JPH0731616A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus

Info

Publication number
JPH0731616A
JPH0731616A JP5183789A JP18378993A JPH0731616A JP H0731616 A JPH0731616 A JP H0731616A JP 5183789 A JP5183789 A JP 5183789A JP 18378993 A JP18378993 A JP 18378993A JP H0731616 A JPH0731616 A JP H0731616A
Authority
JP
Japan
Prior art keywords
transmission
ultrasonic
reception
subject
diagnostic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5183789A
Other languages
Japanese (ja)
Inventor
Takuya Noda
拓也 野田
Atsuo Iida
安津夫 飯田
Kazuhiro Watanabe
一宏 渡辺
Masao Saito
正男 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5183789A priority Critical patent/JPH0731616A/en
Publication of JPH0731616A publication Critical patent/JPH0731616A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To arrange a highly accurate function of correcting nonuniformity of sound velocity by providing an ultrasonic diagnostic apparatus with a second ultrasonic transmission/reception mode for detecting a time shift caused by the nonuniformity of sound velocity in vivo to improve the S/N ratio for increasing a sound pressure of a signal received and detection accuracy of the time shift. CONSTITUTION:A transmitting section 2 has two systems a transmission system 21 for detecting time shift and a transmission system 22 for displaying tomographic images. When the transmission system 21 for detecting the time shift is selected by a transmission system selecting means 23, pulses with the number thereof determined by a number of pulses control means 211 are generated by a pulse generating means 212. The number of the pulses is greater than that in the transmission for display tomographic images. As the number of pulses increases, the sound pressure of an ultrasonic wave as radiated from an electroacoustic conversion element 1 increases thereby improving the S/N ratio of the signal received with the electroacoustic conversion element 1. As a result, errors in the detection of a time shift are reduced thereby allowing improvement in correction effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波による被検体内
の断層像を表示する超音波診断装置に関し、特に被検体
内の音速の不均一性を補正する機能を有する超音波診断
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic diagnostic apparatus for displaying a tomographic image in a subject by ultrasonic waves, and more particularly to an ultrasonic diagnostic apparatus having a function of correcting non-uniformity of sound velocity in the subject. .

【0002】[0002]

【従来の技術】被検体内に超音波を送信し被検体内の組
織で反射して戻ってきた超音波を受信して受信信号を
得、この受信信号に基づいて被検体内の断層像を表示す
ることにより内臓等の疾患の診断に供する超音波診断装
置が用いられており、この超音波診断装置ではいわゆる
受信フォーカスの手法が用いられている。
2. Description of the Related Art An ultrasonic wave is transmitted to an inside of a subject, the ultrasonic wave returned by being reflected by a tissue inside the subject is received to obtain a reception signal, and a tomographic image inside the subject is obtained based on the reception signal. An ultrasonic diagnostic apparatus that is used to diagnose diseases such as internal organs by displaying the information is used. In this ultrasonic diagnostic apparatus, a so-called reception focus method is used.

【0003】図8は、この受信フォーカスの手法の説明
図である。所定の方向(図8の左右方向)に並んだn個
の電気音響変換素子(以下単に「素子」と呼ぶ)E1
2 ,…,Ei ,…,En に電気信号を与えると、これ
らの各素子E1 ,E2 ,…,Ei ,…,En で超音波に
変換され、この超音波が被検体内に向けて送信される。
FIG. 8 is an explanatory diagram of this receiving focus method. N electroacoustic conversion elements (hereinafter simply referred to as “elements”) E 1 arranged in a predetermined direction (left and right direction in FIG. 8),
E 2, ..., E i, ..., when providing electrical signals to the E n, each of these elements E 1, E 2, ..., E i, ..., are converted into ultrasonic waves E n, the ultrasonic wave to be It is sent to the inside of the sample.

【0004】ここでこの超音波が、多数の素子E1 ,E
2 ,…,Ei ,…,En の中央0から被検体内に延びる
垂線上のa点で反射された場合について考察する。a点
からの反射波は、a点からの距離の遠い端部側にある素
子E1 とa点からの距離の近い中央側にある素子Ei
を比べると、遠くにある素子E1 よりも近くにある素子
i に先に到達する。この到達の時間差はa点から素子
1 ,Eiまでの距離をそれぞれL1,Liとしたとき
の距離差ΔL=L1−Liだけ超音波が進む時間とな
る。ここで仮に被検体内の音速が均一であると仮定し、
この音速をCとすると、この時間差はΔL/Cで表わさ
れる。このようにa点と各素子E1 ,E2 ,…,Ei
…,En との間の各距離どうしに各距離差があるため、
各距離差を各時間に換算し、各素子E1 ,E2 ,…,E
i ,…,En で得られた各受信信号を各時間差に相当す
る分だけ遅延させることによりこれらの受信信号の到達
時刻を互いに揃える整相処理が行われる。これによりa
点で反射された超音波に対応する受信信号を強調するこ
と、即ちa点に受信の焦点を結ばせることが可能とな
る。被検体内の深い位置で反射された超音波ほど各素子
に遅れて到達するため、各素子E1 ,E2 ,…,Ei
…,En で得られた各受信信号に対する各遅延量を順次
変化させながら互いに加算することにより、a点のみで
なくa点を含め中央0から被検体内に延びる垂線上の各
点に連続的に焦点を合わせるいわゆるダイナミックフォ
ーカスを行うこともできる。この垂線は走査線と呼ば
れ、各受信信号に対する各遅延量を変化させることによ
り、この走査線を電気音響変換素子E1 ,E2 ,…,E
i ,…,En の並ぶ方向(図8の左右方向)に平行に移
動させるいわゆるリニア走査やこの走査線を扇状に偏向
させるいわゆるセクタ走査を行うこともでき、これによ
り被検体内の2次元的な断層像を得ることができる。さ
らに図8の紙面に垂直な方向にも電気音響変換素子を配
列すること等によりこの配列方向にも走査して3次元立
体像を得ることができることも知られている。
Here, this ultrasonic wave is transmitted to a large number of elements E 1 , E
Consider a case where the light is reflected at a point a on a vertical line extending from the center 0 of 2 , ..., E i , ..., E n into the subject. The reflected wave from the point a is compared with the element E 1 on the end side far from the point a and the element E i on the center side close to the point a from the element E 1 far away. Also reaches the nearby element E i first. This arrival time difference is the time when the ultrasonic wave advances by the distance difference ΔL = L1-Li, where L1 and Li are the distances from the point a to the elements E 1 and E i , respectively. Here, assuming that the sound velocity in the subject is uniform,
When this speed of sound is C, this time difference is represented by ΔL / C. Thus, point a and each element E 1 , E 2 , ..., E i ,
..., since there is the difference in distance to each distance each other between the E n,
Converting each distance difference into each time, each element E 1 , E 2 , ..., E
i, ..., phasing processing is performed to align the time of arrival of the received signals from each other by delaying by the amount corresponding to the reception signal obtained by the E n each time difference. This gives a
It is possible to emphasize the received signal corresponding to the ultrasonic wave reflected at the point, that is, to focus the reception at the point a. The ultrasonic waves reflected deeper in the subject reach each element later, so that each element E 1 , E 2 , ..., E i ,
, E n , the delay amounts for the respective received signals are sequentially changed and added to each other, so that not only the point a but also points a on a perpendicular line extending from the center 0 to the inside of the subject from the center 0 are continuously added. It is also possible to perform so-called dynamic focus, in which the focal point is focused. This perpendicular line is called a scanning line, and by changing each delay amount for each received signal, this scanning line is converted into an electroacoustic conversion element E 1 , E 2 , ..., E.
i, ..., it can be a direction to perform a so-called sector scan to deflect the so-called linear scanning and the scanning line is moved in parallel to the (left-right direction in FIG. 8) in a fan shape lined E n, thereby two-dimensionally in the subject A tomographic image can be obtained. Further, it is also known that a three-dimensional stereoscopic image can be obtained by arranging the electroacoustic conversion elements also in the direction perpendicular to the paper surface of FIG. 8 and scanning in this arrangement direction.

【0005】ところが、人体内には脂肪層や筋肉、その
他種々の組織が存在し、特に脂肪層においては他の組織
と比べ音速が異なることが知られている。図9は、音速
が不均一の場合の受信フォーカスを示した図である。こ
の図9に示すように、例えば人体の腹部の肝臓の診断を
行う場合において、体表近傍には音速が約1470m/
secの比較的音速の遅い脂肪層が存在し、その下に音
速約1540m/secの筋肉層が存在し、さらにその
下部に同じく音速が約1540m/secの肝臓が存在
する。また、脂肪層は筋肉内や肝臓内に沈着する場合も
ある。
However, it is known that there are fat layers, muscles, and various other tissues in the human body, and the sound velocity in the fat layers is different from that in other tissues. FIG. 9 is a diagram showing reception focus when the sound speeds are not uniform. As shown in FIG. 9, for example, when diagnosing the liver of the abdomen of a human body, the speed of sound is about 1470 m / n near the body surface.
A fat layer having a relatively slow sound speed of sec exists, a muscle layer having a sound speed of about 1540 m / sec exists below the fat layer, and a liver having a sound speed of about 1540 m / sec exists below the muscle layer. In addition, the fat layer may be deposited in muscle or liver.

【0006】このように被検体内に音速の異なる部分が
あると、音速が均一であるという仮定の下に定めた各遅
延量を各受信信号に与えても、図9に示すように各受信
信号の到達時刻は揃わず、したがってこれらの各受信信
号を全て加算してもa点に焦点のあった信号とはならず
に断層像がボケてしまう結果となる。ここではこの各受
信信号の到達時刻のずれを「時間ずれ」と称することと
する。しかもこの脂肪層の厚さは人により異なるため、
各受信信号に対する各遅延量を一律に補正することはで
きない。
As described above, if there are portions of different sound speeds in the subject, even if each delay signal is given a delay amount determined under the assumption that the sound speeds are uniform, each reception signal is received as shown in FIG. The arrival times of the signals are not uniform, and therefore, even if all of these received signals are added, the signal at the point a is not focused and the tomographic image is blurred. Here, the difference in arrival time of each received signal is referred to as "time difference". Moreover, the thickness of this fat layer varies from person to person,
It is not possible to uniformly correct each delay amount for each received signal.

【0007】これを解決する方法として、相互相関演算
を用いる方法([1]米国特許公報USP481761
4号、[2]S.W.FLAX AND M.O’DO
NNEL,”Phase−Aberration Co
rrection Using Signals F
rom Point Reflectors andD
iffuse Scatterres:Basic P
rinciples” IEEE TRANSACTI
ON ON ULTRASONICS, FERROE
L ECTRICS, AND FREQUENCY
CONTROL, VOL35,NO.6, NOVE
MBER 1988, p758〜p767 参照)が
知られている。
As a method for solving this, a method using a cross-correlation calculation ([1] US Pat.
No. 4, [2] S. W. FLAX AND M. O'DO
NNEL, "Phase-Aberration Co
redirection Using Signals F
rom Point Reflectors andD
iffuse Scatterres: Basic P
rinciples ”IEEE TRANSACTI
ON ON ULTRASONICS, FERROE
L ECTRICS, AND FREQUENCY
CONTROL, VOL35, NO. 6, NOVE
MBER 1988, p758-p767) are known.

【0008】図10は、相互相関法を用いた時間ずれを
補正する方法の説明図である。ここでは先ず被検体内の
音速が均一であると仮定した上で各受信信号に各遅延量
を与え、この各遅延量を与えた後の各受信信号の一部を
相関計算領域として切り出し、この相関計算領域内の各
受信信号に基づいて以下のようにして時間ずれが求めら
れる。即ち、この切り出された各受信信号のうち、互い
に隣接する2つの受信信号間で相互相関演算が行われ、
求められた相互相関関数のピーク値の存在する位置から
隣接素子間の時間ずれΔτが求められる。
FIG. 10 is an explanatory diagram of a method of correcting a time shift using the cross correlation method. Here, first, assuming that the sound velocity in the subject is uniform, each delay amount is given to each reception signal, and a part of each reception signal after giving each delay amount is cut out as a correlation calculation region. The time lag is obtained as follows based on each received signal in the correlation calculation area. That is, of the cut-out received signals, the cross-correlation calculation is performed between two adjacent received signals,
The time shift Δτ between adjacent elements is obtained from the position where the obtained peak value of the cross-correlation function exists.

【0009】この時間ずれΔτが互いに隣接する2つの
受信信号の全てについて求められ、この求められた各時
間ずれΔτが例えば図の1番左側の素子に対応する受信
信号の到達時刻を基準にして順次積算され、これにより
基準の受信信号に対する他の受信信号の各時間ずれΔt
が求められ、この各時間ずれΔtが補正されるように各
受信信号に対する各遅延量が変更され、これにより、全
ての素子の受信信号の到達時刻を揃えることができるこ
ととなる。
This time shift Δτ is calculated for all two received signals adjacent to each other, and each of the calculated time shifts Δτ is based on the arrival time of the received signal corresponding to the leftmost element in the figure, for example. Sequential integration is performed, whereby each time difference Δt of other received signals with respect to the reference received signal is increased.
Is calculated, and the respective delay amounts for the respective received signals are changed so that the respective time lags Δt are corrected, whereby the arrival times of the received signals of all the elements can be made uniform.

【0010】尚、従来提案されている各受信信号の時間
ずれを検出する方法としては、上記の相互相関法のほか
直交検波法と呼ばれる方法も知られている([3]米国
特許公報USP4835689号参照)。この直交検波
法では受信信号間の狭義の時間ずれの代わりに受信信号
間の位相差が求められるが、本発明はこの時間ずれの検
出方法に依存するものではないため、ここでは「時間ず
れ」は広義に解釈し「位相差」も含むものとする。
As a conventionally proposed method for detecting the time lag of each received signal, a method called a quadrature detection method is known in addition to the above-mentioned cross correlation method ([3] US Pat. No. 4,835,689). reference). In this quadrature detection method, the phase difference between the received signals is obtained instead of the narrowly-defined time difference between the received signals. However, the present invention does not depend on this time difference detection method, so here, “time difference” is used. Is interpreted in a broad sense to include “phase difference”.

【0011】[0011]

【発明が解決しようとする課題】上記のように、被検体
内の音速不均一性による超音波の波面乱れを、相互相関
法や直交検波法を用いて素子間の受信信号の時間ずれを
検出することによって補正することができるが、その際
の問題点の1つとして、時間ずれ検出精度が、検出領域
中の受信信号のS/Nに大きく左右されることが挙げら
れる。
As described above, the wavefront disturbance of the ultrasonic wave due to the nonuniformity of the sound velocity in the subject is detected, and the time shift of the received signal between the elements is detected by using the cross correlation method or the quadrature detection method. However, one of the problems at that time is that the accuracy of time shift detection largely depends on the S / N of the received signal in the detection area.

【0012】被検体内の音速不均一性により送受信フォ
ーカスが乱れると受信信号の音圧が下がり、このためS
/Nが低下し、時間ずれ検出に誤差が生じる。特に被検
体内部の深部で反射した超音波を受信して得た受信信号
ではS/Nの低下は顕著であり、時間ずれ検出精度が非
常に悪い。こうしたことから時間ずれを誤検出すること
があり、その場合補正効果が少なく、または誤って補正
するためむしろ悪化する場合もある。
When the transmission / reception focus is disturbed due to the non-uniformity of the sound velocity in the subject, the sound pressure of the received signal is lowered, so that S
/ N decreases, and an error occurs in the time shift detection. In particular, the received signal obtained by receiving the ultrasonic waves reflected deep inside the subject shows a significant decrease in S / N, and the time shift detection accuracy is very poor. For this reason, the time lag may be erroneously detected, and in that case, the correction effect may be small, or may be worsened due to erroneous correction.

【0013】本発明は、上記事情に鑑み、受信信号の音
圧を増加させることによりS/Nを向上させ、これによ
り時間ずれ検出精度を向上させ、もって高精度の音速不
均一性の補正機能を有する超音波診断装置を提供するこ
とを目的とする。
In view of the above circumstances, the present invention improves the S / N ratio by increasing the sound pressure of the received signal, thereby improving the time deviation detection accuracy, and thus the highly accurate sound velocity non-uniformity correction function. An object of the present invention is to provide an ultrasonic diagnostic apparatus having the following.

【0014】[0014]

【課題を解決するための手段】上記目的を達成する本発
明の超音波診断装置は、被検体内に送信される超音波が
被検体内の所定の送信フォーカス点で焦点を結ぶように
送信手段により生成された各所定のタイミングの電圧パ
ルスを所定の方向に並んだ複数の電気音響変換素子に印
加し、被検体内に送信され被検体内で反射した超音波を
複数の電気音響変換素子で受信することにより複数の受
信信号を得、被検体内の互いに略同一の位置で略同時に
反射された超音波に対応する複数の受信信号が互いに略
同時に出力されるように遅延量可変の遅延手段を用いて
複数の受信信号をそれぞれ遅延させるとともに互いに加
算することにより加算信号を得、この加算信号に基づい
て被検体の断層像を表示する超音波診断装置に関するも
のであり、(1)上記受信信号に基づいてそれら受信信
号の相対的な時間ずれを求め、求められた相対的な時間
ずれを補正するように上記遅延手段における受信信号の
各遅延量を制御する時間ずれ補正手段を備えるととも
に、(2)被検体の断層像を表示するための受信信号を
得る第1の超音波送受信モードと、この第1の超音波送
受信モードとは別に、相対的な時間ずれを求めるための
受信信号を得る第2の超音波受信モードを備えたことを
特徴とするものである。
In the ultrasonic diagnostic apparatus of the present invention for achieving the above object, the transmitting means is arranged so that the ultrasonic waves transmitted into the subject are focused at a predetermined transmission focus point in the subject. By applying a voltage pulse of each predetermined timing generated by a plurality of electroacoustic transducers arranged in a predetermined direction, the ultrasonic waves transmitted in the subject and reflected in the subject with a plurality of electroacoustic transducers. A plurality of received signals are obtained by receiving, and a delay unit having a variable delay amount so that a plurality of received signals corresponding to ultrasonic waves reflected at substantially the same position in the subject at substantially the same time are output at substantially the same time. The present invention relates to an ultrasonic diagnostic apparatus that delays a plurality of received signals by using each other and adds them together to obtain an added signal, and displays a tomographic image of a subject based on the added signal. Further, there is provided a time shift correction means for obtaining a relative time shift between the received signals based on the received signals and controlling each delay amount of the received signal in the delay means so as to correct the obtained relative time shift. At the same time, (2) a first ultrasonic wave transmission / reception mode for obtaining a reception signal for displaying a tomographic image of the subject, and a reception for obtaining a relative time difference apart from the first ultrasonic wave transmission / reception mode A second ultrasonic wave reception mode for obtaining a signal is provided.

【0015】ここで、上記第2の超音波送受信モードと
しては、 (2_1)上記第1の超音波送受信モードにおける一回
の超音波送受信のための電気音響変換素子に印加される
電圧パルスの数よりも多い数の電圧パルスを、一回の超
音波送受信のために前記音響変換素子に印加するモード (2_2)上記第1の超音波送受信モードにおける電気
音響変換素子に印加される電圧パルスよりも高電圧の電
圧パルスを電気音響変換素子に印加するモード (2_3)第1の超音波送受信モードにおける電圧パル
スが印加される電気音響変換素子の個数よりも多い個数
の電気音響変換素子に電圧パルスを印加するモード のうちの何れか1つのモード、もしくはそれらを組合わ
せたモードが採用される。
Here, as the second ultrasonic wave transmission / reception mode, (2_1) the number of voltage pulses applied to the electroacoustic transducer for ultrasonic wave transmission / reception once in the first ultrasonic wave transmission / reception mode A mode in which a larger number of voltage pulses are applied to the acoustic conversion element for one ultrasonic transmission / reception (2_2) than the voltage pulse applied to the electroacoustic conversion element in the first ultrasonic transmission / reception mode Mode in which a high-voltage voltage pulse is applied to the electroacoustic conversion element (2_3) The voltage pulse is applied to the electroacoustic conversion elements in a number larger than the number of electroacoustic conversion elements to which the voltage pulse in the first ultrasonic transmission / reception mode is applied. Any one of the applied modes or a combination of these modes is adopted.

【0016】[0016]

【作用】従来は、例えば断層像(Bモード画像)等を表
示するための超音波の送受信により得られた受信信号の
一部を切り出して相互相関演算等を行ない、これにより
時間ずれを検出する方法が提案されている。ところがそ
の時間ずれ検出に用いる受信信号は、断層像表示用のも
のであるため、一回の超音波送受信に用いる素子の数が
制限され、超音波ビームのサイドローブ低減化のために
送受信超音波を重み付けするいわゆるアポダイジングの
手法が取り入れられており、画像表示用には適している
が、時間ずれ検出用としては必ずしも適したものではな
い。
Conventionally, for example, a part of a reception signal obtained by transmitting and receiving ultrasonic waves for displaying a tomographic image (B-mode image) or the like is cut out and a cross-correlation calculation is performed to detect a time lag. A method has been proposed. However, since the received signal used for the time shift detection is for displaying a tomographic image, the number of elements used for one ultrasonic transmission / reception is limited, and transmission / reception ultrasonic waves are reduced to reduce the side lobes of the ultrasonic beam. A so-called apodizing method for weighting is adopted, which is suitable for displaying an image, but is not necessarily suitable for detecting a time shift.

【0017】本発明は、この点に鑑み完成されたもので
ある。すなわち本発明の超音波診断装置は、従来の断層
像表示用の第1の超音波送受信モードとは別に、生体内
の音速不均一性によって生じる時間ずれを検出するため
の第2の超音波送受信モードを備え、これにより時間ず
れ検出用として切り出される受信信号の信号強度を上
げ、時間ずれ検出精度を向上させたものである。検出精
度が向上することが、生体内の音速不均一性の補正効果
向上につながり、分解能の高い高画質の断層像を得るこ
とが可能となる。
The present invention has been completed in view of this point. That is, the ultrasonic diagnostic apparatus of the present invention is different from the first ultrasonic transmission / reception mode for displaying a tomographic image in the related art in that the second ultrasonic transmission / reception for detecting a time lag caused by inhomogeneity of sound velocity in the living body is used. A mode is provided, which increases the signal strength of the received signal cut out for time lag detection and improves the time lag detection accuracy. The improvement in detection accuracy leads to an improvement in the effect of correcting non-uniformity of sound velocity in the living body, and a high-resolution tomographic image with high resolution can be obtained.

【0018】[0018]

【実施例】以下本発明の実施例について説明する。図1
は、本発明の超音波診断装置の一実施例の構成を表わす
ブロック図である。この図1に示す超音波診断装置に
は、被検体内に超音波を放射するとともに被検体内で反
射された反射超音波を受信する手段としての複数の電気
音響変換素子1と、電気音響変換素子1に電圧パルスを
印加することにより電気音響変換素子1から被検体内に
超音波を放射させる送信部2と、被検体内から反射した
超音波を電気音響変換素子1で受信することにより得ら
れた各受信信号に遅延を与え、これにより各受信信号を
整相する受信部3と、整相処理後の各受信信号を互いに
加算する加算部4と、加算された信号を輝度信号に変換
してCRT等に表示する表示部5と、受信部3で整相さ
れた受信信号から被検体内のある深さに対応した受信信
号を時間ずれ検出領域として切り出すゲート部6と、ゲ
ート部6で切り出した受信信号から時間ずれを検出する
時間ずれ検出部7と、時間ずれ検出部7で得られた時間
ずれに基づいて受信部3における各遅延量を補正する遅
延量制御部8とを備えている。この遅延量制御部8は送
信部2も制御し、本実施例においては、得られた時間ず
れに基づいて補正されたタイミングの電圧パルスが電気
音響変換素子1に印加される。
EXAMPLES Examples of the present invention will be described below. Figure 1
FIG. 1 is a block diagram showing the configuration of an embodiment of the ultrasonic diagnostic apparatus of the present invention. The ultrasonic diagnostic apparatus shown in FIG. 1 includes a plurality of electroacoustic transducers 1 as means for radiating ultrasonic waves into the subject and receiving reflected ultrasonic waves reflected in the subject, and electroacoustic transducers. It is obtained by applying a voltage pulse to the element 1 to radiate ultrasonic waves from the electroacoustic conversion element 1 into the subject and transmitting the ultrasonic waves reflected from the inside of the subject by the electroacoustic conversion element 1. A receiving unit 3 that delays each of the received signals thus obtained, thereby phasing the respective received signals, an adding unit 4 that adds the respective received signals after the phasing processing to each other, and the added signals are converted into luminance signals. A display unit 5 for displaying on a CRT or the like, a gate unit 6 for cutting out a received signal corresponding to a certain depth in the subject as a time shift detection region from the received signal phased by the receiving unit 3, and a gate unit 6 Time from the received signal cut out by A time deviation detecting section 7 for detecting a record, and a delay amount control unit 8 for correcting the respective delay amounts in the receiving unit 3 based on the time difference obtained by the detector 7 time lag. The delay amount control unit 8 also controls the transmission unit 2, and in the present embodiment, the voltage pulse of the timing corrected based on the obtained time difference is applied to the electroacoustic conversion element 1.

【0019】この超音波診断装置は、更に、送信部2が
時間ずれ検出用送信方式21と断層像表示用送信方式2
2の2系統を備え、送信方式選択手段23により2系統
の送信方式のうちの一方が択一的に選択される機能を有
している。なお、断層像表示用送信方式22は、通常の
超音波診断装置のBモード画像を表示するための送信方
式を指し、従来の超音波診断装置の機能そのものであ
る。また時間ずれ検出用送信方式21とは、ゲート部6
で切り出す受信信号の音圧を上げ、時間ずれ検出部7の
時間ずれ検出精度の向上を狙った送信方式を言う。
In this ultrasonic diagnostic apparatus, the transmitting unit 2 further includes a transmission system 21 for detecting a time shift and a transmission system 2 for displaying a tomographic image.
The transmission system selection unit 23 has a function of selectively selecting one of the transmission systems of the two systems. The tomographic image display transmission system 22 refers to a transmission system for displaying a B-mode image of a normal ultrasonic diagnostic apparatus, and is the function itself of a conventional ultrasonic diagnostic apparatus. In addition, the transmission method 21 for detecting the time difference is the gate unit 6
This is a transmission method in which the sound pressure of the reception signal cut out in step 1 is increased to improve the accuracy of time deviation detection of the time deviation detection unit 7.

【0020】本発明は、この送信部2に特徴を有し、以
下この送信部2の具体的な各実施例について説明する。
図2は、送信部2の第一実施例を示すブロック図、図3
はその第一実施例のイメージを表わす模式図である。図
2の第一実施例に示す送信部2は、時間ずれ検出用送信
方式21がパルス個数制御手段211とパルス発生手段
212を備えることで構成されている。
The present invention is characterized by the transmitting unit 2, and concrete embodiments of the transmitting unit 2 will be described below.
2 is a block diagram showing a first embodiment of the transmission unit 2, FIG.
FIG. 3 is a schematic diagram showing an image of the first embodiment. The transmission unit 2 shown in the first embodiment of FIG. 2 is configured such that the transmission method 21 for detecting time shift includes pulse number control means 211 and pulse generation means 212.

【0021】送信方式選択手段23により時間ずれ検出
用送信方式21が選択された場合、パルス発生手段21
2は、パルス個数制御手段211で決定された個数のパ
ルスを発生させる。パルス個数制御手段211で決定さ
れるパルス個数は、断層像表示用送信におけるパルス個
数より多い。図3は、断層像表示用送信のパルス個数が
1個、時間ずれ検出用送信のパルス個数が2個の場合で
ある。パルス個数1個に比べ、2個の場合は電気音響変
換素子1から放射される超音波(以下「送信パルス」と
呼ぶ)の音圧は増大するが、同時に送信パルスのパルス
幅を広げることになり、距離分解能が悪くなることが知
られている。従って、断層像表示用送信の場合、一般的
にパルス個数は少なくすることが望ましい。しかし、時
間ずれ検出用送信では距離分解能よりもS/Nの向上が
重要である。したがってこの第一実施例では、パルス個
数を断層像表示用送信の場合よりも多くしたものであ
り、これにより送信パルス音圧が増大し、電気音響変換
素子1で受信される受信信号のS/Nが向上する。その
結果、時間ずれ検出誤差が低減され、補正効果の向上が
見込まれる。
When the transmission method selecting means 23 selects the time shift detection transmission method 21, the pulse generating means 21
2 generates the number of pulses determined by the pulse number control means 211. The pulse number determined by the pulse number control means 211 is larger than the pulse number in the transmission for tomographic image display. FIG. 3 shows a case where the number of transmission pulses for displaying a tomographic image is one and the number of transmission pulses for time shift detection is two. When the number of pulses is two, compared to one pulse, the sound pressure of the ultrasonic waves (hereinafter referred to as “transmit pulse”) emitted from the electroacoustic transducer 1 increases, but at the same time the pulse width of the transmit pulse is widened. It is known that the distance resolution becomes poor. Therefore, in the case of transmission for displaying a tomographic image, it is generally desirable to reduce the number of pulses. However, in time shift detection transmission, it is more important to improve the S / N than the distance resolution. Therefore, in this first embodiment, the number of pulses is set to be larger than that in the case of transmission for tomographic image display, which increases the transmission pulse sound pressure, and the S / S of the reception signal received by the electroacoustic conversion element 1 is increased. N is improved. As a result, the time shift detection error is reduced, and the correction effect is expected to be improved.

【0022】図4は、送信部2の第二実施例を示すブロ
ック図、図5はその第二実施例のイメージを表わす模式
図である。図4の第二実施例に示す送信部2は、時間ず
れ検出用送信方式21がパルス電圧制御手段213とパ
ルス発生手段212を備えることで構成されている。送
信方式選択手段23により時間ずれ検出用送信方式21
が選択された場合、パルス発生手段212は、パルス電
圧制御手段213で決定された電圧のパルスを発生させ
る。パルス電圧制御手段213で決定されるパルス電圧
は、断層像表示用送信におけるパルス電圧より高電圧に
なるように決定される。ただしここで言う高電圧は、電
気音響変換素子1から放射される超音波が生体内に危険
を与えない程度のパルス電圧でなければならない。
FIG. 4 is a block diagram showing a second embodiment of the transmitting section 2, and FIG. 5 is a schematic diagram showing an image of the second embodiment. The transmission unit 2 shown in the second embodiment of FIG. 4 is configured such that the time shift detection transmission method 21 includes pulse voltage control means 213 and pulse generation means 212. Transmission method 21 for detecting time shift by the transmission method selection means 23
When is selected, the pulse generation means 212 generates a pulse of the voltage determined by the pulse voltage control means 213. The pulse voltage determined by the pulse voltage control means 213 is determined to be higher than the pulse voltage in the transmission for tomographic image display. However, the high voltage mentioned here must be a pulse voltage at which ultrasonic waves emitted from the electroacoustic conversion element 1 do not pose a risk to the living body.

【0023】図5は、断層像表示用送信のパルス電圧よ
りも時間ずれ検出用送信のパルス電圧の方が高電圧に示
されている。パルス電圧を増加させると送信パルスの音
圧が増大し、従って、該電気音響変換素子1で受信され
る受信信号のS/Nが向上し、その結果時間ずれ検出誤
差が低減され、補正効果の向上が見込まれる。図6は、
送信部2の第三実施例を示すブロック図、図7はその第
三実施例のイメージを表わす模式図である。
In FIG. 5, the pulse voltage for the time shift detection transmission is shown as a higher voltage than the pulse voltage for the tomographic image display transmission. When the pulse voltage is increased, the sound pressure of the transmission pulse is increased, so that the S / N of the reception signal received by the electroacoustic conversion element 1 is improved, and as a result, the time lag detection error is reduced and the correction effect is improved. Improvement is expected. Figure 6
FIG. 7 is a block diagram showing a third embodiment of the transmission unit 2, and FIG. 7 is a schematic diagram showing an image of the third embodiment.

【0024】図6の第三実施例に示す送信部2は、時間
ずれ検出用送信方式21が送信開口制御手段214とパ
ルス発生手段212を備えることで構成されている。送
信方式選択手段23により時間ずれ検出用送信方式21
が選択された場合、パルス発生手段212は、送信開口
制御手段214で決定された送信開口分のパルスを発生
させる。送信開口制御手段214で決定される送信開口
は、断層像表示用送信における送信開口より広い。
The transmitting section 2 shown in the third embodiment of FIG. 6 is constructed by a transmission system 21 for detecting time shift, which comprises a transmission aperture control means 214 and a pulse generation means 212. Transmission method 21 for detecting time shift by the transmission method selection means 23
When is selected, the pulse generation means 212 generates pulses for the transmission aperture determined by the transmission aperture control means 214. The transmission aperture determined by the transmission aperture control unit 214 is wider than the transmission aperture in the tomographic image display transmission.

【0025】図7は、時間ずれ検出用送信の送信開口を
断層像表示用送信の送信開口の2倍とした場合を示して
いる。図7に図示したように、送信開口を狭くした場
合、形成される送信ビーム幅は送信フォーカス点でそれ
ほど絞られない代わりに、送信フォーカス点以外でも拡
がりが少ない。これに対し、送信開口を広くした場合、
形成される送信ビーム幅は送信フォーカス点で細く絞ら
れる代わりに、送信フォーカス点以外では極端に拡がっ
てしまう。こうした理由から、断層像表示用送信におい
ては送信開口を制限し、被検体内のあらゆる深さで送信
ビーム幅をできるだけ一定にするように送信開口を制御
している。しかし、ゲート部6が切り出す受信信号は被
検体内の一部、例えば送信フォーカス点近傍のみでよ
く、従って送信開口を広げることで送信フォーカス点で
のビーム幅が絞られ、ゲート部6が切り出す受信信号の
S/Nを向上させることが可能となる。その結果、時間
ずれ検出誤差が低減され、補正効果の向上が見込まれ
る。
FIG. 7 shows a case where the transmission aperture for time shift detection transmission is twice the transmission aperture for tomographic image display transmission. As shown in FIG. 7, when the transmission aperture is narrowed, the formed transmission beam width is not so narrowed at the transmission focus point, but the spread is small at points other than the transmission focus point. On the other hand, when the transmission aperture is widened,
The formed transmission beam width is narrowed down at the transmission focus point, but is extremely widened at other points than the transmission focus point. For these reasons, the transmission aperture is limited in the transmission for displaying a tomographic image, and the transmission aperture is controlled so that the transmission beam width is as constant as possible at any depth in the subject. However, the reception signal cut out by the gate unit 6 may be only in a part of the inside of the subject, for example, in the vicinity of the transmission focus point. Therefore, by widening the transmission aperture, the beam width at the transmission focus point is narrowed, and the reception signal cut out by the gate unit 6 is received. It is possible to improve the S / N of the signal. As a result, the time shift detection error is reduced, and the correction effect is expected to be improved.

【0026】上述した第一実施例から第三実施例では、
図3、図5、図7に示すように、時間ずれ検出用送信の
場合も、電気音響変換素子1に印加するパルスの電圧に
重み付けをする送信アポダイズの手法を取り入れている
が、時間ずれ検出用送信の場合は送信アポダイズを行わ
ないように構成しても良い。送信アポダイズを与えない
場合、送信パルスの音圧が増大することになる。
In the first to third embodiments described above,
As shown in FIGS. 3, 5, and 7, the transmission apodization method of weighting the voltage of the pulse applied to the electroacoustic conversion element 1 is also adopted in the case of the transmission for time shift detection. In the case of the business transmission, the transmission apodization may not be performed. If the transmission apodization is not applied, the sound pressure of the transmission pulse will increase.

【0027】なお、本発明においては、上述した第一実
施例〜第三実施例の各態様を個別に採用するだけでな
く、それらのうちの2つもしくは3つを組合わせても良
いことは言うまでもない。また、送信方式選択手段23
の時間ずれ検出用送信と断層像表示用送信の切換えは、
手動であっても自動であっても良い。
In the present invention, not only the respective aspects of the first to third embodiments described above are individually adopted, but two or three of them may be combined. Needless to say. Also, the transmission method selection means 23
Switching between the time deviation detection transmission and the tomographic image display transmission of
It may be manual or automatic.

【0028】手動の場合、例えばプローブまたは超音波
診断装置の筐体パネル等に時間ずれ検出用送信スイッチ
を設け、スイッチがオンのときに時間ずれ検出用送信を
行ない、オフの時は断層像表示送信を行うように構成す
ることができる。自動の場合、時間ずれ検出用送信と断
層像表示用送信の送信回数の組合わせをうまく設定する
必要がある。時間ずれ検出用送信を多く行うと、フレー
ムレート(単位時間に表示可能な画像枚数)が落ちる。
したがって、フレームレートの低下をできるだけ防ぐ方
法として、例えば「断層像表示用送信10フレーム(1
0画面)につき時間ずれ検出用送信1フレーム(1画
面)行う」等の対策が必要である。ここで、送信回数の
組合わせは、例えば超音波診断装置の筐体パネル等から
手動で設定できるように構成することが好ましい。
In the case of manual operation, for example, a transmission switch for detecting a time lag is provided on the probe or the casing panel of the ultrasonic diagnostic apparatus, and when the switch is on, the transmission for time lag detection is performed, and when the switch is off, a tomographic image is displayed. It can be configured to send. In the case of automatic transmission, it is necessary to properly set the combination of the number of transmissions for time shift detection transmission and tomographic image display transmission. If a large amount of time shift detection transmission is performed, the frame rate (the number of images that can be displayed in a unit time) drops.
Therefore, as a method of preventing the frame rate from decreasing as much as possible, for example, “10 frames for transmission for tomographic image display (1
A measure such as "per 1 frame (1 screen) for time shift detection per 0 screen)" is required. Here, it is preferable that the combination of the number of transmissions can be manually set, for example, from a housing panel of the ultrasonic diagnostic apparatus.

【0029】[0029]

【発明の効果】以上説明したように、本発明の超音波送
受信装置は、断層像表示用送信以外に(1)パルス個数
制御、(2)パルス電圧制御、(3)送信開口制御を用
いた時間ずれ検出用送信を取入れているため、送信パル
スの音圧を上げ、その結果、受信信号のS/Nが向上
し、時間ずれ検出精度が向上する。検出精度が向上する
ことで、生体内の音速不均一性の補正効果向上につなが
り、高分解能、高画質の断層像を得ることが可能とな
る。
As described above, the ultrasonic transmission / reception device of the present invention uses (1) pulse number control, (2) pulse voltage control, and (3) transmission aperture control, in addition to tomographic image display transmission. Since the time shift detection transmission is incorporated, the sound pressure of the transmission pulse is increased, and as a result, the S / N of the received signal is improved and the time shift detection accuracy is improved. The improvement in the detection accuracy leads to an improvement in the effect of correcting the sound velocity non-uniformity in the living body, and it is possible to obtain a high-resolution and high-quality tomographic image.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超音波診断装置の一実施例の構成を表
わすブロック図である。
FIG. 1 is a block diagram showing the configuration of an embodiment of an ultrasonic diagnostic apparatus of the present invention.

【図2】送信部の第一実施例を示すブロック図である。FIG. 2 is a block diagram showing a first embodiment of a transmission unit.

【図3】第一実施例のイメージを表わす模式図である。FIG. 3 is a schematic diagram showing an image of the first embodiment.

【図4】送信部の第二実施例を示すブロック図である。FIG. 4 is a block diagram showing a second embodiment of a transmission unit.

【図5】第2実施例のイメージを表わす模式図である。FIG. 5 is a schematic diagram showing an image of a second embodiment.

【図6】送信部の第三実施例を示すブロック図である。FIG. 6 is a block diagram showing a third embodiment of the transmission unit.

【図7】第三実施例のイメージを表わす模式図である。FIG. 7 is a schematic diagram showing an image of a third embodiment.

【図8】受信フォーカスの手法の説明図である。FIG. 8 is an explanatory diagram of a method of receiving focus.

【図9】音速が不均一の場合の受信フォーカスを示した
図である。
FIG. 9 is a diagram showing reception focus when the sound velocity is not uniform.

【図10】相互相関法を用いた時間ずれを補正する方法
の説明図である。
FIG. 10 is an explanatory diagram of a method of correcting a time shift using a cross correlation method.

【符号の説明】[Explanation of symbols]

1 電気音響変換素子 2 送信部 3 受信部 4 加算部 5 表示部 6 ゲート部 7 時間ずれ検出部 8 遅延量制御部 21 時間ずれ検出用送信方式 22 画像表示用送信方式 211 パルス個数制御手段 212 パルス発生手段 213 パルス電圧制御手段 214 送信開口制御手段 DESCRIPTION OF SYMBOLS 1 electroacoustic conversion element 2 transmitter 3 receiver 4 adder 5 display 6 gate 7 time lag detector 8 delay amount controller 21 time lag detection transmission method 22 image display transmission method 211 pulse number control means 212 pulses Generation means 213 Pulse voltage control means 214 Transmission aperture control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 齋藤 正男 東京都新宿区下落合3丁目10番22号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masao Saito 3-10-22 Shimochiai, Shinjuku-ku, Tokyo

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検体内に送信される超音波が該被検体
内の所定の送信フォーカス点で焦点を結ぶように送信手
段により生成された各所定のタイミングの電圧パルスを
所定の方向に並んだ複数の電気音響変換素子に印加し、
前記被検体内に送信され該被検体内で反射した超音波を
複数の前記電気音響変換素子で受信することにより複数
の受信信号を得、前記被検体内の互いに略同一の位置で
略同時に反射された超音波に対応する複数の前記受信信
号が互いに略同時に出力されるように遅延量可変の遅延
手段を用いて複数の前記受信信号をそれぞれ遅延させる
とともに互いに加算することにより加算信号を得、該加
算信号に基づいて前記被検体の断層像を表示する超音波
診断装置において、 前記受信信号に基づいて前記受信信号の相対的な時間ず
れを求め、求められた前記相対的な時間ずれを補正する
ように前記遅延手段における前記受信信号の各遅延量を
制御する時間ずれ補正手段を備えるとともに、 前記被検体の断層像を表示するための前記受信信号を得
る第1の超音波送受信モードと、該第1の超音波送受信
モードとは別に、前記相対的な時間ずれを求めるための
前記受信信号を得る第2の超音波送受信モードを備えた
ことを特徴とする超音波診断装置。
1. An ultrasonic wave transmitted into a subject is arranged in a predetermined direction with voltage pulses at predetermined timings generated by a transmitting means so that an ultrasonic wave is focused at a predetermined transmission focus point in the subject. It is applied to multiple electroacoustic transducers,
A plurality of received signals are obtained by receiving the ultrasonic waves transmitted in the subject and reflected in the subject by the plurality of electroacoustic conversion elements, and reflected at substantially the same positions in the subject at substantially the same time. A plurality of the received signals corresponding to the ultrasonic waves are output to obtain the addition signal by delaying each of the plurality of reception signals by using delay means of variable delay amount so as to be output substantially simultaneously with each other and by adding each other, In an ultrasonic diagnostic apparatus that displays a tomographic image of the subject based on the added signal, a relative time difference between the received signals is obtained based on the received signal, and the obtained relative time difference is corrected. To obtain the received signal for displaying a tomographic image of the subject while providing a time shift correction means for controlling each delay amount of the received signal in the delay means. In addition to the ultrasonic transmission / reception mode and the first ultrasonic transmission / reception mode, a second ultrasonic transmission / reception mode for obtaining the reception signal for obtaining the relative time difference is provided. Sound wave diagnostic equipment.
【請求項2】 前記第2の超音波送受信モードが、 前記第1の超音波送受信モードにおける一回の超音波送
受信のための前記電気音響変換素子に印加される電圧パ
ルスの数よりも多い数の電圧パルスを、一回の超音波送
受信のために前記電気音響変換素子に印加するモードで
あることを特徴とする請求項1記載の超音波診断装置。
2. The number of the second ultrasonic transmission / reception modes is greater than the number of voltage pulses applied to the electroacoustic transducer for one ultrasonic transmission / reception in the first ultrasonic transmission / reception mode. The ultrasonic diagnostic apparatus according to claim 1, wherein the voltage pulse is applied to the electroacoustic conversion element for one ultrasonic wave transmission / reception.
【請求項3】 前記第2の超音波送受信モードが、前記
第1の超音波送受信モードにおける前記電気音響変換素
子に印加される電圧パルスよりも高電圧の電圧パルスを
前記電気音響変換素子に印加するモードであることを特
徴とする請求項1記載の超音波診断装置。
3. The second ultrasonic transmission / reception mode applies to the electroacoustic conversion element a voltage pulse having a higher voltage than a voltage pulse applied to the electroacoustic conversion element in the first ultrasonic transmission / reception mode. The ultrasonic diagnostic apparatus according to claim 1, wherein the ultrasonic diagnostic apparatus is in a mode to perform.
【請求項4】 前記第2の超音波送受信モードが、前記
第1の超音波送受信モードにおける電圧パルスが印加さ
れる前記電気音響変換素子の個数よりも多い個数の前記
電気音響変換素子に電圧パルスを印加するモードである
ことを特徴とする請求項1記載の超音波診断装置。
4. The second ultrasonic transmission / reception mode has voltage pulses applied to a larger number of the electroacoustic conversion elements than the number of the electroacoustic conversion elements to which the voltage pulse in the first ultrasonic transmission / reception mode is applied. 2. The ultrasonic diagnostic apparatus according to claim 1, wherein the ultrasonic diagnostic apparatus is in a mode for applying.
JP5183789A 1993-07-26 1993-07-26 Ultrasonic diagnostic apparatus Withdrawn JPH0731616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5183789A JPH0731616A (en) 1993-07-26 1993-07-26 Ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5183789A JPH0731616A (en) 1993-07-26 1993-07-26 Ultrasonic diagnostic apparatus

Publications (1)

Publication Number Publication Date
JPH0731616A true JPH0731616A (en) 1995-02-03

Family

ID=16141963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5183789A Withdrawn JPH0731616A (en) 1993-07-26 1993-07-26 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPH0731616A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143153A (en) * 2000-11-08 2002-05-21 Hitachi Medical Corp Method for arranging phase of transmission or reception wave and ultrasonic diagnostic device
JP2009521980A (en) * 2005-12-28 2009-06-11 株式会社 メディソン How to acquire ultrasound images
JP2009254462A (en) * 2008-04-14 2009-11-05 Kyoto Univ Image forming method using ultrasound and aberration correction method
JP2012115666A (en) * 2010-11-30 2012-06-21 General Electric Co <Ge> System and method for acoustic radiation force imaging with enhanced performance
JP2012183102A (en) * 2011-03-03 2012-09-27 Fujifilm Corp Ultrasound probe and ultrasound diagnostic apparatus
JP2018084507A (en) * 2016-11-24 2018-05-31 株式会社Ihi検査計測 Reinforcing-bar corrosion ae detection method and device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143153A (en) * 2000-11-08 2002-05-21 Hitachi Medical Corp Method for arranging phase of transmission or reception wave and ultrasonic diagnostic device
JP4632517B2 (en) * 2000-11-08 2011-02-16 株式会社日立メディコ Transmission / reception wave phasing method and ultrasonic diagnostic apparatus
JP2009521980A (en) * 2005-12-28 2009-06-11 株式会社 メディソン How to acquire ultrasound images
JP2009254462A (en) * 2008-04-14 2009-11-05 Kyoto Univ Image forming method using ultrasound and aberration correction method
JP2012115666A (en) * 2010-11-30 2012-06-21 General Electric Co <Ge> System and method for acoustic radiation force imaging with enhanced performance
JP2012183102A (en) * 2011-03-03 2012-09-27 Fujifilm Corp Ultrasound probe and ultrasound diagnostic apparatus
JP2018084507A (en) * 2016-11-24 2018-05-31 株式会社Ihi検査計測 Reinforcing-bar corrosion ae detection method and device

Similar Documents

Publication Publication Date Title
JP4717995B2 (en) Numerical optimization method of ultrasonic beam path
US4644795A (en) High resolution multiline ultrasonic beamformer
KR100749973B1 (en) Prf adjustment method and apparatus, and ultrasonic wave imaging apparatus
JP4958348B2 (en) Ultrasonic imaging device
JP5470260B2 (en) Organizational Doppler image forming apparatus and method using composite image
JP3803374B2 (en) 2D array operating method and connection device for phase deviation correction
US20110082372A1 (en) Ultrasonic apparatus and control method therefor
EP1903353B1 (en) Ultrasound system and method for forming ultrasound images
JPH0728870B2 (en) Coherent oscillatory energy beam imager and method for correcting aberrations in a transmission medium
JPH06125908A (en) Ultrasonic diagnostic device
JP2000157548A (en) Method and system for imaging ultrasonic wave scattered body
JP2000107182A (en) Ultrasonograph
JP2001327505A (en) Ultrasonic diagnostic device
US20050124883A1 (en) Adaptive parallel artifact mitigation
US4679565A (en) Ultrasonic diagnostic apparatus using non-linear parameters of an organ
KR20020096965A (en) Ultrasonic imaging apparatus
US5517995A (en) 2D array for phase aberration correction
JP2012170467A (en) Ultrasound probe and ultrasound diagnostic apparatus
JPH078492A (en) Ultrasonic diagnostic device
JP3474278B2 (en) Ultrasound diagnostic equipment
JPH0731616A (en) Ultrasonic diagnostic apparatus
US20080030581A1 (en) Multizone Color Doppler Beam Transmission Method
JPH0654845A (en) Ultrasonic diagnostic device
JPH0690952A (en) Ultrasonic diagnostic device
JP4772338B2 (en) Ultrasonic diagnostic equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003