JP3728295B2 - Absorption refrigerator with improved thermal efficiency - Google Patents

Absorption refrigerator with improved thermal efficiency Download PDF

Info

Publication number
JP3728295B2
JP3728295B2 JP2003008092A JP2003008092A JP3728295B2 JP 3728295 B2 JP3728295 B2 JP 3728295B2 JP 2003008092 A JP2003008092 A JP 2003008092A JP 2003008092 A JP2003008092 A JP 2003008092A JP 3728295 B2 JP3728295 B2 JP 3728295B2
Authority
JP
Japan
Prior art keywords
liquid
drain
steam
temperature regenerator
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003008092A
Other languages
Japanese (ja)
Other versions
JP2004218968A (en
Inventor
修 大石
富安 沖田
耕一 染矢
敏雄 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP2003008092A priority Critical patent/JP3728295B2/en
Publication of JP2004218968A publication Critical patent/JP2004218968A/en
Application granted granted Critical
Publication of JP3728295B2 publication Critical patent/JP3728295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気加熱式二重効用形吸収冷凍機に関し、詳しくは排熱を効率良く回収して熱効率を改善した吸収冷凍機に関する。
【0002】
【従来の技術】
吸収冷凍機は、機内を循環する吸収液の濃度変化により冷水を取り出すことができるようになっている。例えば二重効用形の吸収冷凍機では、その構成が、図11に示すように、真空容器からなる蒸発器76と吸収器71、これらよりは圧力の高い容器の低温再生器73、凝縮器75、および外部から熱エネルギの供給を受ける高温再生器74からなっている。
【0003】
蒸発器76では、高真空下で蒸発器管76pの外面に流下された冷媒液77wによって、蒸発器管76pを流れる水81から蒸発潜熱を奪い、水81を冷却する。吸収器71では、蒸発器76で発生した冷媒蒸気77gを吸収器管71pを流れる冷却水82で冷却することにより、冷媒蒸気77gを吸収液83に吸収させると共に、真空容器内を高い真空に保持する。低温再生器73では、高温再生器74で分離蒸発した冷媒蒸気77gを低温再生器管73pに流し、その冷媒蒸気77gの潜熱で吸収液83を加熱濃縮し、冷媒77gを分離蒸発させる。高温再生器74では、吸収液83を加熱濃縮して冷媒蒸気77gを発生させる。凝縮器75では、凝縮器管75pを流れる冷却水82が、低温再生器73で蒸発した冷媒蒸気77gを冷却して凝縮させる。なお、吸収器管71pを流通した後に凝縮器管75pを流通した冷却水82は、図示しない冷却塔で冷却した後に、吸収器管71pに循環される。
【0004】
高温再生器74へは、例えば高温の蒸気84を高温再生器管74pに導入して、吸収液83を加熱するようにしている。
【0005】
このような吸収冷凍機においては二重効用の原理に基づき省エネ化が進められているが、その系内での熱交換効率の向上を図るために、図11に示すように高温熱交換器91および低温熱交換器92が設置される。高温熱交換器91は低温再生器73から高温再生器74に向かう吸収液83を予熱するもので、その熱源として高温再生器74から導出された高温の吸収液83が導入される。低温熱交換器92は低温再生器73に向かう吸収液83を予熱するもので、低温再生器73から導出された吸収液83および高温熱交換器91を出た吸収液83が吸収器71に戻される途中で熱源として利用されるようになっている。
【0006】
吸収冷凍機の効率をさらに改善する目的で、特公昭60−24903号公報には、高温再生器74で吸収液83を加熱した外部からの蒸気84のドレン水(復水)により、高温再生器74へ向かう吸収液83を加熱すべく熱回収器を設けた例が記載されている。詳しく述べると、図11において、高温再生器74へ向かう吸収液通路88に高温熱交換器91と並列となる熱回収器93が設置され、この熱回収器93において高温再生器74で利用し得なかった熱エネルギを回収できるようにしている。
【0007】
【発明が解決しようとする課題】
しかし、このような従来構造では、高温再生器74からの蒸気ドレンを熱回収器93で利用するにあたって、蒸気ドレンの液面制御について具体的に示されていない。
【0008】
一般的に、このような蒸気を含んだドレン水を熱回収器で利用する場合、蒸気トラップにより蒸気の抜けを防止して熱回収効率を上げるようにされるが、この方法では、蒸気トラップの内部でドレン水の液面が形成されても配管部には液面が形成されない。すなわち、熱回収器の出口側に蒸気トラップを設けた場合は、熱回収器内のドレン系統にはドレン水の滞留がないので、ドレン水からの熱回収を行えない。
【0009】
他方、熱回収器の入口側に蒸気トラップを設けた場合は、トラップ出口のドレン水が大気圧に低下するためフラッシュし、ドレン水の温度は概ね100℃に低下する。このため、被加熱物質である吸収液の温度(概ね90〜140℃)に比べてドレン水温度が低くなり、熱回収できない。
【0010】
このように、蒸気ドレン水から吸収液へと熱回収するためには、熱回収器より上流側で蒸気ドレン水の液面を形成し、熱回収器内をドレン水で満水にする必要がある。
【0011】
また、熱回収器の出口にオリフィスを設けることで、ドレン水の流量を制御して熱回収器内にドレン水の液面を形成することも考えられるが、この方法ではドレン量や圧力の変化に追従できない。
【0012】
本発明は、以上の事情に鑑みてなされたもので、吸収液を再生する再生装置からの蒸気ドレン水の熱を効率良く回収できる吸収冷凍機を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明の吸収冷凍機は、吸収器、蒸気を熱源とする再生装置、凝縮器および蒸発器を有し、前記蒸発器から冷水を得る吸収冷凍機であって、
前記再生装置からの蒸気ドレンにより再生装置に供給される吸収液を予熱する蒸気ドレン熱交換器と、
前記蒸気ドレン熱交換器へ前記蒸気ドレンを供給する蒸気ドレン導入通路内の液面レベルを検出する液面レベル検出器と、
前記液面レベルが所定値を越えたとき前記蒸気ドレン熱交換器からドレン水を排出するドレン排出通路を開放する開閉装置とを備えている。
【0014】
上記構成によれば、蒸気ドレン導入通路内の液面レベルが所定値以下のとき、液面レベル検出器の検出値に応答して開閉装置がドレン排出通路を閉じ、これにより蒸気ドレン熱交換器の内部をドレン水で満水に保つことができるので、蒸気ドレン熱交換器での熱回収効率を向上させることができる。
【0015】
本発明の好ましい実施形態では、前記液面レベル検出器および開閉装置が、フロート式蒸気トラップにより形成されている。このように構成した場合には、液面レベル検出器および開閉装置の設置を容易に行うことができる。
【0016】
また、本発明の好ましい実施形態では、前記液面レベル検出器が前記液面レベルを検出して電気信号を発生するレベルセンサとされている。
【0017】
さらに、本発明の好ましい実施形態では、前記再生装置が、前記吸収器からの吸収液を予熱する低温再生器と、蒸気を熱源として前記低温再生器からの吸収液を加熱し、吸収液が蒸発した冷媒蒸気を前記低温再生器に熱源として供給する高温再生器とを備え、前記高温再生器から前記蒸気ドレンが導出されている。このように構成した場合には、吸収液の再生を効率良く行うことができる。
【0018】
また、本発明の好ましい実施形態では、前記低温再生器からの吸収液を高温再生器に供給する中間液通路に、高温再生器から吸収器へ向かう高温の吸収液を熱源として中間液通路の吸収液を予熱する高温熱交換器が設けられ、前記中間液通路に、前記高温熱交換器と並列に前記蒸気ドレン熱交換器が接続されている。このように構成した場合には、低温再生器から高温再生器へ供給される吸収液の予熱を効率良く行うことができる。
【0019】
さらに、本発明の好ましい実施形態では、前記低温再生器からの吸収液を高温再生器に供給する中間液通路に、高温再生器から吸収器へ向かう高温の吸収液を熱源として中間液通路の吸収液を予熱する高温熱交換器が設けられ、前記中間液通路に、前記高温熱交換器と直列に前記蒸気ドレン熱交換器が接続されている。このように構成した場合には、蒸気ドレン熱交換器の設置を簡単な構成で行うことができる。
【0020】
また、本発明の好ましい実施形態では、前記フロート式蒸気トラップが、前記蒸気ドレン導入通路に接続されて蒸気ドレンが導入されるフロート室と、隔壁によって前記フロート室から隔離された弁室とを有し、前記フロート室内の液面レベルに応じて上下動するフロートと、前記フロートを支持し支軸回りに回動するレバーとが前記フロート室内に配置されて前記液面レベル検出器を形成しており、前記支軸が前記隔壁を貫通してフロート室から弁室内に延びており、前記ドレン排出通路を開閉する前記開閉装置の弁体が前記支軸に連結されて弁室内に配置されている。この構成によれば、蒸気ドレン導入通路に通じるフロート室とドレン排出通路とを隔離した状態で円滑に作動する蒸気トラップが得られる。
【0021】
【発明の実施の形態】
以下、本発明の好適な実施形態について図面を参照しながら説明する。
図1は本発明の第1の実施形態である蒸気加熱式二重効用形吸収冷凍機の概略構成図である。この吸収冷凍機は、図11で示した従来例の場合と同様の吸収器1、再生装置2、凝縮器5および蒸発器6を有し、前記蒸発器6から冷水を得るようにしている。
【0022】
吸収器1と蒸発器6は共通の真空容器からなり、蒸発器6では、高真空下で蒸発器管6pの外面に流下された冷媒液7wによって、蒸発器管6pを流れる水11から蒸発潜熱を奪い、水11を冷却する。吸収器1では、蒸発器6で発生した冷媒蒸気7gを吸収器管1pを流れる冷却水12で冷却することにより、冷媒蒸気7gを吸収液13に吸収させて、真空容器内を高い真空に保持するようにされている。
【0023】
再生装置2は外部のボイラ等から供給される蒸気14を熱源として、前記吸収器1からの吸収液13を再生させるものであり、前記吸収器1と蒸発器を構成する真空容器より圧力の高い容器からなる低温再生器3と高温再生器4とを備えている。高温再生器4では、外部から高温再生器管4pに熱源として蒸気14を供給し、その蒸気14の凝縮潜熱で冷媒7gを吸収液13から分離蒸発させて、吸収液13を加熱濃縮するようにされている。低温再生器3では、高温再生器4で吸収液13から分離蒸発した冷媒蒸気7gを低温再生器管3pに熱源として供給し、その冷媒蒸気7gの凝縮潜熱で冷媒7gを吸収液13から分離蒸発させて、吸収液13を加熱濃縮する。
【0024】
凝縮器5も前記吸収器1と蒸発器を構成する真空容器より圧力の高い容器からなる。この凝縮器5では、吸収器管1pを流通した後に凝縮器管5pに供給される冷却水12が、低温再生器3で蒸発した冷媒蒸気7gを冷却して凝縮させ、冷媒液7wを得る。凝縮器管5pを流通した冷却水12は、図示しない冷却塔で冷却した後に吸収器管1pに循環される。
【0025】
低温再生器管3pから導出される冷媒蒸気ドレンは、ドレン通路15を経て凝縮器5に導入されて冷媒液7wとされる。
【0026】
前記低温再生器3からの吸収液13を高温再生器4に供給する中間液通路18Bには、高温再生器4から吸収器1へ戻される高温の吸収液13を熱源として前記中間液通路18Bの吸収液13を予熱する高温熱交換器21が設けられている。なお、低温再生器3の吸収液13の一部は吸収器1に戻される。また、前記吸収器1からの吸収液13を低温再生器3に供給する稀液通路18Aには、高温再生器4および低温再生器3から吸収器1へ戻る吸収液13を熱源として前記稀液通路18Aの吸収液13を予熱する低温熱交換器22が設けられている。
【0027】
さらに、前記低温再生器3から高温再生器4に吸収液13を供給する中間液通路18Bには、前記高温熱交換器21と並列に蒸気ドレン熱交換器23が設けられている。この蒸気ドレン熱交換器23は、前記高温再生器4からの蒸気ドレン24により前記低温再生器3から高温再生器4に供給される吸収液13を予熱するものである。また、高温再生器4から前記蒸気ドレン熱交換器23に蒸気ドレン24を供給する蒸気ドレン導入通路25には、この蒸気ドレン導入通路25内の液面レベルを検出する液面レベル検出器26が接続されている。さらに、前記蒸気ドレン熱交換器23からドレンを排出するドレン排出通路27には、前記液面レベルが所定値を越えたときドレン排出通路27を開放する開閉装置28が設けられている。
【0028】
この実施形態では、図2に示すように、前記液面レベル検出器26および開閉装置28が、フロート式蒸気トラップ31により形成されている。これにより、液面レベル検出器26および開閉装置28の設置を容易に行うことができる。図3は、そのフロート式蒸気トラップ31の具体的構成を示す側面断面図である。このフロート式蒸気トラップ31では、ケース本体33に蓋体34をボルト35で締結して構成されるケース32内が、隔壁36によりフロート室37と弁室38とに仕切られている。ケース本体33には、前記フロート室37を高温再生器4からの蒸気ドレン導入通路25に連通させる上下2つの開口39,40が形成されている。蒸気ドレン導入通路25内の蒸気ドレン24は、導入管71を通って下側の開口40からフロート室37内に入る。上側の開口39は、均圧管72を介して蒸気ドレン導入通路25に連通しており、フロート室37内のガス抜きを行ってフロート室37内を蒸気ドレン導入通路25内と同一の圧力に保持する。
【0029】
前記フロート室37には、フロート室37内の液面レベルに応じて上下動するフロート44と、このフロート44を支持し支軸46回りに回動するレバー45とを配置して、前記液面レベル検出器26が構成されている。フロート44を支持する前記レバー45は、図5に斜視図で示すように、概略コ字状の基体47の中央部から突出する連結ピン48の先端にフロート44を連結したものであり、レバー基体47の両端部47a,47aは前記支軸46を支持するフォーク状に形成されている。
【0030】
図3のIV−IV矢視断面図を示す図4のように、レバー基体47の両端部47a,47aは、前記隔壁36の両側面に配置され、レバー基体47の両端部47a,47aに連結される一対の支軸46,46が、隔壁36を貫通してフロート室37から弁室38に延びて互いに対向している。各支軸46の外端部は、図6に分解斜視図で示すように、レバー基体47のフォーク状端部47aに挟まれた状態で、ビス51によりフォーク状端部47aに締結される。図4の隔壁36における各支軸46の貫通部には、それぞれスリーブ49が嵌着されており、これらのスリーブ49を貫通して各支軸46が支持されており、支軸46の外周面に形成された複数の環状溝46a(図6)とスリーブ49の内周面との間に形成されるラビリンスにより、隔壁36における各支軸46の貫通部がシールされている。
【0031】
各支軸46の弁室38内に延びる内端部同士は、図6に斜視図で示すようにコ字状の連結部材50に連結されており、この連結部材50の両側片50a,50a間に弁体54(図4)に連結された連接バー55の上端が連結ピン56を介して揺動自在に連結されている。連接バー55の下端は、図4に示すように連結ピン56を介して弁体54の上端に揺動自在に連結されている。
【0032】
図3の蓋体34には前記蒸気ドレン熱交換器23からのドレンを弁室38内に導入する導入口57と、弁室38からドレンを排出する排出口58とが開口されている。弁室38には、前記排出口58に連通する弁座59が設けられ、この弁座59に前記弁体54が昇降自在に設けられて、前記開閉装置28が構成されている。弁体54は上下に延びた弁軸54aに上下2つの弁体部54bを設けたもので、弁座59の対応する2つの弁座面59aに対して接触・離間して開閉動作する。これにより、フロート室37の液面レベルが所定値を越えて図3に二点鎖線で示すようにフロート44が上昇したとき、弁体54が下動して開弁し、導入口57から弁室54内に導入された蒸気ドレン熱交換器23からのドレンが、導出口58から外部に排出される。
【0033】
次に、上記吸収冷凍機による冷房運転の概略を説明する。蒸発器6は、高真空下で蒸発器管6pの外面に流下される冷媒液7wの蒸発によって、蒸発器管6pを流れる冷暖房の熱媒体である水11から蒸発潜熱を奪い、水11を冷水に冷却する。吸収器1は、冷却塔から循環供給されて吸収管1pを流れる冷却水12で、前記蒸発器6で発生した冷媒蒸気7gを冷却することにより冷媒蒸気7gを吸収液13に吸収させて、吸収器1と蒸発器6を構成する真空容器の内部を高い真空に保持する。
【0034】
吸収器1の吸収液13は、低温熱交換器22を経て低温再生器3に供給される。低温熱交換器22は、高温再生器4や低温再生器3から吸収器1に戻される途中の高温の吸収液13を熱源として、低温再生器3に供給される途中の吸収液13を予熱する。低温再生器3の低温再生器管3pには、高温再生器4で分離蒸発した冷媒蒸気7gが供給される。低温再生器3では、前記冷媒蒸気7gの凝縮潜熱で、低温再生器3に供給される吸収液13から冷媒7gを分離蒸発させて、吸収液13を加熱濃縮する。
【0035】
低温再生器3で吸収液13から分離蒸発された冷媒蒸気7gは凝縮器5に供給される。凝縮器5は、前記低温再生器3からの冷媒蒸気7gを、吸収器管1pを経て凝縮器管5pを流れる冷却水12で冷却して冷媒液7wに凝縮する。その冷媒液7wは蒸発器6に供給される。また、低温再生器管3pを流れた後の蒸気ドレンも凝縮器5に供給されて、冷媒液7wに凝縮される。
【0036】
低温再生器3で加熱濃縮された吸収液13は、並列に配置された高温熱交換器21および蒸気ドレン熱交換器23を経て高温再生器4に供給される。また、低温再生器3の吸収液13の一部は、高温再生器4からの吸収液13と共に、吸収器1に戻される。高温熱交換器21は、高温再生器4から吸収器1へ戻される高温の吸収液13を熱源として、低温再生器3から高温再生器4へ供給される途中の吸収液13を予熱する。また、蒸気ドレン熱交換器23は、高温再生器4からの蒸気ドレン24を熱源として、低温再生器3から高温再生器4へ供給される途中の吸収液13を予熱する。このように、低温再生器3から高温再生器4へ供給される吸収液13の予熱が並列に配置された高温熱交換器21および蒸気ドレン熱交換器23で行われるので、吸収液13の予熱を熱効率良く行うことができる。
【0037】
高温再生器4の高温再生器管4pには、外部のボイラ等の熱源から蒸気14が供給される。高温再生器4は、高温再生器管4pに流される前記蒸気14の凝縮潜熱で、低温再生器3から供給されてくる吸収液13から冷媒7gを分離蒸発させて、吸収液13を加熱濃縮する。このように、低温再生器3と高温再生器4とで2段階にわたって吸収液13の再生が行われるので、その再生を熱効率良く行うことができる。高温再生器4において、吸収液13から分離蒸発された冷媒蒸気7gは低温再生器3の低温再生器管3pに流される。また、高温再生器管4pからの蒸気ドレン24は、蒸気ドレン導入通路25より、途中の液面レベル検出器26を経て蒸気ドレン熱交換器23に導入される。
【0038】
液面レベル検出器26は、蒸気ドレン熱交換器23のドレン入口側である蒸気ドレン導入通路25のドレン水の液面レベルを検出する。この液面レベルが所定値以下のとき、液面レベル検出器26の検出値に応答して、蒸気ドレン熱交換器23のドレン出口側のドレン排出通路27を開閉装置28が閉じる。また、前記液面レベルが所定値を越えると、液面レベル検出器26の検出値に応答して、開閉装置28がドレン排出通路27を開放し、蒸気ドレン熱交換器23からドレン水が排出される。これにより、蒸気ドレン熱交換器23の内部をドレン水で満水に保つことができ、蒸気ドレン熱交換器23での熱回収効率を向上させることができる。
【0039】
前記液面レベル検出器26および開閉装置28をフロート式蒸気トラップ31で構成した図2の構成では、その蒸気トラップ31のフロート室37に導入されるドレン水の液面レベルが所定値以下のとき、図3に実線で示すようにフロート44は下降位置にあって、開閉装置28の弁体54がドレン排出通路27を閉じる。また、前記液面レベルが所定値を越えると、図3に二点鎖線で示すようにフロート44は上動して、開閉装置28の弁体54がドレン排出通路27を開放する。
【0040】
図7は、本発明の第2の実施形態の要部を示す概略構成図である。この実施形態の吸収冷凍機は、図1〜図6に示した第1の実施形態において、フロート式蒸気トラップ31が、高温再生器4から蒸気ドレン24を蒸気ドレン熱交換器23に供給する蒸気ドレン導入通路25の途中に直接設けられている。すなわち、蒸気ドレン導入通路25の上流側が蒸気トラップ31のフロート室37の上壁に設けた開口69に接続され、蒸気ドレン導入通路25の下流側が蒸気トラップ31のフロート室37の下壁に設けた開口70に接続されている。
【0041】
この実施形態の場合も、蒸気トラップ3のフロート室37におけるドレン水の液面レベルが所定値を越えるまで、蒸気ドレン熱交換器23からのドレン排出通路27を開閉する開閉装置28が開かないので、蒸気ドレン熱交換器23の内部をドレン水で満水にすることができ、蒸気ドレン24と吸収液13との間での熱交換を効率良く行うことができる。フロート室37での液面レベルが所定値を越えると、開閉装置28が開いて、蒸気ドレン24が外部に排出される。
【0042】
なお、この実施形態において、蒸気トラップ31の弁室38に、その弁室38内の温度が90〜100℃に上昇したとき開く弁60を設けてもよい。このように構成することにより、弁室38に蒸気が充満したとき、前記弁60を開いて蒸気を外部に逃がすことができ、充満する蒸気で蒸気ドレン熱交換器23からのドレンが弁室38に導入できなくなるのを防止できる。
【0043】
図8は、本発明の第3の実施形態の要部を示す。この実施形態の吸収冷凍機は、図1に示した第1の実施形態において、高温熱交換器21と蒸気ドレン熱交換器23とを直列に接続したものである。すなわち、低温再生器3から高温再生器4へ吸収液13を供給する中間液通路18Bに、上流側から順に、蒸気ドレン熱交換器23と高温熱交換器21とを直列に接続している。高温熱交換器21では、高温再生器4から吸収器1へ戻される吸収液13を熱源として、低温再生器3から高温再生器4へ向かう吸収液13との間で熱交換を行うこと、および蒸気ドレン熱交換器23では、高温再生器4からの蒸気ドレン24を熱源として、低温再生器3から高温再生器4へ向かう吸収液13との間で熱交換を行うことは、第1の実施形態の場合と同様である。
【0044】
このように、高温熱交換器21に対して、蒸気ドレン熱交換器23を直列に接続することにより、蒸気ドレン熱交換器23の設置を簡単な構成で行うことができる。
【0045】
図9は、本発明の第4の実施形態の要部を示す。この実施形態の吸収冷凍機は、図1に示した第1の実施形態において、高温再生器4から蒸気ドレン熱交換器23へ蒸気ドレン24を導入する蒸気ドレン導入通路25内におけるドレン水の液面レベルを検出する液面レベル検出器26として、蒸気ドレン導入通路25の途中に、図9に示す電極棒65付きのリザーバ64からなるレベルセンサ63を設けるとともに、前記電極棒65の電気的な検出信号に応答して開閉装置28を開閉制御する弁駆動66を設けている。すなわち、リザーバ64の液面レベルが所定値より低いと、そのときの電極棒65の検出信号に応答して弁駆動回路66が蒸気ドレン熱交換器23の出口側の開閉装置28を閉じ、これにより、蒸気ドレン熱交換器23内をドレン液で満水にでき、熱交換の効率を上げることができる。逆に、リザーバ64の液面レベルが所定値を越えると、電極棒65の検出信号に応答して弁駆動回路66が蒸気ドレン熱交換器23の出口側の開閉装置28を開き、蒸気ドレン熱交換器23からドレンが排出される。
【0046】
図10は、本発明の第5の実施形態の要部を示す。この実施形態の吸収冷凍機は、図1に示した第1の実施形態において、高温再生器4から蒸気ドレン熱交換器23へ蒸気ドレン24を導入する蒸気ドレン導入通路25内でのドレン水の液面レベルを検出する液面レベル検出器26として、蒸気ドレン導入通路26の途中に、図10に示すフロートスイッチ67を設け、このフロートスイッチ67により蒸気ドレン熱交換器23のドレン入口側の液面レベルを検出し、その検出結果に応答する弁駆動68により、開閉装置28を開閉制御するようにしている。すなわち、蒸気ドレン熱交換器23のドレン入口側の液面レベルが所定値より低いと、そのときのフロートスイッチ67の検出信号に応答して弁駆動68が蒸気ドレン熱交換器23の出口側の開閉装置28を閉じ、これにより、蒸気ドレン熱交換器23内をドレン液で満水にでき、熱交換の効率を上げることができる。逆に、蒸気ドレン熱交換器23のドレン入口側の液面レベルが所定値を越えると、フロートスイッチ67の検出信号に応答して弁駆動68が蒸気ドレン熱交換器23の出口側の開閉装置28を開き、蒸気ドレン熱交換器23からドレンが排出される。
【0047】
【発明の効果】
以上のように、本発明の吸収冷凍機によれば、蒸気ドレン熱交換器の上流の蒸気ドレン導入通路内の液面レベルが所定値を越えたときに初めて、蒸気ドレン熱交換器からのドレン排出通路を開放するから、蒸気ドレン熱交換器の内部をドレン水で満水に保つことができるので、蒸気ドレン熱交換器での熱回収効率が向上する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る吸収冷凍機の概略構成を示す系統図である。
【図2】同吸収冷凍機の具体例の要部を示す系統図である。
【図3】同吸収冷凍機におけるフロート式蒸気トラップの側面断面図である。
【図4】図3におけるIV−IV矢視断面図である。
【図5】前記蒸気トラップにおけるフロート部の斜視図である。
【図6】同蒸気トラップの要部を示す分解斜視図である。
【図7】本発明の第2の実施形態に係る吸収冷凍機の要部の概略構成を示す系統図である。
【図8】本発明の第3の実施形態に係る吸収冷凍機の要部の概略構成を示す系統図である。
【図9】本発明の第4の実施形態に係る吸収冷凍機の要部の概略構成を示す系統図である。
【図10】本発明の第5の実施形態に係る吸収冷凍機の要部の概略構成を示す系統図である。
【図11】従来例の概略構成を示す系統図である。
【符号の説明】
1…吸収器、2…再生装置、3…低温再生器、4…高温再生器、5…凝縮器、6…蒸発器、7g…冷媒蒸気、13…吸収液、14…蒸気、18B…中間液通路、21…高温熱交換器、23…蒸気ドレン熱交換器、24…蒸気ドレン、25…蒸気ドレン導入通路、26…液面レベル検出器、27…ドレン排出通路、28…開閉装置、31…フロート式蒸気トラップ、36…隔壁、37…フロート室、38…弁室、44…フロート、45…レバー、46…支軸、54…弁体、63…レベルセンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steam heating double-effect absorption refrigerator, and more particularly, to an absorption refrigerator that efficiently recovers exhaust heat to improve thermal efficiency.
[0002]
[Prior art]
The absorption refrigerator can take out cold water by changing the concentration of the absorbing liquid circulating in the machine. For example, in a double-effect absorption refrigerator, as shown in FIG. 11, an evaporator 76 and an absorber 71 made of a vacuum container, a low-temperature regenerator 73 and a condenser 75 having a higher pressure than these are used. , And a high-temperature regenerator 74 that receives heat energy from the outside.
[0003]
In the evaporator 76, latent heat of evaporation is taken from the water 81 flowing through the evaporator pipe 76p by the refrigerant liquid 77w flowing down to the outer surface of the evaporator pipe 76p under high vacuum, and the water 81 is cooled. In the absorber 71, the refrigerant vapor 77g generated in the evaporator 76 is cooled by the cooling water 82 flowing through the absorber pipe 71p, so that the refrigerant vapor 77g is absorbed by the absorbent 83 and the inside of the vacuum vessel is kept at a high vacuum. To do. In the low-temperature regenerator 73, the refrigerant vapor 77g separated and evaporated by the high-temperature regenerator 74 is caused to flow to the low-temperature regenerator pipe 73p, and the absorption liquid 83 is heated and concentrated with the latent heat of the refrigerant vapor 77g to separate and evaporate the refrigerant 77g. In the high temperature regenerator 74, the absorption liquid 83 is heated and concentrated to generate 77 g of refrigerant vapor. In the condenser 75, the cooling water 82 flowing through the condenser pipe 75p cools and condenses the refrigerant vapor 77g evaporated in the low temperature regenerator 73. The cooling water 82 that has flowed through the condenser tube 75p after flowing through the absorber tube 71p is circulated to the absorber tube 71p after being cooled by a cooling tower (not shown).
[0004]
To the high temperature regenerator 74, for example, high temperature steam 84 is introduced into the high temperature regenerator tube 74p to heat the absorbing solution 83.
[0005]
In such an absorption refrigerator, energy saving has been promoted based on the principle of double effect, but in order to improve the heat exchange efficiency in the system, as shown in FIG. And a low temperature heat exchanger 92 is installed. The high temperature heat exchanger 91 preheats the absorbing liquid 83 from the low temperature regenerator 73 toward the high temperature regenerator 74, and the high temperature absorbing liquid 83 derived from the high temperature regenerator 74 is introduced as the heat source. The low temperature heat exchanger 92 preheats the absorption liquid 83 toward the low temperature regenerator 73, and the absorption liquid 83 derived from the low temperature regenerator 73 and the absorption liquid 83 exiting the high temperature heat exchanger 91 are returned to the absorber 71. It is used as a heat source on the way.
[0006]
For the purpose of further improving the efficiency of the absorption refrigerator, Japanese Patent Publication No. 60-24903 discloses a high-temperature regenerator by drain water (condensate) of steam 84 from the outside where the absorption liquid 83 is heated by the high-temperature regenerator 74. The example which provided the heat recovery device in order to heat the absorption liquid 83 which goes to 74 is described. More specifically, in FIG. 11, a heat recovery unit 93 in parallel with the high temperature heat exchanger 91 is installed in the absorption liquid passage 88 toward the high temperature regenerator 74, and the heat recovery unit 93 can be used in the high temperature regenerator 74. Heat energy that has not been collected can be recovered.
[0007]
[Problems to be solved by the invention]
However, in such a conventional structure, when the steam drain from the high temperature regenerator 74 is used in the heat recovery unit 93, the liquid level control of the steam drain is not specifically shown.
[0008]
In general, when drain water containing such steam is used in a heat recovery device, the steam trap prevents the escape of steam and increases the heat recovery efficiency. Even if the drain water level is formed inside, the liquid level is not formed in the piping. That is, when a steam trap is provided on the outlet side of the heat recovery device, there is no retention of drain water in the drain system in the heat recovery device, so heat recovery from the drain water cannot be performed.
[0009]
On the other hand, when a steam trap is provided on the inlet side of the heat recovery unit, the drain water at the trap outlet is flushed because it drops to atmospheric pressure, and the temperature of the drain water drops to approximately 100 ° C. For this reason, compared with the temperature (approximately 90-140 degreeC) of the absorption liquid which is a to-be-heated material, drain water temperature becomes low and heat recovery cannot be performed.
[0010]
As described above, in order to recover heat from the steam drain water to the absorbing liquid, it is necessary to form the liquid level of the steam drain water upstream from the heat recovery device and to fill the heat recovery device with the drain water. .
[0011]
In addition, it is possible to control the flow rate of drain water by forming an orifice at the outlet of the heat recovery unit to form the drain water level in the heat recovery unit. I cannot follow.
[0012]
This invention is made | formed in view of the above situation, and it aims at providing the absorption refrigerator which can collect | recover efficiently the heat | fever of the steam drain water from the reproduction | regeneration apparatus which reproduce | regenerates an absorption liquid.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, an absorption refrigerator of the present invention is an absorption refrigerator having an absorber, a regenerator using steam as a heat source, a condenser and an evaporator, and obtaining cold water from the evaporator,
A steam drain heat exchanger for preheating the absorption liquid supplied to the regenerator by the steam drain from the regenerator;
To the steam drain heat exchanger Supply the steam drain A liquid level detector for detecting the liquid level in the steam drain introduction passage;
From the steam drain heat exchanger when the liquid level exceeds a predetermined value Drain water is discharged And an opening / closing device for opening the drain discharge passage.
[0014]
According to the above configuration, when the liquid level in the steam drain introduction passage is equal to or lower than the predetermined value, the switchgear closes the drain discharge passage in response to the detection value of the liquid level detector, thereby the steam drain heat exchanger Since the inside of the tank can be kept full of drain water, the heat recovery efficiency in the steam drain heat exchanger can be improved.
[0015]
In a preferred embodiment of the present invention, the liquid level detector and the switching device are formed by a float type steam trap. In such a configuration, the liquid level detector and the opening / closing device can be easily installed.
[0016]
In a preferred embodiment of the present invention, the liquid level detector is a level sensor that detects the liquid level and generates an electrical signal.
[0017]
Furthermore, in a preferred embodiment of the present invention, the regenerator heats the absorbing liquid from the low temperature regenerator using steam as a heat source and preheats the absorbing liquid from the absorber, and the absorbing liquid evaporates. A high temperature regenerator that supplies the refrigerant vapor as a heat source to the low temperature regenerator, and the steam drain is led out from the high temperature regenerator. In such a configuration, the absorbing liquid can be efficiently regenerated.
[0018]
In a preferred embodiment of the present invention, the intermediate liquid passage is supplied to the intermediate liquid passage for supplying the absorption liquid from the low temperature regenerator to the high temperature regenerator, and the high temperature absorption liquid from the high temperature regenerator to the absorber is used as a heat source. A high temperature heat exchanger for preheating the liquid is provided, and the steam drain heat exchanger is connected to the intermediate liquid passage in parallel with the high temperature heat exchanger. In the case of such a configuration, it is possible to efficiently preheat the absorbing liquid supplied from the low temperature regenerator to the high temperature regenerator.
[0019]
Furthermore, in a preferred embodiment of the present invention, the intermediate liquid passage is supplied to the intermediate liquid passage for supplying the absorption liquid from the low temperature regenerator to the high temperature regenerator, and the high temperature absorption liquid from the high temperature regenerator to the absorber is used as a heat source. A high temperature heat exchanger for preheating the liquid is provided, and the steam drain heat exchanger is connected to the intermediate liquid passage in series with the high temperature heat exchanger. When configured in this way, the steam drain heat exchanger can be installed with a simple configuration.
[0020]
In a preferred embodiment of the present invention, the float steam trap has a float chamber that is connected to the steam drain introduction passage and into which the steam drain is introduced, and a valve chamber that is isolated from the float chamber by a partition wall. A float that moves up and down according to a liquid level in the float chamber, and a lever that supports the float and rotates around a support shaft is disposed in the float chamber. level A detector is formed, the support shaft extends through the partition wall from the float chamber into the valve chamber, and a valve body of the opening / closing device that opens and closes the drain discharge passage is connected to the support shaft to form a valve It is arranged indoors. According to this configuration, a steam trap that operates smoothly in a state where the float chamber communicating with the steam drain introduction passage and the drain discharge passage are separated can be obtained.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a steam heating double-effect absorption refrigerator according to a first embodiment of the present invention. This absorption refrigerator has the same absorber 1, regenerator 2, condenser 5 and evaporator 6 as those in the conventional example shown in FIG. 11, and obtains cold water from the evaporator 6.
[0022]
The absorber 1 and the evaporator 6 are composed of a common vacuum vessel. In the evaporator 6, the latent heat of vaporization is generated from the water 11 flowing through the evaporator pipe 6p by the refrigerant liquid 7w flowing down to the outer surface of the evaporator pipe 6p under high vacuum. To cool the water 11. In the absorber 1, the refrigerant vapor 7 g generated in the evaporator 6 is cooled by the cooling water 12 flowing through the absorber pipe 1 p, so that the refrigerant vapor 7 g is absorbed by the absorption liquid 13 and the inside of the vacuum container is kept at a high vacuum. Have been to.
[0023]
The regenerator 2 regenerates the absorbing liquid 13 from the absorber 1 using the steam 14 supplied from an external boiler or the like as a heat source. The absorber 1 and the evaporator 6 Are provided with a low temperature regenerator 3 and a high temperature regenerator 4 which are made of a container having a pressure higher than that of the vacuum container. In the high-temperature regenerator 4, steam 14 is supplied from the outside as a heat source to the high-temperature regenerator tube 4p, and the refrigerant 7g is separated and evaporated from the absorbing liquid 13 by the condensation latent heat of the steam 14, so that the absorbing liquid 13 is heated and concentrated. Has been. In the low temperature regenerator 3, the refrigerant vapor 7g separated and evaporated from the absorbing liquid 13 in the high temperature regenerator 4 is supplied to the low temperature regenerator pipe 3p as a heat source, and the refrigerant 7g is separated and evaporated from the absorbing liquid 13 by the latent heat of condensation of the refrigerant vapor 7g. The absorption liquid 13 is concentrated by heating.
[0024]
The condenser 5 is also the absorber 1 and the evaporator. 6 It consists of a container whose pressure is higher than the vacuum container which comprises. In this condenser 5, the cooling water 12 supplied to the condenser pipe 5p after flowing through the absorber pipe 1p cools and condenses the refrigerant vapor 7g evaporated in the low-temperature regenerator 3 to obtain a refrigerant liquid 7w. The cooling water 12 that has flowed through the condenser pipe 5p is circulated to the absorber pipe 1p after being cooled by a cooling tower (not shown).
[0025]
The refrigerant vapor drain led out from the low-temperature regenerator pipe 3p is introduced into the condenser 5 through the drain passage 15 and becomes the refrigerant liquid 7w.
[0026]
In the intermediate liquid passage 18B for supplying the absorbent 13 from the low temperature regenerator 3 to the high temperature regenerator 4, the high temperature absorbent 13 returned from the high temperature regenerator 4 to the absorber 1 is used as a heat source. A high-temperature heat exchanger 21 for preheating the absorbing liquid 13 is provided. A part of the absorption liquid 13 of the low temperature regenerator 3 is returned to the absorber 1. Further, in the rare liquid passage 18A for supplying the absorbent 13 from the absorber 1 to the low temperature regenerator 3, the high temperature regenerator 4 and the absorbent 13 returning from the low temperature regenerator 3 to the absorber 1 are used as the heat source. A low-temperature heat exchanger 22 for preheating the absorbing liquid 13 in the passage 18A is provided.
[0027]
Furthermore, a steam drain heat exchanger 23 is provided in parallel with the high temperature heat exchanger 21 in the intermediate liquid passage 18B for supplying the absorbing liquid 13 from the low temperature regenerator 3 to the high temperature regenerator 4. The steam drain heat exchanger 23 preheats the absorbing liquid 13 supplied from the low temperature regenerator 3 to the high temperature regenerator 4 by the steam drain 24 from the high temperature regenerator 4. In addition, a liquid level detector 26 for detecting the liquid level in the steam drain introduction passage 25 is provided in the steam drain introduction passage 25 for supplying the steam drain 24 from the high temperature regenerator 4 to the steam drain heat exchanger 23. It is connected. Further, a drain discharge passage 27 for discharging drain from the steam drain heat exchanger 23 is provided with an opening / closing device 28 for opening the drain discharge passage 27 when the liquid level exceeds a predetermined value.
[0028]
In this embodiment, as shown in FIG. 2, the liquid level detector 26 and the opening / closing device 28 are formed by a float-type steam trap 31. Thereby, the liquid level detector 26 and the opening / closing device 28 can be easily installed. FIG. 3 is a side cross-sectional view showing a specific configuration of the float steam trap 31. In this float steam trap 31, a case 32 configured by fastening a lid 34 to a case body 33 with bolts 35 is partitioned into a float chamber 37 and a valve chamber 38 by a partition wall 36. The case body 33 is formed with two upper and lower openings 39 and 40 for communicating the float chamber 37 with the steam drain introduction passage 25 from the high temperature regenerator 4. The steam drain 24 in the steam drain introduction passage 25 passes through the introduction pipe 71 and enters the float chamber 37 from the lower opening 40. The upper opening 39 communicates with the steam drain introduction passage 25 via the pressure equalizing pipe 72, and the float chamber 37 is degassed to keep the inside of the float chamber 37 at the same pressure as in the steam drain introduction passage 25. To do.
[0029]
The float chamber 37 is provided with a float 44 that moves up and down according to the liquid level in the float chamber 37 and a lever 45 that supports the float 44 and rotates around a support shaft 46. A level detector 26 is configured. As shown in a perspective view in FIG. 5, the lever 45 that supports the float 44 is obtained by connecting the float 44 to the tip of a connecting pin 48 that protrudes from the central portion of the substantially U-shaped base 47. Both end portions 47 a and 47 a of the 47 are formed in a fork shape that supports the support shaft 46.
[0030]
As shown in FIG. 4 showing a cross-sectional view taken along the line IV-IV in FIG. 3, both end portions 47a and 47a of the lever base 47 are arranged on both side surfaces of the partition wall 36 and are connected to both end portions 47a and 47a of the lever base 47. A pair of support shafts 46, 46 extend through the partition wall 36 from the float chamber 37 to the valve chamber 38 and face each other. As shown in an exploded perspective view in FIG. 6, the outer end portion of each support shaft 46 is fastened to the fork-like end portion 47 a by a screw 51 while being sandwiched between the fork-like end portions 47 a of the lever base 47. 4, sleeves 49 are fitted into the through portions of the respective support shafts 46 in the partition wall 36, and the support shafts 46 are supported through the sleeves 49. A through portion of each support shaft 46 in the partition wall 36 is sealed by a labyrinth formed between the plurality of annular grooves 46 a (FIG. 6) formed on the inner surface of the sleeve 49.
[0031]
The inner end portions of each support shaft 46 extending into the valve chamber 38 are connected to a U-shaped connecting member 50 as shown in a perspective view of FIG. 6, and between both side pieces 50a, 50a of the connecting member 50. Further, the upper end of the connecting bar 55 connected to the valve body 54 (FIG. 4) is swingably connected via a connecting pin 56. As shown in FIG. 4, the lower end of the connecting bar 55 is swingably connected to the upper end of the valve body 54 via a connecting pin 56.
[0032]
3 has an inlet 57 for introducing the drain from the steam drain heat exchanger 23 into the valve chamber 38 and an outlet 58 for discharging the drain from the valve chamber 38. The valve chamber 38 is provided with a valve seat 59 communicating with the discharge port 58, and the valve body 54 is provided on the valve seat 59 so as to be movable up and down to constitute the opening / closing device 28. The valve body 54 is provided with two upper and lower valve body portions 54b on a valve shaft 54a extending vertically, and opens and closes by contacting / separating with two corresponding valve seat surfaces 59a of the valve seat 59. Thereby, when the liquid level in the float chamber 37 exceeds a predetermined value and the float 44 rises as shown by a two-dot chain line in FIG. 3, the valve body 54 moves downward to open the valve from the introduction port 57. Drain from the steam drain heat exchanger 23 introduced into the chamber 54 is discharged from the outlet 58 to the outside.
[0033]
Next, the outline of the cooling operation by the absorption refrigerator will be described. The evaporator 6 takes away latent heat of evaporation from the water 11 that is a heating / cooling heat medium flowing through the evaporator pipe 6p by evaporation of the refrigerant liquid 7w flowing down to the outer surface of the evaporator pipe 6p under high vacuum, and the water 11 is cooled with cold water. Cool down. The absorber 1 is cooled by cooling water 12 flowing from the cooling tower and flowing through the absorption pipe 1p, and the refrigerant vapor 7g generated in the evaporator 6 is cooled to absorb the refrigerant vapor 7g in the absorption liquid 13 for absorption. The inside of the vacuum vessel constituting the vessel 1 and the evaporator 6 is kept at a high vacuum.
[0034]
The absorbing liquid 13 of the absorber 1 is supplied to the low temperature regenerator 3 through the low temperature heat exchanger 22. The low temperature heat exchanger 22 preheats the absorption liquid 13 being supplied to the low temperature regenerator 3 using the high temperature absorption liquid 13 being returned to the absorber 1 from the high temperature regenerator 4 or the low temperature regenerator 3 as a heat source. . The refrigerant vapor 7g separated and evaporated by the high temperature regenerator 4 is supplied to the low temperature regenerator tube 3p of the low temperature regenerator 3. In the low temperature regenerator 3, the refrigerant 7g is separated and evaporated from the absorbing liquid 13 supplied to the low temperature regenerator 3 by the condensation latent heat of the refrigerant vapor 7g, and the absorbing liquid 13 is concentrated by heating.
[0035]
The refrigerant vapor 7 g separated and evaporated from the absorbent 13 in the low temperature regenerator 3 is supplied to the condenser 5. The condenser 5 cools the refrigerant vapor 7g from the low-temperature regenerator 3 with the cooling water 12 flowing through the condenser pipe 5p through the absorber pipe 1p and condenses it into the refrigerant liquid 7w. The refrigerant liquid 7w is supplied to the evaporator 6. Further, the steam drain after flowing through the low temperature regenerator pipe 3p is also supplied to the condenser 5 and condensed into the refrigerant liquid 7w.
[0036]
The absorbent 13 heated and concentrated in the low temperature regenerator 3 is supplied to the high temperature regenerator 4 through the high temperature heat exchanger 21 and the steam drain heat exchanger 23 arranged in parallel. Further, a part of the absorbing liquid 13 of the low temperature regenerator 3 is returned to the absorber 1 together with the absorbing liquid 13 from the high temperature regenerator 4. The high temperature heat exchanger 21 preheats the absorbing liquid 13 being supplied from the low temperature regenerator 3 to the high temperature regenerator 4 using the high temperature absorbing liquid 13 returned from the high temperature regenerator 4 to the absorber 1 as a heat source. Further, the steam drain heat exchanger 23 preheats the absorbing liquid 13 being supplied from the low temperature regenerator 3 to the high temperature regenerator 4 using the steam drain 24 from the high temperature regenerator 4 as a heat source. Thus, since the preheating of the absorbing liquid 13 supplied from the low temperature regenerator 3 to the high temperature regenerator 4 is performed by the high temperature heat exchanger 21 and the steam drain heat exchanger 23 arranged in parallel, the preheating of the absorbing liquid 13 is performed. Can be performed efficiently.
[0037]
Steam 14 is supplied to a high temperature regenerator tube 4p of the high temperature regenerator 4 from a heat source such as an external boiler. The high temperature regenerator 4 separates and evaporates the refrigerant 7g from the absorption liquid 13 supplied from the low temperature regenerator 3 by the condensation latent heat of the steam 14 flowing to the high temperature regenerator pipe 4p, and heats and concentrates the absorption liquid 13. . Thus, since the absorption liquid 13 is regenerated in two stages by the low temperature regenerator 3 and the high temperature regenerator 4, the regeneration can be performed with high thermal efficiency. In the high temperature regenerator 4, the refrigerant vapor 7 g separated and evaporated from the absorbing liquid 13 flows into the low temperature regenerator tube 3 p of the low temperature regenerator 3. Further, the steam drain 24 from the high temperature regenerator pipe 4p is introduced into the steam drain heat exchanger 23 through the steam drain introduction passage 25 through the intermediate liquid level detector 26.
[0038]
The liquid level detector 26 detects the liquid level of the drain water in the steam drain introduction passage 25 on the drain inlet side of the steam drain heat exchanger 23. When this liquid level is below a predetermined value, the switchgear 28 closes the drain discharge passage 27 on the drain outlet side of the steam drain heat exchanger 23 in response to the value detected by the liquid level detector 26. When the liquid level exceeds a predetermined value, the opening / closing device 28 opens the drain discharge passage 27 and drain water is discharged from the steam drain heat exchanger 23 in response to the detection value of the liquid level detector 26. Is done. Thereby, the inside of the steam drain heat exchanger 23 can be kept full of drain water, and the heat recovery efficiency in the steam drain heat exchanger 23 can be improved.
[0039]
In the configuration of FIG. 2 in which the liquid level detector 26 and the opening / closing device 28 are configured by a float type steam trap 31, when the level of drain water introduced into the float chamber 37 of the steam trap 31 is below a predetermined value. 3, the float 44 is in the lowered position, and the valve body 54 of the opening / closing device 28 closes the drain discharge passage 27. When the liquid level exceeds a predetermined value, the float 44 moves up as shown by a two-dot chain line in FIG. 3 and the valve body 54 of the opening / closing device 28 opens the drain discharge passage 27.
[0040]
FIG. 7 is a schematic configuration diagram showing the main part of the second embodiment of the present invention. In the absorption refrigerator of this embodiment, in the first embodiment shown in FIGS. 1 to 6, the float-type steam trap 31 supplies the steam drain 24 from the high-temperature regenerator 4 to the steam drain heat exchanger 23. It is provided directly in the middle of the drain introduction passage 25. That is, the upstream side of the steam drain introduction passage 25 is connected to the opening 69 provided on the upper wall of the float chamber 37 of the steam trap 31, and the downstream side of the steam drain introduction passage 25 is provided on the lower wall of the float chamber 37 of the steam trap 31. It is connected to the opening 70.
[0041]
Also in this embodiment, the open / close device 28 for opening and closing the drain discharge passage 27 from the steam drain heat exchanger 23 is not opened until the level of the drain water in the float chamber 37 of the steam trap 3 exceeds a predetermined value. The interior of the steam drain heat exchanger 23 can be filled with drain water, and heat exchange between the steam drain 24 and the absorbent 13 can be performed efficiently. When the liquid level in the float chamber 37 exceeds a predetermined value, the opening / closing device 28 is opened and the steam drain 24 is discharged to the outside.
[0042]
In this embodiment, the valve chamber 38 of the steam trap 31 may be provided with a valve 60 that opens when the temperature in the valve chamber 38 rises to 90 to 100 ° C. With this configuration, when the valve chamber 38 is filled with steam, the valve 60 can be opened to allow the steam to escape to the outside, and the drain from the steam drain heat exchanger 23 can be drained by the filled steam. Can be prevented from being introduced.
[0043]
FIG. 8 shows a main part of the third embodiment of the present invention. The absorption refrigerator of this embodiment is obtained by connecting a high-temperature heat exchanger 21 and a steam drain heat exchanger 23 in series in the first embodiment shown in FIG. That is, the steam drain heat exchanger 23 and the high temperature heat exchanger 21 are connected in series from the upstream side to the intermediate liquid passage 18B that supplies the absorbing liquid 13 from the low temperature regenerator 3 to the high temperature regenerator 4. In the high temperature heat exchanger 21, heat exchange is performed with the absorption liquid 13 from the low temperature regenerator 3 toward the high temperature regenerator 4 using the absorption liquid 13 returned from the high temperature regenerator 4 to the absorber 1 as a heat source, and The steam drain heat exchanger 23 uses the steam drain 24 from the high temperature regenerator 4 as a heat source, and performs heat exchange with the absorbing liquid 13 from the low temperature regenerator 3 toward the high temperature regenerator 4 in the first implementation. It is the same as the case of the form.
[0044]
Thus, the steam drain heat exchanger 23 can be installed with a simple configuration by connecting the steam drain heat exchanger 23 in series to the high temperature heat exchanger 21.
[0045]
FIG. 9 shows a main part of the fourth embodiment of the present invention. In the absorption refrigerator of this embodiment, in the first embodiment shown in FIG. 1, the drain water liquid in the steam drain introduction passage 25 that introduces the steam drain 24 from the high-temperature regenerator 4 to the steam drain heat exchanger 23. As a liquid level detector 26 for detecting the surface level, a level sensor 63 comprising a reservoir 64 with an electrode rod 65 shown in FIG. A valve drive 66 that controls opening and closing of the opening and closing device 28 in response to the detection signal is provided. That is, when the liquid level in the reservoir 64 is lower than a predetermined value, the valve drive circuit 66 closes the opening / closing device 28 on the outlet side of the steam drain heat exchanger 23 in response to the detection signal of the electrode rod 65 at that time. Accordingly, the inside of the steam drain heat exchanger 23 can be filled with the drain liquid, and the efficiency of heat exchange can be increased. Conversely, when the liquid level in the reservoir 64 exceeds a predetermined value, the valve drive circuit 66 opens the opening / closing device 28 on the outlet side of the steam drain heat exchanger 23 in response to the detection signal of the electrode rod 65, and the steam drain heat. Drain is discharged from the exchanger 23.
[0046]
FIG. 10 shows a main part of the fifth embodiment of the present invention. In the absorption refrigerator of this embodiment, in the first embodiment shown in FIG. 1, the drain water in the steam drain introduction passage 25 that introduces the steam drain 24 from the high-temperature regenerator 4 to the steam drain heat exchanger 23. As the liquid level detector 26 for detecting the liquid level, a float switch 67 shown in FIG. 10 is provided in the middle of the steam drain introduction passage 26, and the liquid on the drain inlet side of the steam drain heat exchanger 23 is provided by the float switch 67. The opening / closing device 28 is controlled to open and close by a valve drive 68 that detects the surface level and responds to the detection result. That is, when the liquid level on the drain inlet side of the steam drain heat exchanger 23 is lower than a predetermined value, the valve drive 68 is connected to the outlet side of the steam drain heat exchanger 23 in response to the detection signal of the float switch 67 at that time. By closing the switchgear 28, the inside of the steam drain heat exchanger 23 can be filled with the drain liquid, and the efficiency of heat exchange can be increased. Conversely, when the liquid level on the drain inlet side of the steam drain heat exchanger 23 exceeds a predetermined value, the valve drive 68 responds to the detection signal of the float switch 67 and the opening / closing device on the outlet side of the steam drain heat exchanger 23. 28 is opened, and the drain is discharged from the steam drain heat exchanger 23.
[0047]
【The invention's effect】
As described above, according to the absorption refrigerator of the present invention, the drain from the steam drain heat exchanger is only when the liquid level in the steam drain introduction passage upstream of the steam drain heat exchanger exceeds a predetermined value. Since the discharge passage is opened, the inside of the steam drain heat exchanger can be kept full of drain water, so that the heat recovery efficiency in the steam drain heat exchanger is improved.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a schematic configuration of an absorption refrigerator according to a first embodiment of the present invention.
FIG. 2 is a system diagram showing a main part of a specific example of the absorption refrigerator.
FIG. 3 is a side sectional view of a float steam trap in the absorption refrigerator.
4 is a cross-sectional view taken along arrow IV-IV in FIG. 3;
FIG. 5 is a perspective view of a float portion in the steam trap.
FIG. 6 is an exploded perspective view showing a main part of the steam trap.
FIG. 7 is a system diagram showing a schematic configuration of a main part of an absorption refrigerator according to a second embodiment of the present invention.
FIG. 8 is a system diagram showing a schematic configuration of a main part of an absorption refrigerator according to a third embodiment of the present invention.
FIG. 9 is a system diagram showing a schematic configuration of a main part of an absorption refrigerator according to a fourth embodiment of the present invention.
FIG. 10 is a system diagram showing a schematic configuration of a main part of an absorption refrigerator according to a fifth embodiment of the present invention.
FIG. 11 is a system diagram showing a schematic configuration of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Absorber, 2 ... Regenerator, 3 ... Low temperature regenerator, 4 ... High temperature regenerator, 5 ... Condenser, 6 ... Evaporator, 7g ... Refrigerant vapor | steam, 13 ... Absorbing liquid, 14 ... Steam, 18B ... Intermediate liquid Passage, 21 ... high temperature heat exchanger, 23 ... steam drain heat exchanger, 24 ... steam drain, 25 ... steam drain introduction passage, 26 ... liquid level detector, 27 ... drain discharge passage, 28 ... opening / closing device, 31 ... Float type steam trap, 36 ... partition wall, 37 ... float chamber, 38 ... valve chamber, 44 ... float, 45 ... lever, 46 ... spindle, 54 ... valve body, 63 ... level sensor

Claims (7)

吸収器、蒸気を熱源とする再生装置、凝縮器および蒸発器を有し、前記蒸発器から冷水を得る吸収冷凍機であって、
前記再生装置からの蒸気ドレンにより、前記吸収器から再生装置に供給される吸収液を予熱する蒸気ドレン熱交換器と、
前記蒸気ドレン熱交換器へ前記蒸気ドレンを供給する蒸気ドレン導入通路内の液面レベルを検出する液面レベル検出器と、
前記液面レベルが所定値を越えたとき前記蒸気ドレン熱交換器からドレン水を排出するドレン排出通路を開放する開閉装置とを備えた吸収冷凍機。
An absorption refrigerator having an absorber, a regenerator using steam as a heat source, a condenser and an evaporator, and obtaining cold water from the evaporator,
A steam drain heat exchanger that preheats the absorbent supplied from the absorber to the regenerator by the steam drain from the regenerator;
A liquid level detector for detecting a liquid level in a steam drain introduction passage for supplying the steam drain to the steam drain heat exchanger;
An absorption refrigerator comprising: an open / close device that opens a drain discharge passage for discharging drain water from the steam drain heat exchanger when the liquid level exceeds a predetermined value.
請求項1において、前記液面レベル検出器および開閉装置は、フロート式蒸気トラップにより形成されている吸収冷凍機。  2. The absorption refrigerator according to claim 1, wherein the liquid level detector and the opening / closing device are formed by a float steam trap. 請求項1において、前記液面レベル検出器は前記液面レベルを検出して電気信号を発生するレベルセンサである吸収冷凍機。  2. The absorption refrigerator according to claim 1, wherein the liquid level detector is a level sensor that detects the liquid level and generates an electric signal. 請求項1から3のいずれかにおいて、前記再生装置は、前記吸収器からの吸収液を予熱する低温再生器と、蒸気を熱源として前記低温再生器からの吸収液を加熱し、吸収液が蒸発した冷媒蒸気を前記低温再生器に熱源として供給する高温再生器とを備え、前記高温再生器から前記蒸気ドレンが導出されている吸収冷凍機。  The regenerator according to any one of claims 1 to 3, wherein the regenerator heats the absorption liquid from the low temperature regenerator using steam as a heat source to preheat the absorption liquid from the absorber, and the absorption liquid evaporates. And a high temperature regenerator for supplying the refrigerant vapor as a heat source to the low temperature regenerator, wherein the vapor drain is led out from the high temperature regenerator. 請求項4において、前記低温再生器からの吸収液を高温再生器に供給する中間液通路に、高温再生器から吸収器へ向かう高温の吸収液を熱源として中間液通路の吸収液を予熱する高温熱交換器が設けられ、前記中間液通路に、前記高温熱交換器と並列に前記蒸気ドレン熱交換器が接続されている吸収冷凍機。  5. The intermediate liquid passage for supplying the absorption liquid from the low-temperature regenerator to the high-temperature regenerator, and preheating the absorption liquid in the intermediate liquid path using the high-temperature absorption liquid from the high-temperature regenerator to the absorber as a heat source. An absorption chiller in which a hot heat exchanger is provided, and the steam drain heat exchanger is connected to the intermediate liquid passage in parallel with the high temperature heat exchanger. 請求項4において、前記低温再生器からの吸収液を高温再生器に供給する中間液通路に、高温再生器から吸収器へ向かう高温の吸収液を熱源として中間液通路の吸収液を予熱する高温熱交換器が設けられ、前記中間液通路に、前記高温熱交換器と直列に前記蒸気ドレン熱交換器が接続されている吸収冷凍機。  5. The intermediate liquid passage for supplying the absorption liquid from the low-temperature regenerator to the high-temperature regenerator, and preheating the absorption liquid in the intermediate liquid path using the high-temperature absorption liquid from the high-temperature regenerator to the absorber as a heat source. An absorption chiller in which a hot heat exchanger is provided, and the steam drain heat exchanger is connected to the intermediate liquid passage in series with the high temperature heat exchanger. 請求項2において、前記フロート式蒸気トラップは、
前記蒸気ドレン導入通路に接続されて蒸気ドレンが導入されるフロート室と、隔壁によって前記フロート室から隔離された弁室とを有し、
前記フロート室内の液面レベルに応じて上下動するフロートと、前記フロートを支持し支軸回りに回動するレバーとが前記フロート室内に配置されて前記液面ベル検出器を形成しており、
前記支軸が前記隔壁を貫通してフロート室から弁室内に延びており、
前記ドレン排出通路を開閉する前記開閉装置の弁体が前記支軸に連結されて前記弁室内に配置されている吸収冷凍機。
The float steam trap according to claim 2,
A float chamber that is connected to the steam drain introduction passage and into which the steam drain is introduced, and a valve chamber that is isolated from the float chamber by a partition wall;
A float that moves up and down according to the liquid level in the float chamber and a lever that supports the float and rotates around a support shaft are disposed in the float chamber to form the liquid level bell detector,
The support shaft extends through the partition wall from the float chamber into the valve chamber;
An absorption refrigerator in which a valve body of the opening / closing device that opens and closes the drain discharge passage is connected to the support shaft and disposed in the valve chamber.
JP2003008092A 2003-01-16 2003-01-16 Absorption refrigerator with improved thermal efficiency Expired - Lifetime JP3728295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008092A JP3728295B2 (en) 2003-01-16 2003-01-16 Absorption refrigerator with improved thermal efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003008092A JP3728295B2 (en) 2003-01-16 2003-01-16 Absorption refrigerator with improved thermal efficiency

Publications (2)

Publication Number Publication Date
JP2004218968A JP2004218968A (en) 2004-08-05
JP3728295B2 true JP3728295B2 (en) 2005-12-21

Family

ID=32897995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008092A Expired - Lifetime JP3728295B2 (en) 2003-01-16 2003-01-16 Absorption refrigerator with improved thermal efficiency

Country Status (1)

Country Link
JP (1) JP3728295B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563949B (en) * 2012-03-19 2013-09-18 北京华源泰盟节能设备有限公司 Vacuumizing method and equipment thereof

Also Published As

Publication number Publication date
JP2004218968A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP3989938B2 (en) Absorption air conditioner body
KR0151674B1 (en) Absorptive cooling/heating apparatus
JP3728295B2 (en) Absorption refrigerator with improved thermal efficiency
JPH11500521A (en) Refrigeration system with intermittently operating cooling unit
JP3712036B2 (en) Salt water desalination equipment
US3304742A (en) Absorption refrigeration systems
JP4632633B2 (en) Absorption heat pump device
JP6364238B2 (en) Absorption type water heater
KR20130076564A (en) Apparatus for collecting co_2
JP2583579B2 (en) Absorption chiller with refrigerant circulation system for cooling and heating
JPH05322358A (en) Absorption type water cooler using reverse osmotic film
JP3663008B2 (en) Absorption chiller / heater
GB2132326A (en) Vapour separator
JPH04268171A (en) Absorption type heat source device
JP4201418B2 (en) Control method of absorption chiller / heater
JPH03195891A (en) Heat feeder
JPS6333617Y2 (en)
JP3663006B2 (en) Absorption chiller / heater
GB2132327A (en) Heat transfer apparatus
JPH0355741B2 (en)
JP3663007B2 (en) Absorption chiller / heater
SU8916A1 (en) Method and device for communicating the circulation of gaseous substance in a closed pipe system
JPH07248161A (en) Absorption type cooler/heater and hot water supplying apparatus
KR100208218B1 (en) Absorption type cool and water supply
JP2543258B2 (en) Absorption heat source device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

R150 Certificate of patent or registration of utility model

Ref document number: 3728295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term