JP3724556B2 - Process for producing polymethylsilsesquioxane - Google Patents

Process for producing polymethylsilsesquioxane Download PDF

Info

Publication number
JP3724556B2
JP3724556B2 JP2000179273A JP2000179273A JP3724556B2 JP 3724556 B2 JP3724556 B2 JP 3724556B2 JP 2000179273 A JP2000179273 A JP 2000179273A JP 2000179273 A JP2000179273 A JP 2000179273A JP 3724556 B2 JP3724556 B2 JP 3724556B2
Authority
JP
Japan
Prior art keywords
hydrolyzate
acid
pmsq
solvent
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000179273A
Other languages
Japanese (ja)
Other versions
JP2001354770A (en
Inventor
元亮 岩淵
不二夫 八木橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000179273A priority Critical patent/JP3724556B2/en
Publication of JP2001354770A publication Critical patent/JP2001354770A/en
Application granted granted Critical
Publication of JP3724556B2 publication Critical patent/JP3724556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、メチルトリアルコキシシランを原料としたポリメチルシルセスキオキサンの製造方法に関し、特に高分子でありながらも種々の溶剤に対する可溶性を有し、保存安定性に優れたポリメチルシルセスキオキサンの製造方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
シリコーンポリマーはその構成単位により多くの様態をとることができる。よく知られた形態の一つにレジンがあるが、これはRSiO3/2を主単位としたポリマーであり、これを硬化させると高硬度、高弾性率の材料が得られることから表面保護用被膜形成材として使われる。これらレジンは末端に加水分解性基或いは水酸基を有する低分子量のポリマーであり、硬化時にはこれら末端基が縮合し、硬い皮膜を形成する。しかし、低分子量シリコーンレジンを用いた場合、この末端基の縮合によって水やアルコールが生成し、また縮合が過度に進行し硬すぎる皮膜となるため、亀裂が生じやすい。この欠点を改良するには、高分子量化させて硬化性基である加水分解性基或いは水酸基を減少させる方法が考えられる。しかし、通常の方法では高分子量化過程での分子間縮合反応を制御することが困難であり、その結果ゲル化を引き起こす。そこで、このようなゲル化を回避する様々な方法が提案されている。
【0003】
メチルトリクロロシランを加水分解してポリメチルシルセスキオキサン(以下、PMSQという場合がある)を得る方法としては、アミン存在下でケトンとエーテルを溶媒に用いる方法(特開昭53−88099号公報)やアルカリ金属カルボン酸塩存在下で加水分解する方法(特開平3−227321号公報)が提案されているが、原料のメチルトリクロロシランは揮発性が高く、また空気中の湿気で容易に加水分解を起こし、腐食性ガスである塩化水素を発生するなど取り扱いが困難であるという欠点を有する。
【0004】
メチルトリアルコキシシランを原料とした方法では、アルカリ加水分解によるPMSQパウダー製造法(特開昭63−77940号公報)が提案されているが、このパウダーは溶剤に不溶性の粒状ゲルであり、被膜形成材には不適である。被膜形成材として塩酸とエタノールとの混合溶媒中でPMSQの溶液を製造する方法(J.Polym,Sei.,PartA.Polym.Chem.1995,33,751)が提案されているが、このPMSQは部分加水分解物であり、保存安定性が低いという問題を有している。
【0005】
特開平2−36234号公報にはシリコーン感圧接着剤となるシリコーン樹脂組成物を、加水分解性基の数や置換基の異なる数種類のシランを酸を加え加水分解させ、酸触媒の存在下重縮合させ、アルカリ触媒の存在下で重縮合させて製造し得ることが記載されているが、具体的な開示は何もなく、樹脂の構造も大きく異なるものであり、樹脂を高分子量化させるものでもない。
【0006】
本発明は、上記事情に鑑みなされたもので、特に高分子でありながらも種々の溶剤に対して可溶性を有し、保存安定性に優れたポリメチルシルセスキオキサンの製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは、上記目的を達成するため、メチルトリアルコキシシランを原料としたPMSQの製造方法において、特に高分子でありながらも可溶性に優れたPMSQを製造する方法を検討した結果、特定の比率の酸を含む水とアルコールからなる溶媒中でメチルトリアルコキシシランを加水分解し、次いで加水分解物を強酸を触媒として縮合させた後、さらにアルカリ重合を行うという方法で、保存安定性に優れた高重合度の可溶性のPMSQが得られることを見い出し、本発明を完成した。
【0008】
即ち、本発明は、
(I)0.001〜0.1mmol/gの酸を含む水とR1OH(R1は炭素数1〜4のアルキル基を示す)で示されるアルコールとの混合溶媒中でCH3Si(OR23(R2は炭素数1〜3のアルキル基)で示されるオルガノシランを加水分解反応させる工程
(II)次いで、工程(I)で得られたオルガノシラン加水分解物に、この加水分解物と接触後に二層分離する有機溶剤と強酸とを接触させて上記加水分解物を縮合させる工程
(III)その後、工程(II)で得られた縮合主成物をアルカリ性雰囲気下で重合させる工程
を含むことを特徴とするポリメチルシルセスキオキサンの製造方法を提供する。
【0009】
以下、本発明につき更に詳しく説明する。
本発明のポリメチルシルセスキオキサンの製造方法は、
(I)加水分解工程
(II)縮合工程
(III)重合工程
の3つの工程を含む。
【0010】
I)加水分解工程
工程(I)は、原料として、(a)水、(b)R1OH(R1は炭素数1〜4のアルキル基)で示されるアルコール、(c)酸、(d)CH3Si(OR23(R2は炭素数1〜3のアルキル基)で示されるオルガノシランを使用し、酸(c)を含む水(a)とアルコール(b)との混合溶媒(加水分解溶媒)中でオルガノシラン(d)を加水分解するものである。
【0011】
ここで、(a)水については特に限定はないが、(c)酸の触媒作用を阻害するような不純物を含まない点でイオン交換水であることが好ましい。(b)R1OHは、炭素数が1〜4の低級アルコールであり、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、s−ブタノール、t−ブタノールであり、これらは単独で使用しても2種以上を混合して使用しても良い。(a)水と(b)R1OHの比率は特に限定されないが、(a)/(b)=10/90〜90/10、特に25/75〜75/25(重量比)であることが好ましい。(a)水がこれよりも少ない場合は、工程(II)でゲル化を起こし易く、PMSQの収率が低くなり、(b)R1OHがこれよりも少ない場合には、混合溶剤に対する(d)CH3Si(OR23の溶解性が低いために均一な加水分解物溶液が得られず、工程(I)でゲル化物を生じ易く、PMSQの収率が低下するおそれがある。(c)酸は加水分解能があればその種類は特に限定はないが、具体的には硫酸、硝酸、塩化水素、リン酸等の無機酸やカルボン酸のような有機酸が挙げられる。(c)酸の量は加水分解反応が進行する量であり、(a)と(b)の混合溶媒中において0.0001〜0.1mmol/gとなる量であり、好ましくは0.001〜0.01mmol/gである。0.0001mmol/g未満では工程(II)でのゲル化、0.1mmol/gより多い場合は工程(I)でのゲル化が起きやすく、可溶性のPMSQが得られにくくなる。なお、ゲル化の機序は明らかではないが、酸濃度が低い場合、SiOHとSiORを有する部分加水分解モノマーが生成し、このSiOHとSiORの縮合速度の違いによって工程(II)でゲル化すると考えられる。これに対して、酸濃度が高い場合は、加水分解によって生成したシラノールが縮合反応を起こし、多官能オリゴマーを生成し、これが次工程の縮合反応で不規則な架橋を形成しゲルを生じるのではないかと考えられる。
【0012】
(d)CH3Si(OR23は、R2が炭素数1〜3のアルキル基で示されるメチルトリアルコキシシランであり、具体的にはメチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン等が挙げられるが、加水分解のし易さと入手の容易さからメチルトリメトキシシランが好ましい。(d)CH3Si(OR23の加水分解物は、(d)CH3Si(OR23を(a)と(b)と(c)から成る加水分解溶媒1gに対し0.1mmol〜2mmolの比率で接触させることが好ましく、より好ましくは0.5mmol〜1mmolの範囲である。0.1mmol未満では生産性が低すぎ、2mmolより多いと工程(II)でゲル化を起こし易くなり、PMSQを効率よく得ることが難しくなるおそれがある。
【0013】
次に、加水分解の方法については、まず(a)と(b)と(c)から成る加水分解溶媒を調製し、これに(d)を接触させ、加水分解を行うが、この加水分解の任意の時点において加水分解溶媒に対する(d)の加水分解物と(d)の和が2mmol/gを超えない濃度で接触させるのが好ましく、2mmol/gを超えた場合はゲルが生成し易くなる。接触させる装置には制限はないが、具体的には回分式攪拌反応槽やフローミキサーが挙げられる。反応温度には特に制限はなく、具体的にはメチルトリメトキシシランの場合は25℃で反応を行うが、加水分解速度を調節するため混合反応溶媒の沸点と混合反応溶媒が凝結しない温度の間で加水分解を行っても良い。なお、加水分解時間は、通常数秒〜1時間である。
【0014】
II)縮合工程
工程(II)は、上記工程(I)で得られたオルガノシラン加水分解物に、この加水分解物と接触後に二層分離する有機溶剤(e)と強酸(f)とを接触させて上記加水分解物を縮合させる工程である。
【0015】
ここで、(e)は接触後に二層分離する有機溶剤であれば特に限定されないが、具体的にはベンゼン、トルエン、キシレン等の芳香族系溶剤、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の飽和炭化水素溶剤が挙げられる。(f)は工程(I)で得られたメチルトリアルコキシシランの加水分解物に対する縮合能を有する強酸であれば特に限定されないが、具体的には硫酸、硝酸、塩化水素メタンスルホン酸、トリフロロメタンスルホン酸のような有機酸が挙げられ、特に不揮発性かつ強酸である硫酸が好ましい。
【0016】
(e)有機溶剤の量は、生成するPMSQを溶解し液体状態を保てる量であればよいが、好ましくは(d)の加水分解物に対する重量比が0.1〜10が好ましい。0.1未満では有機溶剤層中の加水分解縮合物の濃度が高すぎて粘稠な溶液となるために取り扱いが困難となり、また工程(III)でゲル化を起こし易くなる。また、10より多く加えると、後述する工程(III)の後に得られる溶液中のPMSQの濃度が極端に希薄となり、PMSQを被膜或いはキャスト形成する際には大量の溶剤を留去する工程が別途必要となる場合がある。(f)強酸の量は、工程(I)で得られた加水分解物を縮合させることが出来る量であればよいが、好ましくは(d)の加水分解物に対する重量比で0.1〜10であり、より好ましくは0.5〜5である。0.1未満では縮合が遅く、工程(III)でゲル化を起こし易くなる。これはSiOH基やSiOR基が多く残存するためと考えられる。また、10より多く加えても、得られるPMSQの物性や特性に大きな差は見られない。pHは3以下、特に2以下であることが好ましい。
【0017】
次に縮合の方法については、接触の順序はメチルトリアルコキシシランの加水分解物に(e)有機溶剤を加えた後に(f)強酸を接触させるか、或いはメチルトリアルコキシシランの加水分解物に(e)と(f)を同時に接触させることが好ましいが、これは(e)が反応系内に存在することによって縮合反応によって生成したメチルトリアルコキシシランの加水分解縮合物を溶解し、攪拌可能な液体状態を維持することが出来るからである。接触させる装置には制限はないが、具体的には回分式攪拌反応槽やフローミキサーが挙げられる。なお、縮合反応温度は室温〜有機溶媒の沸点が好ましく、反応時間は通常1分〜10時間である。
【0018】
III)重合工程
工程(III)は、上記工程(II)で得られた縮合主成物をアルカリ性雰囲気下で重合させる工程である。
【0019】
アルカリ性雰囲気とするには、アルカリを加えればよく、(g)アルカリは、上記の工程(II)で得られたメチルトリアルコキシシランの加水分解縮合物をさらに縮合させる能力を有すれば特に限定されないが、具体的にはLiOH,NaOH,KOH等のアルカリ金属水酸化物、Ca(OH)2、Mg(OH)2等のアルカリ土類金属水酸化物、アミン類、NH3等が挙げられ、量は反応系内がアルカリ性になる量であれば特に制限されない。pHは7を超えればよく、好ましくは8以上、特に好ましくは10以上である。
【0020】
次に、縮合の方法について述べると、工程(II)で得られた溶液は、PMSQを含む有機溶剤相と酸を含む2相系であり、これに(g)アルカリを加えても良いが、(g)アルカリの量を必要最小限にするために酸を含む層を分離後、PMSQを含む有機溶剤相を水洗し、(g)アルカリを加えるのが好ましい。なお、反応温度は室温〜有機溶媒の沸点が好ましく、反応時間は通常1分〜10時間である。
【0021】
本発明によれば、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の重量平均分子量10000以上の範囲で占められる部分が50%以上、特に60%以上存在する上記の(e)有機溶剤に可溶なPMSQレジンを得ることが出来る。また、(e)有機溶剤を除去し、固体化することも可能であり、また得られた固体を(e)有機溶剤及び(e)以外のケトン類、エーテル類、エステル類、アルコール類等の溶剤で再溶解することも可能である。得られた溶液は貯蔵安定性が良く、固体状態とした場合でも長期にわたって溶剤可溶性を失わない。また、29Si−NMRによるCH3SiO3/2(=T3)単位に対するCH3Si(OR)21/2(=T1)単位とCH3Si(OR)O2/2(=T2)単位の和の比率が0.25以下であるような縮合度の高い構造のPMSQを得ることが出来る。
【0022】
【発明の効果】
本発明によれば、高分子でありながら種々の溶剤に対して可溶であり、しかも安定性に優れたポリメチルシルセスキオキサンを得ることができ、このような高縮合度の可溶性ポリメチルシルセスキオキサンは、各種物品の汚れや擦り傷防止膜や半導体の材料として好適に用いることが出来る。
【0023】
【実施例】
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例で用いた用語について説明すると、下記の通りである。
・重量平均分子量
重量平均分子量は東ソーGPC装置で算出されたスチレン換算の値である。
29Si−NMR分析
シリコーンレジンの構成単位比率は、29Si−NMRにより測定された値である。
・固形分
固形分はPMSQ溶液中を循環オーブン中で105℃で3時間加熱した後の残存量である。
・収率
溶液中のPMSQの構造を(MeSiO3/2nとして固形分から算出した。
・保存安定性
PMSQ溶液を硼珪酸ガラス瓶中で3ヶ月間室温で保存し、濾紙濾過によりゲルを目視確認し、ゲルが認められない場合を良好とする。
【0024】
[実施例1]
10Lの3口フラスコにイオン交換水1900g、メタノール1900g、硫酸1gを加え、攪拌下25℃でメチルトリメトキシシラン400gを加え、加水分解物溶液を得た。これに攪拌下トルエン1000gと硫酸1000gを加え(pH1)、60℃で2時間加熱した。室温下に放冷、静置後に下層を分離し、上層に対しイオン交換水1000gでの洗浄を3回行い、メチルトリメトキシシランの加水分解物のトルエン溶液を得た。これに攪拌下1%NaOH水溶液20gを加え(pH11)、86℃で3時間反応させた後にイオン交換水200gでの洗浄を5回行い、更に濾紙による濾過を行い、976gのPMSQ溶液を得た。
【0025】
得られた溶液の固形分は11.1%であり、収率は55%、固形分の重量平均分子量は396000、GPC面積比における重量平均分子量が10000以上の部分は71%、29Si−NMRによるT1/T2/T3比は0.0/15.7/84.3であった。
【0026】
得られた溶液を室温下で3ヶ月保存し、濾紙濾過したが、ゲル化物は認められなかった。また溶媒を減圧除去することによって得られたPMSQレジンは、室温下で3ヶ月保存した後でもトルエン及びPGMEAに可溶であり、ゲルの生成は認められなかった。
【0027】
得られたPMSQ溶液を鋼板に塗工し、風乾したところ、均一な膜が形成された。これを200℃で1時間加熱したが、膜にクラックは認められなかった。
【0028】
[実施例2〜9]
実施例1と同様にして表1、2に記載の配合で合成を行い、PMSQ溶液を得た。
【0029】
[比較例1]
10Lの3口フラスコにイオン交換水1900g、メタノール1900g、硫酸0.01gを加え、攪拌下25℃でメチルトリメトキシシラン400gを加え、加水分解物溶液を得た。これに攪拌下トルエン1000gと硫酸1000gを加え、60℃で加熱したところ、30分で反応槽中全体が軟質のゲルとなった。これは工程Iでの生成物が部分加水分解であり、工程IIに於いて不均一な縮合が起きた為と考えられる。これによってPMSQは得られなかった。
【0030】
[比較例2]
10Lの3口フラスコにイオン交換水1900g、メタノール1900g、硫酸200gを加え、攪拌下25℃でメチルトリメトキシシラン400gを加えたところ、大量の固体状ゲルが生成した。これは高濃度の硫酸によって加水分解物が順次縮合し、高分子化したためと考えられる。これによってPMSQは得られなかった。
【0031】
[比較例3]
10Lの3口フラスコにイオン交換水3800g、硫酸1gを加え、攪拌下25℃でメチルトリメトキシシラン400gを加えたところ、二層に分離し、界面でゲルが発生した。さらに攪拌を続けたところ、白色の固体ゲルが大量に生成した。これによってPMSQ溶液は得られなかった。
【0032】
【表1】

Figure 0003724556
【0033】
【表2】
Figure 0003724556
【0034】
【表3】
Figure 0003724556
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for the preparation of polymethyl silsesquioxane emissions that methyl trialkoxysilane as a raw material, in particular has a solubility in various solvents while a polymer, is excellent in storage stability polymethyl silsesquioxane The present invention relates to a method for manufacturing
[0002]
[Prior art and problems to be solved by the invention]
Silicone polymers can take many forms depending on their constituent units. One of the well-known forms is a resin, which is a polymer with RSiO 3/2 as the main unit, and when it is cured, a material with high hardness and high modulus can be obtained. Used as a film forming material. These resins are low molecular weight polymers having hydrolyzable groups or hydroxyl groups at the terminals, and these terminal groups condense during curing to form a hard film. However, when a low molecular weight silicone resin is used, water and alcohol are generated by the condensation of the terminal groups, and the condensation proceeds excessively to form a film that is too hard, so that cracks are likely to occur. In order to improve this defect, a method of increasing the molecular weight to reduce the hydrolyzable group or hydroxyl group, which is a curable group, can be considered. However, it is difficult to control the intermolecular condensation reaction in the process of increasing the molecular weight by a normal method, and as a result, gelation is caused. Therefore, various methods for avoiding such gelation have been proposed.
[0003]
As a method for obtaining polymethylsilsesquioxane (hereinafter sometimes referred to as PMSQ) by hydrolyzing methyltrichlorosilane, a method using a ketone and an ether as a solvent in the presence of an amine (Japanese Patent Laid-Open No. 53-88099). ) And a method of hydrolyzing in the presence of an alkali metal carboxylate (JP-A-3-227321), but methyltrichlorosilane as a raw material has high volatility and is easily hydrolyzed by moisture in the air. It has the drawback that it is difficult to handle, such as causing decomposition and generating hydrogen chloride, which is a corrosive gas.
[0004]
As a method using methyltrialkoxysilane as a raw material, a method for producing PMSQ powder by alkaline hydrolysis (Japanese Patent Laid-Open No. 63-77940) has been proposed. This powder is a granular gel insoluble in a solvent, and forms a film. Not suitable for materials. As a film forming material, a method for producing a PMSQ solution in a mixed solvent of hydrochloric acid and ethanol (J. Polym, Sei., Part A. Polym. Chem. 1995, 33, 751) has been proposed. It is a partial hydrolyzate and has a problem of low storage stability.
[0005]
In JP-A-2-36234, a silicone resin composition serving as a silicone pressure-sensitive adhesive is hydrolyzed by adding an acid to several types of silanes having different hydrolyzable groups or different substituents, and in the presence of an acid catalyst. Although it is described that it can be produced by condensation and polycondensation in the presence of an alkali catalyst, there is no specific disclosure, the resin structure is greatly different, and the resin has a high molecular weight not.
[0006]
The present invention has been made in view of the above circumstances, in particular having a solubility for various solvents while a polymer, to provide a production method excellent polymethyl silsesquioxane in to storage stability With the goal.
[0007]
Means for Solving the Problem and Embodiment of the Invention
In order to achieve the above object, the present inventors have studied a method for producing PMSQ using methyltrialkoxysilane as a raw material, in particular PMSQ which is a polymer but excellent in solubility. Excellent storage stability by hydrolyzing methyltrialkoxysilane in a solvent consisting of water and alcohol containing a proportion of acid, then condensing the hydrolyzate using a strong acid as a catalyst, followed by further alkali polymerization. It was found that soluble PMSQ having a high degree of polymerization was obtained, and the present invention was completed.
[0008]
That is, the present invention
(I) CH 3 Si (in a mixed solvent of water containing 0.001 to 0.1 mmol / g of acid and an alcohol represented by R 1 OH (R 1 represents an alkyl group having 1 to 4 carbon atoms) Step (II) of hydrolyzing an organosilane represented by OR 2 ) 3 (R 2 is an alkyl group having 1 to 3 carbon atoms). Then, the hydrolyzate obtained in Step (I) is subjected to hydrolysis. Step (III) of contacting the hydrolyzate by contacting an organic solvent that separates into two layers after contact with the decomposed product and a strong acid, and then polymerizing the condensation main product obtained in Step (II) in an alkaline atmosphere including the step that provides a method for manufacturing a polymethylsilsesquioxane according to claim.
[0009]
Hereinafter, the present invention will be described in more detail.
The method for producing the polymethylsilsesquioxane of the present invention comprises:
(I) Hydrolysis step (II) Condensation step (III) The polymerization step includes three steps.
[0010]
( I) Hydrolysis step Step (I) includes, as raw materials, (a) water, (b) R 1 OH (R 1 is an alkyl group having 1 to 4 carbon atoms), (c ) Acid, (d) an organosilane represented by CH 3 Si (OR 2 ) 3 (R 2 is an alkyl group having 1 to 3 carbon atoms), water (a) containing acid (c) and alcohol (b The organosilane (d) is hydrolyzed in a mixed solvent (hydrolysis solvent).
[0011]
Here, (a) water is not particularly limited, but (c) ion-exchanged water is preferable in that it does not contain impurities that inhibit the catalytic action of the acid. (B) R 1 OH is a lower alcohol having 1 to 4 carbon atoms, specifically, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, s-butanol, and t-butanol. You may use it by mixing 2 or more types. The ratio of (a) water to (b) R 1 OH is not particularly limited, but is (a) / (b) = 10/90 to 90/10, particularly 25/75 to 75/25 (weight ratio). Is preferred. (A) When the amount of water is less than this, gelation is likely to occur in step (II), and the yield of PMSQ is low. (B) When the amount of R 1 OH is less than this, (b) d) Since the solubility of CH 3 Si (OR 2 ) 3 is low, a uniform hydrolyzate solution cannot be obtained, and a gelled product is likely to be formed in step (I), which may reduce the yield of PMSQ. (C) The type of acid is not particularly limited as long as it has hydrolytic ability, and specific examples include inorganic acids such as sulfuric acid, nitric acid, hydrogen chloride, and phosphoric acid, and organic acids such as carboxylic acids. (C) The amount of the acid is an amount by which the hydrolysis reaction proceeds, and is an amount of 0.0001 to 0.1 mmol / g in the mixed solvent of (a) and (b), preferably 0.001 to 0.01 mmol / g. If it is less than 0.0001 mmol / g, gelation in step (II) tends to occur, and if it exceeds 0.1 mmol / g, gelation tends to occur in step (I), and it becomes difficult to obtain soluble PMSQ. Although the mechanism of gelation is not clear, when the acid concentration is low, a partially hydrolyzed monomer having SiOH and SiOR is generated, and gelation is performed in step (II) due to the difference in the condensation rate of SiOH and SiOR. Conceivable. On the other hand, when the acid concentration is high, the silanol produced by hydrolysis causes a condensation reaction to produce a polyfunctional oligomer, which forms an irregular cross-link in the next step condensation reaction, resulting in a gel. It is thought that there is not.
[0012]
(D) CH 3 Si (OR 2 ) 3 is methyltrialkoxysilane in which R 2 is an alkyl group having 1 to 3 carbon atoms, specifically, methyltrimethoxysilane, methyltriethoxysilane, Although propoxysilane etc. are mentioned, methyltrimethoxysilane is preferable from the ease of hydrolysis and availability. (D) CH 3 Si (OR 2) 3 hydrolyzate, 0 to hydrolysis solvent 1g consisting of (d) CH 3 Si a (OR 2) 3 (a) and (b) (c). It is preferable to make it contact in the ratio of 1 mmol-2 mmol, More preferably, it is the range of 0.5 mmol-1 mmol. If it is less than 0.1 mmol, the productivity is too low, and if it exceeds 2 mmol, gelation is likely to occur in step (II), and it may be difficult to obtain PMSQ efficiently.
[0013]
Next, regarding the hydrolysis method, first, a hydrolysis solvent comprising (a), (b) and (c) is prepared, and (d) is brought into contact therewith to carry out hydrolysis. It is preferable that the hydrolyzate of (d) and the sum of (d) are contacted at a concentration not exceeding 2 mmol / g at any point in time, and if it exceeds 2 mmol / g, a gel is likely to be formed. . Although there is no restriction | limiting in the apparatus made to contact, Specifically, a batch type stirring reaction tank and a flow mixer are mentioned. The reaction temperature is not particularly limited. Specifically, in the case of methyltrimethoxysilane, the reaction is carried out at 25 ° C., but in order to adjust the hydrolysis rate, it is between the boiling point of the mixed reaction solvent and the temperature at which the mixed reaction solvent does not condense. Hydrolysis may be carried out. The hydrolysis time is usually several seconds to 1 hour.
[0014]
( II) Condensation step In the step (II), the organosilane hydrolyzate obtained in the above step (I) is mixed with an organic solvent (e) and a strong acid (separated into two layers after contacting with the hydrolyzate). f) is contacted to condense the hydrolyzate.
[0015]
Here, (e) is not particularly limited as long as it is an organic solvent that separates into two layers after contact, but specifically, aromatic solvents such as benzene, toluene, xylene, hexane, heptane, octane, nonane, decane, etc. A saturated hydrocarbon solvent is mentioned. (F) is not particularly limited as long as it is a strong acid capable of condensing the hydrolyzate of methyltrialkoxysilane obtained in step (I). Specifically, sulfuric acid, nitric acid, hydrogen chloride methanesulfonic acid, trifluoro Examples include organic acids such as methanesulfonic acid, and sulfuric acid which is particularly nonvolatile and strong acid is preferable.
[0016]
(E) Although the quantity of the organic solvent should just be the quantity which can melt | dissolve PMSQ to produce | generate and maintain a liquid state, Preferably the weight ratio with respect to the hydrolyzate of (d) is 0.1-10. If it is less than 0.1, the concentration of the hydrolyzed condensate in the organic solvent layer is too high, resulting in a viscous solution, making it difficult to handle, and causing gelation in step (III). Moreover, when adding more than 10, the density | concentration of PMSQ in the solution obtained after process (III) mentioned later becomes extremely diluted, and when forming PMSQ into a film or cast, the process of distilling off a large amount of solvent is an additional step. It may be necessary. (F) The amount of the strong acid may be an amount capable of condensing the hydrolyzate obtained in step (I), but is preferably 0.1 to 10 by weight ratio to the hydrolyzate of (d). More preferably, it is 0.5-5. If it is less than 0.1, condensation is slow, and gelation is likely to occur in step (III). This is presumably because many SiOH groups and SiOR groups remain. Moreover, even if it adds more than 10, the big difference is not looked at by the physical property and characteristic of PMSQ obtained. The pH is preferably 3 or less, particularly 2 or less.
[0017]
Next, regarding the method of condensation, the order of contact is (e) adding an organic solvent to the hydrolyzate of methyltrialkoxysilane and then (f) contacting with a strong acid, or hydrolyzate of methyltrialkoxysilane ( It is preferable that e) and (f) are brought into contact with each other at the same time. This is because the hydrolyzed condensate of methyltrialkoxysilane formed by the condensation reaction is dissolved by the presence of (e) in the reaction system and can be stirred This is because the liquid state can be maintained. Although there is no restriction | limiting in the apparatus made to contact, Specifically, a batch type stirring reaction tank and a flow mixer are mentioned. The condensation reaction temperature is preferably from room temperature to the boiling point of the organic solvent, and the reaction time is usually from 1 minute to 10 hours.
[0018]
( III) Polymerization step Step (III) is a step of polymerizing the condensation main product obtained in the above step (II) in an alkaline atmosphere.
[0019]
In order to obtain an alkaline atmosphere, an alkali may be added. (G) The alkali is not particularly limited as long as it has an ability to further condense the hydrolyzed condensate of methyltrialkoxysilane obtained in the above step (II). Specific examples include alkali metal hydroxides such as LiOH, NaOH, and KOH, alkaline earth metal hydroxides such as Ca (OH) 2 and Mg (OH) 2 , amines, and NH 3 . The amount is not particularly limited as long as the amount in the reaction system becomes alkaline. The pH only needs to exceed 7, preferably 8 or more, particularly preferably 10 or more.
[0020]
Next, the condensation method will be described. The solution obtained in step (II) is a two-phase system containing an organic solvent phase containing PMSQ and an acid, and (g) an alkali may be added thereto. (G) In order to minimize the amount of alkali, it is preferable to separate the acid-containing layer, then wash the organic solvent phase containing PMSQ with water, and (g) add alkali. The reaction temperature is preferably room temperature to the boiling point of the organic solvent, and the reaction time is usually 1 minute to 10 hours.
[0021]
According to the present invention, the PMSQ soluble in the above-mentioned (e) organic solvent in which a portion occupied by a weight average molecular weight of 10,000 or more in terms of standard polystyrene by gel permeation chromatography is 50% or more, particularly 60% or more. A resin can be obtained. It is also possible to remove (e) the organic solvent and solidify it, and to obtain the solid obtained from (e) the organic solvent and ketones other than (e), ethers, esters, alcohols, etc. It is also possible to redissolve with a solvent. The resulting solution has good storage stability and does not lose solvent solubility for a long time even when it is in a solid state. In addition, CH 3 Si (OR) 2 O 1/2 (= T1) unit and CH 3 Si (OR) O 2/2 (= T2) with respect to CH 3 SiO 3/2 (= T3) unit by 29 Si-NMR. A PMSQ having a high degree of condensation such that the ratio of the sum of units is 0.25 or less can be obtained.
[0022]
【The invention's effect】
According to the present invention, it is possible to obtain a polymethylsilsesquioxane which is a polymer but is soluble in various solvents and has excellent stability. Silsesquioxane can be suitably used as a stain or scratch-preventing film for various articles or a semiconductor material.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. The terms used in the following examples are described as follows.
-Weight average molecular weight A weight average molecular weight is the value of styrene conversion computed with the Tosoh GPC apparatus.
-29 Si-NMR analysis The constitutional unit ratio of the silicone resin is a value measured by 29 Si-NMR.
-Solid content The solid content is the residual amount after heating the PMSQ solution in a circulating oven at 105 ° C for 3 hours.
-The structure of PMSQ in the yield solution was calculated from the solid content as (MeSiO 3/2 ) n .
Storage stability The PMSQ solution is stored in a borosilicate glass bottle at room temperature for 3 months, and the gel is visually confirmed by filter paper filtration.
[0024]
[Example 1]
To a 10 L three-necked flask, 1900 g of ion exchange water, 1900 g of methanol, and 1 g of sulfuric acid were added, and 400 g of methyltrimethoxysilane was added at 25 ° C. with stirring to obtain a hydrolyzate solution. To this, 1000 g of toluene and 1000 g of sulfuric acid were added with stirring (pH 1), and the mixture was heated at 60 ° C. for 2 hours. The lower layer was separated after standing to cool at room temperature and allowed to stand, and the upper layer was washed with 1000 g of ion-exchanged water three times to obtain a toluene solution of a hydrolyzate of methyltrimethoxysilane. To this, 20 g of 1% NaOH aqueous solution was added with stirring (pH 11), the mixture was reacted at 86 ° C. for 3 hours, washed with 200 g of ion-exchanged water 5 times, and filtered with filter paper to obtain 976 g of PMSQ solution. .
[0025]
The solid content of the obtained solution was 11.1%, the yield was 55%, the weight average molecular weight of the solid content was 396,000, the portion having a weight average molecular weight of 10,000 or more in the GPC area ratio was 71%, 29 Si-NMR The T1 / T2 / T3 ratio was 0.0 / 15.7 / 84.3.
[0026]
The resulting solution was stored at room temperature for 3 months and filtered through filter paper, but no gelled product was observed. Moreover, the PMSQ resin obtained by removing the solvent under reduced pressure was soluble in toluene and PGMEA even after being stored at room temperature for 3 months, and no gel was observed.
[0027]
When the obtained PMSQ solution was applied to a steel plate and air-dried, a uniform film was formed. This was heated at 200 ° C. for 1 hour, but no cracks were observed in the film.
[0028]
[Examples 2 to 9]
Synthesis was performed in the same manner as in Example 1 with the formulations shown in Tables 1 and 2 to obtain a PMSQ solution.
[0029]
[Comparative Example 1]
To a 10 L three-necked flask, 1900 g of ion-exchanged water, 1900 g of methanol, and 0.01 g of sulfuric acid were added, and 400 g of methyltrimethoxysilane was added at 25 ° C. with stirring to obtain a hydrolyzate solution. To this was added 1000 g of toluene and 1000 g of sulfuric acid with stirring, and the mixture was heated at 60 ° C., and the whole reaction vessel became a soft gel in 30 minutes. This is presumably because the product in Step I was partially hydrolyzed and non-uniform condensation occurred in Step II. As a result, PMSQ was not obtained.
[0030]
[Comparative Example 2]
When 1900 g of ion-exchanged water, 1900 g of methanol, and 200 g of sulfuric acid were added to a 10 L three-necked flask and 400 g of methyltrimethoxysilane was added at 25 ° C. with stirring, a large amount of solid gel was produced. This is thought to be because the hydrolyzate was successively condensed with a high concentration of sulfuric acid to form a polymer. As a result, PMSQ was not obtained.
[0031]
[Comparative Example 3]
When 3800 g of ion-exchanged water and 1 g of sulfuric acid were added to a 10 L three-necked flask and 400 g of methyltrimethoxysilane was added at 25 ° C. with stirring, two layers were separated and a gel was generated at the interface. When stirring was further continued, a large amount of white solid gel was produced. As a result, no PMSQ solution was obtained.
[0032]
[Table 1]
Figure 0003724556
[0033]
[Table 2]
Figure 0003724556
[0034]
[Table 3]
Figure 0003724556

Claims (3)

(I)0.0001〜0.1mmol/gの酸を含む水とR1OH(R1は炭素数1〜4のアルキル基を示す)で示されるアルコールとの混合溶媒中でCH3Si(OR23(R2は炭素数1〜3のアルキル基)で示されるオルガノシランを加水分解反応させる工程、
(II)次いで、工程(I)で得られたオルガノシラン加水分解物に、この加水分解物と接触後に二層分離する有機溶剤と強酸とを接触させて上記加水分解物を縮合させる工程、
(III)その後、工程(II)で得られた縮合主成物をアルカリ性雰囲気下で重合させる工程
を含むことを特徴とするポリメチルシルセスキオキサンの製造方法。
(I) CH 3 Si (in a mixed solvent of water containing 0.0001 to 0.1 mmol / g of acid and an alcohol represented by R 1 OH (R 1 represents an alkyl group having 1 to 4 carbon atoms) OR 2 ) 3 (R 2 is an alkyl group having 1 to 3 carbon atoms), and a hydrolysis reaction of the organosilane represented by
(II) Next, the organosilane hydrolyzate obtained in step (I) is contacted with an organic solvent that separates into two layers after contact with the hydrolyzate and a strong acid to condense the hydrolyzate.
(III) A method for producing polymethylsilsesquioxane, comprising a step of polymerizing the condensation main product obtained in step (II) in an alkaline atmosphere.
工程(I)において、CH3Si(OR23で示されるオルガノシランを、酸を含む水とR1OHで示されるアルコールとの混合溶媒1gに対し0.1〜2mmolの比率で接触させて加水分解させることを特徴とする請求項1記載の製造方法。In step (I), an organosilane represented by CH 3 Si (OR 2 ) 3 is brought into contact with 1 g of a mixed solvent of water containing an acid and an alcohol represented by R 1 OH at a ratio of 0.1 to 2 mmol. The production method according to claim 1, wherein the hydrolysis is carried out. 工程(II)において、オルガノシラン加水分解物と、有機溶剤と、強酸とを重量比1:0.1〜10:0.1〜10の割合で接触させることを特徴とする請求項1又は2記載の製造方法。  3. The step (II), wherein the organosilane hydrolyzate, the organic solvent, and the strong acid are contacted at a weight ratio of 1: 0.1 to 10: 0.1 to 10. The manufacturing method as described.
JP2000179273A 2000-06-15 2000-06-15 Process for producing polymethylsilsesquioxane Expired - Fee Related JP3724556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000179273A JP3724556B2 (en) 2000-06-15 2000-06-15 Process for producing polymethylsilsesquioxane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000179273A JP3724556B2 (en) 2000-06-15 2000-06-15 Process for producing polymethylsilsesquioxane

Publications (2)

Publication Number Publication Date
JP2001354770A JP2001354770A (en) 2001-12-25
JP3724556B2 true JP3724556B2 (en) 2005-12-07

Family

ID=18680571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000179273A Expired - Fee Related JP3724556B2 (en) 2000-06-15 2000-06-15 Process for producing polymethylsilsesquioxane

Country Status (1)

Country Link
JP (1) JP3724556B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368267B (en) * 2016-09-27 2020-11-06 瓦克化学股份公司 Method for producing spherical polysilsesquioxane particles
US10662293B2 (en) * 2016-10-06 2020-05-26 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles

Also Published As

Publication number Publication date
JP2001354770A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
US6512071B1 (en) Organohydridosiloxane resins with high organic content
TW460526B (en) Process for producing a silicone polymer-filler mixture and its use
EP2791263B1 (en) Curable compositions of resin-linear organosiloxane block copolymers
KR100222499B1 (en) Coating solution for silica-based coating film and method for the preparation thereof
WO2003064490A2 (en) Process for the functionalization of polyhedral oligomeric silsesquioxanes
KR20110096063A (en) Silsesquioxane resins
JP3445625B2 (en) Synthesis of hydrogen silsesquioxane resin
JPH0470335B2 (en)
US20030176614A1 (en) Organohydridosiloxane resins with high organic content
JPH0791509B2 (en) Insulating film forming coating solution for semiconductors
JPH07228701A (en) Preparation of silicone resin containing hydrogen atom bonded to silicon atom
JP4025389B2 (en) Organic-inorganic composite and inorganic porous body
JP3652151B2 (en) Method for producing curable polymethylsilsesquioxane
JP3801208B2 (en) Curable polymethylsilsesquioxane composition
JP3724556B2 (en) Process for producing polymethylsilsesquioxane
JPH10298289A (en) Production of siloxane polymer
KR100282990B1 (en) Manufacturing method of silicone resin
JPH0143773B2 (en)
JPH0623253B2 (en) Method for producing organic silicon resin
JPH0586330A (en) Film-forming silicone resin composition
JP5382000B2 (en) Method for producing silicon compound having oxetanyl group
JP4048401B2 (en) Process for producing silicon oxide polymer and composition for forming silicon oxide film
JPH07278307A (en) Production of alkoxy group-containing silicone resin
JP5454761B2 (en) Method for producing silicon compound having oxetanyl group
JP2003183395A (en) Method for producing spherical silicone fine particle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees