JP3724919B2 - Air membrane structure - Google Patents

Air membrane structure Download PDF

Info

Publication number
JP3724919B2
JP3724919B2 JP14659297A JP14659297A JP3724919B2 JP 3724919 B2 JP3724919 B2 JP 3724919B2 JP 14659297 A JP14659297 A JP 14659297A JP 14659297 A JP14659297 A JP 14659297A JP 3724919 B2 JP3724919 B2 JP 3724919B2
Authority
JP
Japan
Prior art keywords
membrane
air
main body
ratio
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14659297A
Other languages
Japanese (ja)
Other versions
JPH10331489A (en
Inventor
哉 芝池
宏 青柳
勇 雑賀
佳房 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Techno Products Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP14659297A priority Critical patent/JP3724919B2/en
Publication of JPH10331489A publication Critical patent/JPH10331489A/en
Application granted granted Critical
Publication of JP3724919B2 publication Critical patent/JP3724919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tents Or Canopies (AREA)
  • Panels For Use In Building Construction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、船舶の修理や塗装などの工事現場、建築工事現場、仮設展示場、球技場などの作業空間全体を覆って、降雪時でも作業が出来るようにするための軽量であって、しかも設営が簡便な空気膜構造体に関するものである。
【0002】
【従来の技術】
従来、屋外における作業は、雨天や降雪の際は作業を中止し、降雨、降雪が止むのを待って作業の続行を行っている。しかしながら、このような降雨、降雪などの天気に左右されずに、効率的に仕事が行なえるように大型の屋根状膜構造体が提案されている。たとえぱ、このような雨天或いは降雪時の作業空間を確保する方法として、パイプ材などからなる骨組みをシートで覆う構造のものがあるが、大型になるとパイプ材などの重量が増大して運搬、設営、解体に費やす労力が非常に大きくなるという問題がある。
【0003】
この問題を解決する方法として、本発明者等は、特願平7−332520号において、送風機等により空気膜構造体内に空気を注入して屋根状形状とし、作業空間を確保する軽量化を達成した空気膜構造体を提案した。しかしながら、この空気膜構造体の場合、降雨には対応できるが、大量の積雪や強風、特に10m/secを越える強風に対しては座屈を起こし、空気膜構造体が押し潰され、作業空間が確保できなくなる、という問題を有している。
【0004】
このような積雪や風等の外部荷重による膜構造体の変形、座屈を防ぐ方法としては、軽量鉄骨による架台等を設ける補強があるが、このような構造では、空気膜構造体以外に別に架台を設ける必要があって簡易に空気膜構造体を設営することができない。また、架台等を設ける補強以外の方法では、膜構造体の内圧を高くすることが考えられるが、要求される環境での使用条件に耐えるための内圧を確保するためには、高性能な送風機が必要とされる。また、高い内圧に耐える膜体とするためには、膜体の強度を上げる必要が有り、これによって膜体自体の重量が増加し、運搬、設営、解体等の取扱性が悪くなるという問題を有している。
【0005】
【発明が解決しようとする課題】
本発明は、上述のような問題に鑑み、設営、解体、運搬が容易であり、かつ大きな風圧にも耐えることができる軽量な空気膜構造体を提供することにある。
【0006】
【課題を解決するための手段】
ここに、本発明によれば、(請求項1)重量が30〜200g/m2、通気度が0.1cc/sec・cm2以下の膜材を使用した内側膜と外側膜により二重構造をなし、該内側膜と該外側膜をつなぐリブ状ホホズエ膜により空気室が形成され、かつ該リブ状ホホズエ膜には空気が流通自在の開口部が設けられており、該空気室に注入された加圧気体により作業空間を覆うアーチ形状をなし、且つ下記の要件A〜を同時に満足する空気膜構造体が提供される。
A.設置間口幅(b)と開口間口幅(a)の比b/aが1.20〜1.35、
B.全高(d)と有効高さ(c)の比d/cが1.10〜1.35、
C.有効高さ(c)と開口間口幅(a)の比c/aが0.2〜0.5、
D.前記アーチ形状を有する外側膜に関して、その天頂部における曲率半径をr u とし、外側膜の設置面から前記天頂部に至るまでの周長(L)に対する中央部(L/2)での曲率半径をr m とした場合の比r u /r。が1.15〜1.30。
【0007】
(請求項2) 外側膜の外側部及び/又は内側膜の内側部に、補強部材を空気膜構造体と一体に配置した請求項1記載の空気膜構造体、
(請求項3) 前記の補強部材が膜材からなるエアチューブであって、かつ該膜材の重量が100〜600g/m2である請求項1又は請求項2記載の空気膜構造体、及び
(請求項4) 内側膜と外側膜及びを該内側膜と外側膜をつなぐリブ状ホホズエ膜の開口部に逆止弁を設けた請求項1〜3の何れか一項に記載の空気膜構造体が提供される。
【0008】
なお、本発明でいう通気度とは、「JIS L1096 一般織物試験方法」に従い、1.27cm水柱の圧力を織物に負荷して測定した時の織物を通過する空気量である。
【0009】
【発明の実施の形態】
以上に述べた本発明の実施の形態について、以下に図面を参照しながら、その作用と共に詳細に説明する。
図1は、本発明の空気膜構造体を例示した一部に断面を含む斜視図である。
該図において、1は空気膜構造体の本体(以下、「本体」という。)、2は外側膜体、3は内側膜体、4はリブ状ホホヅエ膜であって、これらによって空気室が形成され、この空気室に加圧注入された空気によって屋根状の立体形状が形成される。なお、リブ状ホホヅエ膜(4)は内側膜体(3)と外側膜体(4)とを連結して二重構造すると共に、空気室全体に互いに空気が流通するように円形の開口部(6)が設けられている。このため、空気室に加圧空気が注入されると、空気膜構造体自体が所定の屋根状立体形状に形成され、作業空間を覆うことができる。また、5は外側リブ、7は空気給排気口であって、該空気給排気口(7)は本体(1)を折り畳む際に本体内の空気を迅速に排気する観点から複数個取り付けられていることが好ましいが、その数は空気膜構造体の形状、大きさ、構造などにより適宜決められる。
【0010】
次に、図2は、図1に示した空気膜構造体の一部を省略した正面図である。該図において、8は送風機を示す。
【0011】
なお、本体(1)に使用する膜体としては、例えばポリエステル繊維、ポリアミド繊維、アラミド繊維、炭素繊維、ポリオレフィン繊維、及びポリアリレート繊維の群から選ばれた少なくとも1種の繊維からなる織編物の片面または両面にポリウレタン、アクリルゴム、ふっ素ゴム、塩化ビニル系樹脂等をコーティング加工したものを使用することが出来る。このとき、膜体の通気度は0.1cc/sec・cm2以下とすることが好ましく、実質的に0cc/sec・cm2としておくことが好ましい。何故ならば、膜体の通気度が0.1cc/sec・cm2を越えると、本体(1)の空気室内の圧力が低下しその形態保持性がなくなり好ましくない。
【0012】
次に、内側膜体と外側膜体のそれぞれの重量は、30〜200g/m2とすることが必要である。何故ならば、重量が上記の範囲内にあれば、膜体自体の重量を軽量化することができ、本体の設営を迅速かつ簡便に行なえるという作業上の要請を満足させると共に、膜体の引き裂き強度、引張強度等の機械的物性をも同時に満足させることができるからである。つまり、重量が200g/m2を越えると、空気膜構造体の重量が増して、設営、解体等の作業が面倒で時間を要し、一方30g/m2未満であると、空気膜構造体自体の機械的物性が低下するため安定した使用が難しい。
【0013】
ここで、実用的な空気膜構造体の形状寸法に関しては、図2に示すような形状が要求される。ここで、aは設置間口幅、bは開口間口幅、cは全高、dは有効高さをそれぞれ示している。ここで、実用的な空気膜構造体の形状が適用される寸法の範囲としては、設置間口幅bと開口間口幅aの比b/aは、1.20〜1.35の範囲に設定することが必要である。もし、b/aが1.20未満であると、本体が外部荷重により容易に座屈を起こし、一方1.35を越えると設置面積に対して、作業等に使用できる有効面積の比率が著しく低下するため、経済的ではなくなるという問題が生じる。
【0014】
次に、全高dと有効高さcの比d/cは、1.10〜1.35の範囲に設定されることが必要である。ここで、d/cが1.10未満であると前記同様、外部荷重、特に積雪等による本体天頂部付近にかかる荷重に対して、容易に座屈を起こし、1.35を越えると、使用する膜材が増加し、本体の重量が増すため取扱性がわるくなり、また、本体正面の受風面積が大きくなるため大きな風圧に耐えることができなくなる。
【0015】
また、有効高さcと開口間口幅aの比c/aは、0.2から0.5の範囲に設定することが必要である。ここで、c/aが0.2未満であると、居住空間が小さくなるだけではなく、本体形状が設置面に対して平行へ近づいてくるため、本体上に積雪しやすくなり、0.5を越えると、本体へ働く風圧が正(押付け)の領域が増加して、本体へかかる風の荷重が大きなものになるため座屈しやすくなる。
【0016】
なお、図2に示したように、アーチ形状を有する外側膜体(3)の天頂部における曲率半径ruそして、外側膜体(3)の設置面から前記天頂部に至るまでのアーチの周長Lに対する中央部(L/2部)での曲率半径rmとした場合に、その比ru/rmは、1.15〜1.30に設定されることが好ましい。もし、ru/rmが1.15未満では、風圧の分布にもよるが、一般に風荷重による本体の座屈挙動としては、設置面から天頂部に対して1/2の高さ位置に微小なしわが入り(ミクロな座屈)、さらに風荷重が大きくなるとたわみが大きくなり全体として倒壊する(マクロな座屈)という現象を惹起することがある。そのため、設置面から天頂部に対して1/2の高さ位置については、剛性を確保する必要がある。なお、ru/rmが1.30を越えると本体正面の受風面積が大きくなるため大きな風圧を受けるようになるため、これ以上大きくしても剛性向上の効果は余りない。
【0017】
本発明の空気膜構造体を以上に述べたような形状とすることにより、空気膜構造体の空気室の内圧が0.0037kg/cm2 のとき、風速が10m/sec〜16m/secとなっても、その形状を保持することができる。
【0018】
ここで、本発明の空気膜構造体の空気室へ加圧空気を送るための送風機(8)としては、ブロアーやファンを好適に使用することができる。この場合、該送風機(8)の能力としては、本体(1)からの空気の漏れ量より多くの風量を供給でき、しかも、本体(1)の形状保持が可能な静圧を発生させることができるものであればよい。さらに、該送風機(8)としては、熱風送風機等の加熱空気を供給できるものとすることで、膜材からの熱伝導、膜材からの加熱空気の排出により積雪を有効に融雪できるようにしてもよい。
【0019】
次に、本発明の他の実施態様を図3を参照しながら、詳細に説明する。なお、図3(a)及び(b)は、それぞれ正面図と側面図を示す。
【0020】
図3(a)において、9は外側膜の外側部及び/又は内側膜の内側部に本体(1)と一体に配置したエアチューブ、10は該エアチューブを固定するエアチューブ固定具をそれぞれ示す。ここで、該エアチューブ(9)はコンプレッサ等(図示せず)から空気を供給することによりアーチ形状を形成するが、このアーチ形状については、本体の形状により任意に設計することができ、特に限定されるものではない。なお、エアチューブ(9)の設置本数は、風の状況等により適宜選択でき、エアチューブ固定具(10)により本体(1)と一体に固定して使用する。また、エアチューブ(9)に使用される膜体としては、例えばポリエステル繊維、ポリアミド繊維、アラミド繊維、炭素繊維、ポリオレフィン繊維、及びポリアリレート繊維の群から選ばれた少なくとも1種の繊維からなる織編物の片面または両面にポリウレタン、アクリルゴム、ふっ素ゴム、塩化ビニル系樹脂等をコーティング加工したものを使用することが出来る。このとき、膜体の通気度は実質的に0cc/sec・cm2としておくことが好ましい。更に、エアチューブ(9)の膜体重量は、100〜600g/m2とすることが好ましい。何故ならば、重量が600g/m2を越えると、膜体の剛性が増加するため、収納する場合に嵩高となり、一方100g/m2未満であると、エアチューブ自体の機械的物性が低下し安定した使用が難しい。
【0021】
補強部材による補強として、他の実施態様を図4を参照しながら、より詳細に説明する。図4(a)は補強部材を装着した空気膜構造体の正面図を示す。該図において、11は補強部材を示す。なお、該補強部材(11)としては、金属製、樹脂製の棒、パイプを使用することができ、数本の補強部材を繋ぎあわせて一本の補強部材としてもよい。
【0022】
ただし、該補強部材として、その重量が100〜600g/m2である膜材を使用したエアチューブで構成することにより、該補強部材はその弾性により、本体内側膜の居住空間側に膜体形状に沿うように配置されるようになり、補強部材が直線状態に戻ろうとする反発力を本体(1)が受けるようになって、本体(1)は常に持ち上げられる状態になり、剛性が大きくなる。
【0023】
次に、図4(b)は図4(a)のC−C断面図を示し、12は補強部材固定具を示す。ここで、補強部材(11)の本体(1)への固定については、図示したように空気室間の凹み部分に配置すると、補強部材(11)のずれが生じにくい。また、補強部材固定具(12)は、マジックテープ等により簡単に脱着可能とすることができる。
【0024】
更に、図5は内側膜と外側膜をつなぐリブ状ホホズエ膜の開口部に設ける逆止弁の作用を説明するための説明図であって、図(a)は正面図、図(b)は図(a)におけるD−D矢視断面図をそれぞれ示す。
【0025】
該図5(a)において、13は逆止弁を示し、該逆止弁(13)はリブ状ホホズエ膜(4)の開口部に設けられている。また、図5(b)において、14は固定板、15はゴムシート、16は止めネジをそれぞれ示しており、ゴムシート(15)は固定板(14)に対して、止めネジ(16)によって固定することで、軽量化、低コスト化されている。
【0026】
次に、以上のように設けられた逆止弁の作用について、図6を参照しながら説明する。なお、図6(a)及び(b)は、図1の部分拡大図であって、空気の流れ方向を矢印で示してある。
【0027】
該図に示すように、逆止弁(13)はリブ状ホホズエ膜4の開口部に設けられている。ここで、該逆止弁(13)は、空気室(17)の内圧が空気室(18)の内圧より低い場合には、ゴムシート(15)が変形し、空気室(17)への空気の流入を許容し、空気室(17)の内圧が空気室(18)の内圧より高い場合には、ゴムシート(15)が固定板(14)の開口部を塞ぎ、補強空気室(14)の空気の流出を防ぐ役割を果たす。一般的に、本体(1)の急変形時には本体(1)の内圧が急激に上昇し、その結果として本体(1)から送風機や膜材を経て大気中へ空気が流出する。このため、逆止弁(13)を設けることで、本体(1)内の空気量の漏れ(空気圧の低下)を防止することによって、結果的に本体(1)に座屈が生じることを防ぐことができる。なお、本発明においては、逆止弁(13)は、本体(1)の空気室へ送風機から空気を送る場合には容易に開いて、本体(1)が所定の立体形状を形成できるような空気の流れ方向を採るよう+に設けられていることは言うまでもない。
【0028】
【発明の効果】
以上に述べたように、本発明によれば、降雨時は勿論、降雪時や強風時でも積雪や風圧による空気膜構造体の倒壊を引き起こすことなく、しかも、構成が簡単であって、かつ軽量なため、設営、解体、運搬等の作業が容易である空気膜構造体を提供できる、という格別顕著な効果を奏する。
【図面の簡単な説明】
【図1】従来の空気膜構造体を例示した一部に断面を含む斜視図である。
【図2】図1に示した空気膜構造体の一部を省略し、模式的に表した正面図である。
【図3】(a)は、本発明の実施態様を例示した正面図である。
(b)は、本発明の実施態様を例示した側面図である。
【図4】(a)は、補強部材を装着した空気膜構造体の正面図を示す。
(b)は、そのC−C断面図を示す
【図5】(a)は本発明の他の実施態様を示す一部に断面を施した正面図である。
(b)は逆止弁の正面図を示す。
【図6】逆止弁の作用を説明するための、図5(a)におけるD−D矢視断面図である。
【符号の説明】
1 空気膜構造体本体
2 外側膜体
3 内側膜体
4 リブ状ホホヅエ膜
6 開口部
7 空気給排気口
8 送風機
9 エアチューブ
10 エアチューブ固定具
11 補強部材
12 補強部材固定具
13 逆止弁
14 固定板
15 ゴムシート
16 止めネジ
[0001]
BACKGROUND OF THE INVENTION
The present invention covers a whole work space such as a construction site such as repair and painting of a ship, a construction site, a temporary exhibition hall, a ball game field, etc., and is lightweight so that it can work even during snowfall, The present invention relates to an air membrane structure that is easy to set up.
[0002]
[Prior art]
Conventionally, outdoor work is stopped when it rains or snows, and the work is continued after the rain and snow stop. However, a large-sized roof-like membrane structure has been proposed so that work can be performed efficiently without being affected by the weather such as rain and snow. For example, as a method of securing a work space during such rainy weather or snowfall, there is a structure that covers a frame made of pipe material etc. with a sheet, but when it becomes large, the weight of pipe material etc. increases and transports, There is a problem that the labor required for setting up and dismantling becomes very large.
[0003]
As a method for solving this problem, the present inventors in Japanese Patent Application No. 7-332520 have achieved a weight reduction that ensures a working space by injecting air into the air membrane structure by a blower or the like to form a roof shape. An air film structure was proposed. However, in the case of this air film structure, it can cope with rainfall, but it is buckled by a large amount of snow and strong winds, especially strong winds exceeding 10 m / sec , and the air film structure is crushed, and the work space Has a problem that cannot be secured.
[0004]
As a method of preventing the deformation and buckling of the membrane structure due to external loads such as snow and wind, there is reinforcement by providing a frame or the like with a lightweight steel frame. It is necessary to provide a gantry, and the air film structure cannot be easily set up. In addition to reinforcement methods such as mounting a stand, it is conceivable to increase the internal pressure of the membrane structure. However, in order to secure the internal pressure to withstand the use conditions in the required environment, a high-performance blower Is needed. In addition, in order to make a membrane body that can withstand high internal pressure, it is necessary to increase the strength of the membrane body, which increases the weight of the membrane body itself, and deteriorates handling properties such as transportation, installation, and disassembly. Have.
[0005]
[Problems to be solved by the invention]
In view of the above-described problems, the present invention is to provide a lightweight air membrane structure that is easy to set up, dismantle, and transport and that can withstand a large wind pressure.
[0006]
[Means for Solving the Problems]
Here, according to the present invention, (Claim 1) a double structure comprising an inner membrane and an outer membrane using a membrane material having a weight of 30 to 200 g / m 2 and an air permeability of 0.1 cc / sec · cm 2 or less. An air chamber is formed by a rib-shaped hoezue membrane that connects the inner membrane and the outer membrane, and the rib-like hoezue membrane is provided with an opening through which air can flow, and is injected into the air chamber. An air film structure that has an arch shape that covers the work space with the pressurized gas and that simultaneously satisfies the following requirements A to D is provided.
A. Ratio b / a of installation front width (b) and opening front width (a) is 1.20 to 1.35,
B. The ratio d / c of the total height (d) to the effective height (c) is 1.10 to 1.35,
C. The ratio c / a between the effective height (c) and the opening width (a) is 0.2 to 0.5,
D. With respect to the outer membrane having the arch shape, the radius of curvature at the zenith portion is denoted by ru, and the radius of curvature at the central portion (L / 2) with respect to the circumference (L) from the installation surface of the outer membrane to the zenith portion. The ratio r u / r where r is r m . Is 1.15 to 1.30.
[0007]
(Claim 2) The air membrane structure according to claim 1, wherein a reinforcing member is disposed integrally with the air membrane structure on an outer portion of the outer membrane and / or an inner portion of the inner membrane.
(Claim 3) The air membrane structure according to claim 1 or 2 , wherein the reinforcing member is an air tube made of a membrane material, and the weight of the membrane material is 100 to 600 g / m 2. (Claim 4) The air membrane structure according to any one of claims 1 to 3, wherein a check valve is provided in an opening of a rib-shaped Hojozue membrane that connects the inner membrane and the outer membrane, and the inner membrane and the outer membrane. The body is provided.
[0008]
The air permeability referred to in the present invention is the amount of air passing through the fabric when measured by applying a 1.27 cm water column pressure to the fabric in accordance with “JIS L1096 General Fabric Test Method”.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention described above will be described below in detail together with the operation thereof with reference to the drawings.
FIG. 1 is a perspective view partially including a cross section illustrating an air membrane structure of the present invention.
In this figure, 1 is a main body of an air membrane structure (hereinafter referred to as “main body”), 2 is an outer membrane body, 3 is an inner membrane body, and 4 is a rib-like foie membrane, which forms an air chamber. Then, a roof-like three-dimensional shape is formed by the air pressurized and injected into the air chamber. The rib-like foie membrane (4) has a double structure by connecting the inner membrane body (3) and the outer membrane body (4), and a circular opening (so that air flows through the entire air chamber). 6) is provided. For this reason, when pressurized air is injected into the air chamber, the air membrane structure itself is formed in a predetermined three-dimensional shape like a roof and can cover the work space. Further, 5 is an outer rib, and 7 is an air supply / exhaust port, and a plurality of air supply / exhaust ports (7) are attached from the viewpoint of quickly exhausting the air in the main body (1) when the main body (1) is folded. However, the number is appropriately determined depending on the shape, size, structure, etc. of the air membrane structure.
[0010]
Next, FIG. 2 is a front view in which a part of the air membrane structure shown in FIG. 1 is omitted. In the figure, 8 indicates a blower.
[0011]
In addition, as a film body used for the main body (1), for example, a woven or knitted fabric made of at least one kind of fiber selected from the group of polyester fiber, polyamide fiber, aramid fiber, carbon fiber, polyolefin fiber, and polyarylate fiber is used. One or both surfaces coated with polyurethane, acrylic rubber, fluoro rubber, vinyl chloride resin or the like can be used. In this case, the air permeability of the membrane body is preferably in the 0.1cc / sec · cm 2 or less, it is preferable to substantially 0cc / sec · cm 2. This is because if the air permeability of the film body exceeds 0.1 cc / sec · cm 2 , the pressure in the air chamber of the main body (1) is lowered, and its shape retention is not preferred.
[0012]
Next, the weight of each of the inner membrane body and the outer membrane body needs to be 30 to 200 g / m 2 . This is because if the weight is within the above range, the weight of the film body itself can be reduced, satisfying the work requirement that the main body can be set up quickly and easily, and the film body This is because mechanical properties such as tear strength and tensile strength can be satisfied at the same time. That is, if the weight exceeds 200 g / m 2 , the weight of the air membrane structure increases, and the work such as installation and dismantling is troublesome and takes time. On the other hand, if the weight is less than 30 g / m 2 , the air membrane structure Stable use is difficult because its mechanical properties are reduced.
[0013]
Here, regarding the shape and size of a practical air membrane structure, a shape as shown in FIG. 2 is required. Here, a is the installation front width, b is the opening front width, c is the total height, and d is the effective height. Here, as a range of dimensions to which a practical shape of the air membrane structure is applied, the ratio b / a of the installation front width b and the opening front width a is set to a range of 1.20 to 1.35. It is necessary. If b / a is less than 1.20, the body easily buckles due to an external load. On the other hand, if it exceeds 1.35, the ratio of the effective area that can be used for work to the installation area is remarkably high. The problem arises that it is not economical because it decreases.
[0014]
Next, the ratio d / c between the total height d and the effective height c needs to be set in the range of 1.10 to 1.35. Here, if d / c is less than 1.10, it is easily buckled against external loads, especially loads applied near the zenith of the main body due to snow accumulation, etc. The film material to be increased increases, the weight of the main body increases, and the handling becomes difficult, and the wind receiving area on the front surface of the main body increases, so that it cannot withstand a large wind pressure.
[0015]
Further, the ratio c / a between the effective height c and the aperture width a needs to be set in the range of 0.2 to 0.5. Here, if c / a is less than 0.2, not only does the living space become smaller, but the shape of the main body approaches parallel to the installation surface, so that it is easy to accumulate snow on the main body, and 0.5 If it exceeds, the area where the wind pressure acting on the main body is positive (pressing) increases, and the wind load applied to the main body becomes large, so that it tends to buckle.
[0016]
Incidentally, as shown in FIG. 2, the radius of curvature r u at the top portion of the outer film having an arch shape (3), and, the arch from the installation surface of the outer membrane member (3) up to the ceiling portion when the curvature radius r m of the central portion (L / 2 parts) to the circumferential length L, the ratio r u / r m is preferably set to 1.15 to 1.30. If r u / r m is less than 1.15, depending on the wind pressure distribution, the buckling behavior of the main body due to wind load is generally 1/2 of the zenith from the installation surface. Small wrinkles may occur (micro buckling), and when the wind load increases, the deflection may increase and collapse as a whole (macro buckling). Therefore, it is necessary to ensure rigidity at a height position of 1/2 from the installation surface to the zenith. If r u / r m exceeds 1.30, the wind receiving area on the front surface of the main body is increased, so that a large wind pressure is received.
[0017]
With the shape as described above the air film structure of the present invention,-out pressure of the air chamber of the air film structure 0.0037kg / cm 2 Noto, and wind speed 10m / sec ~16m / sec Even if it becomes, the shape can be maintained.
[0018]
Here, as the blower (8) for sending the pressurized air to the air chamber of the air membrane structure of the present invention, a blower or a fan can be suitably used. In this case, as the capacity of the blower (8), it is possible to supply a larger air volume than the amount of air leakage from the main body (1), and to generate a static pressure capable of maintaining the shape of the main body (1). Anything is possible. Further, the blower (8) can supply hot air from a hot air blower or the like so that snow accumulation can be effectively melted by heat conduction from the film material and discharge of the heated air from the film material. Also good.
[0019]
Next, another embodiment of the present invention will be described in detail with reference to FIG. 3A and 3B show a front view and a side view, respectively.
[0020]
In FIG. 3A, 9 is an air tube arranged integrally with the main body (1) on the outer side of the outer membrane and / or the inner side of the inner membrane, and 10 is an air tube fixing tool for fixing the air tube. . Here, the air tube (9) forms an arch shape by supplying air from a compressor or the like (not shown), and this arch shape can be arbitrarily designed according to the shape of the main body, It is not limited. The number of air tubes (9) to be installed can be appropriately selected depending on wind conditions and the like, and is used by being fixed integrally with the main body (1) by the air tube fixture (10). Moreover, as a film | membrane body used for an air tube (9), the weave which consists of at least 1 sort (s) of fiber chosen from the group of polyester fiber, polyamide fiber, aramid fiber, carbon fiber, polyolefin fiber, and polyarylate fiber, for example One or both surfaces of the knitted fabric that are coated with polyurethane, acrylic rubber, fluoro rubber, vinyl chloride resin, or the like can be used. At this time, the air permeability of the film body is preferably substantially 0 cc / sec · cm 2 . Furthermore, the film body weight of the air tube (9) is preferably 100 to 600 g / m 2 . This is because if the weight exceeds 600 g / m 2 , the rigidity of the film body increases, so that it becomes bulky when stored, whereas if it is less than 100 g / m 2 , the mechanical properties of the air tube itself deteriorate. Stable use is difficult.
[0021]
As a reinforcement by the reinforcing member, another embodiment will be described in more detail with reference to FIG. Fig.4 (a) shows the front view of the air membrane structure which attached the reinforcement member. In the figure, reference numeral 11 denotes a reinforcing member. As the reinforcing member (11), a metal or resin rod or pipe can be used, and several reinforcing members may be connected to form a single reinforcing member.
[0022]
However, when the reinforcing member is formed of an air tube using a membrane material having a weight of 100 to 600 g / m 2 , the reinforcing member is formed into a film body shape on the living space side of the main body inner membrane due to its elasticity. The main body (1) receives a repulsive force that attempts to return the reinforcing member to a straight state, so that the main body (1) is always lifted and rigidity is increased. .
[0023]
Next, FIG.4 (b) shows CC sectional drawing of Fig.4 (a), 12 shows a reinforcement member fixing tool. Here, regarding the fixing of the reinforcing member (11) to the main body (1), if the reinforcing member (11) is disposed in the recessed portion between the air chambers as shown in the drawing, the reinforcing member (11) is hardly displaced. Further, the reinforcing member fixture (12) can be easily attached and detached with a magic tape or the like.
[0024]
Further, FIG. 5 is an explanatory diagram for explaining the operation of the check valve provided at the opening of the rib-shaped Hojozue membrane that connects the inner membrane and the outer membrane. FIG. 5 (a) is a front view, and FIG. DD sectional drawing in figure (a) is shown, respectively.
[0025]
In FIG. 5A, reference numeral 13 denotes a check valve, and the check valve (13) is provided at the opening of the rib-shaped hojoze membrane (4). In FIG. 5B, 14 indicates a fixing plate, 15 indicates a rubber sheet, and 16 indicates a set screw. The rubber sheet (15) is fixed to the fixing plate (14) by a set screw (16). By fixing, the weight is reduced and the cost is reduced.
[0026]
Next, the operation of the check valve provided as described above will be described with reference to FIG. 6A and 6B are partial enlarged views of FIG . 1 , and the air flow direction is indicated by arrows.
[0027]
As shown in the figure, the check valve (13) is provided at the opening of the rib-shaped hojozu membrane 4. Here, when the internal pressure of the air chamber (17) is lower than the internal pressure of the air chamber (18), the check valve (13) deforms the rubber sheet (15), and the air to the air chamber (17). When the internal pressure of the air chamber (17) is higher than the internal pressure of the air chamber (18), the rubber sheet (15) closes the opening of the fixing plate (14) and the reinforced air chamber (14). It plays a role in preventing the outflow of air. Generally, when the main body (1) is suddenly deformed, the internal pressure of the main body (1) rapidly increases, and as a result, air flows out from the main body (1) through the blower and the membrane material into the atmosphere. For this reason, the check valve (13) is provided to prevent leakage of the air amount (reduction in air pressure) in the main body (1), thereby preventing the main body (1) from buckling as a result. be able to. In the present invention, the check valve (13) is easily opened when air is sent from the blower to the air chamber of the main body (1) so that the main body (1) can form a predetermined three-dimensional shape. Needless to say, it is provided in the positive direction so as to take the air flow direction.
[0028]
【The invention's effect】
As described above, according to the present invention, the structure is simple and lightweight without causing the air film structure to collapse due to snow accumulation or wind pressure not only during raining but also during snowfall or strong wind. Therefore, it is possible to provide an air film structure that can be easily set up, dismantled, transported, and the like.
[Brief description of the drawings]
FIG. 1 is a perspective view partially including a cross section illustrating a conventional air film structure.
FIG. 2 is a front view schematically showing a part of the air membrane structure shown in FIG. 1 with a part thereof omitted.
FIG. 3A is a front view illustrating an embodiment of the present invention.
(B) is the side view which illustrated the embodiment of the present invention.
FIG. 4A is a front view of an air membrane structure equipped with a reinforcing member.
(B) is a cross-sectional view taken along the line C-C. FIG. 5 (a) is a front view of a part of the cross-section showing another embodiment of the present invention.
(B) shows a front view of the check valve.
FIG. 6 is a cross-sectional view taken along the line DD in FIG. 5A for explaining the operation of the check valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Air membrane structure main body 2 Outer membrane body 3 Inner membrane body 4 Rib-like foyer film 6 Opening part 7 Air supply / exhaust port 8 Blower 9 Air tube 10 Air tube fixing tool 11 Reinforcement member 12 Reinforcement member fixing tool 13 Check valve 14 Fixing plate 15 Rubber sheet 16 Set screw

Claims (4)

重量が30〜200g/m2、通気度が0.1cc/sec・cm2以下の膜材を使用した内側膜と外側膜により二重構造をなし、該内側膜と該外側膜をつなぐリブ状ホホズエ膜により空気室が形成され、かつ該リブ状ホホズエ膜には空気が流通自在の開口部が設けられており、該空気室に注入された加圧気体により作業空間を覆うアーチ形状をなし、且つ下記の要件A〜を同時に満足する空気膜構造体。
A.設置間口幅(b)と開口間口幅(a)の比b/aが1.20〜1.35、
B.全高(d)と有効高さ(c)の比d/cが1.10〜1.35、
C.有効高さ(c)と開口間口幅(a)の比c/aが0.2〜0.5
D.前記アーチ形状を有する外側膜に関して、その天頂部における曲率半径をr u とし、外側膜の設置面から前記天頂部に至るまでの周長(L)に対する中央部(L/2)での曲率半径をr m とした場合の比r u /r。が1.15〜1.30。
A rib structure that connects the inner membrane and the outer membrane by forming a double structure with an inner membrane and an outer membrane using a membrane material having a weight of 30 to 200 g / m 2 and an air permeability of 0.1 cc / sec · cm 2 or less. An air chamber is formed by the hojozue membrane, and the rib-like hojozue membrane is provided with an opening through which air can flow, and has an arch shape that covers the work space by the pressurized gas injected into the air chamber, An air film structure that satisfies the following requirements A to D simultaneously.
A. Ratio b / a of installation front width (b) and opening front width (a) is 1.20 to 1.35,
B. The ratio d / c of the total height (d) to the effective height (c) is 1.10 to 1.35,
C. The ratio c / a between the effective height (c) and the opening width (a) is 0.2 to 0.5 ,
D. Regarding the outer membrane having the arch shape, the radius of curvature at the zenith portion is denoted by ru, and the radius of curvature at the central portion (L / 2) with respect to the circumferential length (L) from the outer membrane installation surface to the zenith portion. The ratio r u / r where r is r m . Is 1.15 to 1.30.
外側膜の外側部及び/又は内側膜の内側部に、補強部材を空気膜構造体と一体に配置した請求項1記載の空気膜構造体。  The air membrane structure according to claim 1, wherein a reinforcing member is integrally disposed with the air membrane structure on an outer portion of the outer membrane and / or an inner portion of the inner membrane. 前記の補強部材が膜材からなるエアチューブであって、かつ該膜材の重量が100〜600g/m2である請求項1又は請求項2記載の空気膜構造体。The air membrane structure according to claim 1 or 2 , wherein the reinforcing member is an air tube made of a membrane material, and the weight of the membrane material is 100 to 600 g / m2. 内側膜と外側膜及びを該内側膜と外側膜をつなぐリブ状ホホズエ膜の開口部に逆止弁を設けた請求項1〜3の何れか一項に記載の空気膜構造体。  The air membrane structure according to any one of claims 1 to 3, wherein a check valve is provided in an opening portion of a rib-shaped Hojozue membrane that connects the inner membrane and the outer membrane and the inner membrane and the outer membrane.
JP14659297A 1997-06-04 1997-06-04 Air membrane structure Expired - Fee Related JP3724919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14659297A JP3724919B2 (en) 1997-06-04 1997-06-04 Air membrane structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14659297A JP3724919B2 (en) 1997-06-04 1997-06-04 Air membrane structure

Publications (2)

Publication Number Publication Date
JPH10331489A JPH10331489A (en) 1998-12-15
JP3724919B2 true JP3724919B2 (en) 2005-12-07

Family

ID=15411213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14659297A Expired - Fee Related JP3724919B2 (en) 1997-06-04 1997-06-04 Air membrane structure

Country Status (1)

Country Link
JP (1) JP3724919B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011202180A1 (en) * 2011-05-11 2012-11-29 Gregory Michael Mcmahon Physical Exercise Training Techniques
WO2014065449A1 (en) * 2012-10-25 2014-05-01 Lim Seok-Min High strength air-frame
KR101512172B1 (en) * 2014-04-03 2015-04-14 정승원 Tube type pole

Also Published As

Publication number Publication date
JPH10331489A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
JP3574743B2 (en) Air film structure
US4567696A (en) Inflatable structure for use as a shelter
US6497074B2 (en) Multi-layer flexible panel modules with exterior and interior stressed layers spread apart at the ends and connected intermediate the ends inducing opposing concave deflections to the layers
US20160305149A1 (en) Tent with inflatable structure
US3638368A (en) Inflatable shelter and method of erection
JP3724919B2 (en) Air membrane structure
US6584732B2 (en) Super show dome
JP3227079U (en) Inflatable beam and use of this inflatable beam
CN108060826B (en) High-pressure tent
US20060249190A1 (en) Pneumatic floor or wall structure
EP1918491A2 (en) Shelter for means of transport, particularly campers
CN113309226B (en) Main cable embedded type oblique cross cable net air film structure
CN204781333U (en) Double -deck covering or awning on a car, boat, etc. room
JP3737659B2 (en) Roof-like air membrane
JP2000226953A (en) Air membrane structure
NL1002230C2 (en) The production of modular walls or screens by simultaneous inflation of columns
CN214835290U (en) Super large span seals feed bin based on independent air rib formula membrane structure
JP4255599B2 (en) Air membrane structure
JP2017066801A (en) Sheet roof body
JP3745855B2 (en) Roof-like air membrane structure
JP3891521B2 (en) Inflatable roof
CN206267623U (en) A kind of oblique perpendicular quadrature braiding steel mesh
CN112942963A (en) Super large span seals feed bin based on independent air rib formula membrane structure
Schmid Retractable Roof Tecklenburg
JP2000073624A (en) Air-inflated membrane structural body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050621

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees