JP3725044B2 - Pressure reducing valve - Google Patents

Pressure reducing valve Download PDF

Info

Publication number
JP3725044B2
JP3725044B2 JP2001144527A JP2001144527A JP3725044B2 JP 3725044 B2 JP3725044 B2 JP 3725044B2 JP 2001144527 A JP2001144527 A JP 2001144527A JP 2001144527 A JP2001144527 A JP 2001144527A JP 3725044 B2 JP3725044 B2 JP 3725044B2
Authority
JP
Japan
Prior art keywords
pressure reducing
gas
reducing valve
pressure
working chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001144527A
Other languages
Japanese (ja)
Other versions
JP2002049427A (en
Inventor
勝 竹田
輝夫 羽鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neriki Valve Co Ltd
Original Assignee
Neriki Valve Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neriki Valve Co Ltd filed Critical Neriki Valve Co Ltd
Priority to JP2001144527A priority Critical patent/JP3725044B2/en
Publication of JP2002049427A publication Critical patent/JP2002049427A/en
Application granted granted Critical
Publication of JP3725044B2 publication Critical patent/JP3725044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガス入口から流入する高圧のガスを低圧に減圧してガス出口から取り出し、そして、液化ガスや圧縮ガスのフレッシュガスをガス出口からガス入口へ逆方向に供給できる減圧弁に関する。
【0002】
【発明の背景】
減圧弁はそのガス出口を作動室へ連通してあり、ガス出口の圧力が高くなると作動室の圧力による閉じ力で減圧部材を閉じ方向へ移動させ、これにより減圧弁のガス出口から取り出されるガスを減圧する。このため、高圧のフレッシュガスを減圧弁のガス出口からガス入口へ逆方向へ流入させようとすると、ガス出口内の高圧のガスが上記作動室に流入して減圧部材が閉じ方向へ移動し、減圧弁が閉弁する。そこで、この種の減圧弁を備えたガスボンベに高圧のフレッシュガスを供給する場合、フレッシュガスが減圧弁を通過しないように、例えば減圧弁を迂回するガス充填路を形成したり、減圧弁に連通するガス取出し口とは別にガス充填口を設けたりする必要があった。
【0003】
【従来の技術】
従来、上記の問題点を解消し、ガス出口から減圧弁を経てガスボンベへフレッシュガスを充填できるように構成した減圧弁として、例えば特開平9−170672号公報に開示の減圧弁がある。
【0004】
即ち、上記の減圧弁は、ハウジング内に、減圧弁室と、この減圧弁室に取出しガスを流入させる入口路と、減圧弁室から取出しガスを排出させる出口路と、出口路からのガスの流出を制御するため減圧弁室内に挿入された減圧部材とを有している。上記の減圧部材は、近位部の第1ピストンとこれより大径で遠位部の第2ピストンとからなるピストン部材を有している。さらにこのピストン部材を開弁方向へ付勢する付勢手段を有している。また、上記第2ピストンの遠位部側に作動室が形成され、この作動室は連通路を介して上記出口路に連通されている。
【0005】
そして、上記入口路から流入する取出しガスは、上記付勢手段とともにピストン部材を開弁方向へ移動させ、上記減圧部材とこれに対面する減圧弁座との隙間から出口路へ流出することで減圧される。この出口路の取出しガスの圧力は、上記連通路を介して作動室に伝わり、この作動室内の圧力が上記第2ピストンを押圧してピストン部材を閉弁方向へ押し戻す。
上記連通路内には、可動手段が保密摺動可能に配置されており、バネで出口路側へ付勢されている。
【0006】
この減圧弁を備えたガスボンベ内へ高圧のフレッシュガスを充填する場合、先端に押圧部を設けた充填金具を上記の出口路に装着し、この出口路に挿入した上記押圧部で上記の可動手段を押圧する。この押圧により、上記の可動手段は上記バネの付勢力に抗して作動室側へ移動し、その端部は上記の移動でハウジングに接当して作動室へのフレッシュガスの流入を阻止する。これにより、上記第2ピストンに閉弁方向の力が加わることが阻止され、減圧弁が開弁状態に維持されるので、高圧のフレッシュガスは減圧弁を通過してガスボンベ内に流入する。
【0007】
【発明が解決しようとする課題】
上記の従来技術は、減圧弁を通してフレッシュガスを充填でき、減圧弁を迂回させた充填路等を設ける必要がない点で優れてはいるが、次の問題点がある。
(1) 充填時にガス出口から作動室へのフレッシュガスの流入を阻止するため、連通路内に可動手段を保密摺動可能に設ける必要があり、減圧弁の構造が複雑になる。
これを解消するため、ピストン部材の一部で可動手段を構成することも考えられる。しかしながら、上記可動手段は開弁方向への移動により作動室へのガスの流入を阻止するものであり、一方、ピストン部材は付勢手段で開弁方向に付勢されている。従って、このピストン部材の一部で上記可動手段を構成すると、ガスボンベからガスを取出す際にピストン部材が開弁側に移動しており、取出しガスが作動室へ流入しないため、減圧できない。
【0008】
(2) ピストン部材と減圧部材が付勢手段で開弁方向に付勢されているため、ガスボンベ内のガスを使い終わった際に止め弁を開弁しておくと、大気がガスボンベ内に流入する虞れがある。この空気の混入を防ぐため、使い終わった際にもガスボンベ内に最小圧力が保持されるように残圧保持用の逆止弁を装着すると、バルブ装置全体の構造が複雑になる。
【0009】
(3) フレッシュガスの充填時に連通路内の上記可動手段を押圧するため、出口路には充填金具の先端に設けた押圧部が挿入される。上記可動手段は出口路から作動室へのフレッシュガスの流入を阻止するため確りと押圧される必要があり、このため上記の押圧部は所定の太さを必要とする。この押圧部が挿入される出口路は、挿入された押圧部との間にガス充填路を確保できるように、その断面積を押圧部よりも大きくする必要があり、この出口路を封止する前記減圧部材の封止面積も大きくなる。そして、前記第1ピストンは、ガス取出し時に減圧弁室へ流入するガス圧力で開弁方向へ移動できるように、その断面積を減圧部材の封止面積よりも大きく形成してあり、さらに、第2ピストンは第1ピストンよりも大径であることから、結局、上記押圧部の太さに応じて減圧弁がかなり大形化することになる。
本発明は上記問題点を解消し、構造が簡単でコンパクトな減圧弁を提供することを技術的課題とする。
【0010】
【課題を解決するための手段】
本発明は、上記の課題を解決するため、例えば本発明の実施の形態を示す図1から図3に示すように、減圧弁を次のように構成した。
即ち、ハウジング ( ) 内に形成した減圧弁室 (14) にガス入口 (7a) とガス出口 (7b) を開口して、このガス出口 (7b) の周囲に減圧弁座 (18) を形成し、上記の減圧弁室 (14) に挿入した減圧部材 (17) を挟んで、ガス入口 (7a) とは反対側に作動室 (29) を形成し、上記の減圧部材 (17) にガス入口 (7a) の圧力を受ける第1ピストン (26) と、これよりも大径で作動室 (29) の圧力を受ける第2ピストン (27) とを形成し、上記の減圧部材 (17) 内に連通路 (30) を設けて、この連通路 (30) を介して上記の作動室 (29) を上記のガス出口 (7b) へ連通させ、ガス取出し時には、ガス入口(7a)の圧力によって減圧部材(17)を減圧弁座(18)から離間させると共に、作動室(29)の圧力によって上記の減圧部材(17)を減圧弁座(18)に近接させるように構成してあり、ガス充填時には、封止具(41)を有する充填ノズル(34)からのフレッシュガスを上記ガス出口(7b)から上記ガス入口(7a)へ逆方向へ供給するように構成した減圧弁であって、
上記の連通路(30)の周壁(30a)のうち上記のガス出口 (7b) と対面する端面に、上記のガス出口 (7b) と作動室との連通を遮断できる被シール部(43)を設け、上記の充填ノズル(34)が装着された際に、この被シール部(43)に上記の封止具(41)を上記ガス出口(7b)から上記の作動室(29)へ向けて封止接当させて、上記フレッシュガスが前記の作動室(29)へ流れるのを阻止するように構成したことを特徴とする。
【0011】
【作用】
本発明は、次のように作用する。
ガスを取り出す際、上記ガス入口から減圧弁室に取出しガスが流入すると、そのガス圧力で上記の第1ピストンが押圧されて減圧部材が減圧弁座から離間する。これにより、取出しガスが上記減圧部材と減圧弁座との隙間からガス出口へ減圧されながら流出する。このガス出口に流出した取出しガスの圧力は、上記連通路を介して作動室に伝わり、この作動室内の圧力が大径の第2ピストンを押圧して減圧部材を減圧弁座側へ押し戻す。この作動室内のガス圧力による閉じ力と、上記ガス入口のガス圧力による開き力とで減圧部材が減圧弁座に近接又は減圧弁座から離間し、上記ガス出口から流出する取出しガスの圧力が減圧される。
【0012】
一方、減圧弁のガス出口からガス入口へフレッシュガスを供給する場合は、上記の充填ノズルに設けた上記封止具を、上記連通路の周壁の端面に設けた上記被シール部に、上記ガス出口から作動室ヘ向けて接当させる。これにより、連通路が封止具で蓋された状態に封止され、ガス出口から作動室へのフレッシュガスの流入が阻止される。この結果、減圧部材はガス出口内のフレッシュガスの圧力に押圧されて開弁側へ移動し、フレッシュガスは減圧弁室のガス入口へ供給される。
【0013】
上記の作動室(29)内には弾性手段(19)を挿入して、上記の減圧部材(17)を上記の減圧弁座(18)へ向けて押圧してもよい。この場合、ガス入口から減圧弁室へ流入する取出しガスの圧力が上記の弾性手段の押圧力よりも小さくなると、減圧部材が移動して減圧弁座に接当し、閉弁する。即ち、ガス入口の取出しガス圧が所定の残圧値以下になると減圧弁が閉弁するので、例えばこの減圧弁を付設したガスボンベ内に最小圧力を保持することができる。従って、前記従来技術で必要とした残圧保持用の逆止弁を別途設ける必要がなく、減圧弁を簡単な構造にでき、コンパクトに構成することができる。
【0014】
上記のガス入口(7a)とガス出口(7b)との間で、上記の減圧部材(17)及び上記の減圧弁座(18)の外周空間には、筒状のフィルタ(15)を装着するのが好ましい。この場合、ガス入口からガス出口に取り出される取出しガスは上記の筒状のフィルタで濾過される。このとき、上記のフィルタは筒状に形成されているので濾過面積が広く、細かなフィルタを採用できるうえ、減圧部材や減圧弁座の近傍に配置される。このため、減圧弁室に流入する取出しガスから細かな異物を効果的に除去でき、減圧部材の弁面や減圧弁座にこれらの異物が付着することを防止して、減圧弁の減圧性能を長期に亘って高く維持することができる。
【0015】
【実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。
図1及び図2は本発明の第1実施形態を示し、図1はバルブ装置に設けた減圧弁の断面図であり、図2は、充填金具を装着した状態の減圧弁の断面図である。
【0016】
図1に示すように、ガスボンベ(1)に固定されたバルブ装置(2)は、ハウジング(3)の外面に入口穴(4)と出口穴(5)と備えており、この入口穴(4)と出口穴(5)との間に減圧弁(7)が設けられている。この減圧弁(7)はガス入口(7a)が入口路(6)を介して上記の入口穴(4)に連通され、ガス出口(7b)が出口路(8)を介して上記の出口穴(5)に連通されている。
【0017】
上記入口路(6)には上記の入口穴(4)と上記ガス入口(7a)との間に止め弁(9)が設けられており、この止め弁(9)と入口穴(4)との間が一次安全弁(10)のガス噴出孔(11)に連通されている。また、上記出口穴(5)は、ハウジング(3)の一側に形成した出口ノズル(12)の端面に設けてあり、この出口ノズル(12)にガス取出し用金具(図示せず)が接続可能となっている。
【0018】
ハウジング(3)の上記出口ノズル(12)とは反対側の側面に上記減圧弁(7)の装着孔(13)が凹設してあり、この装着孔(13)の内部に減圧弁室(14)が形成され、この装着孔(13)の奥壁に上記ガス出口(7b)が形成されている。
上記の装着孔(13)には奥側から順に筒状フィルタ(15)と筒部材(16)とが装着され、この筒部材(16)の内方に減圧部材(17)が挿入されている。上記のガス出口(7b)の開口周縁には減圧弁座(18)が形成されている。上記減圧部材(17)はこの減圧弁座(18)に向かって進退可能に配置され、弾性手段であるバネ(19)で減圧弁座(18)側へ弾圧されている。
【0019】
上記の装着孔(13)はボルト状の蓋部材(20)で蓋されており、上記筒状フィルタ(15)と筒部材(16)はこの蓋部材(20)で固定されている。この蓋部材(20)の内面には凹部(21)が形成されており、この凹部(21)内にバネ受け(22)が配置され、上記バネ(19)が支持されている。なお、このバネ受け(22)の中央には、蓋部材(20)の外面に設けられた二次安全弁(23)に連通する連通孔(24)が形成されている。
【0020】
上記減圧部材(17)はガス入口(7a)の近位部にある第1ピストン(26)とこれより大径で遠位部にある第2ピストン(27)とを備える。上記第1ピストン(26)は前記筒部材(16)の内面に保密摺動し、第2ピストン(27)は蓋部材(20)の上記凹部(21)内面に保密摺動する。なお、符号(28)は上記第1ピストン(26)と第2ピストン(27)との間の減圧部材(17)の外面と、ハウジング(3)の外部とを連通する大気連通孔を示す。
上記第2ピストン(27)の遠位部側には、蓋部材(20)との間に作動室(29)が形成されている。また、上記減圧部材(17)を貫通する状態に連通路(30)が形成されており、この連通路(30)を介して上記作動室(29)と前記ガス出口(7b)とが連通している。
【0021】
次に、上記減圧弁(7)を通してガスボンベ(1)からガスを取り出す場合を説明する。
止め弁(9)を開くとガスボンベ(1)内のガスが入口路(6)を経てガス入口(7a)から減圧弁室(14)内へ流入し、前記の筒状フィルタ(15)の筒壁を透過して濾過される。このとき、上記のフィルタ(15)は筒状に形成されているので濾過面積が広く、細かなフィルタを採用できるうえ、上記の減圧部材(17)や減圧弁座(18)の近傍に配置されている。このため、減圧弁室(14)に流入する取出しガスから細かな異物が効果的に除去され、減圧部材(17)の弁面や減圧弁座(18)にこれらの異物が付着することが防止されて、減圧性能が長期に亘り高く維持される。
【0022】
上記のガス入口(7a)から流入する取出しガスの圧力が所定の残圧値よりも高いと、バネ(19)の押圧力に抗して上記第1ピストン(26)を押圧し、上記減圧部材(17)を減圧弁座(18)から離間させる。これにより減圧弁(7)が開弁し、取出しガスは、上記の減圧部材(17)と減圧弁座(18)との隙間からガス出口(7b)を経て上記の出口路(8)へ減圧されながら流出する。このガス出口(7b)の取出しガスの圧力は上記連通路(30)を介して作動室(29)に伝わり、この作動室(29)内の圧力が上記第2ピストン(27)を押圧して減圧部材(17)を減圧弁座(18)側へ押し戻す。これにより、上記ガス出口(7b)から流出する取出しガスの圧力は、第1ピストン(26)に加わる取出しガスの圧力と、第2ピストン(27)に加わる作動室(29)のガス圧力に上記バネ(19)の弾圧力を加えた合力とのバランスで減圧され、出口穴(5)から取り出される。
【0023】
なお、上記ガス出口(7b)内の圧力が異常に上昇して、前記二次安全弁(23)の設定圧力よりも高くなると、上記作動室(29)に流入したガスが連通孔(24)を通して二次安全弁(23)の安全部材(31)を押圧し、安全バネ(32)の押圧力に抗して二次安全弁(23)を開弁させる。これにより異常上昇したガスの一部が外部へ放出され、ガス出口(7b)や出口路(8)内の圧力が安全な設定値以下に低下する。
【0024】
ガスの消費とともにガスボンベ(1)内のガス残量が少なくなって、前記入口路(6)から減圧弁室(14)へ流入する取出しガスの圧力が所定の残圧値よりも低くなると、上記第1ピストン(26)を押圧するガス圧力が上記バネ(19)の押圧力よりも弱くなる。これにより、上記減圧部材(17)が減圧弁座(18)に押し付けられて減圧弁(7)が閉弁し、ガスボンベ(1)内に所定の残圧を保持した状態でガスの取出しが停止される。
【0025】
次に、上記ガスボンベ(1)に液化ガスや圧縮ガスを充填するガス充填装置について説明する。
図2に示すように、ガス充填装置の充填金具(33)は上記ハウジング(3)の出口ノズル(12)に装着される。即ち、充填金具(33)の充填ノズル(34)が上記出口ノズル(12)内に螺着され、保密状に連結される。上記充填ノズル(34)内には充填路(35)が形成されており、上記連結によりこの充填路(35)が前記出口路(8)を介して上記ガス出口(7b)に連通される。
【0026】
上記充填ノズル(34)の先端部には装着孔(36)が凹設されており、この装着孔(36)に棒状の押圧部材(37)が進退自在に装着される。この押圧部材(37)は付勢バネ(38)で先端側(図2における右側)へ弾圧され、充填ノズル(34)のノズル先端部(45)に螺着したスリーブ(39)でその中間部が支持されている。この押圧部材(37)には突出部(40)が設けてあり、この突出部(40)を上記の減圧部材(17)に向けて上記ノズル先端部(45)から突出させてある。この突出部(40)の先端には弾性材料で構成された封止具(41)が固設してあり、この封止具(41)の先端側の肩部にシール部(44)が形成してある。
【0027】
上記の充填金具(33)が出口ノズル(12)に装着されると、上記突出部(40)は前記の出口路(8)内に挿入される。この突出部(40)は上記の出口路(8)の内径よりも小径であり、出口路(8)内でこの突出部(40)の周囲にフレッシュガスの流通路(42)が形成される。上記のスリーブ(39)にはノズル先端側にガス吐出口(46)が設けてあり、上記の充填路(35)はこのガス吐出口(46)と上記の流通路(42)とを介して前記のガス出口(7b)に連通する。
【0028】
前記減圧弁(7)の減圧部材(17)を貫通する上記連通路(30)は、上記出口路(8)と略同一直線上に形成されている。この連通路(30)の周壁(30a)には、ガス出口(7b)側の端面に出口路(8)の通路断面よりも小さな外拡がりの円錐面からなる被シール部(43)が、上記ガス出口(7b)に対面させて形成してある。
【0029】
上記充填金具(33)の装着により、上記突出部(40)の先端に固設した封止具(41)のシール部(44)が上記被シール部(43)に、ガス出口(7b)から前記の作動室(29)へ向けて接当し、連通路(30)を封止する。これとともに、上記付勢バネ(38)の押圧力で減圧部材(17)が図上右方向へ押し込まれ、減圧弁(7)が開弁する。この状態で前記止め弁(9)を開弁し、充填金具(33)の充填路(35)からフレッシュガスを流入させると、フレッシュガスは上記出口路(8)内の流通路(42)を通ってガス出口(7b)から減圧弁室(14)に流入する。このとき、押圧部材(37)は付勢バネ(38)の押圧力に加えてフレッシュガスの圧力を受けるので、封止具(41)のシール部(44)は上記被シール部(43)に確りと押圧され、連通路(30)が確実に封止される。
【0030】
上記減圧弁室(14)へ流入したフレッシュガスにより、上記第1ピストン(26)には開弁方向の圧力が加わる。このとき、上記連通路(30)は封止具(41)で封止されているため、作動室(29)へはフレッシュガスが流入せず、第2ピストン(27)には閉弁方向へ押し戻すガス圧力が加わらないので、減圧弁(7)は開弁状態に維持される。この結果、フレッシュガスは充填路(35)から上記ガス吐出口(46)、上記出口路(8)内の流通路(42)、ガス出口(7b)、減圧弁室(14)、ガス入口(7a)、及び入口路(6)と止め弁(9)を順に経てガスボンベ(1)内に流入し、充填される。
なお、ガス出口(7b)内がフレッシュガスで高圧になるが、上記連通路(30)が封止されており、作動室(29)へフレッシュガスが流入しないので、二次安全弁(23)がフレッシュガスの高圧で開弁することはない。
【0031】
上記第1実施形態では、被シール部(43)を減圧部材(17)のガス出口(7b)側端面に形成した外拡がりの円錐面で構成したが、この被シール部は、例えば連通路の開口周縁に形成した環状凸部で構成してもよく、また減圧部材(17)の内部に形成してもよい。
即ち、例えば図3に示す第2実施形態では、減圧部材(17)のガス出口(7b)側端面に、前記封止具(41)よりもやや大径の凹所(48)を設け、この凹所(48)の奥部にガス出口(7b)と作動室(29)とを連通する連通路(30)を形成してある。そしてこの連通路(30)の周壁(30a)の端面に、上記ガス出口(7b)側へ向けて拡がる円錐面を形成し、この円錐面で上記被シール部(43)を構成してある。そして充填金具(33)を出口ノズル(12)に装着した状態では、充填ノズル(34)に支持された押圧部材(37)の突出部(40)が出口路(8)内に挿入され、この突出部(40)の先端に付設された封止具(41)が上記凹所(48)に挿入され、封止具(41)の先端側の肩部に形成されたシール部(44)が上記被シール部(43)に接当され、これにより連通路(30)が封止される。
【0032】
この第2実施形態では上記突出部(40)が筒状に形成されており、この突出部(40)の内部にフレッシュガスの流通路(42)を形成され、筒状壁にガス吐出口(47)を形成してある。充填ノズル(34)内の充填路(35)は、上記流通路(42)とガス吐出口(47)を介して上記ガス出口(7b)に連通される。その他の構成は上記第1実施形態と同様であるので説明を省略する。
【0033】
【発明の効果】
本発明は上記のように構成され作用することから、次の効果を奏する。
(1)連通路の周壁の端面に被シール部を、ガス出口に対面させて設けてあるので、この被シール部に充填ノズルの封止具をガス出口から作動室に向けて接当させるだけで連通路を封止でき、これにより、減圧部材を閉じることなく減圧弁のガス出口からガス入口へフレッシュガスを供給することができる。従って、前記従来技術で必要とされた可動部材を設ける必要がなく減圧弁を簡単な構造にでき、可動部材の収容スペースを省略して減圧弁をコンパクトにすることができる。
【0034】
(2)しかも、上記連通路の周壁の端面に設けた被シール部は上記ガス出口に対面させてあり、封止具をガス出口から作動室へ向けてこの被シール部に封止接当させるだけで連通路を蓋する状態に封止できるので、充填ノズルに設ける封止具を容易に小形化でき、従って、連通路を小径にして減圧部材を小形に構成することができるので、全体として減圧弁をコンパクトに構成することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す、バルブ装置に設けた減圧弁の断面図である。
【図2】充填金具を装着した状態の減圧弁の断面図である。
【図3】本発明の第2実施形態を示す、図2相当図である。
【符号の説明】
7…減圧弁、 7a…ガス入口、 7b…ガス出口、 17…減圧部材、 18…減圧弁座、 29…作動室、 30…連通路、 30a…連通路の周壁、 34…充填ノズル、 35…充填路、 37…押圧部材、 38…付勢手段(付勢バネ)、 40…突出部、 41…封止具、 43…被シール部、 45…ノズル先端部、 46…ガス吐出口、 47…ガス吐出口。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressure reducing valve capable of reducing a high pressure gas flowing in from a gas inlet to a low pressure, taking it out from a gas outlet, and supplying fresh gas such as liquefied gas or compressed gas in a reverse direction from the gas outlet to the gas inlet.
[0002]
BACKGROUND OF THE INVENTION
The pressure reducing valve communicates its gas outlet to the working chamber, and when the pressure at the gas outlet becomes high, the pressure reducing member is moved in the closing direction by the closing force due to the pressure in the working chamber, whereby the gas taken out from the gas outlet of the pressure reducing valve The pressure is reduced. For this reason, when trying to flow the high pressure fresh gas from the gas outlet of the pressure reducing valve to the gas inlet in the reverse direction, the high pressure gas in the gas outlet flows into the working chamber and the pressure reducing member moves in the closing direction, The pressure reducing valve closes. Therefore, when supplying a high-pressure fresh gas to a gas cylinder equipped with this type of pressure reducing valve, for example, a gas filling path that bypasses the pressure reducing valve is formed or communicated with the pressure reducing valve so that the fresh gas does not pass through the pressure reducing valve. It was necessary to provide a gas filling port separately from the gas outlet to be used.
[0003]
[Prior art]
Conventionally, there is a pressure reducing valve disclosed in, for example, Japanese Patent Application Laid-Open No. 9-170672 as a pressure reducing valve configured to solve the above-described problems and fill a gas cylinder through a pressure reducing valve through a pressure reducing valve.
[0004]
That is, the pressure reducing valve includes a pressure reducing valve chamber in the housing, an inlet passage for allowing the extracted gas to flow into the pressure reducing valve chamber, an outlet passage for discharging the extracted gas from the pressure reducing valve chamber, and a gas from the outlet passage. A pressure reducing member inserted into the pressure reducing valve chamber for controlling the outflow. The decompression member has a piston member including a first piston at the proximal portion and a second piston having a larger diameter and a distal portion. Furthermore, it has a biasing means for biasing the piston member in the valve opening direction. In addition, a working chamber is formed on the distal side of the second piston, and the working chamber communicates with the outlet passage via a communication path.
[0005]
The extracted gas flowing in from the inlet passage moves the piston member in the valve opening direction together with the urging means, and flows out to the outlet passage from the gap between the pressure reducing member and the pressure reducing valve seat facing the pressure reducing member. Is done. The pressure of the gas taken out from the outlet passage is transmitted to the working chamber via the communication passage, and the pressure in the working chamber presses the second piston to push the piston member back in the valve closing direction.
A movable means is disposed in the communication path so as to be able to slide tightly and is urged toward the exit path by a spring.
[0006]
When a high-pressure fresh gas is filled into a gas cylinder equipped with this pressure reducing valve, a filling fitting provided with a pressing portion at the tip is attached to the outlet passage, and the movable means is inserted into the outlet passage with the pressing portion inserted into the outlet passage. Press. By this pressing, the movable means moves to the working chamber side against the urging force of the spring, and its end portion comes into contact with the housing by the movement to prevent the fresh gas from flowing into the working chamber. . As a result, the force in the valve closing direction is prevented from being applied to the second piston, and the pressure reducing valve is maintained in an open state, so that the high pressure fresh gas flows through the pressure reducing valve into the gas cylinder.
[0007]
[Problems to be solved by the invention]
The above prior art is excellent in that it can be filled with fresh gas through a pressure reducing valve, and there is no need to provide a filling path that bypasses the pressure reducing valve, but has the following problems.
(1) In order to prevent the flow of fresh gas from the gas outlet to the working chamber during filling, it is necessary to provide movable means in the communication path so as to be able to slide in a coherent manner, and the structure of the pressure reducing valve becomes complicated.
In order to solve this problem, it is conceivable that the movable means is constituted by a part of the piston member. However, the movable means prevents the gas from flowing into the working chamber by moving in the valve opening direction, while the piston member is urged in the valve opening direction by the urging means. Therefore, if the movable means is constituted by a part of the piston member, the piston member moves to the valve opening side when the gas is taken out from the gas cylinder, and the taken-out gas does not flow into the working chamber, so that the pressure cannot be reduced.
[0008]
(2) Since the piston member and pressure reducing member are urged in the valve opening direction by the urging means, if the stop valve is opened when the gas in the gas cylinder is used up, the atmosphere flows into the gas cylinder. There is a risk of doing. In order to prevent this air from entering, if a check valve for residual pressure is installed so that the minimum pressure is maintained in the gas cylinder even after use, the structure of the entire valve device becomes complicated.
[0009]
(3) In order to press the movable means in the communication passage when fresh gas is charged, a pressing portion provided at the tip of the filling fitting is inserted into the outlet passage. The movable means needs to be pressed firmly in order to prevent the fresh gas from flowing into the working chamber from the outlet passage. For this reason, the pressing portion needs a predetermined thickness. The outlet path into which the pressing part is inserted needs to have a larger cross-sectional area than the pressing part so that a gas filling path can be secured between the outlet part and the inserted pressing part, and the outlet path is sealed. The sealing area of the decompression member is also increased. The first piston has a cross-sectional area larger than the sealing area of the pressure reducing member so that the first piston can move in the valve opening direction with the gas pressure flowing into the pressure reducing valve chamber when the gas is taken out. Since the two pistons have a larger diameter than the first piston, the pressure reducing valve is considerably enlarged according to the thickness of the pressing portion.
The present invention aims to solve the above problems and provide a pressure reducing valve having a simple structure and a compact structure.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has a pressure reducing valve configured as follows, for example, as shown in FIGS. 1 to 3 showing an embodiment of the present invention.
That is, a gas inlet (7a) and a gas outlet (7b) are opened in a pressure reducing valve chamber (14) formed in the housing ( 3 ) , and a pressure reducing valve seat (18) is formed around the gas outlet (7b). Then, sandwiching the pressure reducing member (17) inserted into the pressure reducing valve chamber (14) , a working chamber (29) is formed on the side opposite to the gas inlet (7a), and the pressure reducing member (17) has a gas inlet and the first piston (26) which receives the pressure (7a) than this to form the second piston receiving the pressure of the working chamber (29) with large diameter (27), said reduced pressure member (17) in in providing the communicating passage (30), the communication path through the (30) communicates said working chamber (29) to said gas outlet (7b), at the time of gas extraction, the pressure of the gas inlet (7a) The pressure reducing member (17) is separated from the pressure reducing valve seat (18), and the pressure reducing member (17) is configured to be close to the pressure reducing valve seat (18) by the pressure of the working chamber (29). During filling, from the filling nozzle (34) having the sealing tool (41) A pressure reducing valve configured to supply the fresh gas from the gas outlet (7b) to the gas inlet (7a) in the reverse direction,
The end face facing the said gas outlet (7b) of the circumferential wall (30a) of said communication passage (30), the sealed portion capable of blocking the communication between the working chamber above the gas outlet (7b) (43) setting only, when the above filling nozzle (34) is mounted, toward this sealed portion (43) above the sealing member (41) from the gas outlet (7b) above the working chamber (29) The fresh gas is prevented from flowing into the working chamber (29) by sealing contact.
[0011]
[Action]
The present invention operates as follows.
When the gas is taken out from the gas inlet and into the pressure reducing valve chamber, the first piston is pressed by the gas pressure and the pressure reducing member is separated from the pressure reducing valve seat. As a result, the extracted gas flows out from the gap between the decompression member and the decompression valve seat while being decompressed to the gas outlet. The pressure of the extracted gas that has flowed out to the gas outlet is transmitted to the working chamber via the communication path, and the pressure in the working chamber presses the second piston having a large diameter to push the pressure reducing member back toward the pressure reducing valve seat. Due to the closing force due to the gas pressure in the working chamber and the opening force due to the gas pressure at the gas inlet, the pressure reducing member is close to or away from the pressure reducing valve seat, and the pressure of the extracted gas flowing out from the gas outlet is reduced. Is done.
[0012]
On the other hand, when supplying fresh gas from the gas outlet of the pressure reducing valve to the gas inlet, the sealing tool provided in the filling nozzle is provided on the sealed portion provided on the end surface of the peripheral wall of the communication passage. Contact from the exit to the working chamber. As a result, the communication path is sealed with the sealing tool, and the inflow of fresh gas from the gas outlet to the working chamber is prevented. As a result, the pressure reducing member is pressed by the pressure of the fresh gas in the gas outlet and moves to the valve opening side, and the fresh gas is supplied to the gas inlet of the pressure reducing valve chamber.
[0013]
Elastic means (19) may be inserted into the working chamber (29) to press the pressure reducing member (17) toward the pressure reducing valve seat (18). In this case, when the pressure of the extracted gas flowing into the pressure reducing valve chamber from the gas inlet becomes smaller than the pressing force of the elastic means, the pressure reducing member moves to contact the pressure reducing valve seat and close the valve. That is, since the pressure reducing valve closes when the gas pressure taken out from the gas inlet becomes a predetermined residual pressure value or less, for example, the minimum pressure can be maintained in a gas cylinder provided with this pressure reducing valve. Accordingly, it is not necessary to separately provide a check valve for maintaining the residual pressure required in the conventional technique, and the pressure reducing valve can have a simple structure and can be made compact.
[0014]
Between the gas inlet (7a) and the gas outlet (7b), a cylindrical filter (15) is mounted in the outer peripheral space of the pressure reducing member (17) and the pressure reducing valve seat (18). Is preferred. In this case, the extracted gas taken out from the gas inlet to the gas outlet is filtered by the cylindrical filter. At this time, since the filter is formed in a cylindrical shape, the filtration area is wide, a fine filter can be adopted, and the filter is disposed in the vicinity of the pressure reducing member or the pressure reducing valve seat. For this reason, fine foreign matters can be effectively removed from the extracted gas flowing into the pressure reducing valve chamber, and these foreign matters are prevented from adhering to the valve surface of the pressure reducing member and the pressure reducing valve seat, thereby reducing the pressure reducing performance of the pressure reducing valve. It can be kept high for a long time.
[0015]
Embodiment
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show a first embodiment of the present invention, FIG. 1 is a cross-sectional view of a pressure reducing valve provided in a valve device, and FIG. 2 is a cross-sectional view of the pressure reducing valve in a state in which a filling fitting is mounted. .
[0016]
As shown in FIG. 1, the valve device (2) fixed to the gas cylinder (1) is provided with an inlet hole (4) and an outlet hole (5) on the outer surface of the housing (3). ) And an outlet hole (5), a pressure reducing valve (7) is provided. The pressure reducing valve (7) has a gas inlet (7a) communicated with the inlet hole (4) through an inlet passage (6), and a gas outlet (7b) through the outlet passage (8). It communicates with (5).
[0017]
The inlet passage (6) is provided with a stop valve (9) between the inlet hole (4) and the gas inlet (7a). The stop valve (9) and the inlet hole (4) Is communicated with the gas ejection hole (11) of the primary safety valve (10). The outlet hole (5) is provided on the end face of the outlet nozzle (12) formed on one side of the housing (3), and a gas extraction fitting (not shown) is connected to the outlet nozzle (12). It is possible.
[0018]
A mounting hole (13) for the pressure reducing valve (7) is recessed on the side of the housing (3) opposite to the outlet nozzle (12), and a pressure reducing valve chamber ( 14) is formed, and the gas outlet (7b) is formed in the inner wall of the mounting hole (13).
In the mounting hole (13), a cylindrical filter (15) and a cylindrical member (16) are mounted in order from the back side, and a pressure reducing member (17) is inserted inside the cylindrical member (16). . A pressure reducing valve seat (18) is formed on the opening periphery of the gas outlet (7b). The pressure reducing member (17) is disposed so as to be able to advance and retract toward the pressure reducing valve seat (18), and is elastically pressed toward the pressure reducing valve seat (18) by a spring (19) which is an elastic means.
[0019]
The mounting hole (13) is covered with a bolt-shaped lid member (20), and the tubular filter (15) and the tubular member (16) are fixed by the lid member (20). A concave portion (21) is formed on the inner surface of the lid member (20), and a spring receiver (22) is disposed in the concave portion (21) to support the spring (19). A communication hole (24) communicating with the secondary safety valve (23) provided on the outer surface of the lid member (20) is formed at the center of the spring receiver (22).
[0020]
The pressure-reducing member (17) includes a first piston (26) located in the proximal portion of the gas inlet (7a) and a second piston (27) larger in diameter and located in the distal portion. The first piston (26) slides tightly on the inner surface of the cylindrical member (16), and the second piston (27) slides tightly on the inner surface of the recess (21) of the lid member (20). Reference numeral (28) denotes an air communication hole for communicating the outer surface of the pressure reducing member (17) between the first piston (26) and the second piston (27) and the outside of the housing (3).
A working chamber (29) is formed between the second piston (27) and the lid member (20) on the distal side. A communication passage (30) is formed in a state of penetrating the pressure reducing member (17), and the working chamber (29) and the gas outlet (7b) communicate with each other through the communication passage (30). ing.
[0021]
Next, the case where gas is taken out from the gas cylinder (1) through the pressure reducing valve (7) will be described.
When the stop valve (9) is opened, the gas in the gas cylinder (1) flows into the pressure reducing valve chamber (14) from the gas inlet (7a) through the inlet passage (6), and the cylinder of the cylindrical filter (15). It is filtered through the wall. At this time, since the filter (15) is formed in a cylindrical shape, the filtration area is wide, a fine filter can be adopted, and the filter (15) is disposed in the vicinity of the pressure reducing member (17) and the pressure reducing valve seat (18). ing. For this reason, fine foreign matters are effectively removed from the extracted gas flowing into the pressure reducing valve chamber (14), and these foreign matters are prevented from adhering to the valve surface of the pressure reducing member (17) and the pressure reducing valve seat (18). Thus, the decompression performance is maintained high for a long time.
[0022]
When the pressure of the extracted gas flowing in from the gas inlet (7a) is higher than a predetermined residual pressure value, the first piston (26) is pressed against the pressing force of the spring (19), and the pressure reducing member (17) is separated from the pressure reducing valve seat (18). As a result, the pressure reducing valve (7) is opened, and the extracted gas is depressurized from the gap between the pressure reducing member (17) and the pressure reducing valve seat (18) through the gas outlet (7b) to the outlet path (8). It flows out while being done. The pressure of the gas taken out from the gas outlet (7b) is transmitted to the working chamber (29) through the communication passage (30), and the pressure in the working chamber (29) presses the second piston (27). The pressure reducing member (17) is pushed back toward the pressure reducing valve seat (18). Thereby, the pressure of the extraction gas flowing out from the gas outlet (7b) is equal to the pressure of the extraction gas applied to the first piston (26) and the gas pressure of the working chamber (29) applied to the second piston (27). The pressure is reduced in balance with the resultant force applied with the elastic pressure of the spring (19), and it is taken out from the outlet hole (5).
[0023]
When the pressure in the gas outlet (7b) rises abnormally and becomes higher than the set pressure of the secondary safety valve (23), the gas flowing into the working chamber (29) passes through the communication hole (24). The safety member (31) of the secondary safety valve (23) is pressed, and the secondary safety valve (23) is opened against the pressing force of the safety spring (32). As a result, part of the abnormally raised gas is released to the outside, and the pressure in the gas outlet (7b) and the outlet passage (8) is reduced to a safe set value or less.
[0024]
When the gas remaining in the gas cylinder (1) decreases as the gas is consumed, and the pressure of the extracted gas flowing into the pressure reducing valve chamber (14) from the inlet passage (6) becomes lower than a predetermined residual pressure value, The gas pressure for pressing the first piston (26) becomes weaker than the pressing force of the spring (19). As a result, the pressure reducing member (17) is pressed against the pressure reducing valve seat (18), the pressure reducing valve (7) is closed, and the gas extraction is stopped while a predetermined residual pressure is maintained in the gas cylinder (1). Is done.
[0025]
Next, a gas filling apparatus for filling the gas cylinder (1) with liquefied gas or compressed gas will be described.
As shown in FIG. 2, the filling metal fitting (33) of the gas filling device is attached to the outlet nozzle (12) of the housing (3). That is, the filling nozzle (34) of the filling metal fitting (33) is screwed into the outlet nozzle (12) and connected in a tightly-tight manner. A filling passage (35) is formed in the filling nozzle (34), and the filling passage (35) communicates with the gas outlet (7b) through the outlet passage (8) by the connection.
[0026]
A mounting hole (36) is recessed at the tip of the filling nozzle (34), and a rod-shaped pressing member (37) is mounted in the mounting hole (36) so as to be able to advance and retract. This pressing member (37) is elastically pressed to the tip side (right side in FIG. 2) by a biasing spring (38), and a middle part thereof is a sleeve (39) screwed to the nozzle tip (45) of the filling nozzle (34). Is supported. The pressing member (37) is provided with a protrusion (40), and the protrusion (40) protrudes from the nozzle tip (45) toward the pressure reducing member (17). A sealing tool (41) made of an elastic material is fixed to the tip of the protruding part (40), and a sealing part (44) is formed on the shoulder on the tip side of the sealing tool (41). It is.
[0027]
When the filling metal fitting (33) is attached to the outlet nozzle (12), the protrusion (40) is inserted into the outlet passage (8). The protrusion (40) has a smaller diameter than the inner diameter of the outlet passage (8), and a fresh gas flow passage (42) is formed around the protrusion (40) in the outlet passage (8). . The sleeve (39) is provided with a gas discharge port (46) on the nozzle tip side, and the filling passage (35) passes through the gas discharge port (46) and the flow passage (42). It communicates with the gas outlet (7b).
[0028]
The communication passage (30) penetrating the pressure reducing member (17) of the pressure reducing valve (7) is formed on substantially the same straight line as the outlet passage (8). On the peripheral wall (30a) of the communication passage (30), there is a sealed portion (43) having an outer conical surface that is smaller than the passage cross section of the outlet passage (8) on the end surface on the gas outlet (7b) side. It is formed to face the gas outlet (7b).
[0029]
By attaching the filling fitting (33), the sealing portion (44) of the sealing tool (41) fixed to the tip of the protruding portion (40) is connected to the sealed portion (43) from the gas outlet (7b). It contacts toward the said working chamber (29), and seals a communicating path (30). At the same time, the pressure reducing member (17) is pushed rightward in the figure by the pressing force of the biasing spring (38), and the pressure reducing valve (7) is opened. In this state, when the stop valve (9) is opened and fresh gas is introduced from the filling passage (35) of the filling fitting (33), the fresh gas passes through the flow passage (42) in the outlet passage (8). And flows into the pressure reducing valve chamber (14) from the gas outlet (7b). At this time, since the pressing member (37) receives the pressure of the fresh gas in addition to the pressing force of the biasing spring (38), the sealing portion (44) of the sealing tool (41) is connected to the sealed portion (43). The communication path (30) is reliably sealed by being firmly pressed.
[0030]
Due to the fresh gas flowing into the pressure reducing valve chamber (14), pressure in the valve opening direction is applied to the first piston (26). At this time, since the communication path (30) is sealed by the sealing tool (41), fresh gas does not flow into the working chamber (29), and the second piston (27) in the valve closing direction. Since the gas pressure to push back is not applied, the pressure reducing valve (7) is maintained in the open state. As a result, fresh gas flows from the filling passage (35) to the gas discharge port (46), the flow passage (42) in the outlet passage (8), the gas outlet (7b), the pressure reducing valve chamber (14), the gas inlet ( 7a), through the inlet passage (6) and the stop valve (9) in this order, flows into the gas cylinder (1) and is filled.
Although the gas outlet (7b) has a high pressure with fresh gas, the communication passage (30) is sealed, and fresh gas does not flow into the working chamber (29), so the secondary safety valve (23) It does not open at the high pressure of fresh gas.
[0031]
In the first embodiment, the sealed portion (43) is configured by an outwardly expanding conical surface formed on the gas outlet (7b) side end surface of the decompression member (17). You may comprise by the cyclic | annular convex part formed in the opening periphery, and you may form in the inside of a pressure reduction member (17).
That is, for example, in the second embodiment shown in FIG. 3, a recess (48) having a diameter slightly larger than that of the sealing device (41) is provided on the end surface on the gas outlet (7b) side of the decompression member (17). A communication passage (30) that connects the gas outlet (7b) and the working chamber (29) is formed at the back of the recess (48). A conical surface extending toward the gas outlet (7b) is formed on the end surface of the peripheral wall (30a) of the communication passage (30), and the sealed portion (43) is configured by the conical surface. When the filling metal fitting (33) is attached to the outlet nozzle (12), the protrusion (40) of the pressing member (37) supported by the filling nozzle (34) is inserted into the outlet passage (8). A sealing tool (41) attached to the tip of the protrusion (40) is inserted into the recess (48), and a seal part (44) formed on the shoulder on the tip side of the sealing tool (41) is provided. The contacted portion (43) is contacted, and thereby the communication path (30) is sealed.
[0032]
In the second embodiment, the protrusion (40) is formed in a cylindrical shape, a fresh gas flow passage (42) is formed inside the protrusion (40), and a gas discharge port ( 47) is formed. The filling channel (35) in the filling nozzle (34) is communicated with the gas outlet (7b) through the flow passage (42) and the gas discharge port (47). Since other configurations are the same as those of the first embodiment, description thereof will be omitted.
[0033]
【The invention's effect】
Since the present invention is configured and operates as described above, the following effects can be obtained.
(1) Since the sealed portion is provided on the end face of the peripheral wall of the communication passage so as to face the gas outlet, the sealing member of the filling nozzle is only brought into contact with the sealed portion from the gas outlet toward the working chamber. Thus, the communication path can be sealed, so that fresh gas can be supplied from the gas outlet of the pressure reducing valve to the gas inlet without closing the pressure reducing member. Therefore, it is not necessary to provide the movable member required in the prior art, the pressure reducing valve can be made simple, and the space for accommodating the movable member can be omitted to make the pressure reducing valve compact.
[0034]
(2) In addition, the sealed portion provided on the end face of the peripheral wall of the communication path faces the gas outlet, and the sealing tool is sealed to the sealed portion from the gas outlet toward the working chamber. Since it is possible to seal the communication passage so as to cover it alone, it is possible to easily reduce the size of the sealing member provided in the filling nozzle. The pressure reducing valve can be configured compactly.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a pressure reducing valve provided in a valve device, showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a pressure reducing valve in a state where a filling fitting is attached.
FIG. 3 is a view corresponding to FIG. 2, showing a second embodiment of the present invention.
[Explanation of symbols]
7 ... Pressure reducing valve, 7a ... Gas inlet, 7b ... Gas outlet, 17 ... Pressure reducing member, 18 ... Pressure reducing valve seat, 29 ... Working chamber, 30 ... Communication passage, 30a ... Perimeter wall of communication passage, 34 ... Filling nozzle, 35 ... Filling path 37 ... Pressing member 38 ... Biasing means (biasing spring) 40 ... Projection part 41 ... Sealing tool 43 ... Seal part 45 ... Nozzle tip part 46 ... Gas discharge port 47 ... Gas outlet.

Claims (3)

ハウジング ( ) 内に形成した減圧弁室 (14) にガス入口 (7a) とガス出口 (7b) を開口して、このガス出口 (7b) の周囲に減圧弁座 (18) を形成し、
上記の減圧弁室 (14) に挿入した減圧部材 (17) を挟んで、ガス入口 (7a) とは反対側に作動室 (29) を形成し、
上記の減圧部材 (17) にガス入口 (7a) の圧力を受ける第1ピストン (26) と、これよりも大径で作動室 (29) の圧力を受ける第2ピストン (27) とを形成し、
上記の減圧部材 (17) 内に連通路 (30) を設けて、この連通路 (30) を介して上記の作動室 (29) を上記のガス出口 (7b) へ連通させ、
ガス取出し時には、ガス入口(7a)の圧力によって減圧部材(17)を減圧弁座(18)から離間させると共に、作動室(29)の圧力によって上記の減圧部材(17)を減圧弁座(18)に近接させるように構成してあり、ガス充填時には、封止具(41)を有する充填ノズル(34)からのフレッシュガスを上記ガス出口(7b)から上記ガス入口(7a)へ逆方向へ供給するように構成した減圧弁であって、
上記の連通路(30)の周壁(30a)のうち上記のガス出口 (7b) と対面する端面に、上記のガス出口 (7b) と作動室との連通を遮断できる被シール部(43)を設け、上記の充填ノズル(34)が装着された際に、この被シール部(43)に上記の封止具(41)を上記ガス出口(7b)から上記の作動室(29)へ向けて封止接当させて、上記フレッシュガスが前記の作動室(29)へ流れるのを阻止するように構成したことを特徴とする、減圧弁。
A gas inlet (7a) and a gas outlet (7b) are opened in a pressure reducing valve chamber (14) formed in the housing ( 3 ) , and a pressure reducing valve seat (18) is formed around the gas outlet (7b) .
With the pressure reducing member (17) inserted into the pressure reducing valve chamber (14) interposed therebetween, a working chamber (29) is formed on the side opposite to the gas inlet (7a) ,
A first piston (26) for receiving the pressure of the gas inlet (7a) and a second piston (27) having a larger diameter and receiving the pressure of the working chamber (29) are formed in the pressure reducing member (17). ,
A communication path (30) is provided in the pressure reducing member (17) , and the working chamber (29) communicates with the gas outlet (7b) through the communication path (30) .
At the time of gas extraction, the pressure reducing member (17) is separated from the pressure reducing valve seat (18) by the pressure of the gas inlet (7a), and the pressure reducing member (17) is reduced by the pressure of the working chamber (29). ), And when filling the gas, the fresh gas from the filling nozzle (34) having the sealing tool (41) is transferred in the reverse direction from the gas outlet (7b) to the gas inlet (7a). A pressure reducing valve configured to supply,
The end face facing the said gas outlet (7b) of the circumferential wall (30a) of said communication passage (30), the sealed portion capable of blocking the communication between the working chamber above the gas outlet (7b) (43) setting only, when the above filling nozzle (34) is mounted, toward this sealed portion (43) above the sealing member (41) from the gas outlet (7b) above the working chamber (29) The pressure reducing valve is configured to prevent the fresh gas from flowing into the working chamber (29) by sealing contact.
上記の作動室(29)内に弾性手段(19)を挿入し、この弾性手段(19)により上記の減圧部材(17)を上記の減圧弁座(18)へ向けて押圧した、請求項1に記載の減圧弁。The elastic means (19) is inserted into the working chamber (29), and the pressure reducing member (17) is pressed toward the pressure reducing valve seat (18) by the elastic means (19). The pressure reducing valve according to 1. 上記のガス入口(7a)とガス出口(7b)との間で、上記の減圧部材(17)及び上記の減圧弁座(18)の外周空間に、筒状のフィルタ(15)を装着した、請求項1又は請求項2に記載の減圧弁。A cylindrical filter (15) was mounted between the gas inlet (7a) and the gas outlet (7b) in the outer peripheral space of the pressure reducing member (17) and the pressure reducing valve seat (18). The pressure reducing valve according to claim 1 or 2.
JP2001144527A 2000-05-23 2001-05-15 Pressure reducing valve Expired - Fee Related JP3725044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144527A JP3725044B2 (en) 2000-05-23 2001-05-15 Pressure reducing valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000150791 2000-05-23
JP2000-150791 2000-05-23
JP2001144527A JP3725044B2 (en) 2000-05-23 2001-05-15 Pressure reducing valve

Publications (2)

Publication Number Publication Date
JP2002049427A JP2002049427A (en) 2002-02-15
JP3725044B2 true JP3725044B2 (en) 2005-12-07

Family

ID=26592364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144527A Expired - Fee Related JP3725044B2 (en) 2000-05-23 2001-05-15 Pressure reducing valve

Country Status (1)

Country Link
JP (1) JP3725044B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2453333A1 (en) 2010-11-16 2012-05-16 Neriki Valve Co., Ltd. Valve apparatus including pressure-reducing valve
JP2016528036A (en) * 2013-08-02 2016-09-15 オールタナティブ フュエル コンテイナーズ、エル・エル・シーAlternative Fuel Containers, Llc Fuel gas pre-filter unit for vehicles
JP6433697B2 (en) * 2014-06-30 2018-12-05 株式会社ネリキ Conducting direction regulating valve mechanism and valve device
JP2016205418A (en) 2015-04-15 2016-12-08 株式会社ネリキ Check valve mechanism and one-way regulation valve device
JP7125734B2 (en) 2017-12-08 2022-08-25 株式会社ネリキ Check valve mechanism and one-way control valve device

Also Published As

Publication number Publication date
JP2002049427A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
JP6007317B2 (en) Valve assembly for fluid control
US8550105B2 (en) Valve system of high pressure tank for vehicle
CA3023442C (en) Solenoid valve for controlling fluid
RU2541687C2 (en) Pressure reducer
JPH1194197A (en) Valve device for gas cylinder and pressure reducing valve thereof
RU2646666C2 (en) Compact dosing device for injector with two fuel circuits for aircraft turbo device
KR102229525B1 (en) Fluid control valve having pressure reducing function
JP3725044B2 (en) Pressure reducing valve
JPH0437316B2 (en)
JP4566448B2 (en) Combination of gas filling device and gas cylinder provided with pressure reducing valve and gas filling device
JP2005009653A (en) Relief valve
EP1158226A2 (en) Gas charging device
JP4368445B2 (en) safety valve
JP2004324767A (en) Valve of pipe joint
MXPA04008953A (en) Valve for fluid filter.
JP2000310397A (en) Valve device for gas cylinder
JPH09242802A (en) Shock absorber
JP2003130298A (en) Gas filling device
JP4142756B2 (en) Safety structure of piston type pressure reducing device with V packing
US20230149838A1 (en) Filter cartridge, and method of retrofitting filter housing
JP2006095150A (en) Hydrant valve device, and fire hydrant apparatus
KR102391620B1 (en) Lpg valve
CN218625561U (en) Safety valve and coffee machine with same
JPH0740795Y2 (en) Drain discharge valve
JP2019090453A (en) Cylinder device with detection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees