JP2001354770A - Polymethylsilsesquioxane and process for producing it - Google Patents

Polymethylsilsesquioxane and process for producing it

Info

Publication number
JP2001354770A
JP2001354770A JP2000179273A JP2000179273A JP2001354770A JP 2001354770 A JP2001354770 A JP 2001354770A JP 2000179273 A JP2000179273 A JP 2000179273A JP 2000179273 A JP2000179273 A JP 2000179273A JP 2001354770 A JP2001354770 A JP 2001354770A
Authority
JP
Japan
Prior art keywords
hydrolyzate
acid
organic solvent
polymethylsilsesquioxane
organosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000179273A
Other languages
Japanese (ja)
Other versions
JP3724556B2 (en
Inventor
Motoaki Iwabuchi
元亮 岩淵
Fujio Yagihashi
不二夫 八木橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000179273A priority Critical patent/JP3724556B2/en
Publication of JP2001354770A publication Critical patent/JP2001354770A/en
Application granted granted Critical
Publication of JP3724556B2 publication Critical patent/JP3724556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a highly polymerized polymethylsilsesquioxane which is soluble in various solvents, is excellent in storage stability, and can be suitably used as a film for preventing a stain and marring of various articles and as a semiconductor material. SOLUTION: The process for producing the polymethylsilsesquioxane comprises (I) a step of hydrolyzing an organosilane represented by CH3Si(OR2)3 (wherein R2 is a 1-3C alkyl) in a solvent mixture comprising water containing an acid in an amount of 0.0001-0.1 mmol/g and an alcohol represented by R1OH (wherein R1 is a 1-4C alkyl), (II) a step of bringing the hydrolyzed organosilane obtained in the step (I) into contact with an organic solvent and a strong acid which will separate into two layers after contact with the hydrolyzate, thus allowing the hydrolyzate to condense, and (III) a step of polymerizing in an alkaline atmosphere the condensation product obtained in the step (II).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メチルトリアルコ
キシシランを原料としたポリメチルシルセスキオキサン
及びその製造方法に関し、特に高分子でありながらも種
々の溶剤に対する可溶性を有し、保存安定性に優れたポ
リメチルシルセスキオキサン及びその製造方法に関する
ものである。
[0001] The present invention relates to polymethylsilsesquioxane using methyltrialkoxysilane as a raw material and a method for producing the same, and particularly to a polymer which is soluble in various solvents and has storage stability. And a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】シリコ
ーンポリマーはその構成単位により多くの様態をとるこ
とができる。よく知られた形態の一つにレジンがある
が、これはRSiO3/2を主単位としたポリマーであ
り、これを硬化させると高硬度、高弾性率の材料が得ら
れることから表面保護用被膜形成材として使われる。こ
れらレジンは末端に加水分解性基或いは水酸基を有する
低分子量のポリマーであり、硬化時にはこれら末端基が
縮合し、硬い皮膜を形成する。しかし、低分子量シリコ
ーンレジンを用いた場合、この末端基の縮合によって水
やアルコールが生成し、また縮合が過度に進行し硬すぎ
る皮膜となるため、亀裂が生じやすい。この欠点を改良
するには、高分子量化させて硬化性基である加水分解性
基或いは水酸基を減少させる方法が考えられる。しか
し、通常の方法では高分子量化過程での分子間縮合反応
を制御することが困難であり、その結果ゲル化を引き起
こす。そこで、このようなゲル化を回避する様々な方法
が提案されている。
BACKGROUND OF THE INVENTION Silicone polymers can take many forms depending on their constituent units. One of the well-known forms is resin, which is a polymer with RSiO 3/2 as the main unit, and when cured, a material with high hardness and high elastic modulus can be obtained. Used as a film forming material. These resins are low molecular weight polymers having a hydrolyzable group or a hydroxyl group at the terminal, and upon curing, these terminal groups condense to form a hard film. However, when a low molecular weight silicone resin is used, water and alcohol are generated by condensation of the terminal groups, and the condensation proceeds excessively to form a film that is too hard, so that cracks are easily generated. In order to improve this drawback, a method of increasing the molecular weight to reduce the hydrolyzable group or the hydroxyl group, which is a curable group, can be considered. However, it is difficult to control the intermolecular condensation reaction in the process of increasing the molecular weight by a usual method, and as a result, gelation is caused. Therefore, various methods for avoiding such gelation have been proposed.

【0003】メチルトリクロロシランを加水分解してポ
リメチルシルセスキオキサン(以下、PMSQという場
合がある)を得る方法としては、アミン存在下でケトン
とエーテルを溶媒に用いる方法(特開昭53−8809
9号公報)やアルカリ金属カルボン酸塩存在下で加水分
解する方法(特開平3−227321号公報)が提案さ
れているが、原料のメチルトリクロロシランは揮発性が
高く、また空気中の湿気で容易に加水分解を起こし、腐
食性ガスである塩化水素を発生するなど取り扱いが困難
であるという欠点を有する。
As a method for obtaining polymethylsilsesquioxane (hereinafter sometimes referred to as PMSQ) by hydrolyzing methyltrichlorosilane, a method using ketone and ether as a solvent in the presence of an amine (JP-A-53-1983) 8809
No. 9) and a method in which hydrolysis is carried out in the presence of an alkali metal carboxylate (Japanese Patent Application Laid-Open No. 3-227321). It has the drawback that it is difficult to handle, for example, it easily undergoes hydrolysis and generates corrosive gas, hydrogen chloride.

【0004】メチルトリアルコキシシランを原料とした
方法では、アルカリ加水分解によるPMSQパウダー製
造法(特開昭63−77940号公報)が提案されてい
るが、このパウダーは溶剤に不溶性の粒状ゲルであり、
被膜形成材には不適である。被膜形成材として塩酸とエ
タノールとの混合溶媒中でPMSQの溶液を製造する方
法(J.Polym,Sei.,PartA.Poly
m.Chem.1995,33,751)が提案されて
いるが、このPMSQは部分加水分解物であり、保存安
定性が低いという問題を有している。
As a method using methyltrialkoxysilane as a raw material, a method for producing PMSQ powder by alkali hydrolysis has been proposed (JP-A-63-77940). This powder is a particulate gel insoluble in a solvent. ,
It is not suitable for a film forming material. A method for producing a solution of PMSQ in a mixed solvent of hydrochloric acid and ethanol as a film forming material (J. Polym, Sei., Part A. Poly)
m. Chem. 1995, 33, 751), but this PMSQ is a partial hydrolyzate and has a problem of low storage stability.

【0005】特開平2−36234号公報にはシリコー
ン感圧接着剤となるシリコーン樹脂組成物を、加水分解
性基の数や置換基の異なる数種類のシランを酸を加え加
水分解させ、酸触媒の存在下重縮合させ、アルカリ触媒
の存在下で重縮合させて製造し得ることが記載されてい
るが、具体的な開示は何もなく、樹脂の構造も大きく異
なるものであり、樹脂を高分子量化させるものでもな
い。
JP-A-2-36234 discloses that a silicone resin composition serving as a silicone pressure-sensitive adhesive is hydrolyzed by adding an acid to several types of silanes having different numbers of hydrolyzable groups and different substituents to form an acid catalyst. Polycondensation in the presence, it is described that can be produced by polycondensation in the presence of an alkali catalyst, but there is no specific disclosure, the structure of the resin is greatly different, the resin has a high molecular weight It is not something to make it.

【0006】本発明は、上記事情に鑑みなされたもの
で、特に高分子でありながらも種々の溶剤に対して可溶
性を有し、保存安定性に優れたポリメチルシルセスキオ
キサン及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and in particular, polymethylsilsesquioxane which is soluble in various solvents and has excellent storage stability while being a polymer, and a method for producing the same. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段及び発明の実施の形態】本
発明者らは、上記目的を達成するため、メチルトリアル
コキシシランを原料としたPMSQの製造方法におい
て、特に高分子でありながらも可溶性に優れたPMSQ
を製造する方法を検討した結果、特定の比率の酸を含む
水とアルコールからなる溶媒中でメチルトリアルコキシ
シランを加水分解し、次いで加水分解物を強酸を触媒と
して縮合させた後、さらにアルカリ重合を行うという方
法で、保存安定性に優れた高重合度の可溶性のPMSQ
が得られることを見い出し、本発明を完成した。
Means for Solving the Problems and Embodiments of the Invention In order to achieve the above object, the present inventors have proposed a method for producing PMSQ using methyltrialkoxysilane as a raw material. Excellent PMSQ
As a result of studying a method for producing the compound, methyltrialkoxysilane was hydrolyzed in a solvent consisting of water and an alcohol containing a specific ratio of an acid, and then the hydrolyzate was condensed with a strong acid as a catalyst, and then further subjected to alkali polymerization , A highly polymerizable soluble PMSQ with excellent storage stability
Have been obtained, and the present invention has been completed.

【0008】即ち、本発明は、 (I)0.001〜0.1mmol/gの酸を含む水と
1OH(R1は炭素数1〜4のアルキル基を示す)で示
されるアルコールとの混合溶媒中でCH3Si(OR2
3(R2は炭素数1〜3のアルキル基)で示されるオルガ
ノシランを加水分解反応させる工程 (II)次いで、工程(I)で得られたオルガノシラン
加水分解物に、この加水分解物と接触後に二層分離する
有機溶剤と強酸とを接触させて上記加水分解物を縮合さ
せる工程 (III)その後、工程(II)で得られた縮合主成物
をアルカリ性雰囲気下で重合させる工程 を含むことを特徴とするポリメチルシルセスキオキサン
の製造方法を提供する。また、本発明は、上記方法によ
って得られ、ゲルパーミエーションクロマトグラフィー
による標準ポリスチレン換算の重量平均分子量1000
0以上の範囲で占められる部分が50%以上存在する有
機溶剤に可溶なポリメチルシルセスキオキサンを提供す
る。
That is, the present invention relates to (I) water containing an acid of 0.001 to 0.1 mmol / g and an alcohol represented by R 1 OH (R 1 represents an alkyl group having 1 to 4 carbon atoms). CH 3 Si (OR 2 ) in a mixed solvent of
Step (II) of hydrolyzing an organosilane represented by 3 (R 2 is an alkyl group having 1 to 3 carbon atoms) (II) Then, the hydrolyzate of the organosilane obtained in the step (I) is A step of contacting an organic solvent which separates into two layers after contact and a strong acid to condense the hydrolyzate (III) and a step of polymerizing the main condensate obtained in step (II) in an alkaline atmosphere A method for producing polymethylsilsesquioxane is provided. The present invention also provides a weight-average molecular weight of 1000, which is obtained by the above method and is converted into standard polystyrene by gel permeation chromatography.
Provided is polymethylsilsesquioxane that is soluble in an organic solvent in which a portion occupied by 0 or more is present in 50% or more.

【0009】以下、本発明につき更に詳しく説明する。
本発明のポリメチルシルセスキオキサンの製造方法は、 (I)加水分解工程 (II)縮合工程 (III)重合工程 の3つの工程を含む。
Hereinafter, the present invention will be described in more detail.
The method for producing polymethylsilsesquioxane of the present invention includes three steps: (I) a hydrolysis step, (II) a condensation step, and (III) a polymerization step.

【0010】(I)加水分解工程 工程(I)は、原料として、(a)水、(b)R1OH
(R1は炭素数1〜4のアルキル基)で示されるアルコ
ール、(c)酸、(d)CH3Si(OR23(R2は炭
素数1〜3のアルキル基)で示されるオルガノシランを
使用し、酸(c)を含む水(a)とアルコール(b)と
の混合溶媒(加水分解溶媒)中でオルガノシラン(d)
を加水分解するものである。
( I) Hydrolysis Step In the step (I), (a) water and (b) R 1 OH are used as raw materials.
Alcohol represented by (R 1 is an alkyl group having 1 to 4 carbon atoms), (c) acid, (d) CH 3 Si (OR 2 ) 3 (R 2 is an alkyl group having 1 to 3 carbon atoms) Using organosilane, organosilane (d) in a mixed solvent (hydrolysis solvent) of water (a) containing acid (c) and alcohol (b)
Is hydrolyzed.

【0011】ここで、(a)水については特に限定はな
いが、(c)酸の触媒作用を阻害するような不純物を含
まない点でイオン交換水であることが好ましい。(b)
1OHは、炭素数が1〜4の低級アルコールであり、
具体的にはメタノール、エタノール、プロパノール、イ
ソプロパノール、ブタノール、イソブタノール、s−ブ
タノール、t−ブタノールであり、これらは単独で使用
しても2種以上を混合して使用しても良い。(a)水と
(b)R1OHの比率は特に限定されないが、(a)/
(b)=10/90〜90/10、特に25/75〜7
5/25(重量比)であることが好ましい。(a)水が
これよりも少ない場合は、工程(II)でゲル化を起こ
し易く、PMSQの収率が低くなり、(b)R1OHが
これよりも少ない場合には、混合溶剤に対する(d)C
3Si(OR23の溶解性が低いために均一な加水分
解物溶液が得られず、工程(I)でゲル化物を生じ易
く、PMSQの収率が低下するおそれがある。(c)酸
は加水分解能があればその種類は特に限定はないが、具
体的には硫酸、硝酸、塩化水素、リン酸等の無機酸やカ
ルボン酸のような有機酸が挙げられる。(c)酸の量は
加水分解反応が進行する量であり、(a)と(b)の混
合溶媒中において0.0001〜0.1mmol/gと
なる量であり、好ましくは0.001〜0.01mmo
l/gである。0.0001mmol/g未満では工程
(II)でのゲル化、0.1mmol/gより多い場合
は工程(I)でのゲル化が起きやすく、可溶性のPMS
Qが得られにくくなる。なお、ゲル化の機序は明らかで
はないが、酸濃度が低い場合、SiOHとSiORを有
する部分加水分解モノマーが生成し、このSiOHとS
iORの縮合速度の違いによって工程(II)でゲル化
すると考えられる。これに対して、酸濃度が高い場合
は、加水分解によって生成したシラノールが縮合反応を
起こし、多官能オリゴマーを生成し、これが次工程の縮
合反応で不規則な架橋を形成しゲルを生じるのではない
かと考えられる。
Here, (a) water is not particularly limited, but (c) ion-exchanged water is preferable because it does not contain impurities that inhibit the catalytic action of acid. (B)
R 1 OH is a lower alcohol having 1 to 4 carbon atoms,
Specific examples include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, s-butanol and t-butanol, which may be used alone or as a mixture of two or more. Although the ratio of (a) water and (b) R 1 OH is not particularly limited, (a) /
(B) = 10 / 90-90 / 10, especially 25 / 75-7
It is preferably 5/25 (weight ratio). (A) If the amount of water is less than this, gelation is likely to occur in step (II), and the yield of PMSQ will be low. (B) If the amount of R 1 OH is less than this, ( d) C
Since the solubility of H 3 Si (OR 2 ) 3 is low, a uniform solution of the hydrolyzate cannot be obtained, and a gel is easily formed in the step (I), which may lower the yield of PMSQ. The type of the acid (c) is not particularly limited as long as it has hydrolytic ability, and specific examples thereof include inorganic acids such as sulfuric acid, nitric acid, hydrogen chloride, and phosphoric acid, and organic acids such as carboxylic acid. (C) The amount of the acid is an amount at which the hydrolysis reaction proceeds, and the amount is 0.0001 to 0.1 mmol / g in the mixed solvent of (a) and (b), preferably 0.001 to 0.1 mmol / g. 0.01mmo
1 / g. If the amount is less than 0.0001 mmol / g, gelation in the step (II) tends to occur, and if the amount is more than 0.1 mmol / g, gelation in the step (I) is likely to occur.
Q becomes difficult to obtain. Although the mechanism of gelation is not clear, when the acid concentration is low, a partially hydrolyzed monomer having SiOH and SiOR is generated, and this SiOH and S
It is considered that gelation occurs in step (II) due to the difference in the condensation rate of iOR. On the other hand, when the acid concentration is high, the silanol generated by the hydrolysis causes a condensation reaction to generate a polyfunctional oligomer, which forms an irregular crosslink in the condensation reaction in the next step, thereby generating a gel. It is thought that there is not.

【0012】(d)CH3Si(OR23は、R2が炭素
数1〜3のアルキル基で示されるメチルトリアルコキシ
シランであり、具体的にはメチルトリメトキシシラン、
メチルトリエトキシシラン、メチルトリプロポキシシラ
ン等が挙げられるが、加水分解のし易さと入手の容易さ
からメチルトリメトキシシランが好ましい。(d)CH
3Si(OR23の加水分解物は、(d)CH3Si(O
23を(a)と(b)と(c)から成る加水分解溶媒
1gに対し0.1mmol〜2mmolの比率で接触さ
せることが好ましく、より好ましくは0.5mmol〜
1mmolの範囲である。0.1mmol未満では生産
性が低すぎ、2mmolより多いと工程(II)でゲル
化を起こし易くなり、PMSQを効率よく得ることが難
しくなるおそれがある。
(D) CH 3 Si (OR 2 ) 3 is a methyltrialkoxysilane in which R 2 is an alkyl group having 1 to 3 carbon atoms, specifically, methyltrimethoxysilane,
Methyltriethoxysilane, methyltripropoxysilane and the like can be mentioned, but methyltrimethoxysilane is preferred from the viewpoint of easy hydrolysis and availability. (D) CH
The hydrolyzate of 3 Si (OR 2 ) 3 is (d) CH 3 Si (O
R 2 ) 3 is preferably contacted at a ratio of 0.1 mmol to 2 mmol with respect to 1 g of the hydrolysis solvent composed of (a), (b) and (c), more preferably 0.5 mmol to 2 mmol.
The range is 1 mmol. If it is less than 0.1 mmol, the productivity is too low, and if it is more than 2 mmol, gelation is likely to occur in step (II), and it may be difficult to obtain PMSQ efficiently.

【0013】次に、加水分解の方法については、まず
(a)と(b)と(c)から成る加水分解溶媒を調製
し、これに(d)を接触させ、加水分解を行うが、この
加水分解の任意の時点において加水分解溶媒に対する
(d)の加水分解物と(d)の和が2mmol/gを超
えない濃度で接触させるのが好ましく、2mmol/g
を超えた場合はゲルが生成し易くなる。接触させる装置
には制限はないが、具体的には回分式攪拌反応槽やフロ
ーミキサーが挙げられる。反応温度には特に制限はな
く、具体的にはメチルトリメトキシシランの場合は25
℃で反応を行うが、加水分解速度を調節するため混合反
応溶媒の沸点と混合反応溶媒が凝結しない温度の間で加
水分解を行っても良い。なお、加水分解時間は、通常数
秒〜1時間である。
Next, regarding the hydrolysis method, first, a hydrolysis solvent comprising (a), (b) and (c) is prepared, and (d) is brought into contact with the solvent to effect hydrolysis. It is preferable that the hydrolyzate of (d) and the sum of (d) with respect to the hydrolysis solvent be contacted at a concentration not exceeding 2 mmol / g at any time of the hydrolysis at 2 mmol / g.
If it exceeds, a gel is likely to be formed. The device to be brought into contact is not limited, but specific examples include a batch-type stirring reaction tank and a flow mixer. The reaction temperature is not particularly limited. Specifically, in the case of methyltrimethoxysilane, 25
Although the reaction is carried out at a temperature of ° C., the hydrolysis may be carried out between the boiling point of the mixed reaction solvent and a temperature at which the mixed reaction solvent does not condense in order to adjust the hydrolysis rate. The hydrolysis time is usually several seconds to 1 hour.

【0014】(II)縮合工程 工程(II)は、上記工程(I)で得られたオルガノシ
ラン加水分解物に、この加水分解物と接触後に二層分離
する有機溶剤(e)と強酸(f)とを接触させて上記加
水分解物を縮合させる工程である。
( II) Condensation Step In the step (II), an organic solvent (e) which separates into two layers after contacting the organosilane hydrolyzate obtained in the above step (I) with this hydrolyzate, and a strong acid (f) ) To condense the hydrolyzate.

【0015】ここで、(e)は接触後に二層分離する有
機溶剤であれば特に限定されないが、具体的にはベンゼ
ン、トルエン、キシレン等の芳香族系溶剤、ヘキサン、
ヘプタン、オクタン、ノナン、デカン等の飽和炭化水素
溶剤が挙げられる。(f)は工程(I)で得られたメチ
ルトリアルコキシシランの加水分解物に対する縮合能を
有する強酸であれば特に限定されないが、具体的には硫
酸、硝酸、塩化水素メタンスルホン酸、トリフロロメタ
ンスルホン酸のような有機酸が挙げられ、特に不揮発性
かつ強酸である硫酸が好ましい。
Here, (e) is not particularly limited as long as it is an organic solvent which separates into two layers after contact, and specifically, aromatic solvents such as benzene, toluene, xylene, hexane, and the like.
Saturated hydrocarbon solvents such as heptane, octane, nonane, and decane are exemplified. (F) is not particularly limited as long as it is a strong acid capable of condensing the hydrolyzate of methyltrialkoxysilane obtained in step (I), and specific examples thereof include sulfuric acid, nitric acid, hydrogen chloride methanesulfonic acid, and trifluoromethane. An organic acid such as methanesulfonic acid is mentioned, and sulfuric acid, which is a nonvolatile and strong acid, is particularly preferable.

【0016】(e)有機溶剤の量は、生成するPMSQ
を溶解し液体状態を保てる量であればよいが、好ましく
は(d)の加水分解物に対する重量比が0.1〜10が
好ましい。0.1未満では有機溶剤層中の加水分解縮合
物の濃度が高すぎて粘稠な溶液となるために取り扱いが
困難となり、また工程(III)でゲル化を起こし易く
なる。また、10より多く加えると、後述する工程(I
II)の後に得られる溶液中のPMSQの濃度が極端に
希薄となり、PMSQを被膜或いはキャスト形成する際
には大量の溶剤を留去する工程が別途必要となる場合が
ある。(f)強酸の量は、工程(I)で得られた加水分
解物を縮合させることが出来る量であればよいが、好ま
しくは(d)の加水分解物に対する重量比で0.1〜1
0であり、より好ましくは0.5〜5である。0.1未
満では縮合が遅く、工程(III)でゲル化を起こし易
くなる。これはSiOH基やSiOR基が多く残存する
ためと考えられる。また、10より多く加えても、得ら
れるPMSQの物性や特性に大きな差は見られない。p
Hは3以下、特に2以下であることが好ましい。
(E) The amount of the organic solvent is
Any amount can be used as long as it can dissolve and maintain a liquid state, but the weight ratio to the hydrolyzate of (d) is preferably 0.1 to 10. If it is less than 0.1, the concentration of the hydrolyzed condensate in the organic solvent layer is too high to form a viscous solution, which makes handling difficult, and gelation easily occurs in step (III). If more than 10 is added, the process (I
The concentration of PMSQ in the solution obtained after II) becomes extremely dilute, and a separate step of distilling a large amount of solvent may be required when forming or casting PMSQ. (F) The amount of the strong acid may be an amount capable of condensing the hydrolyzate obtained in step (I), but is preferably 0.1 to 1 in terms of a weight ratio to the hydrolyzate of (d).
0, more preferably 0.5 to 5. If it is less than 0.1, the condensation is slow, and gelation easily occurs in the step (III). This is presumably because many SiOH groups and SiOR groups remain. Also, even if it is added more than 10, there is no significant difference in the physical properties and characteristics of the obtained PMSQ. p
H is preferably 3 or less, particularly preferably 2 or less.

【0017】次に縮合の方法については、接触の順序は
メチルトリアルコキシシランの加水分解物に(e)有機
溶剤を加えた後に(f)強酸を接触させるか、或いはメ
チルトリアルコキシシランの加水分解物に(e)と
(f)を同時に接触させることが好ましいが、これは
(e)が反応系内に存在することによって縮合反応によ
って生成したメチルトリアルコキシシランの加水分解縮
合物を溶解し、攪拌可能な液体状態を維持することが出
来るからである。接触させる装置には制限はないが、具
体的には回分式攪拌反応槽やフローミキサーが挙げられ
る。なお、縮合反応温度は室温〜有機溶媒の沸点が好ま
しく、反応時間は通常1分〜10時間である。
Next, regarding the condensation method, the order of contact is as follows: (e) an organic solvent is added to the hydrolyzate of methyltrialkoxysilane and then (f) a strong acid is contacted, or the hydrolysis of methyltrialkoxysilane is performed. Preferably, (e) and (f) are brought into contact with the product at the same time, but this dissolves the hydrolysis condensate of methyltrialkoxysilane generated by the condensation reaction due to the presence of (e) in the reaction system, This is because a liquid state that can be stirred can be maintained. The device to be brought into contact is not limited, but specific examples include a batch-type stirring reaction tank and a flow mixer. The condensation reaction temperature is preferably from room temperature to the boiling point of the organic solvent, and the reaction time is usually from 1 minute to 10 hours.

【0018】(III)重合工程 工程(III)は、上記工程(II)で得られた縮合主
成物をアルカリ性雰囲気下で重合させる工程である。
( III) Polymerization Step Step (III) is a step of polymerizing the main condensation product obtained in the above step (II) in an alkaline atmosphere.

【0019】アルカリ性雰囲気とするには、アルカリを
加えればよく、(g)アルカリは、上記の工程(II)
で得られたメチルトリアルコキシシランの加水分解縮合
物をさらに縮合させる能力を有すれば特に限定されない
が、具体的にはLiOH,NaOH,KOH等のアルカ
リ金属水酸化物、Ca(OH)2、Mg(OH)2等のア
ルカリ土類金属水酸化物、アミン類、NH3等が挙げら
れ、量は反応系内がアルカリ性になる量であれば特に制
限されない。pHは7を超えればよく、好ましくは8以
上、特に好ましくは10以上である。
In order to make the atmosphere alkaline, an alkali may be added. (G) The alkali is added in the above step (II).
Although there is no particular limitation as long as it has the ability to further condense the hydrolyzed condensate of methyltrialkoxysilane obtained in the above, specifically, alkali metal hydroxides such as LiOH, NaOH, KOH, Ca (OH) 2 , Examples thereof include alkaline earth metal hydroxides such as Mg (OH) 2 , amines, and NH 3 , and the amount is not particularly limited as long as the inside of the reaction system becomes alkaline. The pH may be more than 7, preferably 8 or more, particularly preferably 10 or more.

【0020】次に、縮合の方法について述べると、工程
(II)で得られた溶液は、PMSQを含む有機溶剤相
と酸を含む2相系であり、これに(g)アルカリを加え
ても良いが、(g)アルカリの量を必要最小限にするた
めに酸を含む層を分離後、PMSQを含む有機溶剤相を
水洗し、(g)アルカリを加えるのが好ましい。なお、
反応温度は室温〜有機溶媒の沸点が好ましく、反応時間
は通常1分〜10時間である。
Next, the method of condensation will be described. The solution obtained in step (II) is a two-phase system containing an organic solvent phase containing PMSQ and an acid. Although good, it is preferable to (g) wash the organic solvent phase containing PMSQ after separating the layer containing acid in order to minimize the amount of alkali, and add (g) alkali. In addition,
The reaction temperature is preferably from room temperature to the boiling point of the organic solvent, and the reaction time is usually from 1 minute to 10 hours.

【0021】本発明によれば、ゲルパーミエーションク
ロマトグラフィーによる標準ポリスチレン換算の重量平
均分子量10000以上の範囲で占められる部分が50
%以上、特に60%以上存在する上記の(e)有機溶剤
に可溶なPMSQレジンを得ることが出来る。また、
(e)有機溶剤を除去し、固体化することも可能であ
り、また得られた固体を(e)有機溶剤及び(e)以外
のケトン類、エーテル類、エステル類、アルコール類等
の溶剤で再溶解することも可能である。得られた溶液は
貯蔵安定性が良く、固体状態とした場合でも長期にわた
って溶剤可溶性を失わない。また、29Si−NMRによ
るCH3SiO3/2(=T3)単位に対するCH3Si
(OR)21/2(=T1)単位とCH3Si(OR)O
2/2(=T2)単位の和の比率が0.25以下であるよ
うな縮合度の高い構造のPMSQを得ることが出来る。
According to the present invention, the portion occupied by the weight average molecular weight of 10,000 or more in terms of standard polystyrene by gel permeation chromatography is 50 or more.
%, Especially 60% or more of the above-mentioned (e) organic solvent-soluble PMSQ resin can be obtained. Also,
(E) The organic solvent can be removed and solidified. The obtained solid can be solidified with (e) an organic solvent and a solvent other than (e), such as ketones, ethers, esters, and alcohols. It is also possible to redissolve. The obtained solution has good storage stability and does not lose solvent solubility for a long time even when it is in a solid state. Further, 29 by Si-NMR CH 3 SiO 3/2 ( = T3) CH 3 Si with respect to the unit
(OR) 2 O 1/2 (= T1) unit and CH 3 Si (OR) O
A PMSQ having a structure with a high degree of condensation, in which the ratio of the sum of 2/2 (= T2) units is 0.25 or less, can be obtained.

【0022】[0022]

【発明の効果】本発明によれば、高分子でありながら種
々の溶剤に対して可溶であり、しかも安定性に優れたポ
リメチルシルセスキオキサンを得ることができ、このよ
うな高縮合度の可溶性ポリメチルシルセスキオキサン
は、各種物品の汚れや擦り傷防止膜や半導体の材料とし
て好適に用いることが出来る。
According to the present invention, it is possible to obtain polymethylsilsesquioxane which is a polymer, is soluble in various solvents, and has excellent stability. The soluble polymethylsilsesquioxane can be suitably used as a film for preventing dirt and abrasion of various articles and a material for semiconductors.

【0023】[0023]

【実施例】以下、実施例及び比較例を示し、本発明を具
体的に説明するが、本発明は下記の実施例に制限される
ものではない。なお、下記例で用いた用語について説明
すると、下記の通りである。 ・重量平均分子量 重量平均分子量は東ソーGPC装置で算出されたスチレ
ン換算の値である。 ・29Si−NMR分析 シリコーンレジンの構成単位比率は、29Si−NMRに
より測定された値である。 ・固形分 固形分はPMSQ溶液中を循環オーブン中で105℃で
3時間加熱した後の残存量である。 ・収率 溶液中のPMSQの構造を(MeSiO3/2nとして固
形分から算出した。 ・保存安定性 PMSQ溶液を硼珪酸ガラス瓶中で3ヶ月間室温で保存
し、濾紙濾過によりゲルを目視確認し、ゲルが認められ
ない場合を良好とする。
EXAMPLES The present invention will be described below in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. The terms used in the following examples will be described below. -Weight average molecular weight The weight average molecular weight is a value in terms of styrene calculated by a Tosoh GPC apparatus. -29 Si-NMR analysis The structural unit ratio of the silicone resin is a value measured by 29 Si-NMR. -Solid content The solid content is the remaining amount after heating in a PMSQ solution at 105 ° C for 3 hours in a circulating oven. -Yield The structure of PMSQ in the solution was calculated from the solid content as (MeSiO3 / 2 ) n . -Storage stability The PMSQ solution is stored in a borosilicate glass bottle at room temperature for 3 months, and the gel is visually checked by filtration with a filter paper.

【0024】[実施例1]10Lの3口フラスコにイオ
ン交換水1900g、メタノール1900g、硫酸1g
を加え、攪拌下25℃でメチルトリメトキシシラン40
0gを加え、加水分解物溶液を得た。これに攪拌下トル
エン1000gと硫酸1000gを加え(pH1)、6
0℃で2時間加熱した。室温下に放冷、静置後に下層を
分離し、上層に対しイオン交換水1000gでの洗浄を
3回行い、メチルトリメトキシシランの加水分解物のト
ルエン溶液を得た。これに攪拌下1%NaOH水溶液2
0gを加え(pH11)、86℃で3時間反応させた後
にイオン交換水200gでの洗浄を5回行い、更に濾紙
による濾過を行い、976gのPMSQ溶液を得た。
Example 1 1900 g of ion-exchanged water, 1900 g of methanol and 1 g of sulfuric acid were placed in a 10 L three-necked flask.
At 25 ° C. under stirring at 25 ° C.
0 g was added to obtain a hydrolyzate solution. To this, 1000 g of toluene and 1000 g of sulfuric acid were added with stirring (pH 1).
Heat at 0 ° C. for 2 hours. After cooling and standing at room temperature, the lower layer was separated after standing, and the upper layer was washed three times with 1,000 g of ion-exchanged water to obtain a toluene solution of a hydrolyzate of methyltrimethoxysilane. 1% NaOH aqueous solution 2
After adding 0 g (pH 11) and reacting at 86 ° C. for 3 hours, washing with 200 g of ion-exchanged water was performed 5 times, followed by filtration with filter paper to obtain 976 g of a PMSQ solution.

【0025】得られた溶液の固形分は11.1%であ
り、収率は55%、固形分の重量平均分子量は3960
00、GPC面積比における重量平均分子量が1000
0以上の部分は71%、29Si−NMRによるT1/T
2/T3比は0.0/15.7/84.3であった。
The solid content of the obtained solution was 11.1%, the yield was 55%, and the weight average molecular weight of the solid content was 3960.
00, weight average molecular weight in GPC area ratio is 1000
0% or more is 71%, T1 / T by 29 Si-NMR
The 2 / T3 ratio was 0.0 / 15.7 / 84.3.

【0026】得られた溶液を室温下で3ヶ月保存し、濾
紙濾過したが、ゲル化物は認められなかった。また溶媒
を減圧除去することによって得られたPMSQレジン
は、室温下で3ヶ月保存した後でもトルエン及びPGM
EAに可溶であり、ゲルの生成は認められなかった。
The resulting solution was stored at room temperature for 3 months and filtered through a filter paper, but no gel was found. Further, PMSQ resin obtained by removing the solvent under reduced pressure can be used in toluene and PGM even after storage at room temperature for 3 months.
It was soluble in EA and no gel formation was observed.

【0027】得られたPMSQ溶液を鋼板に塗工し、風
乾したところ、均一な膜が形成された。これを200℃
で1時間加熱したが、膜にクラックは認められなかっ
た。
When the obtained PMSQ solution was applied to a steel plate and air-dried, a uniform film was formed. 200 ℃
For 1 hour, no cracks were observed in the film.

【0028】[実施例2〜9]実施例1と同様にして表
1、2に記載の配合で合成を行い、PMSQ溶液を得
た。
[Examples 2 to 9] Synthesis was carried out in the same manner as in Example 1 with the formulations shown in Tables 1 and 2 to obtain a PMSQ solution.

【0029】[比較例1]10Lの3口フラスコにイオ
ン交換水1900g、メタノール1900g、硫酸0.
01gを加え、攪拌下25℃でメチルトリメトキシシラ
ン400gを加え、加水分解物溶液を得た。これに攪拌
下トルエン1000gと硫酸1000gを加え、60℃
で加熱したところ、30分で反応槽中全体が軟質のゲル
となった。これは工程Iでの生成物が部分加水分解であ
り、工程IIに於いて不均一な縮合が起きた為と考えら
れる。これによってPMSQは得られなかった。
Comparative Example 1 In a 10 L three-necked flask, 1900 g of ion-exchanged water, 1900 g of methanol, and 0.1 ml of sulfuric acid were added.
01 g was added, and 400 g of methyltrimethoxysilane was added at 25 ° C. with stirring to obtain a hydrolyzate solution. Under stirring, 1000 g of toluene and 1000 g of sulfuric acid were added thereto.
, The whole inside of the reaction tank became a soft gel in 30 minutes. This is considered to be due to partial hydrolysis of the product in Step I and heterogeneous condensation in Step II. This did not give PMSQ.

【0030】[比較例2]10Lの3口フラスコにイオ
ン交換水1900g、メタノール1900g、硫酸20
0gを加え、攪拌下25℃でメチルトリメトキシシラン
400gを加えたところ、大量の固体状ゲルが生成し
た。これは高濃度の硫酸によって加水分解物が順次縮合
し、高分子化したためと考えられる。これによってPM
SQは得られなかった。
Comparative Example 2 1900 g of ion-exchanged water, 1900 g of methanol, 20 sulfuric acid were placed in a 10 L three-necked flask.
When 0 g was added and 400 g of methyltrimethoxysilane was added at 25 ° C. with stirring, a large amount of solid gel was formed. It is considered that this is because the hydrolyzate was sequentially condensed by high-concentration sulfuric acid and polymerized. This allows PM
SQ was not obtained.

【0031】[比較例3]10Lの3口フラスコにイオ
ン交換水3800g、硫酸1gを加え、攪拌下25℃で
メチルトリメトキシシラン400gを加えたところ、二
層に分離し、界面でゲルが発生した。さらに攪拌を続け
たところ、白色の固体ゲルが大量に生成した。これによ
ってPMSQ溶液は得られなかった。
Comparative Example 3 3800 g of ion-exchanged water and 1 g of sulfuric acid were added to a 10 L three-necked flask, and 400 g of methyltrimethoxysilane was added at 25 ° C. with stirring. did. When the stirring was further continued, a large amount of white solid gel was formed. This did not give a PMSQ solution.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J035 BA12 BA14 CA01K CA06U CA061 EB02 LA03 LB01 4J038 DL031 LA02 MA14 NA05 NA11 NA26  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4J035 BA12 BA14 CA01K CA06U CA061 EB02 LA03 LB01 4J038 DL031 LA02 MA14 NA05 NA11 NA26

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (I)0.0001〜0.1mmol/
gの酸を含む水とR 1OH(R1は炭素数1〜4のアルキ
ル基を示す)で示されるアルコールとの混合溶媒中でC
3Si(OR23(R2は炭素数1〜3のアルキル基)
で示されるオルガノシランを加水分解反応させる工程、
(II)次いで、工程(I)で得られたオルガノシラン
加水分解物に、この加水分解物と接触後に二層分離する
有機溶剤と強酸とを接触させて上記加水分解物を縮合さ
せる工程、(III)その後、工程(II)で得られた
縮合主成物をアルカリ性雰囲気下で重合させる工程を含
むことを特徴とするポリメチルシルセスキオキサンの製
造方法。
(I) 0.0001 to 0.1 mmol /
g containing water and R 1OH (R1Is an alk having 1 to 4 carbon atoms
In a mixed solvent with an alcohol represented by
HThreeSi (ORTwo)Three(RTwoIs an alkyl group having 1 to 3 carbon atoms)
A step of hydrolyzing an organosilane represented by
(II) Next, the organosilane obtained in the step (I)
Separate into two layers after contact with this hydrolyzate
The hydrolyzate is condensed by contacting an organic solvent with a strong acid.
(III) then obtained in step (II)
Including a step of polymerizing the main condensation product in an alkaline atmosphere
Of polymethylsilsesquioxane characterized by
Construction method.
【請求項2】 工程(I)において、CH3Si(O
23で示されるオルガノシランを、酸を含む水とR1
OHで示されるアルコールとの混合溶媒1gに対し0.
1〜2mmolの比率で接触させて加水分解させること
を特徴とする請求項1記載の製造方法。
2. In the step (I), CH 3 Si (O
R 2 ) 3 is prepared by converting an organosilane represented by 3 into water containing an acid and R 1.
0.1 g per 1 g of a mixed solvent with an alcohol represented by OH.
2. The method according to claim 1, wherein the hydrolysis is carried out by contacting at a ratio of 1 to 2 mmol.
【請求項3】 工程(II)において、オルガノシラン
加水分解物と、有機溶剤と、強酸とを重量比1:0.1
〜10:0.1〜10の割合で接触させることを特徴と
する請求項1又は2記載の製造方法。
3. In the step (II), a weight ratio of the organosilane hydrolyzate, the organic solvent and the strong acid is 1: 0.1.
The method according to claim 1, wherein the contact is performed at a ratio of 10 to 0.1: 0.1 to 10.
【請求項4】 請求項1、2又は3記載の製造方法によ
って得られ、ゲルパーミエーションクロマトグラフィー
による標準ポリスチレン換算の重量平均分子量1000
0以上の範囲で占められる部分が50%以上存在する有
機溶剤に可溶なポリメチルシルセスキオキサン。
4. A weight average molecular weight obtained by the production method according to claim 1, which is obtained by gel permeation chromatography and converted into standard polystyrene, is 1000.
A polymethylsilsesquioxane soluble in an organic solvent in which a portion occupied by 0 or more exists in 50% or more.
【請求項5】 CH3SiO3/2(T3)単位に対するC
3Si(OR)2 1/2(T1)単位とCH3Si(O
R)O2/2(T2)単位の和の比率が0.25以下であ
ることを特徴とする請求項4記載の有機溶剤に可溶なポ
リメチルシルセスキオキサン。
5. CHThreeSiO3/2C for (T3) units
HThreeSi (OR)TwoO 1/2(T1) Unit and CHThreeSi (O
R) O2/2(T2) The ratio of the sum of the units is 0.25 or less
5. The organic solvent-soluble polymer according to claim 4,
Limethylsilsesquioxane.
JP2000179273A 2000-06-15 2000-06-15 Process for producing polymethylsilsesquioxane Expired - Fee Related JP3724556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000179273A JP3724556B2 (en) 2000-06-15 2000-06-15 Process for producing polymethylsilsesquioxane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000179273A JP3724556B2 (en) 2000-06-15 2000-06-15 Process for producing polymethylsilsesquioxane

Publications (2)

Publication Number Publication Date
JP2001354770A true JP2001354770A (en) 2001-12-25
JP3724556B2 JP3724556B2 (en) 2005-12-07

Family

ID=18680571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000179273A Expired - Fee Related JP3724556B2 (en) 2000-06-15 2000-06-15 Process for producing polymethylsilsesquioxane

Country Status (1)

Country Link
JP (1) JP3724556B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180087364A (en) * 2016-09-27 2018-08-01 와커 헤미 아게 Process for producing spherical polysilsesquioxane particles
CN108779254A (en) * 2016-10-06 2018-11-09 瓦克化学股份公司 The method of the spherical polysilsesquioxane particle of production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180087364A (en) * 2016-09-27 2018-08-01 와커 헤미 아게 Process for producing spherical polysilsesquioxane particles
US20190202992A1 (en) * 2016-09-27 2019-07-04 Wacker Chemie Ag Process for producing spherical polysilsesquioxane particles
KR102090267B1 (en) 2016-09-27 2020-03-18 와커 헤미 아게 Method for producing spherical polysilsesquioxane particles
US10662292B2 (en) * 2016-09-27 2020-05-26 Wacker Chemie Ag Process for producing spherical polysilsesquioxane particles
CN108779254A (en) * 2016-10-06 2018-11-09 瓦克化学股份公司 The method of the spherical polysilsesquioxane particle of production
US20190002642A1 (en) * 2016-10-06 2019-01-03 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
US10662293B2 (en) * 2016-10-06 2020-05-26 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles

Also Published As

Publication number Publication date
JP3724556B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
US6143855A (en) Organohydridosiloxane resins with high organic content
JP6526417B2 (en) Resin-linear organosiloxane block copolymer curable composition
KR100222499B1 (en) Coating solution for silica-based coating film and method for the preparation thereof
WO2003064490A2 (en) Process for the functionalization of polyhedral oligomeric silsesquioxanes
KR20110096063A (en) Silsesquioxane resins
US20030176614A1 (en) Organohydridosiloxane resins with high organic content
JP3445625B2 (en) Synthesis of hydrogen silsesquioxane resin
JPH0791509B2 (en) Insulating film forming coating solution for semiconductors
JP2010503761A (en) Low-temperature curable protective film-forming composition, protective film produced thereby, and substrate containing the same
JP2020204047A (en) Method using silicon-containing underlayers
JPH07228701A (en) Preparation of silicone resin containing hydrogen atom bonded to silicon atom
JP3652151B2 (en) Method for producing curable polymethylsilsesquioxane
JP3801208B2 (en) Curable polymethylsilsesquioxane composition
JP2001354770A (en) Polymethylsilsesquioxane and process for producing it
JP2904317B2 (en) Method for producing organopolysiloxane resin
KR100282990B1 (en) Manufacturing method of silicone resin
JP3772258B2 (en) Method for producing organopolysiloxane
JP2007031464A (en) Manufacturing process of alkyl silicate condensation product
JPH0623253B2 (en) Method for producing organic silicon resin
KR20010062667A (en) Coating solution for forming porous organic film
JPH0586330A (en) Film-forming silicone resin composition
US20050003215A1 (en) Synthesis of siloxane resins
JP5454761B2 (en) Method for producing silicon compound having oxetanyl group
JP4048401B2 (en) Process for producing silicon oxide polymer and composition for forming silicon oxide film
WO2010027128A1 (en) Compound for filling small gaps in semiconductor device, composition comprising the compound and process for fabricating semiconductor capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees