JP3722743B2 - Particle detector and particle analyzer using the same - Google Patents

Particle detector and particle analyzer using the same Download PDF

Info

Publication number
JP3722743B2
JP3722743B2 JP2001366885A JP2001366885A JP3722743B2 JP 3722743 B2 JP3722743 B2 JP 3722743B2 JP 2001366885 A JP2001366885 A JP 2001366885A JP 2001366885 A JP2001366885 A JP 2001366885A JP 3722743 B2 JP3722743 B2 JP 3722743B2
Authority
JP
Japan
Prior art keywords
hole
particle
cell
liquid
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001366885A
Other languages
Japanese (ja)
Other versions
JP2003166931A (en
Inventor
孝明 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP2001366885A priority Critical patent/JP3722743B2/en
Priority to AT02026319T priority patent/ATE443252T1/en
Priority to EP02026319A priority patent/EP1316792B1/en
Priority to DE60233708T priority patent/DE60233708D1/en
Priority to US10/305,146 priority patent/US6909269B2/en
Publication of JP2003166931A publication Critical patent/JP2003166931A/en
Application granted granted Critical
Publication of JP3722743B2 publication Critical patent/JP3722743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は粒子検出器に関し、さらに詳しくは、ファインセラミックス粒子、顔料、化粧品用パウダー等の粉体粒子の粒度や数を測定するために粒子含有液を貫通孔に流し電気インピーダンスの変化に基づき液中の粒子を測定する電気的検知帯法を採用し、かつ、粒子含有液流をシース液で囲んで貫通孔に流すいわゆるシースフロー方式を併用した粒子検出器に関する。
【0002】
【従来の技術】
この発明に関連する従来技術としては、粒子検出用の貫通孔を有する検出ブロックと、前記貫通孔へ粒子含有液をシース液に包んで供給する第1セルと、前記貫通孔を通過した粒子含有液とシース液を受取って排出する第2セルと、第1および第2セルにそれぞれ設けられた電極と、第1又は第2セルの一方を摺動可能支持して両者の間隙を変化しうる摺動部材とを備え、検出ブロックが、第1および第2セルの間隙に離脱可能に挟持されて第1および第2セルに水密的に連結されたものが知られている(例えば、特開平2001−33378号公報参照)。
【0003】
【発明が解決しようとする課題】
従来、血液中の血球、あるいはセメントの粉、ラテックス、トナー等の工業用粒子の粒度や数を測定するには、電気的検知帯法が用いられている。電気的検知帯法では、電解質溶液中に貫通孔を1つ有する隔壁を設け、貫通孔をはさんで電極を配置し、電解質溶液中に対象となる粒子を分散させた粒子含有液を貫通孔に通して流す。粒子が貫通孔を通過する時、電気抵抗が瞬間時に変化し電圧パルスが生じる。そのパルス高さは粒子体積を反映しているので、粒子の球相当径が形状にほとんど影響されずに測定でき、この結果をもとに試料粒子の体積基準の粒度を求めることができる。また、パルス数から粒子数を求めることができる。
【0004】
しかし、電気的検知帯法においては、貫通孔を通過する際の粒子の通過位置によって検出信号の強度に差が生じること、接近して通過した複数の粒子が1個の粒子として計測されること、貫通孔を通過後の粒子が貫通孔周辺に滞留してノイズの原因になること等の問題がある。これらを解決するためにシースフロー方式を併用した方式が従来から採られている。シースフロー方式を併用した方式では、フローセル内の粒子含有液の流れを別の液(シース液)で取り囲み、粒子含有液流を細く絞ることによって、液中の粒子を貫通孔の略中心部に一列に導入することにより、誤差の少ない粒度を求めることができる。
【0005】
従って、このような原理を用いた粒子検出器において精度の高い検出を行うためには、細く絞られた粒子含有液流の軸心と貫通孔の軸心との同軸度を高く維持することが必須要件であり、それをどのような構成で実現するかということが課題とされてきた。
この発明はこのような事情を考慮してなされたもので、複数の構成部材を貫通シャフトで連結する構成を採用することにより、同軸度が高く、しかも、組立ておよび分解が容易な粒子検出器を提供するものである。
【0006】
【課題を解決するための手段】
この発明は、粒子検出用の貫通孔を有する板状部材と、粒子含有液とシース液とを受入れ前記貫通孔へ粒子含有液をシース液で包んで供給する第1セルと、前記貫通孔を通過した粒子含有液とシース液とを回収して排出する第2セルと、第1および第2セルにそれぞれ設けられた電極と、複数のシャフトと、各シャフトに係合する締め付け部材とを備え、各シャフトは板状部材を分離可能に挟んで一列に配列した第1および第2セルに配列方向に沿って貫通し、締め付け部材は第1および第2セルと板状部材を配列方向に締め付けてなる粒子検出器を提供するものである。
【0007】
【発明の実施の形態】
この発明の測定対象粒子は、体液中の血球、血小板等の各種生体粒子や、ラテックス、トナー等の無機粒子、食品添加物用の有機粉末などを含み、測定粒度の範囲としては1〜100μm程度である。
【0008】
この発明による粒子検出器は、粒子検出用の貫通孔を有する板状部材と、粒子含有液とシース液とを受入れ前記貫通孔への粒子含有液をシース液で包んで供給する第1セルと、前記貫通孔を通過した粒子含有液とシース液とを回収して排出する第2セルと、第1および第2セルにそれぞれ設けられた電極と、複数のシャフトと、各シャフトに係合する締め付け部材とを備え、各シャフトは、板状部材を分離可能に挟んで一列に配列した第1および第2セルに配列方向に沿って貫通し、締め付け部材は第1および第2セルと板状部材を配列方向に締め付けることを特徴とする。
【0009】
第1セルは粒子含有液を受入れて貫通孔へ噴射するノズルとシース液を受入れて貫通孔へ供給するためのニップルとを有し、第2セルは貫通孔を通過した粒子含有液とシース液を回収して排出する管状の回収管を有し、ノズルと貫通孔と回収管とが同軸になるように第1および第2セルと板状部材が結合されてもよい。
【0010】
板状部材は前記貫通孔を有する円板状のペレットを備えてもよい。
第1セルは、粒子含有液を受入れて貫通孔へ噴射するノズルを有するノズル支持部と、シース液を受入れて貫通孔へ供給するニップルを有する第1セル本体部からなり、ノズル支持部と第1セル本体部は板状部材に対しノズルと貫通孔とが同軸になるように結合されてもよい。
【0011】
ノズル支持部と第1セル本体部と板状部材とは各々パッキンを介して互いに水密的に結合されてもよい。
第2セルは、貫通孔を通過した粒子含有液とシース液とを回収して排出する筒状の回収管を有する回収管保持部と、洗浄液を受け入れて貫通孔へ供給するニップルを有する第2セル本体部からなり、回収管保持部と第2セル本体部は板状部材に対し回収管と貫通孔とが同軸になるように結合されてもよい。
【0012】
回収管保持部と第2セル本体部と板状部材は各パッキンを介して互いに水密的に結合されてもよい。
締め付け部材は、各シャフトの少なくとも一端に螺合するナットから構成されてもよい。
【0013】
実施例
以下、図面に示す実施例に基づいてこの発明を詳述する。これによってこの発明が限定されるものではない。
図1はこの発明の粒子検出器の側面図、図2は図1のA−A矢視断面図、図3は図1のB−B矢視断面図、図4は図2のC部拡大図である。
【0014】
これらの図に示されるように、粒子検出器1は、粒子検出用の貫通孔2(図4)を有する板状部材3と、貫通孔2へ粒子含有液をシース液に包んで供給する第1セル4と、貫通孔2を通過した粒子含有液とシース液とを回収して排出する第2セル5とを備える。
【0015】
第1セル4と第2セル5はそれぞれ電極6,7をそれぞれ備える。電極6はステンレス鋼製で後述のシース液供給用ニップルと兼用され陰極として用いられ、電極7は白金製で陽極として用いられる。
さらに、粒子検出器1は2本のシャフト8,9と、シャフト8,9のそれぞれの両端に係合する締め付け部材、つまり両端に螺合するナット10〜13とを備える。
【0016】
シャフト8,9は、板状部材3を両側から分離可能に挟んだ状態で一列に配列した第1セル4と第2セル5に、配列方向に沿って貫通する。ナット10〜13は、シャフト8,9の両端から第1セル4と第2セル5と、板状部材3とを締め付けている。
【0017】
第1セル4は、ノズル支持部15と第1セル本体部16から構成される。ノズル支持部15は、粒子含有液を受入れて貫通孔2へ噴射するノズル14を有する。第1セル本体部16は、洗浄液を受入れて貫通孔2へ斜め下から吹き付けるニップル27と、シース液を受入れて貫通孔2へ供給すると共に洗浄液を排出するニップル(陰極電極と兼用)6とを有する。そして、ノズル支持部15と第1セル本体部16は板状部材3に対し、ノズル14と貫通孔2とが同軸になるように互いに結合されている。
【0018】
また、第2セル5は、回収管保持部18と第2セル本体部20から構成される。回収管保持部18は、貫通孔2を通過した粒子含有液とシース液とを回収して排出する筒状の回収管17を一体的に備える。第2セル本体部20は、洗浄液を受け入れて貫通孔2へ斜め下から吹き付けるためのニップル19と洗浄液を排出するニップル28とを一体的に備える。
そして、回収管保持部18と第2セル本体部20は板状部材3に対し、回収管17と貫通孔2とが同軸になるように互いに結合されている。
【0019】
ノズル支持部15と第1セル本体部16とは、リング状のパッキン21を介して水密的に結合され、回収管保持部18と第2セル本体部20とは、リング状のパッキン22を介して水密的に結合されている。
【0020】
板状部材3は、図4に示すように中央の開口23の内部に、貫通孔2を有するペレット24と、ペレット24を両側から挟む2つのリング状パッキン25,26を備える。そして、第1および第2セル本体部16,20はペレット24に対し、それぞれパッキン25,26を介して水密的に結合されている。
【0021】
ノズル14は後端にチューブ接続部29を備え、回収管17も後端にチューブ接続部30を備える。
【0022】
ノズル14はステンレス鋼製で0.2mmの内径を有し、ペレット24は人工ルビー製で1mmの板厚を有する。なお、貫通孔2の直径は測定対象粒子の粒度により異なるが、赤血球の場合は、50〜100μmである。
【0023】
第1および第2セル本体部16,20、ノズル支持部15および回収管保持部18は、いずれも耐薬品性の熱可塑性樹脂ポリエーテルイミドを射出成型することにより形成される。
【0024】
ニップル27は第1セル本体部16と一体成型され、ニップル19,28は第2セル本体部20と一体成型される。ノズル14、電極兼ニップル6および電極7は、成型後のノズル支持部15、第1セル本体部16および回収管保持部18にそれぞれ圧入され、接着剤で固定される。
【0025】
このように構成された粒子検出器1を分解する場合には、ナット10,12および/又はナット11,13をシャフト8,9から取りはずし、ノズル支持部15、回収管保持部18、第1および第2セル本体部16,20、板状部材3をシャフト8,9から抜き取りやすい方向に抜き出せばよい。
【0026】
また、粒子検出器1を組立てる場合には、シャフト8,9にノズル支持部15、回収管保持部18、第1および第2セル本体部16,20、板状部材3を図2及び図3に示す順序で通し、ナット10〜13をシャフト8,9の両端に螺合させて締め付けるだけでよい。
【0027】
その結果、シャフト8,9の位置決め作用により、ノズル14と貫通孔2と回収管17とが高い精度で同軸となり、ナット10〜13の締め付け作用により、ノズル支持部15と第1および第2セル本体部16,20とペレット24とが水密的に強く結合する。従って、再現性よく、また精良よく組立てを行うことができる。
【0028】
図5は粒子検出器1を用いた血液分析装置の流体回路図である。同図において、バルブV1,V2が開くと、排液チャンバWC1の陰圧により赤血球測定用の試料が試料チャンバSCより流路Pに吸引され貯留される。
【0029】
バルブV1,V2が閉じ、バルブV3,V4,V5,V6が開くと、希釈液チャンバDCから陽圧により希釈液が洗浄液としてニップル27,19へ供給され、貫通孔2に吹き付けられ、第1および第2セル4,5内の洗浄と気泡の除去を行ってニップル6,28から排液チャンバWC1へ排出される。
【0030】
バルブV3,V4,V5,V6が閉じ、バルブV7が開くと、希釈液チャンバDCから陽圧により希釈液がシース液としてニップル6へ供給され、貫通孔2と回収管17を通って排液チャンバWC2へ排出される。これによって貫通孔2を通るシース液流が形成される。
【0031】
この状態でシリンジポンプCPを吐出方向に作動させると、流路Pに貯留されていた試料が押し出され、ノズル14から貫通孔2へ噴出する。噴出した試料はシース液に包まれて貫通孔2を通過し回収管17を介して排液チャンバWC2へ排出される。
【0032】
試料がシース液に包まれて貫通孔2を通過するとき、電極6(図3)と電極7(図2)間のインピーダンスの変化が図示しない測定部により測定される。測定が終了すると、シリンジポンプCPを停止させる。そして、バルブV8を開き、試料チャンバSCの残留試料を排液チャンバWC1へ排出する。
【0033】
次に、バルブV1,V2,V8,V9を開き、試料吸引流路、試料チャンバSC、シリンジポンプCP、ノズル14に希釈液チャンバDCから希釈液を洗浄液として供給し、一定時間後にバルブV1,V2,V8,V9を閉じて洗浄を終了する。
【0034】
【発明の効果】
この発明によれば粒子検出器の構成する複数の部品にシャフトを貫通して位置決めを行うので、粒子検出器を簡単に精度よく、再現性よく組立てることができる。
【図面の簡単な説明】
【図1】この発明の粒子分析装置の側面図である。
【図2】図1のA−A矢視断面図である。
【図3】図2のB−B矢視断面図である。
【図4】図2のC部拡大図である。
【図5】この発明の粒子分析装置を用いた血液分析装置の流体回路図である。
【符号の説明】
1 粒子検出器
2 貫通孔
3 板状部材
4 第1セル
5 第2セル
6 電極
7 電極
8 シャフト
9 シャフト
10 ナット
11 ナット
12 ナット
13 ナット
14 ノズル
15 ノズル支持部
16 第1セル本体部
17 回収管
18 回収管保持部
19 ニップル
20 第2セル本体部
21 パッキン
22 パッキン
23 開口
24 ペレット
25 パッキン
26 パッキン
27 ニップル
28 ニップル
29 チューブ接続部
30 チューブ接続部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a particle detector. More specifically, in order to measure the particle size and number of powder particles such as fine ceramic particles, pigments, and cosmetic powders, a liquid containing particles is passed through a through-hole, and the liquid is detected based on a change in electrical impedance. The present invention relates to a particle detector that employs an electrical detection band method for measuring particles in the inside and also uses a so-called sheath flow method in which a particle-containing liquid flow is surrounded by a sheath liquid and flows into a through hole.
[0002]
[Prior art]
Prior arts related to this invention include a detection block having a through hole for particle detection, a first cell for supplying a particle-containing liquid to the through-hole in a sheath liquid, and containing particles that have passed through the through-hole. The second cell for receiving and discharging the liquid and the sheath liquid, the electrodes respectively provided in the first and second cells, and one of the first and second cells can be slidably supported to change the gap between them. There is known a sliding member, and a detection block is detachably held in a gap between the first and second cells and is watertightly connected to the first and second cells (for example, Japanese Patent Laid-Open No. Hei. 2001-33378).
[0003]
[Problems to be solved by the invention]
Conventionally, an electrical detection band method has been used to measure the particle size and number of blood cells in blood or industrial particles such as cement powder, latex, and toner. In the electrical detection zone method, a partition wall having one through hole is provided in an electrolyte solution, an electrode is disposed across the through hole, and a particle-containing liquid in which particles of interest are dispersed in the electrolyte solution is passed through the hole. Run through. When the particles pass through the through-hole, the electrical resistance changes instantaneously and a voltage pulse is generated. Since the pulse height reflects the particle volume, the sphere equivalent diameter of the particle can be measured with little influence on the shape, and the volume-based particle size of the sample particle can be obtained based on this result. Further, the number of particles can be obtained from the number of pulses.
[0004]
However, in the electrical detection zone method, the intensity of the detection signal varies depending on the passage position of the particles when passing through the through hole, and a plurality of particles that have passed close to each other are measured as one particle. There is a problem that particles after passing through the through hole stay around the through hole and cause noise. In order to solve these problems, a method using a sheath flow method has been conventionally employed. In the method using the sheath flow method in combination, the particle-containing liquid flow in the flow cell is surrounded by another liquid (sheath liquid), and the particle-containing liquid flow is narrowed down so that the particles in the liquid are at the approximate center of the through hole. By introducing it in a line, it is possible to obtain a granularity with less error.
[0005]
Therefore, in order to perform highly accurate detection in a particle detector using such a principle, it is necessary to maintain a high degree of coaxiality between the axis of the finely containing particle-containing liquid flow and the axis of the through hole. It is an indispensable requirement, and what kind of configuration has been realized has been an issue.
The present invention has been made in consideration of such circumstances. By adopting a configuration in which a plurality of components are connected by a through shaft, a particle detector having high coaxiality and easy assembly and disassembly can be obtained. It is to provide.
[0006]
[Means for Solving the Problems]
The present invention includes a plate-like member having a through hole for particle detection, a first cell that receives a particle-containing liquid and a sheath liquid and supplies the particle-containing liquid to the through-hole by being wrapped in a sheath liquid, and the through-hole. A second cell that collects and discharges the particle-containing liquid and the sheath liquid that have passed through; an electrode that is provided in each of the first and second cells; a plurality of shafts; and a fastening member that engages with each shaft. Each shaft penetrates the first and second cells arranged in a row with the plate-like members in a separable manner along the arrangement direction, and the fastening member fastens the first and second cells and the plate-like members in the arrangement direction. A particle detector is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The measurement target particles of the present invention include various biological particles such as blood cells and platelets in body fluids, inorganic particles such as latex and toner, organic powders for food additives, etc., and the measurement particle size ranges from about 1 to 100 μm. It is.
[0008]
The particle detector according to the present invention includes a plate-like member having a through hole for particle detection, a first cell that receives the particle-containing liquid and the sheath liquid and wraps and supplies the particle-containing liquid to the through-hole with the sheath liquid. The second cell that collects and discharges the particle-containing liquid and the sheath liquid that have passed through the through-hole, the electrodes that are respectively provided in the first and second cells, a plurality of shafts, and the shafts are engaged with each other. Each shaft includes first and second cells arranged in a row with the plate-like members detachably sandwiched along the arrangement direction, and the fastening members are plate-like with the first and second cells. The members are tightened in the arrangement direction.
[0009]
The first cell has a nozzle that receives the particle-containing liquid and injects it into the through hole, and a nipple that receives the sheath liquid and supplies the sheath liquid to the through-hole. The second cell has the particle-containing liquid and the sheath liquid that have passed through the through hole. The first and second cells and the plate member may be coupled so that the nozzle, the through hole, and the recovery pipe are coaxial.
[0010]
The plate-shaped member may include a disk-shaped pellet having the through hole.
The first cell includes a nozzle support portion having a nozzle for receiving the particle-containing liquid and spraying it to the through hole, and a first cell main body portion having a nipple for receiving the sheath liquid and supplying it to the through hole. One cell main body may be coupled to the plate member so that the nozzle and the through hole are coaxial.
[0011]
The nozzle support portion, the first cell main body portion, and the plate-like member may be water-tightly coupled to each other via packing.
The second cell has a recovery pipe holding part having a cylindrical recovery pipe for recovering and discharging the particle-containing liquid and the sheath liquid that have passed through the through hole, and a second nipple that receives the cleaning liquid and supplies it to the through hole. The recovery pipe holding part and the second cell main part may be coupled to the plate member so that the recovery pipe and the through hole are coaxial.
[0012]
The collection tube holding portion, the second cell main body portion, and the plate member may be water-tightly coupled to each other via the packings.
The tightening member may be composed of a nut that is screwed into at least one end of each shaft.
[0013]
The present invention will be described in detail below based on the embodiments shown in the drawings. This does not limit the invention.
1 is a side view of the particle detector of the present invention, FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, FIG. 3 is a cross-sectional view taken along the line BB of FIG. FIG.
[0014]
As shown in these drawings, the particle detector 1 includes a plate-like member 3 having a particle detection through hole 2 (FIG. 4), and a particle containing liquid supplied to the through hole 2 in a sheath liquid. 1 cell 4 and the 2nd cell 5 which collects and discharges the particle content liquid and sheath liquid which passed through penetration hole 2 are provided.
[0015]
The first cell 4 and the second cell 5 are respectively provided with electrodes 6 and 7. The electrode 6 is made of stainless steel and is also used as a sheath liquid supply nipple, which will be described later, and used as a cathode, and the electrode 7 is made of platinum and used as an anode.
Further, the particle detector 1 includes two shafts 8 and 9, and fastening members that engage with both ends of the shafts 8 and 9, that is, nuts 10 to 13 that are screwed to both ends.
[0016]
The shafts 8 and 9 penetrate the first cell 4 and the second cell 5 arranged in a line with the plate-like member 3 being separable from both sides along the arrangement direction. The nuts 10 to 13 fasten the first cell 4, the second cell 5, and the plate-like member 3 from both ends of the shafts 8 and 9.
[0017]
The first cell 4 includes a nozzle support portion 15 and a first cell body portion 16. The nozzle support portion 15 has a nozzle 14 that receives the particle-containing liquid and injects it into the through hole 2. The first cell body portion 16 includes a nipple 27 that receives the cleaning liquid and sprays it obliquely from below to the through hole 2, and a nipple (also used as a cathode electrode) 6 that receives the sheath liquid and supplies it to the through hole 2 and discharges the cleaning liquid. Have. The nozzle support portion 15 and the first cell main body portion 16 are coupled to the plate-like member 3 so that the nozzle 14 and the through hole 2 are coaxial.
[0018]
Further, the second cell 5 includes a recovery tube holding part 18 and a second cell main body part 20. The collection pipe holding unit 18 integrally includes a cylindrical collection pipe 17 that collects and discharges the particle-containing liquid and the sheath liquid that have passed through the through hole 2. The second cell main body 20 integrally includes a nipple 19 for receiving the cleaning liquid and spraying the cleaning liquid obliquely from below to the through hole 2 and a nipple 28 for discharging the cleaning liquid.
The recovery tube holding portion 18 and the second cell main body portion 20 are coupled to the plate member 3 so that the recovery tube 17 and the through hole 2 are coaxial.
[0019]
The nozzle support part 15 and the first cell main body part 16 are watertightly coupled via a ring-shaped packing 21, and the recovery pipe holding part 18 and the second cell main body part 20 are connected via a ring-shaped packing 22. And are watertight.
[0020]
As shown in FIG. 4, the plate-shaped member 3 includes a pellet 24 having a through hole 2 and two ring-shaped packings 25 and 26 sandwiching the pellet 24 from both sides inside a central opening 23. And the 1st and 2nd cell main-body parts 16 and 20 are watertightly connected with respect to the pellet 24 via packing 25 and 26, respectively.
[0021]
The nozzle 14 includes a tube connection portion 29 at the rear end, and the recovery tube 17 also includes a tube connection portion 30 at the rear end.
[0022]
The nozzle 14 is made of stainless steel and has an inner diameter of 0.2 mm, and the pellet 24 is made of artificial ruby and has a thickness of 1 mm. In addition, although the diameter of the through-hole 2 changes with the particle sizes of measurement object particle | grains, in the case of erythrocytes, it is 50-100 micrometers.
[0023]
The first and second cell main body parts 16 and 20, the nozzle support part 15 and the recovery pipe holding part 18 are all formed by injection molding a chemical-resistant thermoplastic resin polyetherimide.
[0024]
The nipple 27 is integrally formed with the first cell main body 16, and the nipples 19 and 28 are integrally formed with the second cell main body 20. The nozzle 14, the electrode / nipple 6 and the electrode 7 are press-fitted into the nozzle support part 15, the first cell main body part 16 and the recovery pipe holding part 18 after molding, respectively, and fixed with an adhesive.
[0025]
When disassembling the particle detector 1 configured in this manner, the nuts 10 and 12 and / or the nuts 11 and 13 are removed from the shafts 8 and 9, and the nozzle support portion 15, the recovery pipe holding portion 18, the first and What is necessary is just to extract the 2nd cell main-body parts 16 and 20 and the plate-shaped member 3 from the shafts 8 and 9 in the direction which is easy to extract.
[0026]
When assembling the particle detector 1, the nozzle support 15, the recovery tube holding portion 18, the first and second cell main body portions 16 and 20, and the plate-like member 3 are attached to the shafts 8 and 9 in FIGS. 2 and 3. The nuts 10 to 13 need only be screwed into both ends of the shafts 8 and 9 and tightened.
[0027]
As a result, the positioning of the shafts 8 and 9 makes the nozzle 14, the through hole 2 and the recovery pipe 17 coaxial with high accuracy, and the tightening action of the nuts 10 to 13 causes the nozzle support portion 15 and the first and second cells to be coaxial. The main body portions 16 and 20 and the pellet 24 are strongly bonded in a watertight manner. Therefore, assembly can be performed with good reproducibility and good quality.
[0028]
FIG. 5 is a fluid circuit diagram of a blood analyzer using the particle detector 1. In the figure, when the valves V1 and V2 are opened, a sample for measuring red blood cells is sucked into the flow path P from the sample chamber SC and stored by the negative pressure in the drainage chamber WC1.
[0029]
When the valves V1, V2 are closed and the valves V3, V4, V5, V6 are opened, the diluent is supplied from the diluent chamber DC to the nipples 27, 19 as a cleaning liquid by positive pressure, and is sprayed to the through-hole 2, and the first and second The second cells 4 and 5 are cleaned and air bubbles are removed, and discharged from the nipples 6 and 28 to the drain chamber WC1.
[0030]
When the valves V3, V4, V5 and V6 are closed and the valve V7 is opened, the diluent is supplied as a sheath fluid from the diluent chamber DC to the nipple 6 as a sheath fluid, and passes through the through hole 2 and the recovery pipe 17 to drain the fluid chamber. It is discharged to WC2. As a result, a sheath liquid flow passing through the through hole 2 is formed.
[0031]
When the syringe pump CP is operated in the discharge direction in this state, the sample stored in the flow path P is pushed out and ejected from the nozzle 14 to the through hole 2. The ejected sample is wrapped in the sheath liquid, passes through the through-hole 2, and is discharged to the drain chamber WC2 through the recovery tube 17.
[0032]
When the sample is wrapped in the sheath liquid and passes through the through-hole 2, a change in impedance between the electrode 6 (FIG. 3) and the electrode 7 (FIG. 2) is measured by a measurement unit (not shown). When the measurement is completed, the syringe pump CP is stopped. Then, the valve V8 is opened, and the residual sample in the sample chamber SC is discharged to the drain chamber WC1.
[0033]
Next, the valves V1, V2, V8, and V9 are opened, and the diluent is supplied as a cleaning liquid from the diluent chamber DC to the sample suction channel, the sample chamber SC, the syringe pump CP, and the nozzle 14, and after a predetermined time, the valves V1, V2 , V8, V9 are closed to finish the cleaning.
[0034]
【The invention's effect】
According to the present invention, positioning is performed by penetrating the shaft through a plurality of parts constituting the particle detector, so that the particle detector can be easily assembled with high accuracy and reproducibility.
[Brief description of the drawings]
FIG. 1 is a side view of a particle analyzer according to the present invention.
FIG. 2 is a cross-sectional view taken along the line AA in FIG.
FIG. 3 is a cross-sectional view taken along the line BB in FIG. 2;
4 is an enlarged view of a portion C in FIG. 2. FIG.
FIG. 5 is a fluid circuit diagram of a blood analyzer using the particle analyzer of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Particle detector 2 Through-hole 3 Plate-shaped member 4 1st cell 5 2nd cell 6 Electrode 7 Electrode 8 Shaft 9 Shaft 10 Nut 11 Nut 12 Nut 13 Nut 14 Nozzle 15 Nozzle support part 16 1st cell main-body part 17 Recovery pipe 18 Collection pipe holding part 19 Nipple 20 Second cell main body part 21 Packing 22 Packing 23 Opening 24 Pellet 25 Packing 26 Packing 27 Nipple 28 Nipple 29 Tube connection part 30 Tube connection part

Claims (8)

粒子検出用の貫通孔を有する板状部材と、粒子含有液とシース液とを受入れ前記貫通孔へ粒子含有液をシース液で包んで供給する第1セルと、前記貫通孔を通過した粒子含有液とシース液とを回収して排出する第2セルと、第1および第2セルにそれぞれ設けられた電極と、複数のシャフトと、各シャフトに係合する締め付け部材とを備え、各シャフトは板状部材を分離可能に挟んで一列に配列した第1および第2セルと板状部材とを配列方向に沿って貫通し、締め付け部材は第1および第2セルと板状部材を配列方向に締め付けてなる粒子検出器。A plate-like member having a through hole for detecting particles, a first cell that receives a particle-containing liquid and a sheath liquid and wraps and supplies the particle-containing liquid to the through-hole with a sheath liquid, and contains particles that have passed through the through-hole. A second cell that collects and discharges the liquid and the sheath liquid; electrodes provided in the first and second cells; a plurality of shafts; and a fastening member that engages each shaft. The first and second cells and the plate-like member arranged in a row with the plate-like members being separable are penetrated along the arrangement direction, and the fastening member is arranged in the arrangement direction of the first and second cells and the plate-like member. Tightened particle detector. 第1セルは粒子含有液を受入れて貫通孔へ噴射するノズルとシース液を受入れて貫通孔へ供給するためのニップルとを有し、第2セルは貫通孔を通過した粒子含有液とシース液を回収して排出する管状の回収管を有し、ノズルと貫通孔と回収管とが同軸になるように第1および第2セルと板状部材が結合されてなる請求項1記載の粒子検出器。The first cell has a nozzle for receiving the particle-containing liquid and spraying it to the through-hole and a nipple for receiving the sheath liquid and supplying it to the through-hole, and the second cell has the particle-containing liquid and the sheath liquid that have passed through the through-hole. 2. The particle detection according to claim 1, further comprising a tubular collection pipe for collecting and discharging the first and second cells and the plate member so that the nozzle, the through hole, and the collection pipe are coaxial. vessel. 板状部材は前記貫通孔を有する円板状のペレットを備えてなる請求項1記載の粒子検出器。The particle detector according to claim 1, wherein the plate-like member is provided with a disk-like pellet having the through hole. 第1セルは、粒子含有液を受入れて貫通孔へ噴射するノズルを有するノズル支持部と、シース液を受け入れて貫通孔へ供給するニップルを有する第1セル本体部からなり、ノズル支持部と第1セル本体部は板状部材に対しノズルと貫通孔とが同軸になるように結合されてなる請求項1記載の粒子検出器。The first cell includes a nozzle support portion having a nozzle that receives the particle-containing liquid and sprays it into the through hole, and a first cell main body portion having a nipple that receives the sheath liquid and supplies the sheath liquid to the through hole. The particle detector according to claim 1, wherein the one-cell main body is coupled to the plate member so that the nozzle and the through hole are coaxial. ノズル支持部と第1セル本体部と板状部材とは各々パッキンを介して互いに水密的に結合されてなる請求項4記載の粒子検出器。The particle detector according to claim 4, wherein the nozzle support portion, the first cell main body portion, and the plate-like member are water-tightly coupled to each other via packing. 第2セルは、貫通孔を通過した粒子含有液とシース液とを回収して排出する筒状の回収管を有する回収管保持部と、洗浄液を受け入れて貫通孔へ供給するニップルを有する第2セル本体部からなり、回収管保持部と第2セル本体部は板状部材に対し回収管と貫通孔とが同軸になるように結合されてなる請求項1記載の粒子検出器。The second cell has a recovery tube holding portion having a cylindrical recovery tube that recovers and discharges the particle-containing liquid and the sheath liquid that have passed through the through hole, and a second nipple that receives the cleaning liquid and supplies it to the through hole. 2. The particle detector according to claim 1, comprising a cell main body, wherein the recovery pipe holding part and the second cell main part are coupled to the plate member so that the recovery pipe and the through hole are coaxial. 回収管保持部と第2セル本体部と板状部材は各々パッキンを介して互いに水密的に結合されてなる請求項6記載の粒子検出器。The particle detector according to claim 6, wherein the recovery tube holding portion, the second cell main body portion, and the plate-like member are water-tightly coupled to each other via packing. 請求項1〜7のいずれか1つに記載の粒子検出器を用いた粒子分析装置。A particle analyzer using the particle detector according to claim 1.
JP2001366885A 2001-11-30 2001-11-30 Particle detector and particle analyzer using the same Expired - Lifetime JP3722743B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001366885A JP3722743B2 (en) 2001-11-30 2001-11-30 Particle detector and particle analyzer using the same
AT02026319T ATE443252T1 (en) 2001-11-30 2002-11-21 PARTICLE ANALYZER
EP02026319A EP1316792B1 (en) 2001-11-30 2002-11-21 Particle analyzer
DE60233708T DE60233708D1 (en) 2001-11-30 2002-11-21 particle analyzer
US10/305,146 US6909269B2 (en) 2001-11-30 2002-11-27 Particle detector and particle analyzer employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366885A JP3722743B2 (en) 2001-11-30 2001-11-30 Particle detector and particle analyzer using the same

Publications (2)

Publication Number Publication Date
JP2003166931A JP2003166931A (en) 2003-06-13
JP3722743B2 true JP3722743B2 (en) 2005-11-30

Family

ID=19176720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366885A Expired - Lifetime JP3722743B2 (en) 2001-11-30 2001-11-30 Particle detector and particle analyzer using the same

Country Status (1)

Country Link
JP (1) JP3722743B2 (en)

Also Published As

Publication number Publication date
JP2003166931A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
US20030102220A1 (en) Particle detector and particle analyzer employing the same
AU2003232169B8 (en) A disposable cartridge for characterizing particles suspended in a liquid
US8336375B2 (en) Flow cell assembly for fluid sensors
WO2010032804A1 (en) Analysis device and analysis method
GB1597081A (en) Apparatus for counting particles in a liquid suspension
EP1929273B1 (en) Detection and subsequent removal of an aperture blockage
JPH0699171A (en) Filter system
US6417658B1 (en) Flow cell for particle analyzer using electrical sensing zone method
US20130343965A1 (en) Condensed geometry nozzle for flow cytometry
CN118067591B (en) Consumable for blood analysis
JP3722743B2 (en) Particle detector and particle analyzer using the same
US6534965B2 (en) Particle signal processing apparatus and particle measurement apparatus using same
CN209043773U (en) Micropore plug-hole detection device, blood cell analyzer
WO1985001108A1 (en) Method and apparatus for removing foreign matter from a flow cell of a particle study device
CN216350218U (en) Electrical impedance counter and sample analyzer
US20120138534A1 (en) Method and device for filtering blood using magnetic force
CN1876801A (en) Cell detection transducer
JP4241740B2 (en) Sample measurement method
JP4112217B2 (en) Particle detector and particle analyzer using the same
JP3737047B2 (en) Particle detector and particle analyzer using the same
JP2006171010A5 (en)
JP2001264233A (en) Particle measuring device
CN208459234U (en) Cell counter and cell count detection system
JP4212803B2 (en) Particle measuring device
Lee et al. A flow-rate independent cell counter using a fixed control volume between double electrical sensing zones

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3722743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term