JP3729136B2 - Exhaust heat exchanger - Google Patents

Exhaust heat exchanger Download PDF

Info

Publication number
JP3729136B2
JP3729136B2 JP2002025749A JP2002025749A JP3729136B2 JP 3729136 B2 JP3729136 B2 JP 3729136B2 JP 2002025749 A JP2002025749 A JP 2002025749A JP 2002025749 A JP2002025749 A JP 2002025749A JP 3729136 B2 JP3729136 B2 JP 3729136B2
Authority
JP
Japan
Prior art keywords
exhaust
wall member
louver
heat exchanger
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002025749A
Other languages
Japanese (ja)
Other versions
JP2003222488A (en
Inventor
明宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002025749A priority Critical patent/JP3729136B2/en
Priority to DE10303680A priority patent/DE10303680B4/en
Publication of JP2003222488A publication Critical patent/JP2003222488A/en
Application granted granted Critical
Publication of JP3729136B2 publication Critical patent/JP3729136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/104Particular pattern of flow of the heat exchange media with parallel flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関から排出される排気と冷却流体との間で熱交換を行う排気熱交換装置に関するもので、EGR(排気再循環装置)用の排気を冷却するガスクーラに適用して有効である。
【0002】
【従来の技術及び発明が解決しようとする課題】
図9は出願人が試作検討しているガスクーラ用のインナーフィンであり、このインナーフィンはEGR用の排気が流通するチューブ内に配設されて排気と冷却水との熱交換を促進するものである。
【0003】
そして、この試作に係るインナーフィンでは、その一部を切り起こして三角状のルーバ13を設けることにより、チューブ内の流通する排気の流れを乱して渦を発生させて、インナーフィンと排気との熱伝達率の向上を図りながら、インナーフィン近傍のガス流速を高めてインナーフィンに付着したPaticurate Matters(すす)等の未燃焼物質を吹き飛ばしてPMがインナーフィンに堆積していくことを防止している。
【0004】
しかし、この試作に係るインナーフィンは、排気の流通方向から見た断面形状が矩形波状となるように形成されているため、チューブ11内のガス通路は、図10に示すように、インナーフィン12により複数の通路に仕切られた状態となる。
【0005】
しかも、ルーバ13はインナーフィン12により仕切られた通路の一面側のみに連続的に設けられているので、チューブ11の内壁のうちルーバ13の反対側に発生する渦が少ない。このため、図11に示すように、チューブ11の内壁のうちルーバ13の反対側に、その他の部位に比べて、多量のPMが堆積してしまい、十分な効果、つまり熱伝達率の向上及びPMの堆積防止効果を得ることができなかった。
【0006】
本発明は、上記点に鑑み、排気熱交換装置において、熱伝達率の向上及びPMの堆積防止を図ることを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、燃焼により発生する排気と冷却流体との間で熱交換を行う排気熱交換装置であって、排気が流通する扁平状の排気通路(11a)内に配設され、排気の流通方向に帯状に延びる2種類の壁部材(12a、12b)を有して排気の流通方向から見た断面形状が略矩形波状となるように形成されたフィン(12)とを備え、2種類の壁部材(12a、12b)のうち排気通路(11a)の長径方向と略平行な面を有する第1の壁部材(12a)には、排気流れ下流側に向かうほど第1の壁部材(12a)からの突出寸法が大きくなるように排気流れに対して傾いた面(S)を有する板状の突起部(13)が設けられ、2種類の壁部材(12a、12b)のうち排気通路(11a)の短径方向と略平行な面を有する第2の壁部材(12b)には、第2の壁部材(12b)を貫通させる穴部(14)が設けられており、さらに、穴部(14)は、突起部(13)の後端側からこの突起部(13)の後流側に位置する突起部(13)との間に対応する部位であって、少なくとも第1の壁部材(12a)と第2の壁部材(12b)との連結部分にて開口していることを特徴とする。
【0008】
これにより、ルーバ(13)の後流側に発生した縦渦の一部は、穴部(14)を通って隣接する排気通路に流れ込み、穴部(14)近傍の内壁、つまり排気通路(11a)の内壁のうちルーバ(13)の反対側に対応する面に堆積したPMを吹き飛ばすようにして熱伝達率を向上させる。
【0009】
つまり、本発明では、フィン(12)によって複数本に仕切られた排気通路(11a)において、ルーバ(13)の後流側に発生した縦渦の一部を穴部(14)を通して隣接する排気通路に導くことにより、排気通路(11a)の内壁のうちルーバ(13)の反対側に対応する面に堆積したPMを吹き飛ばすことができるので、排気熱交換装置の熱伝達率の向上及びPMの堆積防止を確実に図ることができる。
【0010】
なお、請求項2に記載の発明では、突起部(13)は、排気流れに沿って千鳥状に並んでいることを特徴とするものである。
【0011】
また、請求項3に記載の発明では、排気を冷却するガスクーラとして、請求項1又は2に記載の排気熱交換器(10)を備えることを特徴とする排気再循環装置である。
【0012】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0013】
【発明の実施の形態】
本実施形態は、本発明に係る排気熱交換装置をディーゼル式のエンジン用排気冷却装置に適用したものであり、図1は本実施形態に係る排気冷却装置(以下、ガスクーラと呼ぶ。)10を用いたEGR(排気再循環装置)の模式図である。
【0014】
そして、排気再循環管30はエンジン31から排出される排気の一部をエンジン31の吸気側に還流させる配管である。
【0015】
EGRバルブ32は排気再循環管30の排気流れ途中に配設されて、エンジン31の稼働状態に応じて排気量を調節する周知のものであり、ガスクーラ10は、エンジン31の排気側とEGRバルブ32との間に配設されて排気とエンジンの冷却水との間で熱交換を行い排気を冷却する。
【0016】
次に、ガスクーラ10の構造について述べる。
【0017】
図2はガスクーラの外観図(一部断面図)であり、チューブ11は排気が流通する排気通路11aを構成する扁平状の管であり、このチューブ11は、図3に示すように、所定形状にプレス成形された2枚のプレート11bをろう付け接合することにより形成されている。
【0018】
また、チューブ11内、つまり排気通路11a内には、排気と冷却水との熱交換を促進するインナーフィン12が配設されており、このインナーフィン12は、図4に示すように、排気の流通方向に帯状に延びて互いに交差する2種類の壁部材12a、12bを有し、排気の流通方向から見た断面形状が矩形波状となるように形成されている。
【0019】
そして、インナーフィン12のうち排気通路11aの長径方向と略平行でプレート11bと接触する第1の壁部材である平板部12aには、その一部を切り起こすことにより、排気流れ下流側に向かうほどインナーフィン12の平板部12aからの突出寸法が大きくなるように排気流れに対して傾いた三角状の面Sを有する突起部、すなわちルーバ13がインナーフィン12から切り起こされて形成されており、このルーバ13は、排気流れに沿って傾きが交互するように千鳥状に並んでいる。
【0020】
一方、排気通路11aの短径方向と略平行な第2の壁部材である立板部12bには、立板部12bを貫通させる穴部14が設けられており、この穴部14は、ルーバ13の後端側からこのルーバ13の後流側に位置するルーバ13との間に対応する部位であって、少なくとも平板部12aと立板部12bとの連結部分にて開口している。
【0021】
因みに、インナーフィン12及びチューブ11は耐食性に優れた金属(本実施形態では、ステンレス)にプレス加工を施すことにより成形されており、インナーフィン12及びチューブ11はろう付けにより一体接合されている。
【0022】
また、図2中、ケーシング20は、複数本のチューブ11をその短径方向(紙面上下方向)に積層して接合した熱交換コア15を収納するとともに、熱交換コア15周りに冷却水が流通する冷却水通路16を形成する角パイプ状に形成されたものであり、このケーシング20は、耐食性に優れた金属(本実施形態では、ステンレス)製である。
【0023】
そして、ケーシング20の長手方向一端側(紙面右側)の開口部には、各チューブ11に排気を分配供給するボンネット部21を形成するとともに、排気配管(図示せず。)を接続するためのフランジ部21aがろう付けされ、一方、長手方向他端側(紙面左側)の開口部には、熱交換を終えた排気を各チューブ11から集合回収するボンネット部22を形成するとともに、排気配管(図示せず。)を接続するためのフランジ部22aがろう付けされている。
【0024】
なお、コアプレート23はチューブ11を保持するとともに、冷却水通路16とボンネット部21、22とを仕切るものであり、このコアプレート23及びボンネット21、22も耐食性に優れた金属(本実施形態では、ステンレス)製である。
【0025】
また、ケーシング20のうち排気の流入側には、チューブ11の長径方向側から冷却水を冷却水通路16内に導入する流入口24が設けられ、ケーシング20のうち排気の流出側には、チューブ11の短径方向側から熱交換を終えた冷却水を排出する流出口25が設けられている。
【0026】
なお、本実施形態では、ケーシング20内における排気も流通の向きと冷却水の流通の向きとを同一の向きとし、かつ、チューブ11の外壁側にチューブ11の長径方向に延びる突起部11cを設けて、冷却水通路16のうち流入口24近傍を比較的に小さな空間に仕切り、排気入口近傍における冷却水の流速を増大させる増速手段を構成しているとともに、チューブ11間の隙間寸法を確保する位置決め手段を構成している。
【0027】
次に、本実施形態の作用効果を述べる。
【0028】
図5、6は本実施形態における排気流れを示す模式図であり、ルーバ13に衝突した排気は、ルーバ13を乗り越える際に排気流れが乱されて縦渦となって下流側に流れているので、ルーバ13の根元側、つまり平板部12aにおける排気流速が増大して、ルーバ13の後流側の平板部12aに堆積したPMを吹き飛ばすようにして熱伝達率を向上させる。
【0029】
一方、ルーバ13の後流側に発生した縦渦の一部は、穴部14を通って隣接する排気通路に流れ込み、穴部14近傍の内壁、つまりチューブ11の内壁のうちルーバ13の反対側に対応する面に堆積したPMを吹き飛ばすようにして熱伝達率を向上させる。
【0030】
つまり、本実施形態では、インナーフィン12によって複数本に仕切られた排気通路11aにおいて、ルーバ13の後流側に発生した縦渦の一部を穴部14を通して隣接する排気通路に導くことにより、チューブ11の内壁のうちルーバ13の反対側に対応する面に堆積したPMを吹き飛ばすことができるので、ガスクーラ10の熱伝達率の向上及びPMの堆積防止を確実に図ることができる。
【0031】
(その他の実施形態)
上述の実施形態では、ルーバ13を排気流れに沿って千鳥状に配置したが、本発明はこれに限定されるものではなく、2枚のルーバ13を1組として、その組を成す2枚のルーバ13が、排気流れ下流側に向かうほど、ルーバ13間の距離が増大するようにハの字状に並んだものであってもよい。
【0032】
上述の実施形態ではルーバ13を三角形状としたが、本発明はこれに限定されるものではなく、図7に示すように、ルーバ13の後端側のうち平板部12aからの距離が最も大きくなる頂部の角部を略90°以上としたものである。
【0033】
なお、図7(a)はルーバ13を略台形状とすることにより頂部Iの角部を略90°以上とした例であり、図7(b)に示すように、頂部Iの外縁形状を滑らかな曲線状とすることにより頂部Iの角部を略90°以上とした例である。
【0034】
また、図8に示すように、穴部14の寸法のうち排気の流通方向の平行な部位の寸法wを、ルーバ13の後端側からこのルーバ13の下流側に位置するルーバ13の前端側まで寸法pと同じとしてもよい。
【0035】
また、上述の実施形態では、ガスクーラ10に本発明に係る排気熱交換装置を適用したが、マフラー内に配設されて排気の熱エネルギを回収する熱交換器等のその他の熱交換器にも適用してもよい。
【0036】
また、上述実施形態では、インナーフィン12の一部を切り起こすことによりルーバ13を形成したが、本発明はこれに限定されるものではなく、インナーフィン12と別体の板状部材にルーバ13を形成し、このルーバ13が形成された板状部材をろう付け等の接合手段によりインナーフィン12に接合してもよい。
【0037】
上述の実施形態では、穴部14を矩形穴としたが、本発明はこれに限定されるものではなく、円形や多角形であってもよい。
【図面の簡単な説明】
【図1】本発明の実施形態に係るガスクーラを用いたEGRガス冷却装置の模式図である。
【図2】本発明の実施形態に係るガスクーラの外観図である。
【図3】本発明の実施形態に係るガスクーラにおける排気通路の断面図である。
【図4】本発明の実施形態に係るガスクーラのインナーフィンの斜視図である。
【図5】本発明の実施形態における排気流れを示す模式図である。
【図6】本発明の実施形態における排気流れを示す模式図である。
【図7】本発明の変形例に係るルーバの正面図である。
【図8】本発明のその他の実施形態におけるインナーフィンの斜視図である。
【図9】試作検討に係るガスクーラのインナーフィンの斜視図である。
【図10】試作検討に係るガスクーラのチューブの断面図である。
【図11】試作検討に係るガスクーラの問題点を説明するための説明図である。
【符号の説明】
12…インナーフィン、13…ルーバ、14…穴部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust heat exchange device that exchanges heat between exhaust gas discharged from an internal combustion engine and a cooling fluid, and is effective when applied to a gas cooler that cools exhaust gas for an EGR (exhaust gas recirculation device). is there.
[0002]
[Prior art and problems to be solved by the invention]
FIG. 9 shows an inner fin for a gas cooler that the applicant has been experimentally examining. This inner fin is arranged in a tube through which exhaust for EGR flows, and promotes heat exchange between the exhaust and cooling water. is there.
[0003]
In the inner fin according to the prototype, a part of the inner fin is cut and raised to provide a triangular louver 13, thereby disturbing the flow of exhaust flowing in the tube and generating a vortex. While improving the heat transfer coefficient, the gas flow rate in the vicinity of the inner fin is increased to prevent unburned substances such as particulate matter (soot) adhering to the inner fin from being blown off and prevent PM from accumulating on the inner fin. ing.
[0004]
However, since the inner fin according to the prototype is formed so that the cross-sectional shape viewed from the flow direction of the exhaust gas has a rectangular wave shape, the gas passage in the tube 11 has an inner fin 12 as shown in FIG. Thus, the state is partitioned into a plurality of passages.
[0005]
Moreover, since the louver 13 is continuously provided only on one surface side of the passage partitioned by the inner fins 12, there are few vortices generated on the opposite side of the louver 13 on the inner wall of the tube 11. For this reason, as shown in FIG. 11, a large amount of PM is deposited on the opposite side of the louver 13 on the inner wall of the tube 11 as compared with other parts, and a sufficient effect, that is, an improvement in heat transfer rate and The PM deposition preventing effect could not be obtained.
[0006]
In view of the above points, an object of the present invention is to improve heat transfer coefficient and prevent PM accumulation in an exhaust heat exchanger.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an exhaust heat exchange device for exchanging heat between exhaust gas generated by combustion and a cooling fluid. The cross-sectional shape viewed from the exhaust gas flow direction has a substantially rectangular wave shape and has two types of wall members (12a, 12b) disposed in the exhaust gas flow passage (11a) and extending in a strip shape in the exhaust gas flow direction. The first wall member (12a) including the fin (12) formed as described above and having a surface substantially parallel to the major axis direction of the exhaust passage (11a) of the two types of wall members (12a, 12b) A plate-like protrusion (13) having a surface (S) inclined with respect to the exhaust flow is provided so that the projecting dimension from the first wall member (12a) increases toward the downstream side of the exhaust flow, Of the two types of wall members (12a, 12b), the exhaust passage (11a The second wall member (12b) having a surface substantially parallel to the minor axis direction is provided with a hole (14) that penetrates the second wall member (12b). ) Is a portion corresponding to a portion between the rear end side of the protrusion (13) and the protrusion (13) located on the rear side of the protrusion (13), and at least the first wall member (12a). ) And the second wall member (12b).
[0008]
As a result, a part of the vertical vortex generated on the downstream side of the louver (13) flows into the adjacent exhaust passage through the hole (14), and the inner wall near the hole (14), that is, the exhaust passage (11a). ) To improve the heat transfer coefficient by blowing off PM deposited on the surface corresponding to the opposite side of the louver (13).
[0009]
That is, in the present invention, in the exhaust passage (11a) partitioned into a plurality of pieces by the fin (12), a part of the vertical vortex generated on the downstream side of the louver (13) is exhausted adjacent to the hole (14). By guiding to the passage, it is possible to blow off the PM deposited on the surface of the inner wall of the exhaust passage (11a) corresponding to the opposite side of the louver (13), thereby improving the heat transfer coefficient of the exhaust heat exchange device and the PM. Accumulation prevention can be ensured.
[0010]
The invention according to claim 2 is characterized in that the protrusions (13) are arranged in a staggered pattern along the exhaust flow.
[0011]
According to a third aspect of the present invention, there is provided an exhaust gas recirculation device comprising the exhaust heat exchanger (10) according to the first or second aspect as a gas cooler for cooling the exhaust gas.
[0012]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present embodiment, the exhaust heat exchanger according to the present invention is applied to a diesel engine exhaust cooling device, and FIG. 1 shows an exhaust cooling device (hereinafter referred to as a gas cooler) 10 according to the present embodiment. It is a schematic diagram of used EGR (exhaust gas recirculation device).
[0014]
The exhaust gas recirculation pipe 30 is a pipe for returning a part of the exhaust gas discharged from the engine 31 to the intake side of the engine 31.
[0015]
The EGR valve 32 is provided in the middle of the exhaust gas flow in the exhaust gas recirculation pipe 30 and adjusts the amount of exhaust gas according to the operating state of the engine 31. The gas cooler 10 is connected to the exhaust side of the engine 31 and the EGR valve. Between the exhaust gas and the engine coolant to exchange heat and cool the exhaust gas.
[0016]
Next, the structure of the gas cooler 10 will be described.
[0017]
FIG. 2 is an external view (partially sectional view) of the gas cooler, and the tube 11 is a flat tube constituting an exhaust passage 11a through which exhaust flows, and the tube 11 has a predetermined shape as shown in FIG. It is formed by brazing and joining two plates 11b press-formed.
[0018]
Further, in the tube 11, that is, in the exhaust passage 11a, inner fins 12 for promoting heat exchange between the exhaust gas and the cooling water are arranged. As shown in FIG. It has two types of wall members 12a and 12b that extend in a strip shape in the flow direction and intersect each other, and the cross-sectional shape viewed from the flow direction of the exhaust gas is formed in a rectangular wave shape.
[0019]
Then, a portion of the inner fin 12 that is a first wall member that is substantially parallel to the major axis direction of the exhaust passage 11a and is in contact with the plate 11b is cut and raised, thereby moving toward the downstream side of the exhaust flow. A protrusion having a triangular surface S inclined with respect to the exhaust flow, that is, a louver 13 is cut and raised from the inner fin 12 so that the protruding dimension of the inner fin 12 from the flat plate portion 12a increases. The louvers 13 are arranged in a zigzag pattern so that their inclinations alternate along the exhaust flow.
[0020]
On the other hand, a hole 14 that penetrates the vertical plate 12b is provided in the vertical plate 12b that is a second wall member substantially parallel to the minor axis direction of the exhaust passage 11a. 13 is a portion corresponding to the louver 13 located on the downstream side of the louver 13 from the rear end side of the louver 13, and is open at least at a connecting portion between the flat plate portion 12 a and the standing plate portion 12 b.
[0021]
Incidentally, the inner fin 12 and the tube 11 are formed by pressing a metal (in this embodiment, stainless steel) having excellent corrosion resistance, and the inner fin 12 and the tube 11 are integrally joined by brazing.
[0022]
In FIG. 2, the casing 20 houses a heat exchange core 15 in which a plurality of tubes 11 are stacked in the minor axis direction (up and down direction on the paper surface) and joined, and cooling water flows around the heat exchange core 15. The casing 20 is formed in the shape of a square pipe that forms the cooling water passage 16, and the casing 20 is made of a metal (in this embodiment, stainless steel) having excellent corrosion resistance.
[0023]
A bonnet portion 21 that distributes and supplies exhaust gas to each tube 11 is formed at an opening on one end side (right side of the drawing) of the casing 20 in the longitudinal direction, and a flange for connecting an exhaust pipe (not shown). On the other hand, a bonnet portion 22 that collects and collects the exhaust gas after the heat exchange from each tube 11 is formed in the opening portion on the other end side in the longitudinal direction (left side of the drawing), and an exhaust pipe (see FIG. (Not shown.) A flange portion 22a for connecting is brazed.
[0024]
The core plate 23 holds the tube 11 and partitions the cooling water passage 16 and the bonnet portions 21 and 22. The core plate 23 and the bonnets 21 and 22 are also made of a metal having excellent corrosion resistance (in this embodiment, , Stainless steel).
[0025]
An inflow port 24 for introducing cooling water into the cooling water passage 16 from the longer diameter direction side of the tube 11 is provided on the exhaust inflow side of the casing 20, and a tube is provided on the exhaust outflow side of the casing 20. 11 is provided with an outlet 25 for discharging the cooling water after the heat exchange.
[0026]
In the present embodiment, the exhaust direction in the casing 20 is the same as the direction of circulation and the direction of circulation of the cooling water, and a protrusion 11c extending in the major axis direction of the tube 11 is provided on the outer wall side of the tube 11. Thus, the vicinity of the inlet 24 in the cooling water passage 16 is partitioned into a relatively small space to constitute a speed increasing means for increasing the flow rate of the cooling water in the vicinity of the exhaust inlet, and the clearance between the tubes 11 is ensured. The positioning means is configured.
[0027]
Next, the function and effect of this embodiment will be described.
[0028]
FIGS. 5 and 6 are schematic views showing the exhaust flow in the present embodiment, and the exhaust that collides with the louver 13 is disturbed by the exhaust flow when it gets over the louver 13 and flows into the downstream as a vertical vortex. The exhaust flow velocity at the base side of the louver 13, that is, the flat plate portion 12 a increases, and the heat transfer coefficient is improved by blowing away PM accumulated on the flat plate portion 12 a on the downstream side of the louver 13.
[0029]
On the other hand, a part of the vertical vortex generated on the downstream side of the louver 13 flows into the adjacent exhaust passage through the hole 14, and the inner wall near the hole 14, that is, the inner wall of the tube 11, on the opposite side of the louver 13. The heat transfer coefficient is improved by blowing away the PM deposited on the surface corresponding to.
[0030]
That is, in this embodiment, in the exhaust passage 11a partitioned into a plurality by the inner fins 12, by guiding a part of the vertical vortex generated on the downstream side of the louver 13 to the adjacent exhaust passage through the hole portion 14, Since PM deposited on the surface of the inner wall of the tube 11 corresponding to the opposite side of the louver 13 can be blown off, it is possible to reliably improve the heat transfer coefficient of the gas cooler 10 and prevent PM accumulation.
[0031]
(Other embodiments)
In the above-described embodiment, the louvers 13 are arranged in a zigzag pattern along the exhaust flow. However, the present invention is not limited to this, and the two louvers 13 are set as one set, and the two sheets constituting the set are formed. The louvers 13 may be arranged in a square shape so that the distance between the louvers 13 increases as it goes downstream of the exhaust flow.
[0032]
Although the louver 13 has a triangular shape in the above-described embodiment, the present invention is not limited to this, and as shown in FIG. 7, the distance from the flat plate portion 12a is the largest on the rear end side of the louver 13. The top corner is approximately 90 ° or more.
[0033]
FIG. 7A shows an example in which the louver 13 has a substantially trapezoidal shape so that the corner of the top I is approximately 90 ° or more. As shown in FIG. This is an example in which the corner portion of the top portion I is set to approximately 90 ° or more by forming a smooth curved shape.
[0034]
Further, as shown in FIG. 8, the dimension w of the hole 14 in the parallel part in the exhaust flow direction is determined from the rear end side of the louver 13 to the downstream side of the louver 13. It may be the same as the dimension p.
[0035]
In the above-described embodiment, the exhaust heat exchange device according to the present invention is applied to the gas cooler 10, but other heat exchangers such as a heat exchanger that is disposed in the muffler and collects the heat energy of the exhaust gas are also used. You may apply.
[0036]
Further, in the above-described embodiment, the louver 13 is formed by cutting and raising a part of the inner fin 12, but the present invention is not limited to this, and the louver 13 is formed on a plate-like member separate from the inner fin 12. The plate-like member on which the louver 13 is formed may be joined to the inner fin 12 by joining means such as brazing.
[0037]
In the above-described embodiment, the hole 14 is a rectangular hole, but the present invention is not limited to this and may be a circle or a polygon.
[Brief description of the drawings]
FIG. 1 is a schematic view of an EGR gas cooling device using a gas cooler according to an embodiment of the present invention.
FIG. 2 is an external view of a gas cooler according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of an exhaust passage in the gas cooler according to the embodiment of the present invention.
FIG. 4 is a perspective view of an inner fin of the gas cooler according to the embodiment of the present invention.
FIG. 5 is a schematic diagram showing an exhaust flow in the embodiment of the present invention.
FIG. 6 is a schematic diagram showing an exhaust flow in the embodiment of the present invention.
FIG. 7 is a front view of a louver according to a modification of the present invention.
FIG. 8 is a perspective view of an inner fin according to another embodiment of the present invention.
FIG. 9 is a perspective view of an inner fin of a gas cooler according to a prototype study.
FIG. 10 is a cross-sectional view of a tube of a gas cooler according to a prototype study.
FIG. 11 is an explanatory diagram for explaining a problem of the gas cooler according to the trial examination.
[Explanation of symbols]
12 ... inner fins, 13 ... louvers, 14 ... holes.

Claims (3)

燃焼により発生する排気と冷却流体との間で熱交換を行う排気熱交換装置であって、
排気が流通する扁平状の排気通路(11a)内に配設され、排気の流通方向に帯状に延びる2種類の壁部材(12a、12b)を有して排気の流通方向から見た断面形状が略矩形波状となるように形成されたフィン(12)とを備え、
前記2種類の壁部材(12a、12b)のうち前記排気通路(11a)の長径方向と略平行な面を有する第1の壁部材(12a)には、排気流れ下流側に向かうほど前記第1の壁部材(12a)からの突出寸法が大きくなるように排気流れに対して傾いた面(S)を有する板状の突起部(13)が設けられ、
前記2種類の壁部材(12a、12b)のうち前記排気通路(11a)の短径方向と略平行な面を有する第2の壁部材(12b)には、前記第2の壁部材(12b)を貫通させる穴部(14)が設けられており、
さらに、前記穴部(14)は、前記突起部(13)の後端側からこの突起部(13)の後流側に位置する前記突起部(13)との間に対応する部位であって、少なくとも前記第1の壁部材(12a)と前記第2の壁部材(12b)との連結部分にて開口していることを特徴とする排気熱交換装置。
An exhaust heat exchange device for exchanging heat between exhaust generated by combustion and a cooling fluid,
A cross-sectional shape viewed from the exhaust flow direction is provided in the flat exhaust passage (11a) through which the exhaust flows and has two types of wall members (12a, 12b) extending in a strip shape in the exhaust flow direction. A fin (12) formed to have a substantially rectangular wave shape,
Of the two types of wall members (12a, 12b), the first wall member (12a) having a surface substantially parallel to the major axis direction of the exhaust passage (11a) has the first wall member toward the downstream side of the exhaust flow. A plate-like protrusion (13) having a surface (S) inclined with respect to the exhaust flow so that the protruding dimension from the wall member (12a) is increased,
Of the two types of wall members (12a, 12b), the second wall member (12b) having a surface substantially parallel to the minor axis direction of the exhaust passage (11a) includes the second wall member (12b). Is provided with a hole (14) through which
Further, the hole portion (14) is a portion corresponding to a portion between the rear end side of the protrusion portion (13) and the protrusion portion (13) positioned on the rear side of the protrusion portion (13). An exhaust heat exchanger having an opening at least at a connecting portion between the first wall member (12a) and the second wall member (12b).
前記突起部(13)は、排気流れに沿って千鳥状に並んでいることを特徴とする請求項1に記載の排気熱交換装置。The exhaust heat exchanger according to claim 1, wherein the protrusions (13) are arranged in a staggered manner along the exhaust flow. 排気を冷却するガスクーラとして、請求項1又は2に記載の排気熱交換器(10)を備えることを特徴とする排気再循環装置。An exhaust gas recirculation apparatus comprising the exhaust heat exchanger (10) according to claim 1 or 2 as a gas cooler for cooling exhaust gas.
JP2002025749A 2002-02-01 2002-02-01 Exhaust heat exchanger Expired - Fee Related JP3729136B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002025749A JP3729136B2 (en) 2002-02-01 2002-02-01 Exhaust heat exchanger
DE10303680A DE10303680B4 (en) 2002-02-01 2003-01-30 Exhaust gas heat exchanger device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002025749A JP3729136B2 (en) 2002-02-01 2002-02-01 Exhaust heat exchanger

Publications (2)

Publication Number Publication Date
JP2003222488A JP2003222488A (en) 2003-08-08
JP3729136B2 true JP3729136B2 (en) 2005-12-21

Family

ID=19192324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025749A Expired - Fee Related JP3729136B2 (en) 2002-02-01 2002-02-01 Exhaust heat exchanger

Country Status (2)

Country Link
JP (1) JP3729136B2 (en)
DE (1) DE10303680B4 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004007251T2 (en) * 2003-03-26 2008-03-06 Calsonic Kansei Corp. INNER RIB WITH CUT-OUT WINDOW FOR HEAT EXCHANGER
DE202004013882U1 (en) * 2004-09-03 2006-01-12 Autokühler GmbH & Co. KG Heat transfer unit for use in heat exchanger of motor vehicle, has turbulence producing units that are squamously formed and having larger widths at transmission areas, where widths gradually decrease from areas in direction of flow axis
JP2006145062A (en) * 2004-11-16 2006-06-08 Aisin Seiki Co Ltd Exhaust heat exchanger
DE102005055481A1 (en) * 2005-11-18 2007-05-24 Behr Gmbh & Co. Kg Heat exchanger for an internal combustion engine
JP5030537B2 (en) * 2006-11-07 2012-09-19 株式会社マーレ フィルターシステムズ Heat exchanger
JP2012083026A (en) * 2010-10-12 2012-04-26 Isuzu Motors Ltd Heat exchanger
JP5915187B2 (en) * 2012-01-10 2016-05-11 マツダ株式会社 Heat exchanger
JP6203080B2 (en) 2013-04-23 2017-09-27 カルソニックカンセイ株式会社 Heat exchanger
CN105605960B (en) * 2015-12-23 2017-06-30 山东大学 A kind of flat heat exchange tube of inner fin connection
CN105466046B (en) * 2016-01-04 2017-07-11 山东理工大学 A kind of solar energy collector system of Based Intelligent Control height of water level
CN105627602B (en) * 2016-01-04 2017-08-25 山东理工大学 A kind of solar energy collector system of intelligent control water temperature
CN105466039B (en) * 2016-01-04 2017-07-11 山东理工大学 A kind of solar energy system according to water tank water temperature intelligent regulating valve door aperture
CN105627596B (en) * 2016-01-12 2017-08-25 山东理工大学 A kind of solar heat-preservation system controlled based on multi-temperature data intelligence
CN105546850B (en) * 2016-01-12 2018-02-13 山东理工大学 A kind of solar heat-preservation controlled according to inlet temperature intelligent flow utilizes system
CN107166772B (en) * 2016-01-12 2019-02-22 山东理工大学 A kind of solar heat-preservation system of intelligent control
CN105627597B (en) * 2016-01-12 2017-09-26 山东理工大学 A kind of solar heat-preservation system of intelligence computation heat loss

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239183U (en) * 1985-08-29 1987-03-09
JPH0198896A (en) * 1987-10-12 1989-04-17 Nippon Denso Co Ltd Heat exchanger
JP3731247B2 (en) * 1996-04-26 2006-01-05 株式会社デンソー Heat exchanger
US6247523B1 (en) * 1999-07-30 2001-06-19 Denso Corporation Exhaust gas heat exchanger
JP2001241872A (en) * 1999-12-24 2001-09-07 Maruyasu Industries Co Ltd Multitubular heat exchanger
JP4069570B2 (en) * 2000-03-16 2008-04-02 株式会社デンソー Exhaust heat exchanger
JP3985509B2 (en) * 2000-12-19 2007-10-03 株式会社デンソー Exhaust heat exchanger

Also Published As

Publication number Publication date
DE10303680B4 (en) 2011-03-24
DE10303680A1 (en) 2003-08-07
JP2003222488A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
JP3912080B2 (en) Exhaust heat exchanger
JP3729136B2 (en) Exhaust heat exchanger
US6820682B2 (en) Heat exchanger
US8069905B2 (en) EGR gas cooling device
JP5193310B2 (en) Recirculation exhaust gas cooler for internal combustion engines
EP3244153B1 (en) Heat exchanger
JP4683111B2 (en) Exhaust heat exchanger
JP4707388B2 (en) Heat transfer tube for combustion exhaust gas containing soot and heat exchanger assembled with this heat transfer tube
JP3744432B2 (en) Exhaust heat exchanger
JP4756585B2 (en) Heat exchanger tube for heat exchanger
US8651170B2 (en) Exhaust gas heat exchanger
US7077190B2 (en) Exhaust gas heat exchanger
JP2003279293A (en) Exhaust heat exchanger
JP3985509B2 (en) Exhaust heat exchanger
US20170284343A1 (en) Heat Exchanger Utilized As An EGR Cooler In A Gas Recirculation System
JP2001263967A (en) Exhaust heat exchanger
JP2004028535A (en) Exhaust heat exchanger
JP6550177B1 (en) Heat exchanger
JP3956097B2 (en) Exhaust heat exchanger
JP3879614B2 (en) Heat exchanger
JP2004177061A (en) Wavy fin of exhaust gas cooling heat exchanger
JP2007064606A (en) Heat exchanger tube for egr cooler
JP2012083026A (en) Heat exchanger
JP2009139053A (en) Heat exchanger for cooling exhaust gas
JPH09138084A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees