shadow of the bubble obtained by the photoelectric sensor, Two surfaces perpendicular to each other are formed on the bubble tube, and a concave lens whose inner surface is recessed in a substantially spherical shape is fitted on one surface, and a lens plate that allows movement of the bubble in at least one direction is fitted on the other surface. Tilt angle detector. 上記光源と光電センサとの内の少なくとも一方を共用したことを特徴とする請求項2記載の傾斜角検知器。  The tilt angle detector according to claim 2, wherein at least one of the light source and the photoelectric sensor is shared. 磁性流体と共に気泡が封入された気泡管に、気泡を挟んで対向する対の誘導コイルを巻回し、該誘導コイルの少なくとも一方のインダクタンスの変化から傾斜角を検知する傾斜角検知器において、気泡管に互いに直角な2面を形成すると共に、一方の面に内側が略球形に窪んだ凹レンズを嵌め込むと共に他方の面に少なくとも1方向の気泡の動きを許容するレンズ板を嵌め込み、かつ、凹レンズの中央を挟んで対向する2対の誘導コイルを、対向する方向が互いに直角になるように巻回すると共に、レンズ板の中央を挟んで上記1方向に対向する1対の誘導コイルを巻回したことを特徴とする傾斜角検知器。  In a tilt angle detector for detecting a tilt angle from a change in inductance of at least one of the induction coils by winding a pair of induction coils opposed to each other with a bubble interposed in a bubble tube in which bubbles are enclosed with a magnetic fluid. Two concave surfaces which are perpendicular to each other, a concave lens whose inner surface is recessed in a substantially spherical shape is fitted on one surface, and a lens plate which allows movement of bubbles in at least one direction is fitted on the other surface, and the concave lens Two pairs of induction coils opposed across the center were wound so that the opposing directions were at right angles to each other, and a pair of induction coils opposed in the one direction across the center of the lens plate An inclination angle detector characterized by that. 液体状の誘電体と共に気泡が封入された気泡管の内面に、気泡を挟んで対向する対の検知電極と、両検知電極の対向方向と直角方向に間隔を存して配置したベース電極とを有し、気泡の移動による検知電極とベース電極との間の静電容量の変化から傾斜角を検知する傾斜角検知器において、気泡管に互いに直角な2面を形成すると共に、一方の面に内側が略球形に窪んだ凹レンズを嵌め込むと共に他方の面に少なくとも1方向の気泡の動きを許容するレンズ板を嵌め込み、かつ、凹レンズの中央を挟んで対向する2対の検知電極を、対向する方向が互いに直角になるように設けると共に、レンズ板の中央を挟んで上記1方向に対向する1対の検知電極を設けたことを特徴とする傾斜角検知器。  On the inner surface of a bubble tube in which bubbles are sealed together with a liquid dielectric, a pair of detection electrodes facing each other with the bubbles interposed therebetween, and a base electrode arranged at a right angle to the opposing direction of both detection electrodes In the inclination angle detector for detecting the inclination angle from the change in capacitance between the detection electrode and the base electrode due to the movement of the bubble, the bubble tube is formed with two surfaces perpendicular to each other and on one surface A concave lens whose inside is recessed in a substantially spherical shape is fitted, a lens plate that allows movement of bubbles in at least one direction is fitted on the other surface, and two pairs of detection electrodes facing each other across the center of the concave lens are opposed to each other. An inclination angle detector characterized in that the direction is perpendicular to each other, and a pair of detection electrodes facing the one direction with the center of the lens plate interposed therebetween. 内部に非充填の空間が形成される量の透明な液体を充填した密閉容器に透明な入出光面と、該入出光面の一辺に交わる反射面とを設けると共に、該入出光面に対向する光源と、該光源から照射し入出光面を通って液面で反射し、次に反射面で反射し、再び液面で反射した後入出光面から出てきた光を受光する受光センサとを備え、受光センサの受光位置から傾斜角を検知する傾斜角検知器において、上記入出光面が第1の入出光面であり、上記反射面の第1の入出光面との交辺の対辺に交わる上記第1の入出光面に対して平行な第2の入出光面を有しており、上記第1の入出光面に対応して上記光源と上記受光センサとを有する第1のセンサユニットと、上記第2の入出光面に対応して送光部と受光部とを有する第2のセンサユニットとを設けたことを特徴とする傾斜角検知器。  A sealed container filled with a transparent liquid in such an amount that an unfilled space is formed is provided with a transparent light incident / exit surface and a reflective surface intersecting one side of the light incident / exit surface, and is opposed to the light incident / exit surface. A light source and a light receiving sensor that receives light emitted from the light input / output surface after being reflected from the light source, reflected by the liquid surface through the light input / output surface, then reflected by the reflective surface, and again reflected by the liquid surface In the inclination angle detector for detecting the inclination angle from the light receiving position of the light receiving sensor, the input / output light surface is a first input / output light surface, and the opposite side of the intersection of the reflective surface with the first input / output light surface is A first sensor unit having a second light incident / exit surface parallel to the intersecting first light incident / exit light surface, and having the light source and the light receiving sensor corresponding to the first light incident / exit surface. And a second sensor unit having a light transmitting part and a light receiving part corresponding to the second light incident / exiting surface. Inclination detector, characterized in that the.
JP12368496A 1996-05-17 1996-05-17 Tilt angle detector Expired - Fee Related JP3729931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12368496A JP3729931B2 (en) 1996-05-17 1996-05-17 Tilt angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12368496A JP3729931B2 (en) 1996-05-17 1996-05-17 Tilt angle detector

Publications (2)

Publication Number Publication Date
JPH09304060A JPH09304060A (en) 1997-11-28
JP3729931B2 true JP3729931B2 (en) 2005-12-21

Family

ID=14866767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12368496A Expired - Fee Related JP3729931B2 (en) 1996-05-17 1996-05-17 Tilt angle detector

Country Status (1)

Country Link
JP (1) JP3729931B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388105B2 (en) 2009-03-11 2014-01-15 株式会社オーディオテクニカ Tilt detector and laser marking device
JP7201420B2 (en) * 2018-12-20 2023-01-10 曙ブレーキ工業株式会社 Braking device and abnormality detection method

Also Published As

Publication number Publication date
JPH09304060A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
AU2021225219B2 (en) Mirror assembly
KR101019815B1 (en) Inclination sensor
US11879998B2 (en) Mirror assembly
JPH10239051A (en) Tilt angle measuring device
JPH08122427A (en) Laser distance measuring equipment
US6664534B2 (en) Tilt sensing device and method for its operation
JP3729931B2 (en) Tilt angle detector
EP1042647B1 (en) Angle sensor
JP4281907B2 (en) Laser irradiation device
JP3401777B2 (en) Laser distance measuring device
JPH0511762B2 (en)
JP2001318148A (en) Omnidirectional light-wave distance measuring instrument and travel control system
JP2000180166A (en) Laser survey apparatus
JP3463781B2 (en) Laser distance measuring device
CN111308721A (en) Optical window and laser radar
JP2000046554A (en) Laser measuring instrument
JP2005172704A (en) Photodetection device and optical system
JP2001056210A (en) Light reflection type sensor
KR20220155315A (en) lidar device
JP2003106836A (en) Slope angle detecting sensor
JP3930158B2 (en) Laser surveying equipment
US4624527A (en) Radiation-utilizing measurement system
JP5285974B2 (en) measuring device
JPH06147891A (en) Automatic vertical angle compensator
JP3752060B2 (en) Parallel adjustment method of straight beam

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees