JP3725627B2 - Ultrasonic continuous wave Doppler diagnostic device - Google Patents

Ultrasonic continuous wave Doppler diagnostic device Download PDF

Info

Publication number
JP3725627B2
JP3725627B2 JP23381396A JP23381396A JP3725627B2 JP 3725627 B2 JP3725627 B2 JP 3725627B2 JP 23381396 A JP23381396 A JP 23381396A JP 23381396 A JP23381396 A JP 23381396A JP 3725627 B2 JP3725627 B2 JP 3725627B2
Authority
JP
Japan
Prior art keywords
probe
transmission
angle
transducers
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23381396A
Other languages
Japanese (ja)
Other versions
JPH1075954A (en
Inventor
哲 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Denshi Co Ltd
Original Assignee
Fukuda Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Denshi Co Ltd filed Critical Fukuda Denshi Co Ltd
Priority to JP23381396A priority Critical patent/JP3725627B2/en
Publication of JPH1075954A publication Critical patent/JPH1075954A/en
Application granted granted Critical
Publication of JP3725627B2 publication Critical patent/JP3725627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、フェーズドアレイ型探触子による超音波連続波の送受波により、被検体内を流れる血流等の運動体の流速を計測する超音波連続波ドプラー診断装置に関する。
【0002】
【従来の技術】
この種の超音波連続波ドプラー診断装置ではフェーズドアレイ型探触子を備え、複数の送信用振動子により被検体の計測目標部位に超音波連続波を送波し、その目標部位からの反射エコーを受信用振動子により受波する。このような例の概要を図9に示す。
すなわち、プローブ(探触子)1のうちの送信用として割り当てられている複数の送信振動子11から目標部位Dに超音波連続波を送波し、受信用として割り当てられている複数の受信振動子12により、目標部位Dからの反射波を受波する。このとき、送波,受波ともに目標部位Dまでの距離,角度に応じて振動子間の遅延制御が行なわれる。
【0003】
【発明が解決しようとする課題】
ところで、このような診断装置の送受波総合感度(フェーズドアレイ型探触子で送受波した場合に、各受信用振動子で得られるエコー信号を遅延合成して求めた受信信号レベルの大きさのこと)は、目標部位が探触子の正面方向付近から左右に大きくずれていると(例えば±45度)、大幅に低下する傾向があることが指摘されている。これは、主としてフェーズドアレイ型探触子を構成する振動子のエレメントファクター(指向性)に起因する。このエレメントファクターは基本的には、振動子の幅と超音波の波長の比で決まるものであるが、実際には振動子間の干渉により角度が大きいと理論値よりかなり感度が低下する。
【0004】
図10はエレメントファクターの1例で、駆動電圧で励振した振動子から一定距離(例えば50mm)の円弧上の音圧分布を示すものである。同図の横軸は、振動子から円弧上にある各着目点を見た角度で振動子の正面方向を0度としたもの、縦軸は各着目点での音圧レベルで正面方向での値を基準(0db)として示したものである。また、破線は理論値、実線は実際値を示している。
したがって、この発明の課題は、目標部位が探触子の正面方向付近にある場合から左右に大きくずれている場合(例えば±45度)でも、送受波総合感度を極力低下させないようにすることにある。
【0005】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、フェーズドアレイ型探触子による超音波連続波の送受波で血流を含む運動体の流速を計測する超音波連続波ドプラー診断装置において、
前記探触子の全振動子のうち、送信用振動子の数と受信用振動子の数の配分を変更可能にし、計測目標部位の探触子正面方向となす角度が大きいほど送信用振動子の数を多くし、受信用振動子の数を少なくするようにしている。
【0006】
請求項2の発明では、フェーズドアレイ型探触子による超音波連続波の送受波で血流を含む運動体の流速を計測する超音波連続波ドプラー診断装置において、
前記探触子の送信用振動子に印加される駆動電圧を変更可能にし、計測目標部位の探触子正面方向となす角度が大きいほど駆動電圧を高くする。
請求項3の発明では、フェーズドアレイ型探触子による超音波連続波の送受波で血流を含む運動体の流速を計測する超音波連続波ドプラー診断装置において、
前記探触子の送信用振動子と受信用振動子の位置関係を変更可能にし、計測目標部位が探触子正面方向より右側にある場合、探触子の右側を送信用に左側を受信用にし、計測目標部位が探触子正面方向より左側にある場合、探触子の左側を送信用に右側を受信用にする。
【0007】
請求項4の発明では、フェーズドアレイ型探触子による超音波連続波の送受波で血流を含む運動体の流速を計測する超音波連続波ドプラー診断装置において、
(1)前記探触子の全振動子のうち、送信用振動子の数と受信用振動子の数の配分を変更可能にし、計測目標部位の探触子正面方向となす角度が大きいほど送信用振動子の数を多くし、受信用振動子の数を少なくする、
(2)前記探触子の送信用振動子に印加される駆動電圧を変更可能にし、計測目標部位の探触子正面方向となす角度が大きいほど駆動電圧を高くする、
(3)前記探触子の送信用振動子と受信用振動子の位置関係を変更可能にし、
計測目標部位が探触子正面方向より右側にある場合、探触子の右側を送信用に左側を受信用にし、計測目標部位が探触子正面方向より左側にある場合、探触子の左側を送信用に右側を受信用にする、
の少なくとも2項目以上を組合わせて構成するようにしている。
【0008】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す概念図で、同図(イ)は目標部位が探触子正面方向付近にある場合を示し、同図(ロ)は目標部位が探触子正面方向に対して大きな角度を持つ場合を示している。
図2はプローブ中心から一定距離(例えば50mm)の円弧上にある目標部位に対して送受波する場合に、送波される超音波ビーム上の音圧ピーク値と角度th(プローブ中心から目標部位を見た角度:図9参照)の関係を、送信振動子数(k)をパラメータとして示している。ただし、送信振動子の駆動電圧レベルは一定とする。同図の横軸は角度thを、縦軸は超音波ビーム上の音圧ピーク値(許容音圧最大値で正規化)を示す。ここで、振動子のエレメントファクターは図10の実際値を想定している。また、図3は図2に対応する送受波総合感度の角度依存性を示すものである。プローブの振動子総数を64個とし、送信用でないものは全て受信用とする。
【0009】
図2の例では、目標部位の角度thが0度の場合、送信振動子数12個で送波される超音波ビーム上の音圧ピーク値が許容音圧最大値(0db)になっている。そこで、目標部位の角度に関わらず12個の振動子を送信用とした場合、送受波総合感度は図3に実線で示す特性となる。これに対し、例えば目標部位の角度が−45度のとき20個の振動子を送信用とし、+30度のとき16個の振動子を送信用とし、+45度のとき26個の振動子を送信用として用いるようにすると、そのときの送受波総合感度は図3に一点鎖線で示す特性となり、実線の特性に比べて最大で約5db感度が向上する。なお、このようにした場合でも、超音波ビーム音圧ピーク値が許容音圧最大値0db以下になっていることは、図2からも明らかである。
【0010】
図4はこの発明の第2の実施の形態を示す概念図で、同図(イ)は目標部位が探触子正面方向付近にある場合を示し、同図(ロ)は目標部位が探触子正面方向に対して大きな角度を持つ場合を示している。ここで、斜線にて示す送信用振動子に印加する駆動電圧(送波パルスP1,P2)を、同図(イ)よりも図(ロ)の場合の方、つまり目標部位が探触子正面方向に対して大きな角度を持つ場合の方を大きくしている(P1<P2)。
【0011】
図5はプローブ中心から一定距離(例えば50mm)の円弧上にある目標部位に対して送受波する場合に、送波される超音波ビーム上の音圧ピーク値と角度th(プローブ中心から目標部位を見た角度:図9参照)の関係を、送信振動子の駆動電圧をパラメータとして示している。同図の横軸は角度thを、縦軸は超音波ビーム上の音圧ピーク値(許容音圧最大値で正規化)を示す。ここでも、振動子のエレメントファクターは図10の実際値を想定している。また、図6は図5に対応する送受波総合感度の角度依存性を示すものである。なお、送信用振動子数は26個で受信用振動子数(k)は38個としている。
【0012】
図5の例では、パラメータの送信振動子駆動電圧として、目標部位の角度が0度,−45度,−30度,+30度,+45度のそれぞれの場合に、音圧ピーク値が0dbとなる様な値を選択してある。したがって、目標部位の角度に関わらず送信振動子駆動電圧を最小のもの(目標部位の角度thが0度の場合に、音圧ピーク値が0dbとなる駆動電圧)に固定した場合の送受波総合感度が図6の実線で示した特性になるのに対し、送信振動子駆動電圧を目標部位の角度に応じて変化させる(すなわち、目標部位の角度が0度,−45度,−30度,+30度,+45度のそれぞれの場合に、音圧ピーク値が0dbになるようにする。)ことで、送受波総合感度を図6の一点鎖線で示す特性にすることができる。実線の特性に比べ、最大で約7dbの感度向上を達成できる。
【0013】
図7はこの発明の第3の実施の形態を示す概念図で、同図(イ)は目標部位が探触子正面方向に対して右側にある場合を示し、同図(ロ)は目標部位が探触子正面方向に対して左側にある場合を示している。先の図2のビーム音圧ピーク値の角度依存性や、図3の送受波総合感度の角度依存性は、実は図9に示すように送信振動子がプローブの右端にあり、また、目標部位の探触子正面方向に対する角度は反時計方向を正(+)として求めたものである。これら図2,図3から、目標部位の角度が(+)方向の方が、(−)方向に比べてビーム音圧ピーク値および送受波総合感度の減衰が著しいことが分かる。これは、目標部位の角度(図9のth参照)が(−)方向のときより(+)方向のときの方が、送信振動子から目標部位を見た角度の絶対値が大きくなり、振動子のエレメントファクターの影響をより強く受けるためと言える。
【0014】
以上のことから、目標部位の角度が(+)方向の場合は、送信振動子群をプローブの左側に切り換えることにより、ビーム音圧ピーク値および送受波総合感度の減衰を、目標部位の角度が(−)方向の場合と同程度に抑えることができる。図8は送信振動子数(k)が12個の場合の送受波総合感度の角度依存性を示している。同図の実線が送信振動子が常時はプローブの右側にある場合を示し、破線は目標部位の角度(th)が(+)方向のときには図7(ロ)のように、送信振動子をプローブの左側に切り換え、(−)方向のときには図7(イ)のようにプローブの右側に切り換える場合を示す。実線の場合に比べ、最大で約3dbの感度向上を達成できる。
以上説明した図1,図4および図7に示す手法は2つ以上組み合わせて用いることができ、これにより相乗的な効果を期待することができる。
【0015】
【発明の効果】
この発明によれば、目標部位が探触子の正面方向から左右に大きくずれている場合でも、送受波総合感度の低下を極力抑制することが可能となる利点がもたらされる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示す概要図である。
【図2】送信振動子数を変数とするビーム音圧ピーク値の角度依存特性図である。
【図3】図1を実施した場合の送受波総合感度の角度依存特性図である。
【図4】この発明の第2の実施の形態を示す概要図である。
【図5】送信駆動電圧を変数とするビーム音圧ピーク値の角度依存特性図である。
【図6】図4を実施した場合の送受波総合感度の角度依存特性図である。
【図7】この発明の第3の実施の形態を示す概要図である。
【図8】図7の発明を適用した場合の送受波総合感度特性図である。
【図9】超音波連続波ドプラー診断装置の従来例を示す概要図である。
【図10】振動子のエレメントファクターの1例を示す特性図である。
【符号の説明】
1…プローブ(探触子)、11…送信振動子、12…受信振動子、D…目標部位、P1…送波パルス、P2…受波パルス。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic continuous wave Doppler diagnostic apparatus that measures a flow velocity of a moving body such as a blood flow flowing in a subject by transmission and reception of an ultrasonic continuous wave by a phased array probe.
[0002]
[Prior art]
This type of ultrasonic continuous wave Doppler diagnostic device is equipped with a phased array probe, which transmits a continuous ultrasonic wave to the measurement target region of the subject using a plurality of transmission transducers, and the reflected echo from the target region. Is received by the receiving vibrator. An outline of such an example is shown in FIG.
That is, a continuous ultrasonic wave is transmitted from the plurality of transmission transducers 11 assigned for transmission in the probe (probe) 1 to the target site D, and the plurality of reception vibrations assigned for reception are transmitted. The child 12 receives the reflected wave from the target site D. At this time, delay control between the transducers is performed according to the distance and angle to the target portion D for both transmission and reception.
[0003]
[Problems to be solved by the invention]
By the way, the total transmission / reception sensitivity of such a diagnostic device (when the signal is transmitted / received by a phased array type probe, the magnitude of the received signal level obtained by delay synthesis of the echo signals obtained by each receiving transducer) It has been pointed out that when the target part is greatly deviated left and right from the vicinity of the front direction of the probe (for example, ± 45 degrees), it tends to decrease significantly. This is mainly due to the element factor (directivity) of the vibrator constituting the phased array probe. This element factor is basically determined by the ratio between the width of the vibrator and the wavelength of the ultrasonic wave. However, in reality, if the angle is large due to interference between the vibrators, the sensitivity is considerably lower than the theoretical value.
[0004]
FIG. 10 shows an example of an element factor, which shows a sound pressure distribution on an arc having a certain distance (for example, 50 mm) from a vibrator excited by a driving voltage. The horizontal axis in the figure is the angle when viewing each point of interest on the arc from the transducer, and the front direction of the transducer is 0 degree. The vertical axis is the sound pressure level at each point of interest in the front direction. The value is shown as a reference (0 db). The broken line indicates the theoretical value, and the solid line indicates the actual value.
Therefore, an object of the present invention is to prevent the total sensitivity of transmission / reception from being lowered as much as possible even when the target site is largely deviated left and right (for example, ± 45 degrees) from the vicinity of the front direction of the probe. is there.
[0005]
[Means for Solving the Problems]
In order to solve such a problem, in the invention of claim 1, in an ultrasonic continuous wave Doppler diagnostic apparatus for measuring the flow velocity of a moving body including a blood flow by transmission and reception of ultrasonic continuous waves by a phased array probe. ,
Among all the transducers of the probe, the distribution of the number of transducers for transmission and the number of transducers for reception can be changed, and the larger the angle between the measurement target part and the front direction of the probe, the larger the transducer for transmission Is increased and the number of receiving transducers is decreased.
[0006]
In the invention of claim 2, in the ultrasonic continuous wave Doppler diagnostic apparatus for measuring the flow velocity of a moving body including blood flow by transmitting and receiving ultrasonic continuous waves by a phased array probe,
The drive voltage applied to the transducer for transmitting the probe can be changed, and the drive voltage is increased as the angle between the measurement target region and the probe front direction is larger.
In the invention of claim 3, in the ultrasonic continuous wave Doppler diagnostic device for measuring the flow velocity of a moving body including blood flow by transmission and reception of ultrasonic continuous waves by a phased array probe,
The positional relationship between the transducer for transmission and the transducer for reception of the probe can be changed, and when the measurement target part is on the right side of the front direction of the probe, the right side of the probe is used for transmission and the left side is used for reception When the measurement target site is on the left side of the probe front direction, the left side of the probe is used for transmission and the right side is used for reception.
[0007]
In the invention of claim 4, in the ultrasonic continuous wave Doppler diagnostic apparatus for measuring the flow velocity of a moving body including a blood flow by transmission and reception of ultrasonic continuous waves by a phased array probe,
(1) Among all the transducers of the probe, the distribution of the number of transducers for transmission and the number of transducers for reception can be changed. Increase the number of trusted oscillators and reduce the number of receiving oscillators.
(2) The drive voltage applied to the transducer for transmitting the probe can be changed, and the drive voltage is increased as the angle formed with the front direction of the probe at the measurement target site is larger.
(3) The positional relationship between the transducer for transmission and the transducer for reception of the probe can be changed,
When the measurement target part is on the right side of the probe front direction, the right side of the probe is for transmission and the left side is for reception, and when the measurement target part is on the left side of the probe front direction, the left side of the probe The right side for sending and the receiving side for
These are configured by combining at least two items.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a conceptual diagram showing the first embodiment of the present invention. FIG. 1 (a) shows a case where the target site is in the vicinity of the probe front direction, and FIG. The case where it has a big angle with respect to the child front direction is shown.
FIG. 2 shows the case where the sound pressure peak value and the angle th on the ultrasonic beam to be transmitted (the target site from the probe center) when transmitting / receiving to / from the target site on a circular arc at a certain distance (for example, 50 mm) from the probe center. The angle (see FIG. 9) is shown as a parameter with the number of transmitting transducers (k). However, the drive voltage level of the transmission vibrator is constant. In the figure, the horizontal axis represents the angle th, and the vertical axis represents the sound pressure peak value on the ultrasonic beam (normalized by the maximum allowable sound pressure value). Here, the element factor of the vibrator is assumed to be an actual value in FIG. FIG. 3 shows the angle dependency of the total transmission / reception sensitivity corresponding to FIG. The total number of probe transducers is 64, and all probes are not used for transmission.
[0009]
In the example of FIG. 2, when the angle th of the target portion is 0 degree, the sound pressure peak value on the ultrasonic beam transmitted by 12 transmitting transducers is the allowable sound pressure maximum value (0 db). . Therefore, when twelve transducers are used for transmission regardless of the angle of the target part, the total transmission / reception sensitivity has a characteristic indicated by a solid line in FIG. On the other hand, for example, when the angle of the target portion is −45 degrees, 20 vibrators are used for transmission, when +30 degrees, 16 vibrators are used for transmission, and when +45 degrees, 26 vibrators are transmitted. When used as trust, the total transmission / reception sensitivity at that time has a characteristic indicated by a one-dot chain line in FIG. 3, and the sensitivity is improved by about 5 db at the maximum as compared with the characteristic of the solid line. Even in such a case, it is clear from FIG. 2 that the peak value of the ultrasonic beam sound pressure is equal to or less than the allowable sound pressure maximum value 0 db.
[0010]
FIG. 4 is a conceptual diagram showing a second embodiment of the present invention. FIG. 4 (a) shows the case where the target site is in the vicinity of the probe front direction, and FIG. 4 (b) shows the target site being the probe. The case where it has a big angle with respect to the child front direction is shown. Here, the drive voltages (transmission pulses P1, P2) applied to the transmitting transducers indicated by diagonal lines are the same as in the case of FIG. The case where the angle is larger than the direction is increased (P1 <P2).
[0011]
FIG. 5 shows the case where the sound pressure peak value and the angle th on the ultrasonic beam to be transmitted (the target site from the center of the probe) when transmitting / receiving to / from the target site on an arc having a certain distance (for example, 50 mm) from the probe center. The relationship of the angle of viewing (see FIG. 9) is shown using the driving voltage of the transmission vibrator as a parameter. In the figure, the horizontal axis represents the angle th, and the vertical axis represents the sound pressure peak value on the ultrasonic beam (normalized by the maximum allowable sound pressure value). Again, the element factor of the vibrator is assumed to be the actual value of FIG. FIG. 6 shows the angle dependency of the total transmission / reception sensitivity corresponding to FIG. The number of transducers for transmission is 26 and the number of transducers for reception (k) is 38.
[0012]
In the example of FIG. 5, the sound pressure peak value is 0 db when the target part angle is 0 degree, −45 degrees, −30 degrees, +30 degrees, and +45 degrees as the parameter transmission vibrator drive voltage. Various values have been selected. Therefore, the transmission / reception wave total when the transmission vibrator drive voltage is fixed to the minimum regardless of the angle of the target portion (the drive voltage at which the sound pressure peak value is 0 db when the angle th of the target portion is 0 degree). While the sensitivity becomes the characteristic indicated by the solid line in FIG. 6, the transmission vibrator driving voltage is changed according to the angle of the target part (that is, the angle of the target part is 0 degrees, −45 degrees, −30 degrees, In each case of +30 degrees and +45 degrees, the sound pressure peak value is set to 0 db.), The transmission / reception wave total sensitivity can be made to have a characteristic indicated by a one-dot chain line in FIG. Compared to the characteristics of the solid line, a sensitivity improvement of about 7 db at the maximum can be achieved.
[0013]
FIG. 7 is a conceptual diagram showing a third embodiment of the present invention. FIG. 7A shows a case where the target site is on the right side with respect to the probe front direction, and FIG. 7B shows the target site. Shows a case where is on the left side with respect to the front direction of the probe. The angular dependence of the beam sound pressure peak value in FIG. 2 and the angular dependence of the total transmission / reception sensitivity in FIG. 3 are actually shown in FIG. The angle with respect to the probe front direction is obtained by setting the counterclockwise direction as positive (+). 2 and 3, it can be seen that when the angle of the target portion is in the (+) direction, the attenuation of the beam sound pressure peak value and the total transmission / reception sensitivity is more significant than in the (−) direction. This is because the absolute value of the angle at which the target site is viewed from the transmitting vibrator is larger when the angle of the target site (see th in FIG. 9) is in the (+) direction than when the angle is (−). It can be said that it is more influenced by the child element factor.
[0014]
From the above, when the angle of the target part is in the (+) direction, switching the transmitting transducer group to the left side of the probe reduces the attenuation of the beam sound pressure peak value and the total transmission / reception wave sensitivity. It can be suppressed to the same extent as in the (−) direction. FIG. 8 shows the angle dependency of the total transmission / reception sensitivity when the number of transmission transducers (k) is twelve. The solid line in the figure shows the case where the transmitting vibrator is always on the right side of the probe, and the broken line indicates that the transmitting vibrator is probed as shown in FIG. 7 (b) when the angle (th) of the target portion is in the (+) direction. In the (−) direction, the case of switching to the right side of the probe as shown in FIG. Compared with the solid line, a sensitivity improvement of about 3 db at the maximum can be achieved.
The above-described methods shown in FIGS. 1, 4 and 7 can be used in combination of two or more, and thereby a synergistic effect can be expected.
[0015]
【The invention's effect】
According to the present invention, even when the target site is greatly deviated from the front direction of the probe to the left and right, there is an advantage that it is possible to suppress the decrease in the total transmission / reception sensitivity as much as possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a first embodiment of the present invention.
FIG. 2 is an angle dependence characteristic diagram of a beam sound pressure peak value with the number of transmission vibrators as a variable.
FIG. 3 is an angle-dependent characteristic diagram of total transmission / reception sensitivity when FIG. 1 is implemented.
FIG. 4 is a schematic diagram showing a second embodiment of the present invention.
FIG. 5 is an angle-dependent characteristic diagram of a beam sound pressure peak value with a transmission drive voltage as a variable.
FIG. 6 is an angle-dependent characteristic diagram of the overall transmission / reception sensitivity when FIG. 4 is implemented.
FIG. 7 is a schematic diagram showing a third embodiment of the present invention.
8 is a transmission / reception wave total sensitivity characteristic diagram when the invention of FIG. 7 is applied. FIG.
FIG. 9 is a schematic diagram showing a conventional example of an ultrasonic continuous wave Doppler diagnostic apparatus.
FIG. 10 is a characteristic diagram showing an example of an element factor of a vibrator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Probe (probe), 11 ... Transmission vibrator | oscillator, 12 ... Reception vibrator | oscillator, D ... Target site | part, P1 ... Transmission pulse, P2 ... Reception pulse.

Claims (1)

フェーズドアレイ型探触子による超音波連続波の送受波で血流を含む運動体の流速を計測する超音波連続波ドプラー診断装置において、
前記探触子の全振動子のうち、送信用振動子の数と受信用振動子の数の配分を変更可能にし、計測目標部位の探触子正面方向となす角度が大きいほど送信用振動子の数を多くし、受信用振動子の数を少なくすることを特徴とする超音波連続波ドプラー診断装置。
In an ultrasonic continuous wave Doppler diagnostic device that measures the flow velocity of a moving body including blood flow by transmitting and receiving ultrasonic continuous waves with a phased array probe,
Among all the transducers of the probe, the distribution of the number of transducers for transmission and the number of transducers for reception can be changed, and the larger the angle between the measurement target part and the front direction of the probe, the larger the transducer for transmission An ultrasonic continuous wave Doppler diagnostic apparatus characterized in that the number of transducers is increased and the number of receiving transducers is decreased.
JP23381396A 1996-09-04 1996-09-04 Ultrasonic continuous wave Doppler diagnostic device Expired - Lifetime JP3725627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23381396A JP3725627B2 (en) 1996-09-04 1996-09-04 Ultrasonic continuous wave Doppler diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23381396A JP3725627B2 (en) 1996-09-04 1996-09-04 Ultrasonic continuous wave Doppler diagnostic device

Publications (2)

Publication Number Publication Date
JPH1075954A JPH1075954A (en) 1998-03-24
JP3725627B2 true JP3725627B2 (en) 2005-12-14

Family

ID=16960989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23381396A Expired - Lifetime JP3725627B2 (en) 1996-09-04 1996-09-04 Ultrasonic continuous wave Doppler diagnostic device

Country Status (1)

Country Link
JP (1) JP3725627B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4426478B2 (en) 2005-02-18 2010-03-03 アロカ株式会社 Ultrasonic diagnostic equipment
JP5520100B2 (en) * 2010-03-25 2014-06-11 日立アロカメディカル株式会社 Ultrasonic diagnostic equipment
JP5462679B2 (en) * 2010-03-25 2014-04-02 日立アロカメディカル株式会社 Ultrasonic diagnostic equipment
JP6606826B2 (en) * 2015-01-09 2019-11-20 コニカミノルタ株式会社 Ultrasonic diagnostic equipment

Also Published As

Publication number Publication date
JPH1075954A (en) 1998-03-24

Similar Documents

Publication Publication Date Title
JP4242472B2 (en) Ultrasonic transducer array and ultrasonic imaging system
US7510529B2 (en) Ultrasound reconstruction unit
US5355888A (en) High resolution phased array echo imager
US20100217124A1 (en) Ultrasound imaging system and method using multiline acquisition with high frame rate
JP4610719B2 (en) Ultrasound imaging device
GB2079456A (en) Extended focus transducer system
JPH0155429B2 (en)
Whittingham et al. Transducers and beam forming
JPS59193380A (en) Azimuth angle conforming type phased array sonar
KR100677024B1 (en) Method of controlling ultrasonic probe and ultrasonic diagnostic apparatus
JP3725627B2 (en) Ultrasonic continuous wave Doppler diagnostic device
JP3474278B2 (en) Ultrasound diagnostic equipment
JPH02209135A (en) Ultrasonic transmitter/receiver
JPH01310651A (en) Acoustic imaging apparatus
JPH0731616A (en) Ultrasonic diagnostic apparatus
JPH0479548B2 (en)
JPS6348319B2 (en)
Hedrick et al. Beam steering and focusing with linear phiased arrays
JPH03212264A (en) Ultrasonic diagnostic device
JPS61234697A (en) Ultrasonic probe
JPH0649287Y2 (en) Ultrasonic diagnostic equipment
Waszczuk et al. Focusing of an ultrasonic beam by means of a piezoelectric annular array
JPH069553B2 (en) Ultrasonic probe
JPH0783746B2 (en) Ultrasonic probe
JPH0250737B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term