JP3723366B2 - Substrate with ITO transparent conductive film and method for forming ITO transparent conductive film - Google Patents

Substrate with ITO transparent conductive film and method for forming ITO transparent conductive film Download PDF

Info

Publication number
JP3723366B2
JP3723366B2 JP01820099A JP1820099A JP3723366B2 JP 3723366 B2 JP3723366 B2 JP 3723366B2 JP 01820099 A JP01820099 A JP 01820099A JP 1820099 A JP1820099 A JP 1820099A JP 3723366 B2 JP3723366 B2 JP 3723366B2
Authority
JP
Japan
Prior art keywords
film
substrate
transparent conductive
conductive film
ito transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01820099A
Other languages
Japanese (ja)
Other versions
JP2000222944A (en
Inventor
隆之 豊島
義文 木島
悦男 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP01820099A priority Critical patent/JP3723366B2/en
Publication of JP2000222944A publication Critical patent/JP2000222944A/en
Application granted granted Critical
Publication of JP3723366B2 publication Critical patent/JP3723366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ITO(錫を含有する酸化インジウム)の多結晶透明導電膜が被覆された基板、とりわけ液晶表示素子などの透明電極に好適に用いられる圧縮応力が小さいITO透明導電膜付き基板と、そのITO透明導電膜の成膜方法に関する。
【0002】
【従来の技術】
アーク放電プラズマを用いたイオンプレーティング法を用いて成膜したITO透明導電膜の圧縮応力を下げる方法が、特開平3−29216号公報に開示されている。この方法によれば、200℃程度に維持した基板にITO透明導電膜を成膜し、圧縮応力が小さい多結晶の膜が得られることが記載されている。しかしながら、上記公報に記載された方法により得られるITO透明導電膜は、基板温度が200℃の場合、比抵抗が2×10−4Ωcmより小さいものが得られない。
【0003】
【発明が解決しようとする課題】
ITO透明導電膜の比抵抗が大きいと、膜のシート抵抗を低くするために膜厚をより厚くする必要があり、これにより膜の圧縮応力が増大する。比較的厚い膜の透明導電膜を液晶表示素子の透明電極としたとき、電極のパターニングやその後の加熱工程中で、膜の圧縮応力の解放によりITO透明電極にクラックが生じる課題があった。この課題を解決することは、とりわけカラー表示に用いる有機樹脂成分を含むカラーフィルタ上に成膜したITO透明導電膜については、断線を防止し液晶表示素子の信頼性を高める上で実用上極めて重要であった。
【0004】
上記課題を解決するためには、有機樹脂が劣化しない温度領域である200℃程度の基板温度で、低圧縮応力でかつ低比抵抗のITO透明導電膜を成膜することが課題となる。本発明の目的は、上記のようにとりわけ材料自体が有する熱的な制限から低温で成膜する必要がある基板上に、低比抵抗で低い圧縮応力のITO透明導電膜を成膜した基板を得ることである。
【0005】
【課題を解決するための手段】
本発明のITO透明導電膜付き基板は、膜の圧縮応力を小さくするために、基板上に成膜したITOの多結晶膜を構成する単結晶の堆積成長について着目し、その結果膜の圧縮応力を低減するために有効な単結晶の形状を見出したことにより、またそのような透明導電膜の成膜法を見出したことによりなされたものであって、透明基板上に錫を含有する酸化インジウムの単結晶の集合体からなる多結晶膜が成膜されたITO透明導電膜付き基板において、前記多結晶膜が、膜表面上から見たときの前記単結晶の結晶粒界が膜厚方向に前記透明基板まで達する断面多角形の柱状の単結晶の集合体からなると共に、該単結晶は前記透明基板の表面と平行な方向の平均粒径が500nm以下であることを特徴とする。
【0006】
本発明の多結晶のITO透明導電膜は単結晶の集合体からなり、その単結晶は、膜表面から高倍率の走査型電子顕微鏡等で観察したとき、その粒界で認められる輪郭は種々の多角形の形状をしている。観察される粒界は、膜厚方向に多角柱を形成するように基板表面にまで達しており、単結晶の大部分の粒界は、基板表面から膜表面まで基板面とはほぼ垂直方向に成長し、膜の堆積成長の過程で隣接する結晶の他の粒界と交わることがない。
【0007】
また、本発明のITO透明導電膜の成膜方法は、減圧した雰囲気が調整できる成膜室内でのアーク放電プラズマ蒸着法により基板上に多結晶のITO透明導電膜を成膜する方法において、前記多結晶を酸化錫含有酸化インジウム蒸着材料から基板までの距離Lと成膜中の雰囲気ガスの全圧pについて、下記の不等式を満足させて柱状の単結晶の集合体からなる多結晶とすることを特徴とする。
p(Pa)≧−0.002L(mm)+1.1 (1)
p(Pa)≧0.4 (2)
【0008】
成膜中の雰囲気ガスの全圧pは、成膜室内にアーク放電プラズマガンを経由して成膜室内に導入されるアルゴン等の不活性ガスとITO透明導電膜の比抵抗に影響を及ぼす雰囲気中の酸素分圧を確保するために、成膜室の壁等に設けられたガス導入口から導入される酸素とにより調整することができる。
【0009】
低圧縮応力で、かつ低比抵抗のITO透明導電膜を、安定したアーク放電プラズマで成膜するには、酸化錫含有酸化インジウム蒸着材料から基板までの距離Lと成膜中の雰囲気ガスの全圧pを選択することが必要である。すなわち、Lとpについて、上記(1)式の範囲で成膜することが本発明の目的を達成する。
【0010】
さらに、本発明においては、成膜時の全圧pは、アーク放電プラズマを安定に維持して蒸着材料に照射させ、さらに低比抵抗(2×10−4Ωcm以下さらには11.6×10−4Ωcm)とするために、上記(2)式で示す圧力であることが必要である。
【0011】
全圧pは、好ましくは0.5Pa以上とする。またアーク放電プラズマを安定して得る観点から、全圧は2.0Pa以下とするのが好ましく、さらには1.0Pa以下とするのが好ましい。
【0012】
酸化錫を含有する酸化インジウム蒸着材料から基板までの距離Lについては、200mm未満であると、昇華蒸発する酸化インジウムからの輻射熱が基板表面に到達し、これにより基板表面の温度が上昇して、基板の温度制御が困難となるので好ましくない。また一様な厚みの膜を基板全体に成膜することが困難となる点でも好ましくない。一方、距離Lが550mmを越えると蒸発した酸化インジウムの基板への付着効率が著しく低下するので、膜の成膜時間の増大、蒸着材料の使用効率の低下等により成膜費用の経済性が低下するので好ましくない。
【0013】
本発明における蒸着材料の酸化錫を含有する酸化インジウムは、酸化錫と酸化インジウム粉末の混合物や混合物の焼結体を用いることができる。そして混合物中の酸化錫含有量は、ITO透明導電膜の比抵抗を小さくする観点からITO透明導電膜の膜中の酸化錫が3〜7重量%となるように選ばれる。
【0014】
【発明の実施の形態】
以下に本発明の実施の形態を以下に詳述する。図1は、本発明のITO透明導電膜付き基板の一実施例の一部断面図である。本発明のITO透明導電膜付き基板21は、透明基板25と透明基板25の上に成膜されたITO透明導電膜26からなる。透明基板25は、ガラス板22、ガラス板22の上に設けられたR、G、Bの3原色の画素が規則正しく配列されたカラー表示用フィルタ23およびカラー表示用フィルタ23の上にR、G、Bの画素境界の凹凸を減ずる等のために設けられた有機保護膜24からなる。有機保護膜24とITO透明導電膜26の間に、二酸化珪素、酸化アルミニウム、窒化珪素等の酸化物や窒化物あるいは酸窒化物の透明絶縁膜を設けることができる。
【0015】
ガラス板22は、ガラス組成については特に限定されない。無アルカリガラスやソーダライムシリカガラスを用いることができる。カラー表示用フィルタ23はアクリル樹脂、エポキシ樹脂、ポリイミド樹脂などを担体として、これら樹脂の中に顔料や染料あるいはその両者を含有する公知のものを用いることができる。
【0016】
図2は、本発明のITO透明導電膜の多結晶を構成する柱状の単結晶の堆積成長状態を透過型電子顕微鏡により観察したときの模式断面図である。図2(a)に示されるように、本発明のITO透明導電膜の多結晶は、基板表面から成長した単結晶Aの集合体からなる。単結晶Aは膜表面から見たとき多角形であり、膜厚方向に柱状の形状をしており、単結晶Aの粒界は基板表面から膜表面までほぼ垂直に成長し、膜の堆積成長の過程で隣接する結晶の粒界と交わることがない。すなわち、断面多角形の形状は膜表面から基板表面まで維持されている。
【0017】
単結晶Aの結晶粒界は、たとえば膜断面方向からの透過型電子顕微鏡を用いた暗視野像観察によって見ることができる。基板表面から膜表面まで柱状に単結晶が成長していく理由については明確でないが、基板表面と平行な方向への成長速度が抑制されるときに、基板面から膜表面まで他の結晶粒界と交叉しない柱状の単結晶が成長するものと考えられる。図2(b)および図2(c)は、単結晶Aの結晶粒界が若干斜め方向に成長しているが、隣接する結晶の粒界とは膜表面まで交叉するに至らない状態を示している。本発明の多結晶は、単結晶のすべてまたは大部分がAのタイプの単結晶で構成されている。
【0018】
ITO透明導電膜は、液晶表示素子の電極として用いられるときに、酸によるウェットエッチングにより膜表面から溶解除去される。このとき後述する図6に示すような結晶粒界の乱れが多く存在すると、ITO透明導電膜が一様に溶解しなくなり、局部的に透明導電膜の未溶解が生じてしまう。本発明のITO透明導電膜の多結晶を構成する単結晶の大部分の粒界は、基板表面から膜表面まで他の粒界と交叉しない柱状の形状を有しているので、酸によるパターニングが均一に行われる。
【0019】
本発明のITO透明導電膜の多結晶を構成する単結晶は、膜表面においてその透明基板の表面と平行な方向の平均粒径が150nm以上であるのが好ましく、250nm以上であるのがさらに好ましい。平均粒径が150nm未満の比較的細かい結晶粒子になると、自由電子は膜中を移動するのにより多くの結晶粒界を横切って移動しなければならないので、易動度の低下の原因になりITO透明導電膜の比抵抗が大きくなってしまうからである。この場合、低いシート抵抗を得るためには膜厚を厚くする必要があるので、膜の圧縮応力を小さくすることが困難になる。
【0020】
また、本発明のITO透明導電膜の多結晶を構成する単結晶は、その透明基板の表面と平行な方向の平均粒径が500nm以下であるのが好ましく、450nm以下であるのがさらに好ましい。ある単結晶とその隣の単結晶の間の結晶粒界には凹凸が見られる。上記の平均粒径が500nmを越えると、この凹凸が生じる部分が膜の単位面積当たりで相対的に少なくなり、ITO透明導電膜の表面がより平滑な面になってくる。このような膜表面の平滑化は、カラー液晶表示素子を製造する際に必要な配向膜の密着度を低下させ、また液晶表示セルを作るための樹脂シール材の接着性を減じるので好ましくない。
【0021】
本発明においては、膜厚みを100nm以上とするのが好ましく、200nm以上とするのがさらに好ましい。厚みが100nm未満では10Ω/□以下のシート抵抗を得るのが困難で、高精細表示に必要な電極抵抗を得ることが困難になるからである。本発明の透明導電膜の厚みは、600nm以下とするのが好ましい。厚みが600nmを越えると、ITOの多結晶自体が有する圧縮応力が高くなり、液晶表示素子を製造する際にITOの多結晶自体の圧縮応力によって膜にクラックが生じることがあるからである。
【0022】
本発明は、透明基板がガラス板上に着色成分を含有する有機樹脂からなるカラー表示用フィルタを設けた基板であるとき、とりわけ実用的効果が大きい。本発明のITO透明導電膜は、もともと材料的に密着性がよくない有機樹脂上あるいは有機樹脂と着色剤とからなるカラー表示用フィルタ上に形成されている場合、圧縮応力の低減により透明導電膜と有機樹脂表面との密着力が効果的に改善され、膜の剥離やひび割れが防止できるからである。
【0023】
ITO透明導電膜の圧縮応力は、600MPa以下であるのが好ましい。ITO透明導電膜の圧縮応力を600MPa以下とすることによって、液晶表示素子を製造する際の電極パターニングや配向処理時の加熱に際して、膜にクラックが生じることが極端に抑制される。
【0024】
図3は、本発明の実施例および比較例で得られたITO透明導電膜の圧縮応力と膜厚の関係をプロットした図である。本発明が有する効果については、この図を用いて後述する。
【0025】
図4は、本発明のITO透明導電膜を基板上に成膜するために用いた成膜装置の概略断面図である。アーク放電プラズマ13は、アーク放電プラズマ発生ガン2と底部に永久磁石8を有する蒸着るつぼ7との間で、プラズマ発生用直流電源5によって電圧が印加されて生成される。アーク放電プラズマ発生ガン2としては、複合陰極型プラズマ発生装置、圧力勾配型プラズマ発生装置あるいは両者を組み合わせたプラズマ発生装置が用いることができる。このようなプラズマ発生装置については、真空25巻第10号(1982年)に記載されている公知のものを用いることができる。放電電極としてのアーク放電プラズマ発生ガン2、永久磁石3を内蔵した第1中間電極11、磁気コイル4を内蔵した第2中間電極12および大口径磁気コイル14を成膜室6の側壁に設置し、成膜室6の底部に永久磁石8を備えた蒸着るつぼ7を設け、これらを蒸着材料の蒸発手段とする。
【0026】
磁気コイル4により形成された水平磁場によって成膜室6内に引き出されたアーク放電プラズマ13の束を酸化錫を、含有する酸化インジウム蒸着材料17が充填された蒸着るつぼ7に導くために、蒸着るつぼ7の底部に永久磁石8が設けられている。すなわち永久磁石8の垂直磁場により、アーク放電プラズマ13は成膜室6内で下方に約90°の方向に曲げられ蒸着材料に照射される。蒸着るつぼ7はアーク放電プラズマ13の陽極として、アーク放電プラズマ発生ガン2は陰極として作用する。
【0027】
基板15の背面にヒーター16が設けられている。ヒーター16により成膜中の基板15が所定温度に加熱される。放電ガス1がそのガス組成が制御されてアーク放電プラズマ発生ガン2内を経て成膜室6内に導入される。成膜室6内の雰囲気ガスの全圧pおよびガス組成を制御するために、放電ガス1とは別に成膜室6の側壁に設けられたガス導入口から雰囲気ガスの全圧調整用ガス10が導入され、成膜室6内の雰囲気ガスは、真空排気口9を経由して真空排気ポンプ(図示されない)により排気される。
【0028】
基板15への成膜は、基板15を矢印方向に移動(移動手段は図示されない)させながら行う。ここで酸化錫含有酸化インジウム蒸着材料から基板までの距離は、蒸着材料から基板までの垂直方向の距離Lで示される。
【0029】
図5は、本発明の実施例および比較例について、上記の距離Lと成膜中の雰囲気ガスの全圧pをプロットしたp−L図である。
【0030】
図6は、比較例1および比較例2で得られたITO透明導電膜の多結晶を構成する単結晶の堆積成長状態を説明するための模式断面図である。図6(a)は、基板表面から成長した単結晶の粒界が膜の表面に達するまでに隣接する結晶の別の粒界と交叉し、柱状でない単結晶Bが形成されている状態を示している。図6(b)は、多結晶が柱状の単結晶の集合体からなる本発明の理想的な状態からさらに遠い状態を示す図であり、この膜は基板表面から膜表面に突き抜ける結晶粒界を有する柱状単結晶Aの他に、基板表面から成長した結晶粒界が膜中で交叉してしまう単結晶Bを多く含んでいる。膜が多くの単結晶Bで構成されると膜全体の圧縮応力が大きくなる。
【0031】
以下に本発明を実施例と比較例により詳述する。実施例および比較例のサンプルの作製および得られたITO透明導電膜の評価方法について共通な事項を下記の1)〜3)に示す。
1)透明基板
ガラス板上にR、G、Bの画素からなる液晶表示用のカラーフィルタが設けられ、その表面に画素の平坦化のためにアクリル系有機保護膜(耐熱温度が約220℃)が形成されたもの。
2)ITO透明導電膜の成膜
・成膜方法:断面が図4で示される成膜装置を用いて、アーク放電プラズマを蒸着材料に照射して蒸着材料を蒸発させる。
・蒸着材料:酸化インジウム95重量%酸化錫5重量%の粉末焼結体
・成膜時の基板温度:200℃
・アーク放電プラズマガンの放電電流:150A
・雰囲気の酸素濃度:導入したアルゴンガスに対して10体積%
3)膜の評価方法
(電極パターニング性試験)
所定形状のマスキングレジストを塗布後、45℃の47%臭化水素酸水溶液で露出しているITO透明導電膜を溶解除去し、その後45℃の5重量%水酸化ナトリウム水溶液によってマスキングレジストを剥離した。得られたITO透明導電膜の表面について、膜割れもしくは膜剥離が起こっているか否かを下記の基準で評価した。またパターン端部でのパターンの直線性を光学顕微鏡で観察した。
◎:膜割れ・膜剥離無し
○:膜割れ・膜剥離が無いが若干パターン端部で乱れ有り
×:膜割れ・膜剥離有り
(単結晶の観察方法)
膜断面方向から透過型電子顕微鏡(トプコン製EM−002B(加速電圧200V))を用いて、暗視野像観察を行い、12万倍の写真として現像し、得られた写真のコントラストから判定した。
(膜の圧縮応力の測定)
理学製RAD−rC(管球はCr(40KV、200mA):λ=2.2897A)を測定装置として用い、装置付属の応力測定プログラムを用いて計算を行った。上記のITOの諸物性値としては、ヤング率=116000MPa、ポアソン比=0.350、応力定数値=−659.89MPaを用いた。結晶の歪みがない場合の回折角を97.30200°として計算した。
(平均粒径測定)
膜表面を走査型電子顕微鏡で観察し測長した。結晶粒子が細長い場合は、最も長い部分の径と最も短い部分の径を合計して、それを2で除して求めた。
【0032】
以下に実施例により本発明を説明する。
実施例1
透明基板をアーク放電プラズマを発生させるプラズマガンを備えた真空成膜装置の成膜室中の蒸着材料から垂直上方向に500mm離れた位置に設置し、真空排気ポンプによって0.0027Pa以下の圧力に排気し、基板を所定の温度まで加熱した。その後、放電ガスおよび全圧調整用ガスとしてアルゴンガスおよび酸素を導入し、アーク放電プラズマ発生ガンに150Aの電流を供給し、アーク放電プラズマを生起させた。全圧を0.50Paに調整して、その後生起させたアーク放電プラズマを用いてITO透明導電膜を300nm成膜した。このようにして得られたITO透明導電膜の多結晶膜の断面は図1(a)に示されるものであった。その膜の圧縮応力は400MPaであった。このITO透明導電膜付き基板をパターニング性試験で評価したところ膜割れ・膜剥離は全く観察されなかった。成膜条件および膜評価結果を表1に示す。このITO透明導電膜の比抵抗は1.4×10−4Ωcmと小さい値であった。
【0033】
実施例2〜実施例8
透明基板と蒸着材料の距離、成膜中の全圧および膜厚を成膜パラメータとして、実施例1と同様の方法でITOの多結晶膜を成膜した。その結果、単結晶の成長状態が図2(a)、図2(b)または図2(c)で示される柱状単結晶からなるITO透明導電膜付き基板が得られた。パターニング性試験後による膜割れ・膜剥離は全く観察されなかった。成膜条件および膜評価結果を表1に示す。これらの実施例で得られたITO透明導電膜の比抵抗は1.4〜1.5×10−4Ωcmと小さい値であった。
【0034】
比較例1
透明基板を成膜室中の蒸着材料から垂直方向に300mm離れた位置に設置し、真空排気ポンプによって0.0027Pa以下の圧力に排気し、基板を所定の温度まで加熱した。その後、放電ガスおよび全圧調整用ガスとしてアルゴンガスを導入し、アーク放電プラズマ発生ガンに150Aの電流を供給し、アーク放電プラズマを生起させた。全圧を0.40Paに調整して、その後生起させたアーク放電プラズマを用いてITO透明導電膜を300nm成膜した。得られたITO透明導電膜の多結晶を構成する単結晶は、図6(b)で示されるものであり、圧縮応力は800MPaであった。このITO透明導電膜の多結晶膜をパターニング性試験で評価したところ膜割れおよび膜剥離が観察された。成膜条件および膜評価結果をまとめて表1に示す。このITO透明導電膜の比抵抗は1.6×10−4Ωcmと小さい値であった。
【0035】
比較例2〜比較例6
透明基板と蒸着材料の距離、成膜中の全圧および膜厚を表1の成膜条件とし、それ以外は実施例1と同様にしてITO透明導電膜の多結晶膜を成膜した。単結晶の成長状態は図6(a)、図6(b)に示されるもので、柱状の単結晶の集合体からかなりくずれたものであり、膜の圧縮応力はいずれも630MPa以上であった。このサンプルについてパターニング性の試験を行ったところ、膜割れおよび膜剥離が観察された。成膜条件および膜評価結果をまとめて表1に示す。また、比較例2〜比較例6で得られたITO透明導電膜の比抵抗は1.4〜1.5×10−4Ωcmと小さい値であった。
【0036】
表1の結果から、ITOの多結晶を透明基板の有機樹脂表面から膜表面まで、その結晶粒界が図2で示すように、柱状に成長した単結晶Aの集合体とすることにより、膜の圧縮応力値を小さくすることができることが分かった。その結果、電極のパターニングに際して膜割れや膜剥離が生じるのが防止できることが分かった。膜の堆積成長の途中で図6で示すように結晶粒界が交叉結合して生じる単結晶Bを多く含む場合、膜の圧縮応力値が大きく液晶表示素子の製造時に膜のひび割れが発生しやすいことが分かった。
【0037】
表1の結果について、膜の圧縮応力を縦軸に膜厚を横軸にして単結晶の断面形状タイプ別にプロットしたものを図3に示す。同じ膜厚で比較すると、図6(a)あるいは図6(b)の単結晶のタイプからなる多結晶膜に比較して、図2(a)、図2(b)あるいは図2(c)で示される実施例の単結晶のタイプからなる多結晶膜は、膜の圧縮応力が小さいことが分かった。実施例のサンプルのいずれも600MPa以下の小さい圧縮応力を有する多結晶膜であって、これらの膜は透明電極として良好なパターニング特性を有することが分かった。
【0038】
さらに、圧縮応力が600MPa以下の値を有し、電極のパターニング時に膜割れや膜剥がれが生じなかった実施例1〜実施例8(図5で○印で示す)と圧縮応力が650MPa以上の値を有し、電極パターン時に膜割れあるいは膜剥がれが生じた比較例(図5で×印で示す)について、それらを成膜したときの全圧pと蒸着材料から基板までの距離Lとの関係を示す図5によれば、p≧−0.002L(mm)+1.1およびp≧0.4の領域(ハッチ領域)で成膜すると、600MPa以下の圧縮応力が小さい低比抵抗のITO透明導電膜とすることが分かった。
【0039】
【表1】

Figure 0003723366
【0040】
【発明の効果】
本発明のITO透明導電膜は単結晶の集合体からなる多結晶の膜であり、その多結晶は、膜の表面上から見たときの結晶粒界が基板の表面とほぼ垂直な方向に基板表面まで達した柱状の単結晶で主として構成されているので、膜の内部圧縮応力が小さい。これにより、透明基板との密着力が大きく、液晶表示素子の製造工程の酸エッチングによる電極パターニング工程で膜のひび割れや膜の剥離の発生を防止することができ、歩留り良く液晶表示素子を製造することができる。
【0041】
また、本発明のITO透明導電膜の成膜方法によれば、アーク放電プラズマを酸化錫を含有する酸化インジウムの蒸着材料に照射し蒸発させて基板にITOの多結晶膜を成膜するに際し、成膜時の雰囲気の全圧と蒸着材料から基板までの距離を所定の関係を満足するするようにしたので、圧縮応力の小さいITO透明導電膜とすることができる。
【図面の簡単な説明】
【図1】本発明の一実施例の断面図である。
【図2】本発明のITO透明導電膜を構成する単結晶の集合状態を示す模式断面図である。
【図3】実施例および比較例で得られたITO透明導電膜の圧縮応力と膜厚の関係を示す図である。
【図4】本発明を実施するのに用いた成膜装置の概略断面図である。
【図5】 成膜時の全圧と蒸着材料から基板までの距離が及ぼすITO透明導電膜の圧縮応力への影響を示すp−L図である。
【図6】比較例で得られたITO透明導電膜を構成する単結晶の集合状態を示す模式断面図である。
【符号の説明】
1:放電ガス、2:アーク放電プラズマ発生ガン、3、8:永久磁石、
4:磁気コイル、5:プラズマ発生用直流電源、6:成膜室、7:蒸着るつぼ、
9真空排気口、10:全圧調整用ガス、11:第1中間電極、
12:第2中間電極、13:アーク放電プラズマ、14:大口径磁気コイル、
15:透明基板、16:ヒーター、
21:本発明のITO透明導電膜付き基板、22:ガラス板、
23:カラー表示用フィルタ、24:有機保護膜、25:透明基板、
26:ITO透明導電膜[0001]
BACKGROUND OF THE INVENTION
The present invention is a substrate coated with a polycrystalline transparent conductive film of ITO (indium oxide containing tin), particularly a substrate with an ITO transparent conductive film having a small compressive stress, which is suitably used for a transparent electrode such as a liquid crystal display element, The present invention relates to a method for forming the ITO transparent conductive film.
[0002]
[Prior art]
Japanese Patent Laid-Open No. 3-29216 discloses a method for reducing the compressive stress of an ITO transparent conductive film formed by using an ion plating method using arc discharge plasma. According to this method, it is described that an ITO transparent conductive film is formed on a substrate maintained at about 200 ° C. to obtain a polycrystalline film having a small compressive stress. However, the ITO transparent conductive film obtained by the method described in the above publication cannot have a specific resistance smaller than 2 × 10 −4 Ωcm when the substrate temperature is 200 ° C.
[0003]
[Problems to be solved by the invention]
When the specific resistance of the ITO transparent conductive film is large, it is necessary to increase the film thickness in order to reduce the sheet resistance of the film, thereby increasing the compressive stress of the film. When a relatively thick transparent conductive film is used as the transparent electrode of the liquid crystal display element, there is a problem that cracks occur in the ITO transparent electrode due to the release of the compressive stress of the film during the patterning of the electrode and the subsequent heating process. Solving this problem is extremely important in practical use, especially for ITO transparent conductive films formed on color filters containing organic resin components used for color display, to prevent disconnection and increase the reliability of liquid crystal display elements. Met.
[0004]
In order to solve the above-mentioned problem, it becomes a problem to form an ITO transparent conductive film having a low compressive stress and a low specific resistance at a substrate temperature of about 200 ° C. which is a temperature range in which the organic resin does not deteriorate. The object of the present invention is to provide a substrate in which an ITO transparent conductive film having a low specific resistance and a low compressive stress is formed on a substrate that needs to be formed at a low temperature due to the thermal limitations of the material itself as described above. Is to get.
[0005]
[Means for Solving the Problems]
In order to reduce the compressive stress of the film, the substrate with an ITO transparent conductive film of the present invention pays attention to the single crystal deposition growth constituting the ITO polycrystalline film formed on the substrate, and as a result, the compressive stress of the film. Indium oxide containing tin on a transparent substrate was made by finding an effective single crystal shape for reducing the amount of lead, and by finding a method for forming such a transparent conductive film. In the substrate with an ITO transparent conductive film on which a polycrystalline film composed of an aggregate of single crystals is formed, the polycrystalline film has a crystal grain boundary in the film thickness direction when viewed from above the film surface. It consists of an aggregate of columnar single crystals having a polygonal cross section reaching the transparent substrate, and the single crystals have an average particle size in the direction parallel to the surface of the transparent substrate of 500 nm or less .
[0006]
The polycrystalline ITO transparent conductive film of the present invention comprises an aggregate of single crystals, and the single crystals have various contours observed at the grain boundaries when observed from the film surface with a high magnification scanning electron microscope or the like. It has a polygonal shape. The observed grain boundary reaches the substrate surface so as to form a polygonal column in the film thickness direction, and most grain boundaries of the single crystal are almost perpendicular to the substrate surface from the substrate surface to the film surface. It grows and does not cross other grain boundaries of adjacent crystals in the process of film deposition and growth.
[0007]
Further, the ITO transparent conductive film forming method of the present invention is a method for forming a polycrystalline ITO transparent conductive film on a substrate by an arc discharge plasma deposition method in a film forming chamber in which a reduced pressure atmosphere can be adjusted. The polycrystal is made of an aggregate of columnar single crystals satisfying the following inequalities with respect to the distance L from the tin oxide-containing indium oxide vapor deposition material to the substrate and the total pressure p of the atmospheric gas during film formation. It is characterized by.
p (Pa) ≧ −0.002 L (mm) +1.1 (1)
p (Pa) ≧ 0.4 (2)
[0008]
The total pressure p of the atmospheric gas during film formation affects the specific resistance of the ITO transparent conductive film and an inert gas such as argon introduced into the film formation chamber via an arc discharge plasma gun. In order to secure the oxygen partial pressure inside, it can be adjusted by oxygen introduced from a gas inlet provided in the wall of the film forming chamber or the like.
[0009]
In order to form an ITO transparent conductive film having a low compressive stress and a low specific resistance with a stable arc discharge plasma, the distance L from the indium oxide-containing indium oxide vapor deposition material to the substrate and the entire atmosphere gas during film formation It is necessary to select the pressure p. That is, the object of the present invention is achieved by forming a film of L and p within the range of the above formula (1).
[0010]
Further, in the present invention, the total pressure p during film formation is such that the arc discharge plasma is stably maintained and the vapor deposition material is irradiated, and further, a low specific resistance (2 × 10 −4 Ωcm or less, further 11.6 × 10 6 is applied). −4 Ωcm), it is necessary that the pressure is expressed by the above equation (2).
[0011]
The total pressure p is preferably 0.5 Pa or more. Further, from the viewpoint of stably obtaining arc discharge plasma, the total pressure is preferably 2.0 Pa or less, and more preferably 1.0 Pa or less.
[0012]
About the distance L from the indium oxide vapor deposition material containing tin oxide to the substrate, if it is less than 200 mm, the radiant heat from the indium oxide that is sublimated and evaporated reaches the substrate surface, thereby increasing the temperature of the substrate surface, This is not preferable because temperature control of the substrate becomes difficult. Further, it is not preferable in that it is difficult to form a film having a uniform thickness over the entire substrate. On the other hand, if the distance L exceeds 550 mm, the efficiency of deposition of evaporated indium oxide on the substrate is remarkably reduced, so the economics of film formation costs are reduced due to the increase in film formation time and the use efficiency of vapor deposition materials. This is not preferable.
[0013]
As the indium oxide containing tin oxide as a vapor deposition material in the present invention, a mixture of tin oxide and indium oxide powder or a sintered body of the mixture can be used. The tin oxide content in the mixture is selected so that the tin oxide in the ITO transparent conductive film is 3 to 7% by weight from the viewpoint of reducing the specific resistance of the ITO transparent conductive film.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a partial cross-sectional view of one embodiment of a substrate with an ITO transparent conductive film of the present invention. The substrate with an ITO transparent conductive film 21 of the present invention comprises a transparent substrate 25 and an ITO transparent conductive film 26 formed on the transparent substrate 25. The transparent substrate 25 is composed of a glass plate 22, a color display filter 23 provided on the glass plate 22, and R, G, and B primary color pixels regularly arranged on the color display filter 23 and the color display filter 23. The organic protective film 24 is provided in order to reduce unevenness at the B pixel boundary. Between the organic protective film 24 and the ITO transparent conductive film 26, a transparent insulating film made of oxide, nitride, or oxynitride such as silicon dioxide, aluminum oxide, or silicon nitride can be provided.
[0015]
The glass plate 22 is not particularly limited with respect to the glass composition. Alkali-free glass or soda lime silica glass can be used. The color display filter 23 may be a known one containing an acrylic resin, an epoxy resin, a polyimide resin or the like as a carrier, and a pigment and / or a dye contained in these resins.
[0016]
FIG. 2 is a schematic cross-sectional view of a columnar single crystal deposited and grown in a polycrystal of the ITO transparent conductive film of the present invention when observed with a transmission electron microscope. As shown in FIG. 2A, the polycrystal of the ITO transparent conductive film of the present invention is composed of an aggregate of single crystals A grown from the substrate surface. The single crystal A is polygonal when viewed from the film surface, has a columnar shape in the film thickness direction, and the grain boundary of the single crystal A grows almost perpendicularly from the substrate surface to the film surface, and the film is deposited and grown. In the process, it does not intersect with the grain boundaries of adjacent crystals. That is, the polygonal cross-sectional shape is maintained from the film surface to the substrate surface.
[0017]
The crystal grain boundary of the single crystal A can be seen by, for example, dark field image observation using a transmission electron microscope from the film cross-sectional direction. The reason why a single crystal grows in a columnar shape from the substrate surface to the film surface is not clear, but when the growth rate in the direction parallel to the substrate surface is suppressed, other crystal grain boundaries from the substrate surface to the film surface It is thought that a columnar single crystal that does not intersect with the crystal grows. FIG. 2B and FIG. 2C show a state in which the crystal grain boundary of the single crystal A grows slightly obliquely, but does not cross over to the film surface with the grain boundary of the adjacent crystal. ing. In the polycrystal of the present invention, all or most of the single crystal is composed of a single crystal of type A.
[0018]
When the ITO transparent conductive film is used as an electrode of a liquid crystal display element, it is dissolved and removed from the film surface by wet etching with an acid. At this time, if there are many disturbances of crystal grain boundaries as shown in FIG. 6 described later, the ITO transparent conductive film does not dissolve uniformly, and the transparent conductive film is not dissolved locally. Since most of the grain boundaries of the single crystal constituting the polycrystal of the ITO transparent conductive film of the present invention have a columnar shape that does not intersect with other grain boundaries from the substrate surface to the film surface, patterning with acid is possible. Done uniformly.
[0019]
The single crystal constituting the polycrystal of the ITO transparent conductive film of the present invention preferably has an average particle size of 150 nm or more in the direction parallel to the surface of the transparent substrate on the film surface, and more preferably 250 nm or more. . When the average particle size becomes relatively fine crystal particles of less than 150 nm, the free electrons must move across more crystal grain boundaries in order to move in the film. This is because the specific resistance of the transparent conductive film is increased. In this case, since it is necessary to increase the film thickness in order to obtain a low sheet resistance, it is difficult to reduce the compressive stress of the film.
[0020]
In addition, the single crystal constituting the polycrystal of the ITO transparent conductive film of the present invention preferably has an average particle size in the direction parallel to the surface of the transparent substrate of 500 nm or less, and more preferably 450 nm or less. Concavities and convexities are observed at the grain boundary between a single crystal and the adjacent single crystal. When the average particle size exceeds 500 nm, the uneven portions are relatively reduced per unit area of the film, and the surface of the ITO transparent conductive film becomes smoother. Such smoothing of the film surface is not preferable because it reduces the adhesion of the alignment film necessary for manufacturing a color liquid crystal display element and reduces the adhesiveness of a resin sealing material for making a liquid crystal display cell.
[0021]
In the present invention, the film thickness is preferably 100 nm or more, and more preferably 200 nm or more. If the thickness is less than 100 nm, it is difficult to obtain a sheet resistance of 10Ω / □ or less, and it is difficult to obtain an electrode resistance necessary for high-definition display. The thickness of the transparent conductive film of the present invention is preferably 600 nm or less. This is because when the thickness exceeds 600 nm, the compressive stress of the ITO polycrystal itself increases, and cracks may occur in the film due to the compressive stress of the ITO polycrystal itself when manufacturing a liquid crystal display element.
[0022]
The present invention is particularly effective when the transparent substrate is a substrate provided with a color display filter made of an organic resin containing a coloring component on a glass plate. When the ITO transparent conductive film of the present invention is formed on an organic resin or a color display filter composed of an organic resin and a colorant, the transparent conductive film is reduced by reducing the compressive stress. This is because the adhesion between the resin and the surface of the organic resin is effectively improved, and peeling and cracking of the film can be prevented.
[0023]
The compressive stress of the ITO transparent conductive film is preferably 600 MPa or less. By setting the compressive stress of the ITO transparent conductive film to 600 MPa or less, the occurrence of cracks in the film during electrode patterning during the production of a liquid crystal display element or heating during alignment treatment is extremely suppressed.
[0024]
FIG. 3 is a graph plotting the relationship between the compressive stress and the film thickness of the ITO transparent conductive film obtained in Examples and Comparative Examples of the present invention. The effect which this invention has is later mentioned using this figure.
[0025]
FIG. 4 is a schematic sectional view of a film forming apparatus used for forming the ITO transparent conductive film of the present invention on a substrate. The arc discharge plasma 13 is generated by applying a voltage by the plasma generating DC power source 5 between the arc discharge plasma generating gun 2 and the vapor deposition crucible 7 having the permanent magnet 8 at the bottom. As the arc discharge plasma generating gun 2, a composite cathode type plasma generating device, a pressure gradient type plasma generating device, or a plasma generating device combining both can be used. About such a plasma generator, the well-known thing described in the vacuum 25 volume No. 10 (1982) can be used. An arc discharge plasma generating gun 2 as a discharge electrode, a first intermediate electrode 11 having a built-in permanent magnet 3, a second intermediate electrode 12 having a built-in magnetic coil 4, and a large-diameter magnetic coil 14 are installed on the side wall of the film forming chamber 6. A vapor deposition crucible 7 having a permanent magnet 8 is provided at the bottom of the film forming chamber 6, and these are used as evaporation means for the vapor deposition material.
[0026]
In order to guide the bundle of arc discharge plasma 13 drawn into the film forming chamber 6 by the horizontal magnetic field formed by the magnetic coil 4 to the vapor deposition crucible 7 filled with indium oxide vapor deposition material 17 containing tin oxide, vapor deposition is performed. A permanent magnet 8 is provided at the bottom of the crucible 7. That is, the arc discharge plasma 13 is bent downward in the direction of about 90 ° in the film forming chamber 6 by the vertical magnetic field of the permanent magnet 8 and is irradiated to the vapor deposition material. The vapor deposition crucible 7 functions as an anode of the arc discharge plasma 13 and the arc discharge plasma generating gun 2 functions as a cathode.
[0027]
A heater 16 is provided on the back surface of the substrate 15. The substrate 15 during film formation is heated to a predetermined temperature by the heater 16. The discharge gas 1 is introduced into the film forming chamber 6 through the arc discharge plasma generating gun 2 with the gas composition controlled. In order to control the total pressure p and gas composition of the atmospheric gas in the film forming chamber 6, the gas 10 for adjusting the total pressure of the atmospheric gas is provided from a gas inlet provided on the side wall of the film forming chamber 6 separately from the discharge gas 1. Is introduced, and the atmospheric gas in the film forming chamber 6 is exhausted by a vacuum exhaust pump (not shown) through the vacuum exhaust port 9.
[0028]
Film formation on the substrate 15 is performed while moving the substrate 15 in the direction of the arrow (the moving means is not shown). Here, the distance from the tin oxide-containing indium oxide vapor deposition material to the substrate is indicated by a vertical distance L from the vapor deposition material to the substrate.
[0029]
FIG. 5 is a p-L diagram in which the distance L and the total pressure p of the atmospheric gas during film formation are plotted for the examples and comparative examples of the present invention.
[0030]
FIG. 6 is a schematic cross-sectional view for explaining the single crystal deposition growth state constituting the polycrystal of the ITO transparent conductive film obtained in Comparative Example 1 and Comparative Example 2. FIG. 6A shows a state in which a single crystal B which is grown from the substrate surface crosses another grain boundary of an adjacent crystal until the surface of the film is reached, and a non-columnar single crystal B is formed. ing. FIG. 6B is a diagram showing a state farther from the ideal state of the present invention in which a polycrystal is an aggregate of columnar single crystals. This film has a crystal grain boundary penetrating from the substrate surface to the film surface. In addition to the columnar single crystal A, it contains a large amount of single crystal B in which crystal grain boundaries grown from the substrate surface intersect in the film. If the film is composed of many single crystals B, the compressive stress of the entire film increases.
[0031]
The present invention will be described in detail below with reference to examples and comparative examples. The following 1) to 3) show the common items regarding the production of the samples of Examples and Comparative Examples and the evaluation method of the obtained ITO transparent conductive film.
1) A color filter for liquid crystal display composed of R, G and B pixels is provided on a transparent substrate glass plate, and an acrylic organic protective film (heat resistant temperature is about 220 ° C.) for planarizing the pixels on the surface. Is formed.
2) Film-forming / film-forming method of ITO transparent conductive film: Using the film-forming apparatus whose cross section is shown in FIG. 4, the vapor-deposited material is evaporated by irradiating the vapor-deposited material with arc discharge plasma.
・ Vapor deposition material: Powder sintered body of indium oxide 95 wt% tin oxide 5 wt% ・ Substrate temperature during film formation: 200 ° C.
・ Discharge current of arc discharge plasma gun: 150A
Oxygen concentration in the atmosphere: 10% by volume with respect to the introduced argon gas
3) Evaluation method of film (electrode patterning test)
After applying a masking resist of a predetermined shape, the ITO transparent conductive film exposed with a 47% hydrobromic acid aqueous solution at 45 ° C. was dissolved and removed, and then the masking resist was peeled off with a 5 wt% sodium hydroxide aqueous solution at 45 ° C. . About the surface of the obtained ITO transparent conductive film, it was evaluated according to the following criteria whether film cracking or film peeling occurred. The linearity of the pattern at the pattern edge was observed with an optical microscope.
◎: No film cracking / delamination ○: No film cracking / delamination, but slightly disturbed at pattern edge ×: Film cracking / delamination (single crystal observation method)
Using a transmission electron microscope (EM-002B (acceleration voltage 200V) manufactured by Topcon) from the cross-sectional direction of the film, a dark field image was observed, developed as a 120,000-fold photograph, and judged from the contrast of the obtained photograph.
(Measurement of compressive stress of film)
RAD-rC manufactured by Rigaku (tube is Cr (40 KV, 200 mA): λ = 2.2897 A) was used as a measurement device, and calculation was performed using a stress measurement program attached to the device. As the physical properties of the above ITO, Young's modulus = 116000 MPa, Poisson's ratio = 0.350, and stress constant value = -659.89 MPa were used. The calculation was performed assuming that the diffraction angle in the absence of crystal distortion was 97.30200 °.
(Average particle size measurement)
The film surface was observed and measured with a scanning electron microscope. When the crystal particles were elongated, the diameter of the longest part and the diameter of the shortest part were added together and divided by 2.
[0032]
The following examples illustrate the invention.
Example 1
The transparent substrate is placed at a position 500 mm vertically upward from the vapor deposition material in the film forming chamber of a vacuum film forming apparatus equipped with a plasma gun for generating arc discharge plasma, and is set to a pressure of 0.0027 Pa or less by a vacuum exhaust pump. The substrate was evacuated and the substrate was heated to a predetermined temperature. Thereafter, argon gas and oxygen were introduced as the discharge gas and the total pressure adjusting gas, and a current of 150 A was supplied to the arc discharge plasma generating gun to generate arc discharge plasma. The total pressure was adjusted to 0.50 Pa, and then an ITO transparent conductive film having a thickness of 300 nm was formed using arc discharge plasma generated. The cross section of the polycrystalline film of the ITO transparent conductive film thus obtained was as shown in FIG. The compressive stress of the film was 400 MPa. When this substrate with an ITO transparent conductive film was evaluated by a patterning test, no film cracking or film peeling was observed. Table 1 shows the film formation conditions and the film evaluation results. The specific resistance of this ITO transparent conductive film was a small value of 1.4 × 10 −4 Ωcm.
[0033]
Example 2 to Example 8
A polycrystalline ITO film was formed by the same method as in Example 1 using the distance between the transparent substrate and the vapor deposition material, the total pressure during film formation, and the film thickness as the film formation parameters. As a result, a substrate with an ITO transparent conductive film made of a columnar single crystal whose single crystal growth state is shown in FIG. 2 (a), FIG. 2 (b) or FIG. 2 (c) was obtained. No film cracking or film peeling after the patterning test was observed. Table 1 shows the film formation conditions and the film evaluation results. The specific resistance of the ITO transparent conductive film obtained in these Examples was a small value of 1.4 to 1.5 × 10 −4 Ωcm.
[0034]
Comparative Example 1
The transparent substrate was placed at a position 300 mm away from the vapor deposition material in the film formation chamber, evacuated to a pressure of 0.0027 Pa or less by a vacuum exhaust pump, and the substrate was heated to a predetermined temperature. Thereafter, argon gas was introduced as a discharge gas and a total pressure adjusting gas, and a current of 150 A was supplied to the arc discharge plasma generation gun to generate arc discharge plasma. The total pressure was adjusted to 0.40 Pa, and then an ITO transparent conductive film having a thickness of 300 nm was formed using arc discharge plasma generated. The single crystal constituting the polycrystal of the obtained ITO transparent conductive film was as shown in FIG. 6B, and the compressive stress was 800 MPa. When the polycrystalline film of the ITO transparent conductive film was evaluated by a patterning test, film cracking and film peeling were observed. Table 1 summarizes the film forming conditions and the film evaluation results. The specific resistance of the ITO transparent conductive film was as small as 1.6 × 10 −4 Ωcm.
[0035]
Comparative Example 2 to Comparative Example 6
A polycrystalline film of an ITO transparent conductive film was formed in the same manner as in Example 1 except that the distance between the transparent substrate and the vapor deposition material, the total pressure during film formation, and the film thickness were the film formation conditions shown in Table 1. The growth state of the single crystal is shown in FIGS. 6 (a) and 6 (b), which is considerably deviated from the columnar single crystal aggregate, and the compressive stress of the film was 630 MPa or more. . When this patterning test was performed on this sample, film cracking and film peeling were observed. Table 1 summarizes the film forming conditions and the film evaluation results. Moreover, the specific resistance of the ITO transparent conductive film obtained in Comparative Examples 2 to 6 was a small value of 1.4 to 1.5 × 10 −4 Ωcm.
[0036]
From the results shown in Table 1, the ITO polycrystal is formed into an aggregate of single crystals A that grow in a columnar shape as shown in FIG. It was found that the compressive stress value of can be reduced. As a result, it was found that film cracking and film peeling could be prevented during electrode patterning. When a large amount of single crystal B produced by cross-coupling of grain boundaries as shown in FIG. 6 is included in the course of film deposition and growth, the film has a large compressive stress value and the film is likely to crack during the production of a liquid crystal display device. I understood that.
[0037]
FIG. 3 shows the results of Table 1 plotted according to the cross-sectional shape type of the single crystal with the compressive stress of the film as the vertical axis and the film thickness as the horizontal axis. Comparing with the same film thickness, FIG. 2 (a), FIG. 2 (b) or FIG. 2 (c) is compared with the polycrystalline film of the single crystal type of FIG. 6 (a) or FIG. 6 (b). It was found that the polycrystalline film composed of the single crystal type of the example shown in FIG. All of the samples of the examples were polycrystalline films having a small compressive stress of 600 MPa or less, and these films were found to have good patterning characteristics as transparent electrodes.
[0038]
Furthermore, the compressive stress has a value of 600 MPa or less, and no cracking or peeling occurs during patterning of the electrode. Examples 1 to 8 (indicated by a circle in FIG. 5) and a compressive stress of 650 MPa or more The relationship between the total pressure p and the distance L from the vapor deposition material to the substrate when the films were formed for a comparative example (indicated by x in FIG. 5) in which film cracking or film peeling occurred during the electrode pattern As shown in FIG. 5, when a film is formed in a region where p ≧ −0.002 L (mm) +1.1 and p ≧ 0.4 (hatch region), the ITO transparent transparent ITO having a low compressive stress of 600 MPa or less is small. It was found to be a conductive film.
[0039]
[Table 1]
Figure 0003723366
[0040]
【The invention's effect】
The ITO transparent conductive film of the present invention is a polycrystalline film composed of an aggregate of single crystals, and the polycrystalline is a substrate whose crystal grain boundary when viewed from the surface of the film is substantially perpendicular to the surface of the substrate. Since it is mainly composed of columnar single crystals reaching the surface, the internal compressive stress of the film is small. As a result, the adhesive strength with the transparent substrate is large, and it is possible to prevent the occurrence of film cracking or film peeling in the electrode patterning step by acid etching in the manufacturing process of the liquid crystal display element, thereby manufacturing the liquid crystal display element with a high yield. be able to.
[0041]
Further, according to the method for forming the ITO transparent conductive film of the present invention, when depositing the ITO polycrystalline film on the substrate by irradiating the arc discharge plasma to the evaporation material of indium oxide containing tin oxide and evaporating it, Since the predetermined relationship is satisfied between the total pressure of the atmosphere during film formation and the distance from the vapor deposition material to the substrate, an ITO transparent conductive film having a small compressive stress can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing an aggregate state of single crystals constituting the ITO transparent conductive film of the present invention.
FIG. 3 is a graph showing the relationship between the compressive stress and film thickness of ITO transparent conductive films obtained in Examples and Comparative Examples.
FIG. 4 is a schematic sectional view of a film forming apparatus used for carrying out the present invention.
FIG. 5 is a p-L diagram showing the influence of the total pressure during film formation and the distance from the deposition material to the substrate on the compressive stress of the ITO transparent conductive film.
FIG. 6 is a schematic cross-sectional view showing an aggregate state of single crystals constituting the ITO transparent conductive film obtained in the comparative example.
[Explanation of symbols]
1: discharge gas, 2: arc discharge plasma generation gun, 3, 8: permanent magnet,
4: magnetic coil, 5: DC power source for plasma generation, 6: film formation chamber, 7: vapor deposition crucible,
9 vacuum exhaust port, 10: gas for adjusting total pressure, 11: first intermediate electrode,
12: second intermediate electrode, 13: arc discharge plasma, 14: large-diameter magnetic coil,
15: Transparent substrate, 16: Heater,
21: Substrate with ITO transparent conductive film of the present invention, 22: Glass plate,
23: filter for color display, 24: organic protective film, 25: transparent substrate,
26: ITO transparent conductive film

Claims (5)

透明基板上に錫を含有する酸化インジウムの単結晶の集合体からなる多結晶膜が成膜されたITO透明導電膜付き基板において、
前記透明基板が、ガラス板上に着色成分を含有する有機樹脂からなるカラー表示用フィルタが設けられた基板であり、
前記多結晶膜が、膜表面上から見たときの前記単結晶の結晶粒界が膜厚方向に前記透明基板まで達する断面多角形の柱状の単結晶の集合体からなると共に、該単結晶は前記透明基板の表面と平行な方向の平均粒径が500nm以下であることを特徴とするITO透明導電膜付き基板。
In a substrate with an ITO transparent conductive film in which a polycrystalline film made of an aggregate of single crystals of indium oxide containing tin is formed on a transparent substrate,
The transparent substrate is a substrate provided with a color display filter made of an organic resin containing a coloring component on a glass plate,
The polycrystalline film, it becomes from the single crystal grain boundary multiplicity of single crystals of columnar polygonal cross section that reaches the transparent substrate in a thickness direction when viewed from the film surface, the single crystal is The substrate with an ITO transparent conductive film, wherein an average particle size in a direction parallel to the surface of the transparent substrate is 500 nm or less .
前記多結晶膜の圧縮応力が600MPa以下であることを特徴とする請求項1に記載のカラー液晶表示用ITO透明導電膜付き基板。 The substrate with an ITO transparent conductive film for color liquid crystal display according to claim 1, wherein the polycrystalline film has a compressive stress of 600 MPa or less. 前記多結晶膜の膜厚が100nm以上であることを特徴とする請求項1または2に記載のITO透明導電膜付き基板。 The substrate with an ITO transparent conductive film according to claim 1 or 2, wherein the polycrystalline film has a thickness of 100 nm or more. 前記多結晶膜の膜厚が600nm以下であることを特徴とする請求項3に記載のITO透明導電膜膜付き基板。 The substrate with an ITO transparent conductive film according to claim 3, wherein the polycrystalline film has a thickness of 600 nm or less. 減圧した雰囲気が調整できる成膜室内でのアーク放電プラズマ蒸着法により基板上に多結晶のITO透明導電膜を成膜する方法において、前記多結晶を酸化錫含有酸化インジウム蒸着材料から前記基板までの距離Lと成膜中の前記雰囲気ガスの全圧pについて、下記の不等式を満足させて柱状の単結晶の集合体からなる多結晶とすることを特徴とするITO透明導電膜の成膜方法。
p(Pa)≧−0.002L(mm)+1.1
p(Pa)≧0.4
In a method of forming a polycrystalline ITO transparent conductive film on a substrate by an arc discharge plasma deposition method in a film forming chamber in which a reduced pressure atmosphere can be adjusted, the polycrystal is formed from a tin oxide-containing indium oxide deposition material to the substrate. A method for forming an ITO transparent conductive film, characterized in that the distance L and the total pressure p of the atmospheric gas during film formation satisfy the following inequality and are formed of a polycrystal composed of a columnar single crystal aggregate.
p (Pa) ≧ −0.002 L (mm) +1.1
p (Pa) ≧ 0.4
JP01820099A 1999-01-27 1999-01-27 Substrate with ITO transparent conductive film and method for forming ITO transparent conductive film Expired - Fee Related JP3723366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01820099A JP3723366B2 (en) 1999-01-27 1999-01-27 Substrate with ITO transparent conductive film and method for forming ITO transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01820099A JP3723366B2 (en) 1999-01-27 1999-01-27 Substrate with ITO transparent conductive film and method for forming ITO transparent conductive film

Publications (2)

Publication Number Publication Date
JP2000222944A JP2000222944A (en) 2000-08-11
JP3723366B2 true JP3723366B2 (en) 2005-12-07

Family

ID=11965007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01820099A Expired - Fee Related JP3723366B2 (en) 1999-01-27 1999-01-27 Substrate with ITO transparent conductive film and method for forming ITO transparent conductive film

Country Status (1)

Country Link
JP (1) JP3723366B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007171A1 (en) 2000-07-19 2002-01-24 Matsushita Electric Industrial Co., Ltd. Substrate having electrode attached thereto and method for preparation thereof
JP2002042560A (en) * 2000-07-31 2002-02-08 Toppan Printing Co Ltd Conductive member, display device using it, and manufacturing method thereof
JP2002296609A (en) 2001-03-29 2002-10-09 Nec Corp Liquid crystal display device and its manufacturing method
AU2002349405A1 (en) * 2001-11-22 2003-06-10 Nippon Soda Co., Ltd. El device
WO2004105055A1 (en) * 2003-05-26 2004-12-02 Nippon Soda Co., Ltd. Light-transmitting substrate with transparent electroconductive film
JP2011203762A (en) * 2011-07-14 2011-10-13 Nlt Technologies Ltd Liquid crystal display device, and method for manufacturing the same
KR101834560B1 (en) 2011-12-01 2018-03-07 삼성디스플레이 주식회사 Display panel and fabrication method a display substrate for display panel
JP6437330B2 (en) * 2015-02-03 2018-12-12 住友重機械工業株式会社 Film forming apparatus and film forming method
KR102505376B1 (en) * 2020-02-03 2023-03-02 닛토덴코 가부시키가이샤 Transparent conductive layer, transparent conductive sheet, touch sensor, light control element, photoelectric conversion element, heat wire control member, antenna, electromagnetic shield member and image display device
US11908596B2 (en) 2020-02-03 2024-02-20 Nitto Denko Corporation Transparent conductive layer, transparent conductive sheet, touch sensor, light control element, photoelectric conversion element, heat ray control member, antenna, electromagnetic wave shield member, and image display device

Also Published As

Publication number Publication date
JP2000222944A (en) 2000-08-11

Similar Documents

Publication Publication Date Title
KR101127370B1 (en) Deposition of licoo2
JP4397511B2 (en) Low resistance ITO thin film and manufacturing method thereof
KR100514952B1 (en) Method of forming indium tin oxide thin film including a seed layer and a bulk layer utilizing an optimized sequential sputter deposition
JP5581527B2 (en) Transparent conductive film, manufacturing method thereof, transparent electrode and solar cell
EP0385475A2 (en) Method of forming a transparent conductive film
JP2000282225A (en) Formation of transparent electrically conductive film and transparent electrically conductive film formed by this method
JP3723366B2 (en) Substrate with ITO transparent conductive film and method for forming ITO transparent conductive film
US20120315439A1 (en) Transparent conductive film
CN108026627A (en) Shadow mask for Organic Light Emitting Diode manufacture
JP3531865B2 (en) Ultra-flat transparent conductive film and manufacturing method thereof
WO2021082402A1 (en) Ald preparation method for removing photographic module particle defects and product thereof
JPWO2004065656A1 (en) ITO thin film, film forming method thereof, transparent conductive film, and touch panel
JP2003105533A (en) Method of producing transparent electroconductive film and transparent electroconductive film
KR101021280B1 (en) The preparing method for aluminum cathode using wetting process and the aluminum cathode thereby
JP3697190B2 (en) Solar cell
US9856578B2 (en) Methods of producing large grain or single crystal films
JPH11335815A (en) Substrate with transparent conductive film and deposition apparatus
JP4170507B2 (en) Method for producing transparent conductive film
JP5035857B2 (en) Low resistance ITO thin film and manufacturing method thereof
JP2002047559A (en) Ito film, and film deposition method thereof
TW594853B (en) The manufacturing method of diamond film and diamond film
JPH0329216A (en) Formation of transparent conductive film
KR20150076467A (en) Aluminum coating layer with controllable structure and the method thereof
JP4397451B2 (en) Transparent conductive thin film and method for producing the same
US20110014394A1 (en) film depositing apparatus and method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050513

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees