JP3724865B2 - Method for producing aminoformaldehyde resin - Google Patents
Method for producing aminoformaldehyde resin Download PDFInfo
- Publication number
- JP3724865B2 JP3724865B2 JP34047295A JP34047295A JP3724865B2 JP 3724865 B2 JP3724865 B2 JP 3724865B2 JP 34047295 A JP34047295 A JP 34047295A JP 34047295 A JP34047295 A JP 34047295A JP 3724865 B2 JP3724865 B2 JP 3724865B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- alcohol
- molecular weight
- parts
- average molecular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Phenolic Resins Or Amino Resins (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、熱硬化性塗料として、特に自動車、家電等の工業用焼付けに利用できる低分子量のアミノホルムアルデヒド樹脂(以下、アミノ樹脂と記す。)の製造方法に関するものである。
【0002】
【従来の技術】
従来のアミノ樹脂の製造方法は、まず、アミノ基とホルムアルデヒドの付加反応によりメチロール化を行ない、メチロール化物を得た後、アルコールとの縮合反応を行ない目的物を得ていた。
しかし、この方法の付加反応及び縮合反応の際、副反応としてメチロール化物間で縮合反応が起こり、最終的に得られる反応物が高分子量化してしまっていた。
【0003】
一方、この改良法として、大過剰のアルコールの存在下で製造することによりメチロール化物間の縮合を抑制する方法が取られてきた。つまり、メチロール化物の系中濃度を下げ、低分子のメチロール化物とアルコールとを反応させることにより目的物を得る方法であった。
しかしながら、この方法では、大過剰に仕込んだアルコールの未反応分を反応終了後に系外へ除去するため、反応時間が長く、かつ収率が低くなり工業的に不利であった。
【0004】
【発明が解決しようとする課題】
本発明は、低分子量のアミノ樹脂を短い反応時間で、とりわけ高い収率で得ることができるアミノ樹脂の製造方法を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意検討した結果、従来の製造方法とは全く異なる方法、つまり、メチロール化物の縮合反応を率先して行ない、反応中間物を一定以上の分子量とした後、アルコールとの反応により低分子量のアミノ樹脂を得る方法を見出し、本発明に至った。
すなわち、本発明は、アルコール、ホルムアルデヒド及びアミノ化合物を原料として、中性又は塩基性雰囲気下で付加縮合反応を行ない、反応中間物の重量平均分子量を 2,000以上とした後、酸性雰囲気下でアルキルエーテル化反応を行ない、最終反応物の重量平均分子量を 1,500以下とすることを特徴とするアミノホルムアルデヒド樹脂の製造方法であり、更には、該アルコールを反応開始前と付加縮合反応後の2回に分割して使用することを特徴とするアミノホルムアルデヒド樹脂の製造方法である。
【0006】
【発明の実施の形態】
まず、本発明に用いることのできるアルコールとしては、特に制限はなく、例示すると、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、n−オクチルアルコール、2-エチルヘキシルアルコールのような脂肪族アルコール;シクロヘキサノールのような脂環式アルコール;ベンジルアルコールのような芳香族アルコールが挙げられ、これらは一種以上用いることができる。
【0007】
本発明に用いるホルムアルデヒドは、固形物のパラホルムアルデヒド及び液状物のホルマリンどちらでも制限はない。また、アミノ化合物としては、メラミン、ベンゾグアナミン、アセトグアナミン、シアナミド誘導体、尿素等が挙げられ、これらを一種以上用いることができる。
【0008】
本発明に用いる塩基性触媒としては、無機化合物でも有機化合物でも制限はないが、緩衝性を有する物が望ましい。例えば、トリエタノールアミン、ヘキサメチレントリアミン、水酸化ナトリウム、水酸化カリウム、アンモニア水等が挙げられ、これらを一種以上用いることができる。また、本発明に用いる酸性触媒としては、無機酸でも有機酸でも制限はなく、例えば、ギ酸、酢酸、硝酸、硫酸、リン酸、p−トルエンスルホン酸等が挙げられ、これらを一種以上用いることができる。
【0009】
次に、本発明の製造方法としては、原料として上記のアルコール、ホルムアルデヒド及びアミノ化合物、更に必要に応じて塩基性触媒を仕込み、系を中性又は塩基性雰囲気下にする。この際、pHとしては、好ましくは 7.0〜11.0、更に好ましくは 7.5〜9.0 の範囲である。
【0010】
その後、加熱昇温し付加縮合反応を行なうが、このとき、反応中間物の重量平均分子量を 2,000以上とすることが必須である。
その後、酸性触媒を仕込み、系を酸性雰囲気下にする。この際、pHとしては、好ましくは 4.5〜6.8 、更に好ましくは 5.5〜6.5 の範囲である。
その後、アルキルエーテル化反応を行ない、最終反応物の重量平均分子量を 1,500以下とする。
上記の付加縮合反応の際、反応中間物の重量平均分子量を 2,000未満とする場合、最終的に得られるアミノ樹脂の重量平均分子量は 2,000以上となり、目的とする低分子量物は得られない。
【0011】
ここでいうpHとは、反応液:イソプロピルアルコール:水=1:0.8 :0.1 (重量比)の割合にて調整した物をpHメーターにて測定した値である。また、重量平均分子量とは、ゲル浸透クロマトグラム(GPC)装置での測定値である。測定条件は、分離カラム:Shodex KF-80 M+KF-802、示差屈折計:Jasco 830RI、カラム温度: 40℃、溶媒:テトラヒドロキシフランである。
【0012】
また、使用するアルコールを反応開始前と付加縮合反応後の2回に分割して使用することも可能である。この際に、付加縮合反応後に使用するアルコールが反応開始前のアルコールと異なってもよい。この分割使用により従来溶解性の点で使用しずらかった長鎖アルコール、脂環式アルコール及び芳香族アルコールが容易に用いることが可能となった。
【0013】
【実施例】
以下、実施例及び比較例により本発明を詳細に説明する。以下において、「部」と「%」は重量基準である。
実施例1
ガラス製四つ口フラスコ(撹拌機、温度計、外部ヒーター、冷却管、凝縮器及び窒素導入管付き)に、メラミン 126部(1.0 モル)、80%パラホルムアルデヒド 225部(6.0 モル)、n−ブタノール 444部(6.0 モル)、及びトリエタノールアミン 0.4部(2.7 ミリモル)を仕込み、系を塩基性雰囲気下にし、還流温度まで加熱し、水を系外へ除去しながら反応中間物の重量平均分子量が 2,500になるまで付加縮合反応を行ない、p−トルエンスルホン酸 0.46 部(2.7 ミリモル)を添加して5時間縮合反応させた後、水酸化ナトリウム 0.05 部(1.35ミリモル)を添加して中和を行なった。得られたアミノ樹脂の重量平均分子量は 1,100で、アミノ樹脂の樹脂分は 50.7 %、収率は 70 %であった。
【0014】
実施例2
実施例1において、n−ブタノールの仕込量を 370部(5.0 モル)に変更した以外は全く同様に反応を行なった。その結果、得られたアミノ樹脂の重量平均分子量は 1,400であった。
【0015】
実施例3
実施例1と同様のフラスコに、ベンゾグアナミン 187部(1.0 モル)、80%パラホルムアルデヒド 150部(4.0 モル)、n−ブタノール 296部(4.0 モル)、及びヘキサメチレントリアミン 0.26 部(1.9 ミリモル)を仕込み、系を塩基性雰囲気下にし、還流温度まで加熱し、水を系外へ除去しながら反応中間物の重量平均分子量が 2,600になるまで付加縮合反応を行ない、酢酸 0.07 部(1.1 ミリモル)を添加して4時間縮合反応させた後、水酸化ナトリウム 0.03 部(0.8 ミリモル)を添加して中和を行なった。得られたアミノ樹脂の重量平均分子量は 1,200であった。
【0016】
実施例4
実施例1と同様のフラスコに、メラミン 126部(1.0 モル)、80%パラホルムアルデヒド 225部(6.0 モル)、イソブタノール 185部(2.5 モル)、及びトリエタノールアミン 0.4部(2.7 ミリモル)を仕込み、系を塩基性雰囲気下にし、還流温度まで加熱し、水を系外へ除去しながら反応中間物の重量平均分子量が 2,400になるまで付加縮合反応を行ない、p−トルエンスルホン酸 0.46 部(2.7 ミリモル)及びイソブタノール 259部(3.5 モル)を添加して5時間縮合反応させた後、水酸化ナトリウム 0.05 部(1.35ミリモル)を添加して中和を行なった。得られたアミノ樹脂の重量平均分子量は 1,000であった。
【0017】
実施例5
実施例1と同様のフラスコに、メラミン 126部(1.0 モル)、80%パラホルムアルデヒド 225部(6.0 モル)、n−ブタノール 222部(3.0 モル)、及びトリエタノールアミン 0.3部(2.0 ミリモル)を仕込み、系を塩基性雰囲気下にし、還流温度まで加熱し、水を系外へ除去しながら反応中間物の重量平均分子量が 2,300になるまで付加縮合反応を行ない、硝酸 0.76 部(1.2 ミリモル)及びシクロヘキサノール 300部(3.0 モル)を添加して5時間縮合反応させた後、水酸化ナトリウム 0.05 部(1.35ミリモル)を添加して中和を行なった。得られたアミノ樹脂の重量平均分子量は 1,300であった。
【0018】
比較例1
実施例1と同様のフラスコに、メラミン 126部(1.0 モル)、80%パラホルムアルデヒド 300部(8.0 モル)、n−ブタノール 888部(12.0モル)、及びp−トルエンスルホン酸 0.27 部(1.5 ミリモル)を仕込み、系を酸性雰囲気下にし、還流温度まで加熱し、水を系外へ除去しながら付加縮合反応を5時間行なった後、トリエタノールアミン 0.52 部(3.5 ミリモル)を添加して中和を行ない、減圧下でブタノールを樹脂固形分が 50 %になるよう除去した。得られたアミノ樹脂の重量平均分子量は 1,200で、アミノ樹脂の樹脂分は 50.3 %、収率は 45 %であった。
【0019】
比較例2
実施例1の付加縮合反応時に反応中間物の重量平均分子量を 1,700までとした以外は同様に反応を行なった。その結果、得られたアミノ樹脂の重量平均分子量は 3,400であった。
【0020】
【発明の効果】
本発明によれば、低分子量のアミノ樹脂を 70%程度という高収率で得ることができ、工業的に有利である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a low molecular weight aminoformaldehyde resin (hereinafter referred to as an amino resin) that can be used as a thermosetting coating, particularly for industrial baking of automobiles, home appliances and the like.
[0002]
[Prior art]
In the conventional method for producing an amino resin, first, methylolation is performed by addition reaction of an amino group and formaldehyde to obtain a methylolated product, and then a condensation reaction with an alcohol is performed to obtain a target product.
However, in the addition reaction and condensation reaction of this method, a condensation reaction occurs between methylolated products as a side reaction, and the finally obtained reaction product has a high molecular weight.
[0003]
On the other hand, as this improved method, a method of suppressing condensation between methylolated products by producing in the presence of a large excess of alcohol has been taken. That is, it was a method of obtaining the target product by lowering the concentration of methylolated product in the system and reacting low molecular weight methylolated product with alcohol.
However, this method is industrially disadvantageous because the unreacted portion of the alcohol charged in a large excess is removed from the system after the completion of the reaction, resulting in a long reaction time and a low yield.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing an amino resin capable of obtaining a low molecular weight amino resin in a short reaction time and particularly in a high yield.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have taken a lead in the condensation reaction of the methylolated product, which is completely different from the conventional production method, and the reaction intermediate has a molecular weight above a certain level. After that, a method for obtaining a low molecular weight amino resin by reaction with alcohol was found, and the present invention was achieved.
That is, the present invention uses an alcohol, formaldehyde, and an amino compound as raw materials, and performs an addition condensation reaction in a neutral or basic atmosphere. After the weight average molecular weight of the reaction intermediate is 2,000 or more, the alkyl ether is added in an acidic atmosphere. This is a method for producing an aminoformaldehyde resin characterized in that the final reaction product has a weight average molecular weight of 1,500 or less, and the alcohol is further divided into two before the reaction start and after the addition condensation reaction. It is a manufacturing method of the amino formaldehyde resin characterized by using.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
First, the alcohol that can be used in the present invention is not particularly limited. For example, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, tert- Examples thereof include aliphatic alcohols such as butyl alcohol, n-octyl alcohol and 2-ethylhexyl alcohol; alicyclic alcohols such as cyclohexanol; aromatic alcohols such as benzyl alcohol, and one or more of them can be used.
[0007]
The formaldehyde used in the present invention is not limited to either solid paraformaldehyde or liquid formalin. Examples of amino compounds include melamine, benzoguanamine, acetoguanamine, cyanamide derivatives, urea, and the like, and one or more of these can be used.
[0008]
The basic catalyst used in the present invention is not limited to an inorganic compound or an organic compound, but is preferably a buffered one. For example, triethanolamine, hexamethylenetriamine, sodium hydroxide, potassium hydroxide, aqueous ammonia and the like can be used, and one or more of these can be used. In addition, the acidic catalyst used in the present invention is not limited to an inorganic acid or an organic acid, and examples thereof include formic acid, acetic acid, nitric acid, sulfuric acid, phosphoric acid, p-toluenesulfonic acid, and the like. Can do.
[0009]
Next, in the production method of the present invention, the above-mentioned alcohol, formaldehyde, and amino compound as raw materials, and a basic catalyst as necessary are charged, and the system is brought into a neutral or basic atmosphere. In this case, the pH is preferably in the range of 7.0 to 11.0, more preferably 7.5 to 9.0.
[0010]
Thereafter, the temperature is increased and the addition condensation reaction is carried out. At this time, it is essential that the weight average molecular weight of the reaction intermediate is 2,000 or more.
Thereafter, an acidic catalyst is charged and the system is brought into an acidic atmosphere. In this case, the pH is preferably in the range of 4.5 to 6.8, more preferably 5.5 to 6.5.
Then, alkyl etherification reaction is performed, and the weight average molecular weight of the final reaction product is set to 1,500 or less.
In the above addition condensation reaction, if the weight average molecular weight of the reaction intermediate is less than 2,000, the amino resin finally obtained has a weight average molecular weight of 2,000 or more, and the desired low molecular weight product cannot be obtained.
[0011]
The pH referred to here is a value obtained by measuring with a pH meter a product adjusted at a ratio of reaction solution: isopropyl alcohol: water = 1: 0.8: 0.1 (weight ratio). The weight average molecular weight is a value measured with a gel permeation chromatogram (GPC) apparatus. The measurement conditions are: separation column: Shodex KF-80 M + KF-802, differential refractometer: Jasco 830RI, column temperature: 40 ° C., solvent: tetrahydroxyfuran.
[0012]
It is also possible to divide and use the alcohol to be used twice before the start of the reaction and after the addition condensation reaction. At this time, the alcohol used after the addition condensation reaction may be different from the alcohol before the start of the reaction. This split use makes it possible to easily use long-chain alcohols, alicyclic alcohols and aromatic alcohols that have been difficult to use in terms of solubility.
[0013]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. In the following, “part” and “%” are based on weight.
Example 1
A glass four-necked flask (with a stirrer, thermometer, external heater, condenser, condenser and nitrogen inlet), 126 parts (1.0 mol) of melamine, 225 parts of paraformaldehyde (6.0 mol), n- Charge 444 parts (6.0 mol) of butanol and 0.4 part (2.7 mmol) of triethanolamine, bring the system to a basic atmosphere, heat to reflux temperature, and remove the water out of the system while removing the water from the system. The addition condensation reaction is carried out until 2,500 is reached, 0.46 part (2.7 mmol) of p-toluenesulfonic acid is added and the condensation reaction is carried out for 5 hours, and then 0.05 part (1.35 mmol) of sodium hydroxide is added for neutralization. I did it. The amino resin thus obtained had a weight average molecular weight of 1,100, the resin content of the amino resin was 50.7%, and the yield was 70%.
[0014]
Example 2
In Example 1, the reaction was performed in exactly the same manner except that the amount of n-butanol charged was changed to 370 parts (5.0 mol). As a result, the weight average molecular weight of the resulting amino resin was 1,400.
[0015]
Example 3
The same flask as in Example 1 was charged with 187 parts (1.0 mole) of benzoguanamine, 150 parts (4.0 moles) of 80% paraformaldehyde, 296 parts (4.0 moles) of n-butanol, and 0.26 parts (1.9 moles) of hexamethylenetriamine. The system was placed in a basic atmosphere, heated to reflux temperature, water was removed from the system, and an addition condensation reaction was carried out until the weight average molecular weight of the reaction intermediate reached 2,600, and 0.07 part (1.1 mmol) of acetic acid was added. After 4 hours of condensation reaction, 0.03 part (0.8 mmol) of sodium hydroxide was added for neutralization. The resulting amino resin had a weight average molecular weight of 1,200.
[0016]
Example 4
A flask similar to Example 1 was charged with 126 parts (1.0 mol) of melamine, 225 parts (6.0 mol) of 80% paraformaldehyde, 185 parts (2.5 mol) of isobutanol, and 0.4 part (2.7 mmol) of triethanolamine. The system was placed in a basic atmosphere, heated to reflux temperature, and water was removed from the system, and an addition condensation reaction was carried out until the weight average molecular weight of the reaction intermediate reached 2,400. 0.46 parts of p-toluenesulfonic acid (2.7 mmol) ) And 259 parts (3.5 mol) of isobutanol were added and allowed to undergo a condensation reaction for 5 hours, and then 0.05 part (1.35 mmol) of sodium hydroxide was added for neutralization. The obtained amino resin had a weight average molecular weight of 1,000.
[0017]
Example 5
The same flask as in Example 1 was charged with 126 parts (1.0 mol) of melamine, 225 parts (6.0 mol) of 80% paraformaldehyde, 222 parts (3.0 mol) of n-butanol, and 0.3 part (2.0 mmol) of triethanolamine. The system was placed in a basic atmosphere, heated to the reflux temperature, and water was removed from the system, and an addition condensation reaction was performed until the weight average molecular weight of the reaction intermediate reached 2,300, and 0.76 parts (1.2 mmol) of nitric acid and cyclohexane were added. After adding 300 parts (3.0 mol) of hexanol and performing a condensation reaction for 5 hours, 0.05 part (1.35 mmol) of sodium hydroxide was added for neutralization. The resulting amino resin had a weight average molecular weight of 1,300.
[0018]
Comparative Example 1
In a flask similar to Example 1, 126 parts (1.0 mol) of melamine, 300 parts (8.0 mol) of 80% paraformaldehyde, 888 parts (12.0 mol) of n-butanol, and 0.27 parts (1.5 mmol) of p-toluenesulfonic acid. The mixture was placed in an acidic atmosphere, heated to reflux temperature, and the addition condensation reaction was carried out for 5 hours while removing water out of the system. Then, 0.52 parts (3.5 mmol) of triethanolamine was added to neutralize the mixture. The butanol was removed under reduced pressure to a resin solids content of 50%. The amino resin thus obtained had a weight-average molecular weight of 1,200, and the amino resin had a resin content of 50.3% and a yield of 45%.
[0019]
Comparative Example 2
The reaction was performed in the same manner except that the weight average molecular weight of the reaction intermediate was changed to 1,700 during the addition condensation reaction of Example 1. As a result, the weight average molecular weight of the obtained amino resin was 3,400.
[0020]
【The invention's effect】
According to the present invention, a low molecular weight amino resin can be obtained in a high yield of about 70%, which is industrially advantageous.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34047295A JP3724865B2 (en) | 1995-12-27 | 1995-12-27 | Method for producing aminoformaldehyde resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34047295A JP3724865B2 (en) | 1995-12-27 | 1995-12-27 | Method for producing aminoformaldehyde resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09176260A JPH09176260A (en) | 1997-07-08 |
JP3724865B2 true JP3724865B2 (en) | 2005-12-07 |
Family
ID=18337294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34047295A Expired - Fee Related JP3724865B2 (en) | 1995-12-27 | 1995-12-27 | Method for producing aminoformaldehyde resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3724865B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3390477B1 (en) * | 2015-12-16 | 2024-01-17 | prefere Melamines GmbH | Process for manufacturing solutions of alkylated amino formaldehyde resins having a low free formaldehyde content |
-
1995
- 1995-12-27 JP JP34047295A patent/JP3724865B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09176260A (en) | 1997-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Katchalski et al. | Poly-condensation of α-Amino Acid Derivatives. III. Poly-lysine1 | |
EP2402379B1 (en) | Production method of urea-melamine-formaldehyde resin | |
JP3724865B2 (en) | Method for producing aminoformaldehyde resin | |
US4381368A (en) | Process for the preparation of urea-formaldehyde resins | |
JPS5813566B2 (en) | Production of low viscosity, high solids melamine resin solutions with low free fomaldehyde content | |
US2326265A (en) | Urea-formaldehyde resin | |
US3322762A (en) | Production of hexamethylol-melamine and hexakis (methoxy-methyl) melamine | |
JPH0586805B2 (en) | ||
EP3956297B1 (en) | Process for preparing cyanoacetates | |
US4326057A (en) | Adducts of acrolein and isocyanuric acid | |
JP3131692B2 (en) | Urea resin manufacturing method | |
US3383773A (en) | Methods of reproducibly drying organopolysiloxanes | |
CA1163632A (en) | Process for the manufacture of partially etherified methylolmelamines | |
US4321375A (en) | Acetals of adducts of acrolein and isocyanuric acid | |
US5180835A (en) | Process for the preparation of monomeric tetramethoxymethylglycoloril | |
KR100449883B1 (en) | A method for manufacturing methylated melamine-formaldehyde resins | |
RU2064940C1 (en) | Method of urea-formaldehyde resin producing | |
CA1117135A (en) | Process for producing acyl-aminomethane phosphonic acids | |
KR100468640B1 (en) | Process for preparing a pure melamine Derivative | |
JPS6223005B2 (en) | ||
KR100374772B1 (en) | Method for preparing of methoxy methyl melamine resin having low viscosity | |
JPS5948008B2 (en) | Production method of alkyl etherified amino resin | |
JPH0518851B2 (en) | ||
KR19990040259A (en) | Methylated melamine resin excellent in water resistance and curability and its manufacturing method | |
US4374240A (en) | Polymer compositions comprising hemiacetals of adducts of acrolein and isocyanuric acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050920 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080930 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090930 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100930 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100930 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110930 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120930 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120930 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130930 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |