JP3725832B2 - Gas leak location indicator - Google Patents

Gas leak location indicator Download PDF

Info

Publication number
JP3725832B2
JP3725832B2 JP2002096267A JP2002096267A JP3725832B2 JP 3725832 B2 JP3725832 B2 JP 3725832B2 JP 2002096267 A JP2002096267 A JP 2002096267A JP 2002096267 A JP2002096267 A JP 2002096267A JP 3725832 B2 JP3725832 B2 JP 3725832B2
Authority
JP
Japan
Prior art keywords
leakage
gas
density
infrared rays
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002096267A
Other languages
Japanese (ja)
Other versions
JP2003294573A (en
Inventor
聡 高木
圭史 川口
雅之 田村
憲次 須山
宏 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saibu Gas Co Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Saibu Gas Co Ltd
Priority to JP2002096267A priority Critical patent/JP3725832B2/en
Publication of JP2003294573A publication Critical patent/JP2003294573A/en
Application granted granted Critical
Publication of JP3725832B2 publication Critical patent/JP3725832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素化合物の気体の漏洩箇所を検知して指示することができる気体漏洩箇所指示装置に関する。
【0002】
【従来の技術】
従来から、都市ガスは炭化水素化合物であるメタンを主成分としているので、漏洩しているか否かは炭化水素濃度を検知して判断している。また、メタンを含む都市ガス本来の成分はいずれも無臭であるので、人間の臭覚でも漏洩が判るように、特有の臭いが付加されている。都市ガスの漏洩が検知されると、その原因を解明し、対策を施す必要がある。ホースが外れるなど、漏れが顕著な場合は、都市ガスの使用者側でも容易に原因が判り、漏洩を止めることができる。高所配管などから漏洩が生じているときは、足場などを組んで高所作業を行い、漏洩箇所を修繕する必要がある。
【0003】
【発明が解決しようとする課題】
都市ガスは、無色透明であり、また漏洩が生じているときでも、一般には微量であるので、漏洩箇所を確定するのは困難である。高所配管から漏洩が生じているようなときは、足場を組んで高所作業を行う必要がある。さらに、危険作業となるため、迅速な作業が要求される。しかしながら、足場を組んでの高所作業を実際に行ってみないと漏洩箇所が判らないので、多大の労力を投入して、広い範囲に足場を組んでおき、足場上での高所作業で漏洩箇所を確定して、修繕する作業を行っている。
【0004】
本発明の目的は、離れている位置からでも気体の漏洩箇所を直接指示することができる気体漏洩箇所指示装置を提供することである。
【0005】
【課題を解決するための手段】
本発明は、検知対象となる気体によって吸収される波長の吸収赤外線と、該気体によっては吸収されない波長の非吸収赤外線とを、気体漏洩の可能性がある空間に照射し、該空間を通過して反射してきた吸収赤外線と非吸収赤外線とを受光し、吸収赤外線と非吸収赤外線との受光量の比率に基づいて該気体の漏洩濃度の分布状態を算出する演算処理を行う濃度分布算出手段と、
濃度分布算出手段によって算出される漏洩濃度の分布状態で濃度が最大となる位置に対応する該空間内の位置に、標識用の可視光を照射する可視光照射手段とを含むことを特徴とする気体漏洩箇所指示装置である。
【0006】
本発明に従えば、気体漏洩箇所指示装置は、濃度分布算出手段と、可視光照射手段とを含む。濃度分布算出手段は、検知対象となる気体によって吸収される波長の吸収赤外線と、その気体によっては吸収されない波長の非吸収赤外線とを、気体漏洩の可能性がある空間に照射し、その空間を通過して反射してきた吸収赤外線と非吸収赤外線とを受光し、吸収赤外線と非吸収赤外線との受光量の比率に基づいて該気体の漏洩濃度の分布状態を算出する演算処理を行う。可視光照射手段は、濃度分布算出手段によって算出される漏洩濃度の分布状態で濃度が最大となる位置に対応する空間内の位置に、標識用の可視光を照射する。気体が漏洩すると、漏洩箇所では濃度が高く、漏洩箇所から離れると気体は拡散して濃度が低くなる。したがって、漏洩濃度の分布で濃度が最大となる位置は気体の漏洩箇所またはその直近の位置である可能性が高く、漏洩濃度の分布で濃度が最大となる位置に対応する空間内の位置に標識用の可視光を照射すれば、配管の漏洩箇所などに可視光が当り、離れた位置からでも判りやすい漏洩箇所の指示を行うことができる。離れた位置から気体の漏洩箇所を光学的に指示することができるので、高所配管に漏洩が生じているような場合でも、足場を組む前に漏洩箇所を精度良く指示し、迅速な修繕作業を効率よく行うことができる。
【0007】
また、前記濃度分布算出手段は、
前記吸収赤外線および前記非吸収赤外線を、測定面が広がるように幅を拡張させる幅拡張手段を含み、
前記可視光照射手段は、前記漏洩濃度が最大となる位置に幅拡張手段が光束を照射するときのタイミングと、該面内での漏洩濃度最大位置とに基づいて、該漏洩濃度最大位置に前記可視光を照射するように構成することもできる。
【0008】
本構成に従えば、吸収赤外線と非吸収赤外線との受光量の比率に基づいて気体の気体の漏洩濃度の分布状態を算出する演算処理を行う濃度分布算出手段は、幅拡張手段を含む。幅拡張手段は、吸収赤外線および非吸収赤外線を、角錐状の光束となるように幅を拡張させるので、空間に対して末端が平面状に広がる赤外線を照射することができる。可視光照射手段は、漏洩濃度が最大となる位置を含む場所に幅拡張手段が光束を照射するときのタイミングと、漏洩濃度最大位置とに基づいて、漏洩濃度最大位置に可視光を照射するので、漏洩濃度最大位置またはその近傍の漏洩箇所に可視光が当り、漏洩箇所の指示を、離れた位置からでも容易に行うことができる。
【0009】
また本発明で、前記濃度分布算出手段は、前記漏洩濃度の分布状態を算出する演算処理として、前記空間の映像に漏洩濃度の分布を重ねる画像処理を行い、
前記可視光照射手段は、濃度分布算出手段による画像処理の結果に基づいて、前記濃度が最大になる位置に対応する空間内の位置として、該濃度が最大となる位置に最も近い対象物を検索し、検索される対象物に前記可視光を照射することを特徴とする。
【0010】
本発明に従えば、濃度分布算出手段は、気体の漏洩濃度の分布状態を算出する演算処理として、空間の映像に漏洩濃度の分布を重ねる画像処理を行い、可視光照射手段は、濃度分布算出手段による画像処理の結果に基づいて、気体の漏洩濃度が最大になる位置に対応する空間内の位置として、濃度が最大となる位置に最も近い対象物を検索し、検索される対象物に可視光を照射するので、検索された対象物に可視光が当り、漏洩箇所として指示することができる。
【0011】
【発明の実施の形態】
図1は、本発明の実施の一形態である気体漏洩箇所指示装置1の概略的な構成を示す。本実施形態の気体漏洩箇所指示装置1は、ガス配管2から漏洩するガスの主成分である炭化水素3を、漏洩濃度に応じる画像として可視化する。炭化水素3が漏洩している可能性が高い領域には、吸収赤外線4と非吸収赤外線5とが発光部6から照射される。吸収赤外線4および非吸収赤外線5自体は、人間の視覚では直接感知することはできない。照射された吸収赤外線4および非吸収赤外線5は、炭化水素3の漏洩している領域を通過し、壁7などの表面で反射して受光部8に到達する。受光部8は可視化画面9を備え、吸収赤外線4と非吸収赤外線5との受光強度の比率に基づいて求められるメタン3の漏洩状態画像10と、漏洩の元になっているガス配管画像11とを表示することができる。
【0012】
発光部6は、レーザ光源20を備え、複数の波長の赤外線レーザ光を発生する。レーザ光源20は、漏洩検知用レーザ21、ハーフミラー22、表示位置合せ機構23などを含む。漏洩検知用レーザ21で複数の波長のレーザ光を発振させる。また、この漏洩検知用レーザ21からは、炭化水素3によって吸収される波長λONの吸収赤外線4と、炭化水素3によって吸収されない波長λOFFの非吸収赤外線5とが発生される。さらに、位置表示用可視光レーザ24によって、漏洩箇所を指示する標識用の可視光も発生される。
【0013】
受光部8は、可視化画面9とともに、受光素子30および処理回路31を含む。受光素子30は、微小な受光セルを平面状に配列して形成される。処理回路31は、画像処理回路32および漏洩位置計算回路33を含む。画像処理回路32は、受光素子30が受光に基づいて発生する電気信号に演算処理を施して、可視化画面9で表示する漏洩濃度に応じた画像を生成する。漏洩位置計算回路33は、炭化水素3の高濃度領域近傍のガス配管2などに想定される漏洩箇所の位置を求め、表示位置合せ機構23などの光束位置合せ手段が、漏洩位置に吸収赤外線4および非吸収赤外線5を照射するタイミングで、位置表示用可視光レーザ24から可視光35を照射させる。位置表示用可視光レーザ24は、表示位置合せ機構23が拡幅する方向に関して可視光35の照射方向を変えることができる。漏洩位置計算回路33によって漏洩位置として算出される位置に可視光35が当るように、位置表示用可視光レーザ24の照射方向を変えるように制御する。これによって、可視光35は、表示位置合せ機構23から漏洩箇所37に向って照射され、漏洩箇所37をスポット状に照らして指示を行うことができる。
【0014】
なお、可視光35または非吸収赤外線5、あるいは他の波長の赤外線や光を用いて、漏洩箇所37までの距離を求めることもできる。距離を求めることができると、たとえば天井裏などに敷設されているガス配管2に対し、点検口などの開口部から漏洩状態の可視化を行って漏洩箇所37を求め、求められる距離に基づいて天井をはつって除去する範囲を決定し、漏洩箇所37を生じているガス配管2の部分を露出させて、改めて漏洩箇所37に可視光35を当てて指示させることができる。
【0015】
図2は、本実施形態の気体漏洩箇所指示装置1について、典型的な使用状態を示す。炭化水素3の漏洩が生じているガス配管2が高所に敷設されているような場合、ガス配管2を図1の可視化画面9で調べ、漏洩状態画像10が形成されていることで漏洩が生じている領域を探す。漏洩が生じている領域が可視化画面9で表示されると、図1の漏洩位置計算回路33が漏洩位置を計算し、位置表示用可視光レーザ24から可視光35を出力させて、漏洩箇所37の指示を行うことができる。たとえば、高所のガス配管2に対して、その下方の床上からで足場を組む前に漏洩箇所37を指示することができるので、足場を組む範囲を狭くすることができ、迅速に修繕作業に取りかかることができる。
【0016】
図3は、本実施形態の気体漏洩箇所指示装置1でガスの漏洩時に、その主成分である炭化水素3を可視化する原理を示す。炭化水素3は、特定の波長(周波数)の赤外線を吸収する性質がある。発光部6から炭化水素3が吸収する波長λONの吸収赤外線4と、炭化水素3が吸収しない波長λOFFの非吸収赤外線5とを照射する。照射された赤外線は、壁7や地面などで反射するので、受光部8で受けることができる。受光した2つの波長λONとλOFFとを受光する受光素子30からの受光出力を比較し、吸収赤外線4が非吸収赤外線5に比べて減少していれば、炭化水素3が存在していることが判る。また、受光出力の減少量は、炭化水素3の濃度に比例している。
【0017】
炭化水素3でたとえばメタンに対する吸収赤外線4の波長λONは、3.3μmであることが知られている。図1の漏洩探知用レーザ21から、波長λONとは異なる波長λOFFの非吸収赤外線5も発生させて、2波長の赤外線レーザ光をガス配管2などの対象物を含む空間に照射し、壁7や地面からの反射光を受光する。2波長の赤外線レーザ光を照射した空間の範囲に炭化水素3が存在している場合は、炭化水素吸収波長λONの受光強度が、非吸収波長λOFFの受光強度に比べて低くなることから、受光したそれぞれの反射光強度の比較から炭化水素3の漏洩濃度を求めることができる。漏洩を検出可能な濃度を予め試験して確認しておくことなどによって、濃度の絶対値も求めることができる。
【0018】
図1に示すような漏洩状態画像10を得るには、まず角錐状に広がる赤外線レーザ光を照射し、受光セルを面状、線状、または点状に並べた受光素子30で、反射光を検知する。これによって、受光素子30が検知するライン上での炭化水素濃度分布を計測することができる。次に、赤外線レーザ照射箇所を対象に、角錐状に広がる方向に受光することによって、対象物近辺での炭化水素3の濃度分布を面状に計測することができる。この濃度分布を元に画像処理回路32で画像処理することによって、漏洩状態画像10として可視化を行うことができる。
【0019】
図4は、本実施形態の気体漏洩装置1で炭化水素3の漏洩状態の可視化を行っているイメージを示す。気体漏洩可視化および測距装置1は、いわゆるノート型のパーソナルコンピュータなどを利用して形成する。たとえば図1の可視化画面9は、液晶表示装置などのディスプレイ画面を利用する。図1の発光部6や受光素子30は、アダプタとして付加する。メタンの検知感度として10ppm、検知距離として5mの性能の装置を、重量5kgに納めて形成することができる。なお、吸収赤外線4および非吸収赤外線5は、角錐状に延びるビームとして発生し、面状の可視化画像を得ることもできる。
【0020】
図5は、本実施形態の気体漏洩箇所指示装置1を運転して、炭化水素漏洩箇所の指示を行う手順を示す。ステップs0で電源をONにして投入し、暖機運転を行った後、ステップs1では、図1のレーザ光源20から波長λONの吸収赤外線4を出力する。ステップs2では、吸収赤外線4を受光する。ステップs3では、レーザ光源20から、波長λOFFの非吸収赤外線5を出力する。ステップs4では、非吸収赤外線5を受光する。ステップs5では、背景からの光を受光する。
【0021】
ステップs6では、ステップs2およびステップs4で受光する吸収波長λONと非吸収波長λOFFとの画像について差分処理を行い、非吸収波長λOFFによる画像に差分画像を重畳する。吸収波長λONと非吸収波長λOFFとの画像に加えて、ステップs5で背景光を受光して、ノイズを低減することができる。得られる画像は、炭化水素の漏洩濃度を表すので、漏洩量が最大値となる位置を計算して求める。漏洩量が最大の位置は、濃度が一定以上の領域の重心位置などとして求めることもできる。
【0022】
ステップs7では、ステップs6で得られる画像での漏洩位置情報に基づき、実際の空間での漏洩位置の計算を行い、位置表示用可視光レーザ24から可視光を照射する方向とタイミングとを制御する。ステップs8で、所定のタイミングになると、位置表示用可視光レーザ24から可視光35のレーザ出力が行われ、漏洩箇所37の指示を行うことができる。ステップs8の後で、ステップs1に戻り、以下ステップs1〜ステップs8を繰返す。
【0023】
なお、吸収波長λONおよび非吸収波長λOFFの赤外線は別々に照射して受光しているけれども、受光素子30からの出力を波長に応じて弁別すれば、同時に照射して受光することもできる。また、漏洩箇所を指示するための可視光35は、レーザ光源20とは独立に、たとえば気体漏洩箇所指示装置1の筐体の外部に取付ける光源から、漏洩位置計算回路33が幾何学的な配置に基づく計算で求める方向に発生させることもできる。また、画像処理回路32によるメタンの漏洩濃度の算出や最大濃度となる位置の計算は、必ずしも可視化画面9で漏洩状態の表示を伴わなくても可能であるので、表示を行わないで漏洩箇所37の指示だけを行うようにすることもできる。
【0024】
以上で説明した実施形態では、ガスの主成分である炭化水素の漏洩検知を行っているけれども、検知対象となる気体に応じて吸収波長を選択すれば、都市ガスの主成分メタン以外の炭化水素、たとえばボンベに詰めてガス燃料として多く使用されているプロパンにも、本発明を同様に適用することができる。さらに、気体に応じて赤外線以外の波長を選択すれば、種々の気体の漏洩検知に本発明を適用することができる。
【0025】
【発明の効果】
以上のように本発明によれば、気体の漏洩箇所では濃度が高く、漏洩箇所から離れると気体は拡散して濃度が低くなるので、漏洩濃度の分布で濃度が最大となる位置に対応する空間内の位置に標識用の可視光を照射すれば、配管の漏洩箇所などに可視光が当り、離れた位置からでも判りやすい漏洩箇所の指示を行うことができる。
【0026】
また、吸収赤外線と非吸収赤外線とを、角錐状の光束となるように拡張させて、漏洩箇所を含む気体の漏洩濃度の分布を求めることができる。可視光は、漏洩濃度が最大となる位置を含む方向に光束を照射するときのタイミングと、幅方向内での漏洩濃度最大位置とに基づいて、照射するので、漏洩濃度最大位置またはその近傍の漏洩箇所に可視光が当り、漏洩箇所の指示を離れた位置からでも容易に行うことができる。
【0027】
また本発明によれば、空間の映像に漏洩濃度の分布を重ねる画像処理の結果に基づいて、濃度が最大となる位置に最も近い対象物を検索し、検索される対象物に可視光を照射するので、検索された対象物に可視光が当り、漏洩箇所として指示することができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態である気体漏洩箇所指示装置1の概略的な構成を示すブロック図である。
【図2】図1の気体漏洩箇所指示装置1の使用状態を示す簡略化した斜視図である。
【図3】図1の気体漏洩箇所指示装置1で、ガスの漏洩時に、その主成分である炭化水素3を可視化する原理を示す図である。
【図4】図1の気体漏洩可視化および測距装置1で炭化水素3の漏洩状態の可視化を行っているイメージを示す図である。
【図5】図1の気体漏洩箇所指示装置1の運転手順を示すフローチャートである。
【符号の説明】
1 気体漏洩箇所指示装置
2 ガス配管
3 炭化水素
4 吸収赤外線
5 非吸収赤外線
6 発光部
8 受光部
9 可視化画面
10 漏洩状態画像
11 ガス配管画像
20 レーザ光源
21 漏洩探知用レーザ
23 表示位置合せ機構
24 位置表示用可視光レーザ
30 受光素子
32 画像処理回路
33 漏洩位置計算回路
35 可視光
37 漏洩箇所
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas leakage point indicating device capable of detecting and indicating a gas leakage point of a hydrocarbon compound.
[0002]
[Prior art]
Conventionally, since city gas has been mainly composed of methane, which is a hydrocarbon compound, whether or not it is leaking is determined by detecting the hydrocarbon concentration. In addition, since all the natural components of city gas including methane are odorless, a specific odor is added so that leakage can be seen even by human odor. When a city gas leak is detected, it is necessary to clarify the cause and take countermeasures. If the leak is noticeable, such as when the hose is disconnected, the cause can be easily determined by the city gas user and the leak can be stopped. When there is a leak from a high-pipe, etc., it is necessary to work at a high place with a scaffold or the like to repair the leak.
[0003]
[Problems to be solved by the invention]
City gas is colorless and transparent, and even when leakage occurs, it is generally a very small amount, so it is difficult to determine the leakage location. When there is a leak from high-altitude piping, it is necessary to build a scaffold and perform high-altitude work. Furthermore, since it is a dangerous work, a quick work is required. However, if you do not actually perform the height work with the scaffolding, you will not know the leak location, so invest a great deal of effort, build the scaffolding over a wide area, and work at the height on the scaffolding We work on fixing and repairing the leak location.
[0004]
An object of the present invention is to provide a gas leakage point indicating device that can directly indicate a gas leakage point even from a remote position.
[0005]
[Means for Solving the Problems]
The present invention irradiates a space where there is a possibility of gas leakage with an absorption infrared ray having a wavelength that is absorbed by the gas to be detected and a non-absorption infrared ray having a wavelength that is not absorbed by the gas, and passes through the space. A concentration distribution calculating unit that receives the absorbed infrared rays and the non-absorbed infrared rays reflected by the light source and performs a calculation process for calculating a distribution state of the leakage concentration of the gas based on a ratio of the received light amounts of the absorbed infrared rays and the non-absorbed infrared rays; ,
Visible light irradiating means for irradiating visible light for labeling at a position in the space corresponding to the position where the density is maximum in the distribution state of the leakage density calculated by the density distribution calculating means It is a gas leak location indicating device.
[0006]
According to the present invention, the gas leakage point indicating device includes a concentration distribution calculating unit and a visible light irradiation unit. The concentration distribution calculating means irradiates a space where there is a possibility of gas leakage with an absorption infrared ray having a wavelength that is absorbed by the gas to be detected and a non-absorption infrared ray having a wavelength that is not absorbed by the gas. Absorption infrared rays and non-absorption infrared rays that have passed through and reflected are received, and calculation processing is performed to calculate the distribution state of the leakage concentration of the gas based on the ratio of the amount of received light between the absorption infrared rays and the non-absorption infrared rays. The visible light irradiating means irradiates the visible light for the label to a position in the space corresponding to the position where the density is maximum in the leakage density distribution state calculated by the density distribution calculating means. When the gas leaks, the concentration is high at the leaked portion, and when the gas is separated from the leaked portion, the gas diffuses and the concentration becomes low. Therefore, there is a high possibility that the position where the concentration is the highest in the distribution of leakage concentration is the location where the gas leaks or is in the immediate vicinity, and the position in the space corresponding to the position where the concentration is maximum in the distribution of leakage concentration is marked. If the visible light is irradiated, visible light hits the leaked part of the pipe and the like, and it is possible to instruct the leaked part that is easily understood from a remote position. Since it is possible to optically indicate the location of gas leakage from a remote location, even if there is a leak in a high-level piping, the location of the leakage is accurately indicated before assembling the scaffolding, and quick repair work is performed. Can be performed efficiently.
[0007]
The concentration distribution calculating means includes
A width expansion means for expanding the width of the absorption infrared ray and the non-absorption infrared ray so that a measurement surface spreads;
The visible light irradiating means has the leakage density maximum position on the basis of the timing when the width expanding means irradiates the light beam at the position where the leakage density becomes maximum and the leakage density maximum position in the plane. It can also be configured to emit visible light.
[0008]
According to this configuration, the concentration distribution calculating unit that performs the calculation process of calculating the distribution state of the leakage concentration of the gas based on the ratio of the amount of received light between the absorbing infrared rays and the non-absorbing infrared rays includes the width expanding unit. Since the width expanding means expands the width of the absorbing infrared rays and the non-absorbing infrared rays so as to form a pyramidal light beam, it is possible to irradiate the infrared rays whose ends are flattened with respect to the space. The visible light irradiating means irradiates visible light at the maximum leakage density position based on the timing when the width expanding means irradiates the light flux to the place including the position where the leakage density is maximum and the maximum leakage density position. Visible light hits a leaking location at or near the leak concentration maximum position, and the indication of the leaking location can be easily performed from a remote location.
[0009]
Further, in the present invention, the density distribution calculating means performs image processing for superimposing the leakage density distribution on the image of the space as a calculation process for calculating the distribution state of the leakage density,
The visible light irradiation means searches for an object closest to the position where the density is maximum as a position in the space corresponding to the position where the density is maximum based on the result of image processing by the density distribution calculation means. The object to be searched is irradiated with the visible light.
[0010]
According to the present invention, the concentration distribution calculating means performs image processing for superimposing the leakage concentration distribution on the image of the space as the calculation process for calculating the distribution state of the gas leakage concentration, and the visible light irradiation means calculates the concentration distribution. Based on the result of the image processing by the means, the object closest to the position where the concentration is maximum is searched as the position in the space corresponding to the position where the gas leakage concentration is maximum, and is visible to the searched object. Since the light is irradiated, visible light hits the searched object and can be designated as a leaked portion.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic configuration of a gas leak location indicating device 1 according to an embodiment of the present invention. The gas leak location indicating device 1 of the present embodiment visualizes the hydrocarbon 3 that is the main component of the gas leaking from the gas pipe 2 as an image corresponding to the leak concentration. The region where the hydrocarbon 3 is highly likely to leak is irradiated with the absorbing infrared ray 4 and the non-absorbing infrared ray 5 from the light emitting unit 6. Absorbing infrared rays 4 and non-absorbing infrared rays 5 themselves cannot be directly detected by human vision. Irradiated absorbed infrared rays 4 and non-absorbed infrared rays 5 pass through a region where hydrocarbon 3 leaks, and are reflected by the surface such as wall 7 to reach light receiving portion 8. The light receiving unit 8 includes a visualization screen 9, a leakage state image 10 of methane 3 that is obtained based on a ratio of received light intensity of the absorbed infrared rays 4 and the non-absorbed infrared rays 5, and a gas pipe image 11 that is a source of leakage. Can be displayed.
[0012]
The light emitting unit 6 includes a laser light source 20 and generates infrared laser beams having a plurality of wavelengths. The laser light source 20 includes a leak detection laser 21, a half mirror 22, a display alignment mechanism 23, and the like. The leakage detection laser 21 oscillates laser light having a plurality of wavelengths. Further, the leakage detection laser 21 generates an absorption infrared ray 4 having a wavelength λON that is absorbed by the hydrocarbon 3 and a non-absorption infrared ray 5 having a wavelength λOFF that is not absorbed by the hydrocarbon 3. Further, visible light for marking that indicates a leaking location is also generated by the visible light laser 24 for position display.
[0013]
The light receiving unit 8 includes a light receiving element 30 and a processing circuit 31 together with the visualization screen 9. The light receiving element 30 is formed by arranging minute light receiving cells in a planar shape. The processing circuit 31 includes an image processing circuit 32 and a leakage position calculation circuit 33. The image processing circuit 32 performs arithmetic processing on the electric signal generated by the light receiving element 30 based on light reception, and generates an image corresponding to the leakage density displayed on the visualization screen 9. The leak position calculation circuit 33 obtains the position of a leak point assumed in the gas pipe 2 or the like in the vicinity of the high concentration region of the hydrocarbon 3, and the light beam alignment means such as the display alignment mechanism 23 absorbs the infrared ray 4 at the leak position. The visible light 35 is irradiated from the visible light laser 24 for position display at the timing when the non-absorbing infrared ray 5 is irradiated. The visible light laser 24 for position display can change the irradiation direction of the visible light 35 with respect to the direction in which the display alignment mechanism 23 widens. Control is performed so as to change the irradiation direction of the visible light laser 24 for position display so that the visible light 35 strikes the position calculated as the leakage position by the leakage position calculation circuit 33. As a result, the visible light 35 is emitted from the display alignment mechanism 23 toward the leakage location 37, and an instruction can be given by illuminating the leakage location 37 in a spot shape.
[0014]
In addition, the distance to the leak location 37 can also be calculated | required using the visible light 35, the non-absorbing infrared rays 5, or the infrared rays and light of another wavelength. When the distance can be obtained, for example, the leakage state 37 is obtained by visualizing the leakage state from the opening such as the inspection port for the gas pipe 2 laid on the back of the ceiling, and the ceiling is obtained based on the obtained distance. The range to be removed can be determined by exposing the portion of the gas pipe 2 where the leaking portion 37 is generated, and the visible portion 35 can be instructed by applying the visible light 35 to the leaking portion 37 again.
[0015]
FIG. 2 shows a typical use state of the gas leak location indicating device 1 of the present embodiment. When the gas pipe 2 in which the hydrocarbon 3 has leaked is laid at a high place, the gas pipe 2 is examined on the visualization screen 9 in FIG. Look for the area that is occurring. When an area where leakage occurs is displayed on the visualization screen 9, the leakage position calculation circuit 33 in FIG. 1 calculates the leakage position, outputs visible light 35 from the position-displaying visible light laser 24, and leaks 37 Can be instructed. For example, since the leak location 37 can be instructed to the gas pipe 2 at a high place before assembling the scaffold from above the floor below, the range for assembling the scaffold can be narrowed, and repair work can be performed quickly. Can get started.
[0016]
FIG. 3 shows the principle of visualizing the hydrocarbon 3 which is the main component at the time of gas leakage in the gas leakage point indicating device 1 of the present embodiment. The hydrocarbon 3 has a property of absorbing infrared rays having a specific wavelength (frequency). The light emitting unit 6 irradiates an absorption infrared ray 4 having a wavelength λON absorbed by the hydrocarbon 3 and a non-absorption infrared ray 5 having a wavelength λOFF that is not absorbed by the hydrocarbon 3. The irradiated infrared rays are reflected by the wall 7 or the ground, and can be received by the light receiving unit 8. If the received light output from the light receiving element 30 that receives the two received wavelengths λON and λOFF is compared, and the absorbed infrared ray 4 is reduced compared to the non-absorbed infrared ray 5, hydrocarbons 3 are present. I understand. Further, the amount of decrease in the received light output is proportional to the concentration of the hydrocarbon 3.
[0017]
It is known that the wavelength λON of the absorbed infrared rays 4 for hydrocarbons 3 for example methane is 3.3 μm. A non-absorbing infrared ray 5 having a wavelength λOFF different from the wavelength λON is also generated from the leakage detection laser 21 shown in FIG. 1, and a two-wavelength infrared laser beam is applied to a space including an object such as the gas pipe 2, and the wall 7 Receives reflected light from the ground. When the hydrocarbon 3 exists in the range of the space irradiated with the two-wavelength infrared laser light, the received light intensity at the hydrocarbon absorption wavelength λON is lower than the received light intensity at the non-absorption wavelength λOFF. The leakage concentration of the hydrocarbon 3 can be obtained from the comparison of the reflected light intensities. The absolute value of the concentration can also be obtained, for example, by testing and confirming the concentration at which leakage can be detected in advance.
[0018]
In order to obtain a leakage state image 10 as shown in FIG. 1, first, an infrared laser beam spreading in a pyramid shape is irradiated, and reflected light is reflected by a light receiving element 30 in which light receiving cells are arranged in a planar shape, a linear shape, or a dot shape. Detect. Thereby, the hydrocarbon concentration distribution on the line detected by the light receiving element 30 can be measured. Next, the concentration distribution of the hydrocarbon 3 in the vicinity of the object can be measured in a planar shape by receiving light in the direction of spreading in a pyramid shape with respect to the infrared laser irradiation site. By performing image processing by the image processing circuit 32 based on this density distribution, it is possible to visualize the leakage state image 10.
[0019]
FIG. 4 shows an image in which the leakage state of the hydrocarbon 3 is visualized by the gas leakage device 1 of the present embodiment. The gas leakage visualization and ranging device 1 is formed using a so-called notebook personal computer or the like. For example, the visualization screen 9 in FIG. 1 uses a display screen such as a liquid crystal display device. The light emitting unit 6 and the light receiving element 30 in FIG. 1 are added as adapters. An apparatus having a detection sensitivity of 10 ppm for methane and a detection distance of 5 m can be formed in a weight of 5 kg. The absorbing infrared rays 4 and the non-absorbing infrared rays 5 are generated as beams extending in a pyramid shape, and a planar visualization image can be obtained.
[0020]
FIG. 5 shows a procedure for operating the gas leak location indicating apparatus 1 of the present embodiment and instructing a hydrocarbon leak location. In step s0, the power is turned on and turned on, and the warm-up operation is performed. Then, in step s1, the infrared ray 4 having the wavelength λON is output from the laser light source 20 in FIG. In step s2, the absorbed infrared ray 4 is received. In step s3, the laser light source 20 outputs the non-absorbing infrared ray 5 having the wavelength λOFF. In step s4, the non-absorbing infrared ray 5 is received. In step s5, light from the background is received.
[0021]
In step s6, difference processing is performed on the image of the absorption wavelength λON and the non-absorption wavelength λOFF received in steps s2 and s4, and the difference image is superimposed on the image of the non-absorption wavelength λOFF. In addition to the images of the absorption wavelength λON and the non-absorption wavelength λOFF, background light is received in step s5, and noise can be reduced. Since the obtained image represents the leakage concentration of hydrocarbons, the position at which the leakage amount is maximum is calculated and obtained. The position where the leakage amount is maximum can also be obtained as the position of the center of gravity of an area where the density is a certain level or more.
[0022]
In step s7, the leakage position in the actual space is calculated based on the leakage position information in the image obtained in step s6, and the direction and timing of irradiating visible light from the position display visible light laser 24 are controlled. . In step s8, when the predetermined timing comes, laser output of visible light 35 is performed from the position-displaying visible light laser 24, and the leakage location 37 can be instructed. After step s8, the process returns to step s1, and thereafter steps s1 to s8 are repeated.
[0023]
The infrared rays having the absorption wavelength λON and the non-absorption wavelength λOFF are separately irradiated and received. However, if the output from the light receiving element 30 is discriminated according to the wavelength, it can be simultaneously irradiated and received. In addition, the visible light 35 for indicating the leak location is arranged geometrically by the leak position calculation circuit 33 from a light source attached to the outside of the casing of the gas leak location indicating device 1 independently of the laser light source 20, for example. It can also be generated in the direction obtained by calculation based on. Further, the calculation of the leakage concentration of methane and the calculation of the position where the maximum concentration can be performed by the image processing circuit 32 can be performed without necessarily displaying the leakage state on the visualization screen 9. It is also possible to give only instructions.
[0024]
In the embodiment described above, although leakage detection of hydrocarbons that are the main components of gas is performed, if the absorption wavelength is selected according to the gas to be detected, hydrocarbons other than the main component methane of city gas For example, the present invention can be similarly applied to propane, which is often used as gas fuel in a cylinder. Furthermore, if wavelengths other than infrared rays are selected according to gas, this invention is applicable to the detection of various gas leaks.
[0025]
【The invention's effect】
As described above, according to the present invention, since the concentration is high at the leaked portion of the gas, and the gas diffuses and decreases in concentration when leaving the leaked portion, the space corresponding to the position where the concentration is maximized in the distribution of the leaked concentration. If visible light for marking is irradiated to the inside position, visible light hits a leaked portion of a pipe and the like, and it is possible to give an indication of a leaked portion that can be easily understood from a remote location.
[0026]
Further, the distribution of the leakage concentration of the gas including the leaked portion can be obtained by expanding the absorbing infrared rays and the non-absorbing infrared rays so as to form a pyramidal light beam. Visible light is irradiated based on the timing when the light beam is irradiated in the direction including the position where the leakage density becomes maximum and the leakage density maximum position in the width direction. Visible light hits the leaked part, and the instruction of the leaked part can be easily performed from a remote location.
[0027]
Further, according to the present invention, based on the result of the image processing that superimposes the leakage density distribution on the image of the space, the object closest to the position where the density is maximum is searched, and the object to be searched is irradiated with visible light. Therefore, visible light hits the searched object, and can be designated as a leaked portion.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of a gas leak location indicating device 1 according to an embodiment of the present invention.
FIG. 2 is a simplified perspective view showing a use state of the gas leak location indicating device 1 of FIG. 1;
3 is a diagram showing the principle of visualizing hydrocarbon 3 as a main component when gas leaks in the gas leak location indicating device 1 of FIG. 1; FIG.
4 is a diagram showing an image of visualizing the leakage state of hydrocarbon 3 in the gas leakage visualization and ranging device 1 of FIG.
FIG. 5 is a flowchart showing an operation procedure of the gas leak location indicating device 1 of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas leak location indication apparatus 2 Gas piping 3 Hydrocarbon 4 Absorbing infrared rays 5 Non-absorbing infrared rays 6 Light emission part 8 Light receiving part 9 Visualization screen 10 Leakage state image 11 Gas piping image 20 Laser light source 21 Leak detection laser 23 Display alignment mechanism 24 Visible light laser 30 for position display Light receiving element 32 Image processing circuit 33 Leakage position calculation circuit 35 Visible light 37 Leakage location

Claims (2)

検知対象となる気体によって吸収される波長の吸収赤外線と、該気体によっては吸収されない波長の非吸収赤外線とを、気体漏洩の可能性がある空間に照射し、該空間を通過して反射してきた吸収赤外線と非吸収赤外線とを受光し、吸収赤外線と非吸収赤外線との受光量の比率に基づいて該気体の漏洩濃度の分布状態を算出する演算処理を行う濃度分布算出手段と、
濃度分布算出手段によって算出される漏洩濃度の分布状態で濃度が最大となる位置に対応する該空間内の位置に、標識用の可視光を照射する可視光照射手段とを含むことを特徴とする気体漏洩箇所指示装置。
Irradiated infrared rays having a wavelength that is absorbed by the gas to be detected and non-absorbing infrared rays having a wavelength that is not absorbed by the gas to a space where there is a possibility of gas leakage, and reflected through the space. A concentration distribution calculating means for receiving absorption infrared rays and non-absorbing infrared rays, and performing calculation processing for calculating a distribution state of leakage concentration of the gas based on a ratio of received light amounts of the absorbing infrared rays and the non-absorbing infrared rays;
Visible light irradiating means for irradiating visible light for labeling at a position in the space corresponding to the position where the density is maximum in the distribution state of the leakage density calculated by the density distribution calculating means Gas leak location indicator.
前記濃度分布算出手段は、前記漏洩濃度の分布状態を算出する演算処理として、前記空間の映像に漏洩濃度の分布を重ねる画像処理を行い、
前記可視光照射手段は、濃度分布算出手段による画像処理の結果に基づいて、前記濃度が最大になる位置に対応する空間内の位置として、該濃度が最大となる位置に最も近い対象物を検索し、検索される対象物に前記可視光を照射することを特徴とする請求項1記載の気体漏洩箇所指示装置。
The density distribution calculating means performs image processing for superimposing the leakage density distribution on the image of the space as a calculation process for calculating the distribution state of the leakage density,
The visible light irradiation means searches for an object closest to the position where the density is maximum as a position in the space corresponding to the position where the density is maximum, based on the result of image processing by the density distribution calculation means. The gas leak location indicating device according to claim 1, wherein the visible light is irradiated to an object to be searched.
JP2002096267A 2002-03-29 2002-03-29 Gas leak location indicator Expired - Fee Related JP3725832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002096267A JP3725832B2 (en) 2002-03-29 2002-03-29 Gas leak location indicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096267A JP3725832B2 (en) 2002-03-29 2002-03-29 Gas leak location indicator

Publications (2)

Publication Number Publication Date
JP2003294573A JP2003294573A (en) 2003-10-15
JP3725832B2 true JP3725832B2 (en) 2005-12-14

Family

ID=29239406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096267A Expired - Fee Related JP3725832B2 (en) 2002-03-29 2002-03-29 Gas leak location indicator

Country Status (1)

Country Link
JP (1) JP3725832B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088733A1 (en) * 2014-12-01 2016-06-09 コニカミノルタ株式会社 Optical detection device
CN111434973A (en) * 2019-01-14 2020-07-21 中昊晨光化工研究院有限公司 Method for detecting high-risk medium pipeline conveying leakage
CN112254902A (en) * 2020-12-08 2021-01-22 南京智谱科技有限公司 Method and device for generating three-dimensional laser point cloud picture based on laser and visible light scanning

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712438B2 (en) * 2005-05-16 2011-06-29 三菱電機株式会社 Gas leak visualization device
JP4821374B2 (en) * 2006-03-06 2011-11-24 Jfeスチール株式会社 Gas leak detection method
CN100387899C (en) * 2006-04-07 2008-05-14 聚光科技(杭州)有限公司 Gas transmitter operation control method and gas transmitter thereof
DE102008047151B3 (en) * 2008-09-12 2010-06-17 Universität Kassel Designed as a robot device for autonomous, unmanned detection of leaks under substance release to the environment of pressurized systems, especially piping systems, and methods for operating such a robot
JP5946993B2 (en) * 2011-01-27 2016-07-06 日本信号株式会社 Liquid oil leak detection device
JP2014185914A (en) * 2013-03-22 2014-10-02 Mitsubishi Heavy Ind Ltd Device and method for detecting fuel leakage
JP6848965B2 (en) * 2016-04-14 2021-03-24 コニカミノルタ株式会社 Gas monitoring programs, systems, recording media and methods
JP6711218B2 (en) * 2016-09-08 2020-06-17 Jfeエンジニアリング株式会社 Damage inspection device and method for above-ground structure
CN108240557A (en) * 2016-12-27 2018-07-03 中国石油天然气股份有限公司 Natural gas transmission pipelines leak detection system
CN107035972B (en) * 2017-03-24 2019-04-23 北京华夏艾科激光科技有限公司 A kind of automobile-used intelligent inspection system of gas pipe inspection
US10473550B2 (en) * 2017-06-30 2019-11-12 Aurora Innovative Technology LLC Multi-laser gas leakage detector
CN109237310A (en) * 2018-05-08 2019-01-18 拉萨市暖心供暖供气服务有限责任公司 A kind of gas ductwork monitoring method based on narrowband Internet of Things
CN109358542A (en) * 2018-10-20 2019-02-19 河南汇纳科技有限公司 A kind of gas leakage monitoring system based on LoRa wireless network
CN110108651A (en) * 2019-05-31 2019-08-09 杭州国翌科技有限公司 Gas leak point positioning device
CN110332466A (en) * 2019-07-03 2019-10-15 上海市城市建设设计研究总院(集团)有限公司 Water supply line leak detection method based on distribution type fiber-optic sonic transducer
CN110501124A (en) * 2019-08-23 2019-11-26 北京航星网讯技术股份有限公司 The laser gas of program-controlled lifting and horizontal sweep detects cradle head device
CN110513604B (en) * 2019-09-09 2021-07-23 朱晓斌 LNG station leakage intelligent detection system based on multi-source image and detection method thereof
CN110878913A (en) * 2019-11-26 2020-03-13 北部湾大学 Safety protection early warning system for natural gas vertical pipe of high-rise building
CN111562056B (en) * 2020-05-23 2021-02-19 北京富吉瑞光电科技股份有限公司 Gas leakage concentration quantitative detection device and method based on infrared thermal imaging technology
CN111929268B (en) * 2020-08-15 2023-06-23 新疆新业能源化工有限责任公司 Reaction kettle gas leakage monitoring device and positioning method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2549413B2 (en) * 1988-02-22 1996-10-30 出光興産株式会社 Leak detection system
JP3074024B2 (en) * 1991-01-31 2000-08-07 能美防災株式会社 Test method of fire extinguishing system for television and camera
JPH04295737A (en) * 1991-03-26 1992-10-20 Osaka Gas Co Ltd Gas-leakage detecting apparatus
JPH06288858A (en) * 1993-03-31 1994-10-18 Osaka Gas Co Ltd Gas visualizer
JPH07182578A (en) * 1993-12-24 1995-07-21 Matsushita Electric Works Ltd Sensor direction setting device, sensor with direction display function and its sensor direction setting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088733A1 (en) * 2014-12-01 2016-06-09 コニカミノルタ株式会社 Optical detection device
JPWO2016088733A1 (en) * 2014-12-01 2017-09-14 コニカミノルタ株式会社 Optical detector
CN111434973A (en) * 2019-01-14 2020-07-21 中昊晨光化工研究院有限公司 Method for detecting high-risk medium pipeline conveying leakage
CN112254902A (en) * 2020-12-08 2021-01-22 南京智谱科技有限公司 Method and device for generating three-dimensional laser point cloud picture based on laser and visible light scanning

Also Published As

Publication number Publication date
JP2003294573A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
JP3725832B2 (en) Gas leak location indicator
JP3040474B2 (en) Photoacoustic leak detection and method
US8242445B1 (en) Portable multi-function inspection systems and methods
US5523569A (en) Apparatus for detecting leakages in structural members
US8017928B2 (en) LED fluorometer with remote detection capability
JP6712418B2 (en) Nondestructive inspection device and method
CN112154320B (en) Defect detection method and device
JP4286970B2 (en) Gas visualization device and gas visualization method
CN104640499B (en) The control method of subject information acquisition device and subject information acquisition device
JP2003294567A (en) Gas leak visualizing and distance measuring device
WO2005015183A1 (en) Method and device for monitoring hydrogen gas and hydrogen flame
JP2009174920A (en) Optical combustible gas concentration detection method and optical combustible gas concentration detector
EP3671205B1 (en) Laser ultrasound imaging for determining structural characteristics
JP4712438B2 (en) Gas leak visualization device
JP5725528B2 (en) Beam parallelism measuring device
TWI707132B (en) Gas measurement method of tunnel space infrared spectrometer
ES2908830T3 (en) Device and method for remote sensing of a target gas
JP6748933B2 (en) Terahertz irradiation position visualization device
KR100732349B1 (en) Apparatus for inspecting the substrate
EP3502674A1 (en) Testing of curved x-ray gratings
WO2022085591A1 (en) Nondestructive inspecting device, and nondestructive inspecting method
KR20190042359A (en) Apparatus for detecting leakage gas, Method thereof, and Storage medium having the same
WO2022157923A1 (en) Liquid leak detection device, liquid leak detection system, liquid leak detection method, and recording medium
JP2005241348A (en) Sound field visualizing/measuring instrument
JP3642108B2 (en) Scintillation fiber bundle shading performance testing device and radiation deep dose measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees