JP3724009B2 - Method for back extraction of platinum in tributyl phosphate - Google Patents

Method for back extraction of platinum in tributyl phosphate Download PDF

Info

Publication number
JP3724009B2
JP3724009B2 JP16499695A JP16499695A JP3724009B2 JP 3724009 B2 JP3724009 B2 JP 3724009B2 JP 16499695 A JP16499695 A JP 16499695A JP 16499695 A JP16499695 A JP 16499695A JP 3724009 B2 JP3724009 B2 JP 3724009B2
Authority
JP
Japan
Prior art keywords
platinum
ions
back extraction
potential
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16499695A
Other languages
Japanese (ja)
Other versions
JPH0913128A (en
Inventor
信夫 高橋
聡 浅野
敬司 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP16499695A priority Critical patent/JP3724009B2/en
Publication of JPH0913128A publication Critical patent/JPH0913128A/en
Application granted granted Critical
Publication of JP3724009B2 publication Critical patent/JP3724009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、非鉄金属製錬工程や含白金触媒の処理工程等から得られる白金を、溶媒抽出法により分離、精製する技術に関する。
【0002】
【従来の技術】
非鉄金属製錬工程や含白金触媒の処理工程等において、酸により溶解された白金は、その水溶液中に他の金属と共に白金イオンとして含有されている。この水溶液からの白金の分離回収は、抽出剤であるリン酸トリブチル(以下TBPと略記する)を用いて抽出した後、通常は水による逆抽出法により行われる。
【0003】
しかし、この水による逆抽出工程においては、有機相であるTBPに抽出されていた酸が同時に水相中に溶出するため、白金イオンがTBPに再度抽出されてしまい、結果的に逆抽出が不完全になる。このような現象を防止するため、逆抽出時に水相に遊離した酸をアルカリで中和しながら、白金イオンを逆抽出する方法が知られている。
【0004】
一方、白金以外の元素については、抽出剤あるいはイオン交換樹脂中の溶出困難な金属イオンを、還元により低原子価のイオンにして溶離、回収する方法が知られている。例えば、リン酸ジ−2−エチルヘキシルに抽出されたFe3+イオンをSO2によりFe2+イオンに還元して溶離する方法や、陰イオン交換樹脂に吸着した[IrCl62-をSO2により「IrCl63-に還元して回収する方法が行われている。
【0005】
【発明が解決しようとする課題】
上記のごとく、TBPに抽出されH2[PtCl6]の形で含有される白金の分離回収には、アルカリを添加して酸を中和しながら、水により逆抽出する方法が知られている。しかしながら、この方法によっても、基本的にTBP中に付加物として存在している逆抽出されやすい形態の白金イオンしか逆抽出できず、逆抽出困難な形態の白金イオンはTBP中に残ってしまうという問題があった。特に、白金濃度が高くなる等の理由でTBP中に残存しやすい白金イオンの割合が増加すると、白金の完全な逆抽出は困難であった。
【0006】
一方、還元により回収する方法を白金に適用することも考えられる。しかし、イリジウムや鉄イオンのように還元により容易に金属にならないイオンに関しては問題ないが、通常取り扱われる白金(IV)イオンは還元により白金(II)イオンまでの原子価に止まらず、金属状態にまで還元されやすい。従って、ひとたび金属状態にまで還元されると、有機相と水相を全て濾過しなければ白金粉を完全に回収できなくなるため、この方法が採用されることはなかった。
【0007】
本発明は、かかる従来の事情に鑑み、TBP中の白金イオンを水により逆抽出するに際して、従来の方法では逆抽出困難な形態の白金イオンであっても、ほぼ完全に逆抽出できる方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供するリン酸トリブチル中の白金の逆抽出方法は、白金イオンを含有するリン酸トリブチルと水とを混合し、還元剤及びアルカリを添加して、得られた撹拌混合状態の液のpHを−0.5〜+7及び酸化還元電位を−300〜+500mV(対Ag/AgCl電極)に調整することにより、白金イオンを水相に逆抽出することを特徴とする。
【0009】
【作用】
一般的に、抽出剤により水相中の金属イオンを有機相に抽出する場合、金属イオンは抽出剤と化合物あるいは付加物を形成しやすい条件において有機相に抽出され、化合物や付加物が形成され難い条件では抽出も不完全になる。逆に有機相に抽出された金属イオンについては、抽出剤と化合物あるいは付加物を形成し難いような条件において水相中に金属イオンが放出されるが、このような条件にあっても有機相に金属イオンが残留し、水相中に目的とする金属イオンを完全に回収できないという現象がしばしば発生する。
【0010】
このような現象が起こる原因として最も考えられるのが、有機相中の金属イオンが抽出剤と反応してポリマーを形成することである。有機相中におけるポリマー形成反応は、有機相中の金属イオン濃度が高いほど、また金属イオンの塩基性が低いほど進行しやすい傾向があり、同一元素の場合ではイオンの価数が高いほど塩基性が低下するためポリマーを形成しやすくなる。従って、ポリマー中の金属イオンを還元し、低原子価のイオンにすることによって、ポリマーが不安定になるので、その金属イオンの逆抽出が行われやすくなる。
【0011】
TBP中にH2[PtCl6]の形で存在する白金イオンの一部も、ポリマーを形成して逆抽出困難な形態となっていると考えられるが、上記の原理に従えば、白金(IV)イオンを白金(II)イオンに還元することにより、逆抽出困難な形態となっていても逆抽出が可能となることが考えられる。しかし、白金イオンは容易に金属にまで還元されてしまうため、前記のごとく従来は還元により安定して白金(II)イオンとすることが出来なかったのである。
【0012】
本発明者らは、pH及び酸化還元電位によっては、従来不安定と考えられていた白金(II)イオンが安定して存在できる領域があることをつきとめ、この知見に基づいてpH及び酸化還元電位を一定の範囲内に制御管理することによって、金属の白金の析出を防止しつつ、白金イオンを水により完全に逆抽出する本発明方法を達成したものである。
【0013】
尚、逆抽出時に期待される反応は下記【化1】であり、金属の白金が析出する反応は下記【化2】である:
【化1】
[PtCl62-+2e-=[PtCl42-+2Cl-
【化2】
[PtCl42-+2e-=Pt+4Cl-
【0014】
本発明方法における逆抽出時のpHは、−0.5〜+7の範囲とすることが必要である。pHが−0.5未満では、多くの還元剤について還元速度が極めて緩慢になり、また酸濃度が高いため基本的に逆抽出されやすい形態の白金イオンの逆抽出も不完全になりやすい。仮に、このような強酸性でも作用する還元剤を使用したとすると、局部的に酸化還元電位が低下し、白金イオンが金属にまで還元されてしまうため、有機相と水相の全濾過が必要となる。一方、pHが+7を超えると、弱い還元剤を使用しても酸化還元電位が低下して白金が金属粉として析出しやすいうえ、塩基性塩の析出も起こりやすいため、相分離が悪化する。
【0015】
上記【化1】に示す逆抽出時に期待される反応の標準電極電位は480mV(対Ag/AgCl電極、以下同じ)であり、【化2】の反応については530mVであることが知られている。しかし、pHを上記範囲とする本発明方法における白金イオンの逆抽出反応においては、−200mV付近では白金の析出反応は進行せず、−300mVまで低下した時点で初めて粉状に白金が析出する。一方、【化1】の平衡電位を越えて500mVに達すると、還元反応は極めて緩慢になる。従って、本発明方法においては、酸化還元電位が−300〜+500mVの範囲となるように制御して、還元を行うことが必要である。
【0016】
しかしながら、実際問題として、還元剤の種類によっては上記pH及び酸化還元電位を安定的に維持させることが困難な場合も起こり得る。例えば、強還元剤を添加した場合は、平衡時には上記範囲内に納まっていても、一時的に酸化還元電位の低下が起こりやすく、白金が金属粉として析出しやすい。逆に弱還元剤を用いた場合には、添加量をいくら多くしても所望の還元電位まで低下しないため加熱や長期の反応を必要としたり、初期に高い電位を示していても徐々に還元電位が下がり続け、最終的には白金が金属粉として析出するまで電位が低下する場合がある。
【0017】
従って、目的とする酸化還元電位を安定的に維持するには、適切な還元力があり且つ活性化エネルギーが低い還元剤を用いることが望ましい。かかる条件を満たし、工業的に入手容易な還元剤としては、二酸化硫黄や亜硫酸塩、あるいはヒドラジニウム塩等がある。有機化合物系の還元剤であっても、好適な酸化還元電位を示すものがあるが、基本的に活性化エネルギーが高いものが多く、安定的に電位を維持することは困難である。
【0018】
好ましい還元剤の中で、二酸化硫黄や亜硫酸塩は、白金イオンとスルファイト錯イオンを形成することにより、逆抽出反応を促進し且つ金属の白金を析出しにくくするという長所がある。またヒドラジニウム塩は、pHにより−1000〜+500mVの広い範囲において、その範囲内のいずれの酸化還元電位についても安定的に電位を維持することができるという特徴がある。
【0019】
以上説明した逆抽出反応によりTBPから水で逆抽出された白金(II)イオン及び過剰の還元剤を含む水溶液は、有機相から分離した後、そのままpHを上昇させることにより、白金を金属粉として析出させて高い収率で回収することができる。
【0020】
【実施例】
実施例1
[PtCl]の形で白金を62.7g/l含有するTBPを、相比O/A=1/1にて二塩化ヒドラジニウムNClの5%水溶液と撹拌混合し、得られた撹拌混合状態の液のpHが1.05になるまで炭酸水素ナトリウムNaHCOを添加してpHを上昇させ、pH値が変化しないことを確認後、撹拌混合状態の液の酸化還元電位を測定したところ133mVであった。
【0021】
水相と有機相を分離した後、有機相を濾紙で濾過して濾液を分析したところ、0.023g/lの白金が残留していた。従って、この逆抽出率は99.96%であり、ほぼ完全に白金を逆抽出できたことが判った。尚、分離された水相は、そのままpHを上昇させることにより、金属粉として白金を完全に回収することができた。
【0022】
実施例2
実施例1と同じ白金を62.7g/l含有するTBPを、相比O/A=1/1にて二酸化硫黄SOの5%水溶液と撹拌混合し、得られた撹拌混合状態の液のpHが0.94になるまでNaHCOを添加してpHを上昇させ、pH値が変化しないことを確認後、撹拌混合状態の液の酸化還元電位を測定したところ313mVであった。
【0023】
水相と有機相を分離した後、有機相を濾紙で濾過して濾液を分析したところ、0.005g/lの白金が残留していた。従って、この逆抽出率は99.99%であり、完全に白金を逆抽出できたことが判った。尚、実施例1よりも高い電位であるが、亜硫酸イオンが白金イオンと錯イオンを形成することにより、逆抽出率が改善されたものと考えられる。
【0024】
比較例1
実施例1と同じ白金を62.7g/l含有するTBPを、相比O/A=1/1にて水と撹拌混合し、得られた撹拌混合状態の液のpHを測定したところ−0.54であった。この時点での有機相は濃黄色で、逆抽出は極めて不完全であった。
【0025】
そこで、撹拌混合状態の液のpHが1.04になるまでNaHCOを添加してpHを上昇させ、pH値が変化しないことを確認後、撹拌混合状態の液の酸化還元電位を測定したところ558mVであった。
【0026】
水相と有機相を分離した後、有機相を濾紙で濾過して濾液を分析したところ、0.69g/lの白金が残留していた。従って、この逆抽出率は98.9%であって、極めて不完全な逆抽出であることが判る。
【0027】
比較例2
実施例1と同じ白金を62.7g/l含有するTBPを、相比O/A=1/1にて水と撹拌混合し、水酸化ナトリウムNaOHと水和ヒドラジンN・HOを添加して撹拌混合状態の液のpHを上昇させつつ、酸化還元電位を低下させた。この時、撹拌混合状態の液のpH5.61及び酸化還元電位−220mVにおいては、全く金属粉の析出は認められなかった。
【0028】
ところが、NaOHで撹拌混合状態の液のpHを7.14まで上昇させると、−515mVまで電位が低下した時点で黒色の沈澱が析出した。更に、pHを11.05まで上昇させたところ、酸化還元電位は−820mVに達し、これ以上NaOHを添加しても電位は低下しなかった。
【0029】
水相と有機相を分離した後、有機相を濾紙で濾過して濾液を分析したところ、0.001g/lの白金が残留しており、逆抽出率は99.998%であった。しかし、全ての白金が金属粉として有機相、水相、及びその界面に分布しており、全てを濾過しなければ回収困難な状態であった。
【0030】
【発明の効果】
本発明によれば、TBP中に含有され通常は一部が逆抽出困難な形態で存在する白金イオンを、金属粉として析出させることなく、一段の操作で99.9%以上を水相に逆抽出することができる。従って、本発明方法は、貴金属の分離、精製分野における白金族の系内での滞留低減、抽出容量の低下防止等に対して極めて有効なものである。
[0001]
[Industrial application fields]
The present invention relates to a technique for separating and purifying platinum obtained from a non-ferrous metal smelting step, a platinum-containing catalyst treatment step, and the like by a solvent extraction method.
[0002]
[Prior art]
In a non-ferrous metal smelting step, a platinum-containing catalyst treatment step, and the like, platinum dissolved by an acid is contained in the aqueous solution as platinum ions together with other metals. The separation and recovery of platinum from this aqueous solution is usually carried out by back extraction with water after extraction using tributyl phosphate (hereinafter abbreviated as TBP) as an extractant.
[0003]
However, in this back extraction step with water, the acid extracted into TBP, which is an organic phase, elutes into the aqueous phase at the same time, so that platinum ions are extracted again into TBP. As a result, back extraction is not possible. Become complete. In order to prevent such a phenomenon, a method is known in which platinum ions are back-extracted while the acid liberated in the aqueous phase during back-extraction is neutralized with an alkali.
[0004]
On the other hand, for elements other than platinum, a method of eluting and recovering metal ions, which are difficult to elute in the extractant or ion exchange resin, to low valence ions by reduction is known. For example, Fe 3+ ions extracted to di-2-ethylhexyl phosphate are reduced to Fe 2+ ions by SO 2 and eluted, or [IrCl 6 ] 2− adsorbed on an anion exchange resin is SO 2. Has been carried out by reducing to “IrCl 6 ] 3− and recovering.
[0005]
[Problems to be solved by the invention]
As described above, a method of back-extracting with water while neutralizing an acid by adding an alkali is known for separation and recovery of platinum extracted in TBP and contained in the form of H 2 [PtCl 6 ]. . However, even with this method, it is basically possible to back extract only platinum ions that are easily extracted in the TBP as an adduct, and platinum ions that are difficult to back extract remain in the TBP. There was a problem. In particular, when the proportion of platinum ions that are likely to remain in TBP increases due to an increase in platinum concentration or the like, complete back extraction of platinum is difficult.
[0006]
On the other hand, it is also conceivable to apply a method of recovery by reduction to platinum. However, there is no problem with ions that are not easily converted to metals such as iridium and iron ions, but the platinum (IV) ions that are usually handled are not limited to the valence of the platinum (II) ions due to the reduction. It is easy to be reduced. Therefore, once reduced to a metallic state, platinum powder cannot be completely recovered unless all the organic and aqueous phases are filtered, so this method has not been adopted.
[0007]
In view of such conventional circumstances, the present invention provides a method capable of almost completely back-extracting platinum ions in TBP even if they are in a form that is difficult to back-extract by conventional methods when back-extracting platinum ions in TBP with water. The purpose is to do.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the method for back extraction of platinum in tributyl phosphate provided by the present invention is obtained by mixing tributyl phosphate containing platinum ions and water, and adding a reducing agent and an alkali. It is characterized in that platinum ions are back-extracted into an aqueous phase by adjusting the pH of the mixed liquid in a stirred state to -0.5 to +7 and the redox potential to -300 to +500 mV (vs. Ag / AgCl electrode). To do.
[0009]
[Action]
In general, when metal ions in an aqueous phase are extracted into an organic phase with an extractant, the metal ions are extracted into the organic phase under conditions where they can easily form a compound or adduct with the extractant to form a compound or adduct. In difficult conditions, extraction will be incomplete. Conversely, for metal ions extracted into the organic phase, metal ions are released into the aqueous phase under conditions where it is difficult to form an extractant and a compound or adduct. In many cases, metal ions remain in the water phase, and the target metal ions cannot be completely recovered in the aqueous phase.
[0010]
The most likely cause of this phenomenon is that metal ions in the organic phase react with the extractant to form a polymer. The polymer formation reaction in the organic phase tends to proceed as the metal ion concentration in the organic phase is higher and the basicity of the metal ion is lower. In the case of the same element, the higher the valence of the ion, the more basic Decreases, it becomes easier to form a polymer. Therefore, by reducing the metal ion in the polymer to a low valence ion, the polymer becomes unstable, so that the metal ion is easily back-extracted.
[0011]
Some platinum ions present in the form of H 2 [PtCl 6 ] in TBP are also considered to be in a form that is difficult to back-extract by forming a polymer, but according to the above principle, platinum (IV ) By reducing the ions to platinum (II) ions, it is possible that back extraction is possible even if the back extraction is difficult. However, since platinum ions are easily reduced to metals, as described above, conventionally, platinum (II) ions could not be stably formed by reduction.
[0012]
The present inventors have found that there is a region where platinum (II) ions, which are conventionally considered unstable, depending on pH and redox potential, can exist stably, and based on this finding, pH and redox potential. By controlling and controlling within a certain range, the present invention achieves the method of the present invention in which platinum ions are completely back-extracted with water while preventing precipitation of metallic platinum.
[0013]
In addition, the reaction expected at the time of back extraction is the following [Chemical Formula 1], and the reaction for depositing metal platinum is the following [Chemical Formula 2]:
[Chemical 1]
[PtCl 6 ] 2- + 2e = [PtCl 4 ] 2- + 2Cl
[Chemical formula 2]
[PtCl 4 ] 2- + 2e = Pt + 4Cl
[0014]
The pH at the time of back extraction in the method of the present invention needs to be in the range of −0.5 to +7 . When the pH is less than −0.5, the reduction rate of many reducing agents becomes extremely slow, and the back extraction of platinum ions that are basically easily back-extracted tends to be incomplete due to the high acid concentration. If a reducing agent that works even in such a strong acid is used, the redox potential is locally reduced and the platinum ions are reduced to metal, so total filtration of the organic and aqueous phases is required. It becomes. On the other hand, when the pH exceeds +7 , even if a weak reducing agent is used, the oxidation-reduction potential is lowered and platinum is likely to be precipitated as a metal powder, and the basic salt is likely to be precipitated.
[0015]
It is known that the standard electrode potential of the reaction expected at the time of back extraction shown in the above [Chemical Formula 1] is 480 mV (vs. Ag / AgCl electrode, the same applies hereinafter), and the reaction of [Chemical Formula 2] is 530 mV. . However, in the platinum ion back-extraction reaction in the method of the present invention in which the pH is in the above range, the platinum precipitation reaction does not proceed in the vicinity of −200 mV, and platinum is deposited in the form of powder only when it is lowered to −300 mV. On the other hand, when the equilibrium potential of ## STR1 ## is reached and 500 mV is reached, the reduction reaction becomes extremely slow. Therefore, in the method of the present invention, it is necessary to perform the reduction while controlling the oxidation-reduction potential to be in the range of −300 to +500 mV.
[0016]
However, as a practical problem, depending on the type of reducing agent, it may be difficult to stably maintain the pH and redox potential. For example, when a strong reducing agent is added, even if it falls within the above range at equilibrium, the oxidation-reduction potential tends to decrease temporarily, and platinum tends to precipitate as metal powder. On the other hand, when a weak reducing agent is used, heating or long-term reaction is required even if the addition amount is increased, so that reduction is gradually performed even if a high potential is initially shown. The potential may continue to decrease, and eventually the potential may decrease until platinum is deposited as metal powder.
[0017]
Therefore, in order to stably maintain the target oxidation-reduction potential, it is desirable to use a reducing agent having an appropriate reducing power and low activation energy. Examples of the reducing agent that satisfies such conditions and is easily available industrially include sulfur dioxide, sulfite, and hydrazinium salt. Some organic compound-based reducing agents exhibit a suitable oxidation-reduction potential, but many of them basically have high activation energy, and it is difficult to stably maintain the potential.
[0018]
Among the preferred reducing agents, sulfur dioxide and sulfite have the advantage of promoting the back-extraction reaction and making it difficult to deposit metal platinum by forming platinum ions and sulfite complex ions. Further, the hydrazinium salt has a characteristic that the potential can be stably maintained for any oxidation-reduction potential within a wide range of −1000 to +500 mV depending on pH.
[0019]
The aqueous solution containing platinum (II) ions and excess reducing agent back-extracted with water from TBP by the back-extraction reaction described above is separated from the organic phase, and then the pH is raised as it is to convert platinum into metal powder. It can be deposited and recovered in high yield.
[0020]
【Example】
Example 1
TBP containing 62.7 g / l platinum in the form of H 2 [PtCl 6 ] is stirred and mixed with a 5% aqueous solution of hydrazinium dichloride N 2 H 6 Cl 2 at a phase ratio O / A = 1/1 . Sodium bicarbonate NaHCO 3 was added to increase the pH until the pH of the resulting stirred mixed solution reached 1.05. After confirming that the pH value did not change, the redox potential of the stirred mixed solution was increased. Was measured to be 133 mV.
[0021]
After the aqueous phase and the organic phase were separated, the organic phase was filtered through a filter paper and the filtrate was analyzed. As a result, 0.023 g / l of platinum remained. Therefore, this back extraction rate was 99.96%, and it was found that platinum could be back extracted almost completely. The separated aqueous phase was able to completely recover platinum as metal powder by raising the pH as it was.
[0022]
Example 2
The TBP containing 62.7 g / l of the same platinum as in Example 1, in phase ratio O / A = 1/1 were stirred and mixed with 5% aqueous solution of sulfur dioxide SO 2, the resulting stirred mixture state of liquid NaHCO 3 was added until the pH reached 0.94, the pH was raised, and after confirming that the pH value did not change, the oxidation-reduction potential of the liquid in the stirred and mixed state was measured and found to be 313 mV.
[0023]
After the aqueous phase and the organic phase were separated, the organic phase was filtered through a filter paper and the filtrate was analyzed. As a result, 0.005 g / l of platinum remained. Therefore, this back extraction rate was 99.99%, and it was found that platinum could be completely back extracted. Although the potential is higher than that in Example 1, it is considered that the back extraction rate was improved by the sulfite ions forming complex ions with platinum ions.
[0024]
Comparative Example 1
When TBP containing 62.7 g / l of the same platinum as in Example 1 was stirred and mixed with water at a phase ratio of O / A = 1/1, the pH of the resulting stirred and mixed liquid was measured to be −0. It was .54. At this point the organic phase was deep yellow and the back extraction was very incomplete.
[0025]
Therefore , NaHCO 3 was added to increase the pH until the pH of the liquid in the stirring and mixing state reached 1.04. After confirming that the pH value did not change, the oxidation-reduction potential of the liquid in the stirring and mixing state was measured. It was 558 mV.
[0026]
After separating the aqueous phase and the organic phase, the organic phase was filtered through a filter paper and the filtrate was analyzed. As a result, 0.69 g / l of platinum remained. Therefore, this back extraction rate is 98.9%, which indicates that the back extraction is extremely incomplete.
[0027]
Comparative Example 2
TBP containing 62.7 g / l of the same platinum as in Example 1 was stirred and mixed with water at a phase ratio of O / A = 1/1. Sodium hydroxide NaOH and hydrated hydrazine N 2 H 4 .H 2 O Was added to increase the pH of the stirred and mixed solution while lowering the redox potential. At this time , no precipitation of metal powder was observed at a pH of 5.61 and an oxidation-reduction potential of -220 mV of the liquid in the stirred and mixed state .
[0028]
However, when the pH of the liquid in the stirred and mixed state was increased to 7.14 with NaOH, a black precipitate was deposited when the potential dropped to -515 mV. Further, when the pH was raised to 11.05, the oxidation-reduction potential reached -820 mV, and even when NaOH was further added, the potential did not decrease.
[0029]
After the aqueous phase and the organic phase were separated, the organic phase was filtered through a filter paper and the filtrate was analyzed. As a result, 0.001 g / l of platinum remained and the back extraction rate was 99.998%. However, all platinum was distributed as metal powder in the organic phase, the aqueous phase, and the interface thereof, and it was difficult to recover unless all was filtered.
[0030]
【The invention's effect】
According to the present invention, 99.9% or more of the platinum ions, which are contained in TBP and are usually present in a form that is difficult to back-extract, are reversed to the aqueous phase in a single operation without being precipitated as metal powder. Can be extracted. Therefore, the method of the present invention is extremely effective for separation of noble metals, reduction of residence in the platinum group system in the purification field, prevention of reduction in extraction capacity, and the like.

Claims (2)

白金イオンを含有するリン酸トリブチルと水とを混合し、還元剤及びアルカリを添加して、得られた撹拌混合状態の液のpHを−0.5〜+7及び酸化還元電位を−300〜+500mV(対Ag/AgCl電極)に調整することにより、白金イオンを水相に逆抽出することを特徴とするリン酸トリブチル中の白金の逆抽出方法。Tributyl phosphate containing platinum ions and water are mixed, a reducing agent and an alkali are added, the pH of the resulting stirred mixed solution is -0.5 to +7, and the oxidation-reduction potential is -300 to +500 mV. A method for back extraction of platinum in tributyl phosphate, wherein platinum ions are back-extracted into an aqueous phase by adjusting to (to Ag / AgCl electrode). 還元剤として、二酸化硫黄、亜硫酸塩、ヒドラジニウム塩のいずれかを使用することを特徴とする、請求項1に記載のリン酸トリブチル中の白金の逆抽出方法。The method for back extraction of platinum in tributyl phosphate according to claim 1, wherein any one of sulfur dioxide, sulfite, and hydrazinium salt is used as the reducing agent.
JP16499695A 1995-06-30 1995-06-30 Method for back extraction of platinum in tributyl phosphate Expired - Lifetime JP3724009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16499695A JP3724009B2 (en) 1995-06-30 1995-06-30 Method for back extraction of platinum in tributyl phosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16499695A JP3724009B2 (en) 1995-06-30 1995-06-30 Method for back extraction of platinum in tributyl phosphate

Publications (2)

Publication Number Publication Date
JPH0913128A JPH0913128A (en) 1997-01-14
JP3724009B2 true JP3724009B2 (en) 2005-12-07

Family

ID=15803868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16499695A Expired - Lifetime JP3724009B2 (en) 1995-06-30 1995-06-30 Method for back extraction of platinum in tributyl phosphate

Country Status (1)

Country Link
JP (1) JP3724009B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6418776B2 (en) * 2014-04-25 2018-11-07 アサヒプリテック株式会社 Method for producing platinum powder

Also Published As

Publication number Publication date
JPH0913128A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
JP3741117B2 (en) Mutual separation of platinum group elements
Riveros The removal of antimony from copper electrolytes using amino-phosphonic resins: Improving the elution of pentavalent antimony
EP2668303B9 (en) Improved method of ore processing
US4107261A (en) Process for the separation of platinum group metals
US5401296A (en) Precious metal extraction process
US4241027A (en) Reductive stripping process for the recovery of either or both uranium and vanadium
Jantunen et al. Separation of zinc and iron from secondary manganese sulfate leachate by solvent extraction
JP3724009B2 (en) Method for back extraction of platinum in tributyl phosphate
JP2021143378A (en) Method for mutually separating platinum-group element
JPH08209259A (en) Method for separating and recovering platinum group from plantinum group-containing iron alloy
JP3823307B2 (en) Method for producing high purity cobalt solution
JP2004190058A (en) Method of separating and refining iridium
JP7400443B2 (en) Mutual separation method of platinum group elements
Kholkin et al. Binary extraction in hydrometallurgy
JPH0514013B2 (en)
JP2011195935A (en) Method for separating and recovering platinum group element
JPH08176692A (en) Recovery of platinum group from spent catalyst
JP3341389B2 (en) Separation method of rhenium and impurities
JP3901076B2 (en) Method for separating and recovering copper and coexisting elements
JP3309814B2 (en) How to remove platinum and palladium
WO1997001649A1 (en) Method for selective separation of cadmium from an acidic aqueous solution
JP3496319B2 (en) Separation and recovery of platinum group elements
JP3837879B2 (en) Method for reducing and precipitating metal ions
CN109097572A (en) A kind of method of impurity antimony removal in tantalum and niobium hydrometallurgy
JPH0357052B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

EXPY Cancellation because of completion of term