JP3722614B2 - Equipment for measuring adhesion of resin moldings - Google Patents

Equipment for measuring adhesion of resin moldings Download PDF

Info

Publication number
JP3722614B2
JP3722614B2 JP03954998A JP3954998A JP3722614B2 JP 3722614 B2 JP3722614 B2 JP 3722614B2 JP 03954998 A JP03954998 A JP 03954998A JP 3954998 A JP3954998 A JP 3954998A JP 3722614 B2 JP3722614 B2 JP 3722614B2
Authority
JP
Japan
Prior art keywords
resin molded
molded body
temperature
pressing
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03954998A
Other languages
Japanese (ja)
Other versions
JPH11160228A (en
Inventor
順 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP03954998A priority Critical patent/JP3722614B2/en
Publication of JPH11160228A publication Critical patent/JPH11160228A/en
Application granted granted Critical
Publication of JP3722614B2 publication Critical patent/JP3722614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂成形体の密着力測定装置に関し、詳細には、樹脂成形体の密着力を高精度に測定する樹脂成形体の密着力測定装置に関する。
【0002】
【従来の技術】
従来、高精度なプラスチック成形品を作製する場合、成形品離型時のわずかな変形が成形品品質を左右する。一方、樹脂とキャビティ壁面の密着力は、成形品の転写性に大きく影響する。
【0003】
そのため、樹脂成形体のキャビティ壁面との離型性あるいは転写性を把握するためには、樹脂成形体とキャビティ壁面との密着力を精度良く測定し、密着力を左右する因子を明確にするための装置が必要となる。
【0004】
従来、密着力を評価する方法としては、キャビティ部材の接触角を測定する方法が用いられているが、この方法では、使用樹脂の相違による密着力の相違を調べることができないだけでなく、成形時の温度や圧力に対する密着力の変化を調べることができない。
【0005】
また、従来、特開昭63−144026号公報及び特開平9−123231号公報及び特開平5−149869号公報等に樹脂成形体の離型抵抗力を測定する方法が提案されており、これらは、いずれも樹脂成形体を成形後、樹脂を離型させるためのエジェクタピンを介して、荷重検出器によりそのときの抵抗力を測定している。
【0006】
【発明が解決しようとする課題】
しかしながら、このような従来の樹脂成形体の離型抵抗力の測定にあっては、樹脂の離型抵抗力が、エジェクタピンの位置や大きさに左右されるため、特定成形品の場合の評価は可能であるが、密着力を左右する因子を把握するための汎用性を持ったデータを得ることができない。また、樹脂成形体の離型抵抗力の測定にあっては、樹脂成形体と密着面の間に少しでも空気が介在すると、空気の介在する部分からの剥離が優先的に進行し、密着力測定値がばらついて、精度良く密着力を測定することができないが、上記従来の測定方法にあっては、エジェクタピンと密着面に加工された挿入穴のわずかなクリアランスに空気が介在し、当該クリアランス部分から剥離が優先的に進行して、密着力を精度良く測定することができないという問題があった。
【0007】
そこで、請求項1記載の発明は、相互に接近する方向及び離隔する方向に移動される一対のプレス部材のうち、一方側に所定の接続部材を介して樹脂成形体を取り付け、他方側のプレス部材に樹脂成形体と対向する状態で被密着部材を交換可能に取り付け、プレス手段によりプレス部材を近接する方向に移動させて樹脂成形体と被密着部材とを所定圧力で押圧させて、当該押圧力を圧縮力検出手段で検出し、温度制御手段により所定温度に加熱した後、所定温度に冷却して、プレス手段によりプレス部材を離隔する方向に移動して、樹脂成形体と被密着部材とを剥離させ、当該剥離時の樹脂成形体と被密着部材との密着力を引張力検出手段で測定することにより、被密着部材の密着面にエジェクタピンの挿入穴を形成することなく、樹脂成形体の密着力を精度良く、かつ、容易に測定し、密着力の要因(密着面の表面粗さ、表面処理、温度、圧力)を精度良く把握することのできる樹脂成形体の密着力測定装置を提供することを目的としている。
【0008】
請求項2記載の発明は、圧縮力検出手段を、一方のプレス部材に固定し、当該圧縮力検出手段に、樹脂成形体を被密着部材方向に押圧する圧縮部材を固定し、引張力検出手段を、当該圧縮部材に固定し、当該引張力検出手段に、樹脂成形体を被密着部材から離隔する方向に移動させる引張部材を固定し、当該引張部材に接続部材を介して樹脂成形体を取り付け、これら圧縮力検出手段、圧縮部材、引張力検出手段、引張部材及び接続部材を、少なくともプレス手段によりプレス部材が近接する方向に移動される際、引張力検出手段に荷重がかからない状態で、同一直線上に配設することにより、引張力検出手段の許容荷重に関わらず、密着力測定時に任意の大きさの圧縮力を負荷することができるとともに、樹脂成形体の押圧力に関わらず、適宜密着力に合わせた最適な分解能を備えた引張力検出手段を使用することができ、樹脂成形体の密着力をより一層高精度に測定することのできる樹脂成形体の密着力測定装置を提供することを目的としている。
【0009】
請求項3記載の発明は、温度制御手段として、少なくとも樹脂成形体と被密着部材とを覆い、所定の低温から高温までの広範囲で温度制御する恒温槽を用いることにより、樹脂成形体と被密着部材の加熱・冷却時に、密着面と樹脂成形体の温度分布が生じるのを防止し、樹脂成形体の密着力をより一層高精度に測定することのできる樹脂成形体の密着力測定装置を提供することを目的としている。
【0010】
請求項4記載の発明は、樹脂成形体を、接続部材と一体成形することにより、密着力測定用サンプルの作製を容易なものとするとともに、接続部材と樹脂成形体との接続の手間を省いて、利用性が良好で、樹脂成形体の密着力を高精度に測定することのできる樹脂成形体の密着力測定装置を提供することを目的としている。
【0011】
請求項5記載の発明は、相互に接近する方向及び離隔する方向に移動される一対のプレス部材のうち、一方側に所定の接続部材を介して樹脂成形体を取り付け、他方のプレス部材に樹脂成形体と対向する状態で被密着部材を交換可能に取り付け、樹脂成形体を樹脂成形体温度制御手段で所定温度に加熱し、被密着部材を被密着部材温度制御手段で所定温度に加熱した状態で、プレス手段によりプレス部材を近接する方向に移動させて樹脂成形体と被密着部材とを所定圧力で押圧させて、当該押圧力を圧縮力検出手段で検出した後、プレス手段によりプレス部材を離隔する方向に移動して、樹脂成形体と被密着部材とを剥離させ、当該剥離時の樹脂成形体と被密着部材との密着力を引張力検出手段で測定することにより、被密着部材の密着面にエジェクタピンの挿入穴を形成することなく、樹脂成形体と被密着部材を独立に温度制御して、実際の樹脂の射出成形と略同様の状態で樹脂成形体の密着力を測定し、樹脂成形体の密着力をより一層精度良く、かつ、容易に測定して、密着力の要因をより一層精度良く把握することのできる樹脂成形体の密着力測定装置を提供することを目的としている。
【0012】
請求項6記載の発明は、樹脂成形体温度制御手段を、樹脂成形体を覆うとともに、所定の低温から高温までの広範囲で温度制御する恒温槽で構成し、被密着部材温度制御手段を、恒温槽外に配設し、測定に際して、樹脂成形体温度制御手段である恒温槽内で樹脂成形体を所定温度に加熱し、恒温槽外の被密着部材温度制御手段で被密着部材を所定温度に加熱し、プレス手段によりプレス部材を介して恒温槽内の樹脂成形体を被密着部材方向に移動させて、恒温槽外の被密着部材に押圧させることにより、樹脂成形体を短時間で均一に加熱し、樹脂成形体と被密着部材をより一層正確に密着させて、樹脂成形体の密着力をより一層精度良く、かつ、容易に測定して、樹脂成形体の密着力をより一層高精度に測定することのできる樹脂成形体の密着力測定装置を提供することを目的としている。
【0013】
請求項7記載の発明は、樹脂成形体温度制御手段と被密着部材温度制御手段を、それぞれ所定の低温から高温までの広範囲で温度制御する恒温槽で構成するとともに、プレス部材の移動方向に並んで配設し、測定に際して、樹脂成形体温度制御手段である恒温槽で樹脂成形体を所定温度に加熱し、被密着部材温度制御手段である恒温槽で被密着部材を所定温度に加熱し、プレス手段によりプレス部材を介して樹脂成形体温度制御手段である恒温槽内の樹脂成形体を被密着部材方向に移動させて、被密着部材温度制御手段である恒温槽内の被密着部材に押圧させることにより、シリンダとキャビティを想定した温度の異なる2つの恒温槽の間を樹脂成形体を連続的に移動させて、樹脂成形体の密着力を測定し、実際の射出成形の形態により一層近似した形態で、樹脂成形体の密着力をより一層高精度に測定することのできる樹脂成形体の密着力測定装置を提供することを目的としている。
【0014】
請求項8記載の発明は、圧縮力検出手段及び引張力検出手段を、樹脂成形体温度制御手段及び被密着部材温度制御手段から所定距離離れて配設するとともに、樹脂成形体温度制御手段及び被密着部材温度制御手段との間に所定の断熱層を配設することにより、樹脂成形体温度制御手段及び被密着部材温度制御手段の温度を高くした場合にも、圧縮力検出手段及び引張力検出手段が測定許容温度を超えることを防止し、樹脂成形体の密着力をより一層高精度に測定することのできる樹脂成形体の密着力測定装置を提供することを目的としている。
【0015】
【課題を解決するための手段】
請求項1記載の発明の樹脂成形体の密着力測定装置は、一対のプレス部材を相互に接近する方向及び離隔する方向に移動するプレス手段と、前記プレス部材の一方側に所定の接続部材を介して取り付けられた樹脂成形体と、前記プレス部材の他方側に前記樹脂成形体と対向する状態で交換可能に取り付けられた被密着部材と、前記プレス手段により前記プレス部材が接近する方向に移動されて前記樹脂成形体と前記被密着部材とが押圧されたときの当該押圧力を測定する圧縮力検出手段と、前記プレス手段により前記プレス部材が離隔する方向に移動されて前記樹脂成形体と前記被密着部材とが剥離されるときの前記樹脂成形体と前記被密着部材との密着力を測定する引張力検出手段と、少なくとも前記樹脂成形体と前記被密着部材とを所定の高温から所定の低温まで温度制御する温度制御手段と、を備え、前記プレス手段により前記プレス部材を近接する方向に移動させて前記樹脂成形体と前記被密着部材とを所定圧力で押圧させて、当該押圧力を前記圧縮力検出手段で検出し、前記温度制御手段により所定温度に加熱した後、所定温度に冷却して、前記プレス手段により前記プレス部材を離隔する方向に移動して、前記樹脂成形体と前記被密着部材とを剥離させ、当該剥離時の前記樹脂成形体と前記被密着部材との密着力を前記引張力検出手段で測定することにより、上記目的を達成している。
【0016】
上記構成によれば、相互に接近する方向及び離隔する方向に移動される一対のプレス部材のうち、一方側に所定の接続部材を介して樹脂成形体を取り付け、他方側のプレス部材に樹脂成形体と対向する状態で被密着部材を交換可能に取り付け、プレス手段によりプレス部材を近接する方向に移動させて樹脂成形体と被密着部材とを所定圧力で押圧させて、当該押圧力を圧縮力検出手段で検出し、温度制御手段により所定温度に加熱した後、所定温度に冷却して、プレス手段によりプレス部材を離隔する方向に移動して、樹脂成形体と被密着部材とを剥離させ、当該剥離時の樹脂成形体と被密着部材との密着力を引張力検出手段で測定しているので、被密着部材の密着面にエジェクタピンの挿入穴を形成することなく、樹脂成形体の密着力を精度良く、かつ、容易に測定することができ、密着力の要因(密着面の表面粗さ、表面処理、温度、圧力)を精度良く把握することができる。
【0017】
この場合、例えば、請求項2に記載するように、前記圧縮力検出手段は、前記一方のプレス部材に固定され、当該圧縮力検出手段には、前記樹脂成形体を前記被密着部材方向に押圧する圧縮部材が固定され、前記引張力検出手段は、前記圧縮部材に固定され、当該引張力検出手段には、前記樹脂成形体を前記被密着部材から離隔する方向に移動させる引張部材が固定され、当該引張部材に前記接続部材を介して前記樹脂成形体を取り付け、前記圧縮力検出手段、前記圧縮部材、前記引張力検出手段、前記引張部材及び前記接続部材は、前記プレス手段により前記プレス部材が近接する方向に移動される際、前記引張力検出手段に荷重がかからない状態で、同一直線上に配設されていてもよい。
【0018】
上記構成によれば、圧縮力検出手段を、一方のプレス部材に固定し、当該圧縮力検出手段に、樹脂成形体を被密着部材方向に押圧する圧縮部材を固定し、引張力検出手段を、当該圧縮部材に固定し、当該引張力検出手段に、樹脂成形体を被密着部材から離隔する方向に移動させる引張部材を固定し、当該引張部材に接続部材を介して樹脂成形体を取り付け、これら圧縮力検出手段、圧縮部材、引張力検出手段、引張部材及び接続部材を、少なくともプレス手段によりプレス部材が近接する方向に移動される際、引張力検出手段に荷重がかからない状態で、同一直線上に配設しているので、引張力検出手段の許容荷重に関わらず、密着力測定時に任意の大きさの圧縮力を負荷することができるとともに、樹脂成形体の押圧力に関わらず、適宜密着力に合わせた最適な分解能を備えた引張力検出手段を使用することができ、樹脂成形体の密着力をより一層高精度に測定することができる。
【0019】
また、例えば、請求項3に記載するように、前記温度制御手段は、少なくとも前記樹脂成形体と前記被密着部材とを覆い、前記所定の低温から高温までの広範囲で温度制御する恒温槽で形成されていてもよい。
【0020】
上記構成によれば、温度制御手段として、少なくとも樹脂成形体と被密着部材とを覆い、所定の低温から高温までの広範囲で温度制御する恒温槽を用いているので、樹脂成形体と被密着部材の加熱・冷却時に、密着面と樹脂成形体の温度分布が生じるのを防止することができ、樹脂成形体の密着力をより一層高精度に測定することができる。
【0021】
さらに、例えば、請求項4に記載するように、前記樹脂成形体は、前記接続部材と一体成形されていてもよい。
【0022】
上記構成によれば、樹脂成形体を、接続部材と一体成形しているので、密着力測定用サンプルの作製を容易なものとすることができるとともに、接続部材と樹脂成形体との接続の手間を省くことができ、樹脂成形体の密着力測定装置の利用性を向上させることができるとともに、樹脂成形体の密着力を高精度に測定することができる。
【0023】
請求項5記載の発明の樹脂成形体の密着力測定装置は、一対のプレス部材を相互に接近する方向及び離隔する方向に移動するプレス手段と、前記プレス部材の一方側に所定の接続部材を介して取り付けられた樹脂成形体と、前記プレス部材の他方側に前記樹脂成形体と対向する状態で交換可能に取り付けられた被密着部材と、前記プレス手段により前記プレス部材が接近する方向に移動されて前記樹脂成形体と前記被密着部材とが押圧されたときの当該押圧力を測定する圧縮力検出手段と、前記プレス手段により前記プレス部材が離隔する方向に移動されて前記樹脂成形体と前記被密着部材とが剥離されるときの前記樹脂成形体と前記被密着部材との密着力を測定する引張力検出手段と、前記樹脂成形体を所定の高温から所定の低温まで温度制御する樹脂成形体温度制御手段と、前記被密着部材を所定の高温から所定の低温まで温度制御する被密着部材温度制御手段と、を備え、前記樹脂成形体を前記樹脂成形体温度制御手段で所定温度に加熱し、前記被密着部材を前記被密着部材温度制御手段で所定温度に加熱した状態で、前記プレス手段により前記プレス部材を近接する方向に移動させて前記樹脂成形体と前記被密着部材とを所定圧力で押圧させて、当該押圧力を前記圧縮力検出手段で検出し、その後、前記プレス手段により前記プレス部材を離隔する方向に移動して、前記樹脂成形体と前記被密着部材とを剥離させ、当該剥離時の前記樹脂成形体と前記被密着部材との密着力を前記引張力検出手段で測定することにより、上記目的を達成している。
【0024】
上記構成によれば、相互に接近する方向及び離隔する方向に移動される一対のプレス部材のうち、一方側に所定の接続部材を介して樹脂成形体を取り付け、他方のプレス部材に樹脂成形体と対向する状態で被密着部材を交換可能に取り付け、樹脂成形体を樹脂成形体温度制御手段で所定温度に加熱し、被密着部材を被密着部材温度制御手段で所定温度に加熱した状態で、プレス手段によりプレス部材を近接する方向に移動させて樹脂成形体と被密着部材とを所定圧力で押圧させて、当該押圧力を圧縮力検出手段で検出した後、プレス手段によりプレス部材を離隔する方向に移動して、樹脂成形体と被密着部材とを剥離させ、当該剥離時の樹脂成形体と被密着部材との密着力を引張力検出手段で測定しているので、被密着部材の密着面にエジェクタピンの挿入穴を形成することなく、樹脂成形体と被密着部材を独立に温度制御して、実際の樹脂の射出成形と略同様の状態で樹脂成形体の密着力を測定することができ、樹脂成形体の密着力をより一層精度良く、かつ、容易に測定して、密着力の要因をより一層精度良く把握することができる。
【0025】
この場合、例えば、請求項6に記載するように、前記樹脂成形体の密着力測定装置は、前記樹脂成形体温度制御手段が、前記樹脂成形体を覆うとともに、前記所定の低温から高温までの広範囲で温度制御する恒温槽で構成され、前記被密着部材温度制御手段が、前記恒温槽外に配設され、前記測定に際して、前記樹脂成形体温度制御手段である前記恒温槽内で前記樹脂成形体を前記所定温度に加熱し、前記恒温槽外の前記被密着部材温度制御手段で前記被密着部材を前記所定温度に加熱し、前記プレス手段により前記プレス部材を介して前記恒温槽内の前記樹脂成形体を前記被密着部材方向に移動させて、前記恒温槽外の前記被密着部材に押圧させるものであってもよい。
【0026】
上記構成によれば、樹脂成形体温度制御手段を、樹脂成形体を覆うとともに、所定の低温から高温までの広範囲で温度制御する恒温槽で構成し、被密着部材温度制御手段を、恒温槽外に配設し、測定に際して、樹脂成形体温度制御手段である恒温槽内で樹脂成形体を所定温度に加熱し、恒温槽外の被密着部材温度制御手段で被密着部材を所定温度に加熱し、プレス手段によりプレス部材を介して恒温槽内の樹脂成形体を被密着部材方向に移動させて、恒温槽外の被密着部材に押圧させるので、樹脂成形体を短時間で均一に加熱することができ、樹脂成形体と被密着部材をより一層正確に密着させて、樹脂成形体の密着力をより一層精度良く、かつ、容易に測定して、樹脂成形体の密着力をより一層高精度に測定することができる。
【0027】
また、例えば、請求項7に記載するように、前記樹脂成形体の密着力測定装置は、前記樹脂成形体温度制御手段と前記被密着部材温度制御手段が、それぞれ前記所定の低温から高温までの広範囲で温度制御する恒温槽で構成されているとともに、前記プレス部材の移動方向に並んで配設され、前記測定に際して、前記樹脂成形体温度制御手段である前記恒温槽で前記樹脂成形体を前記所定温度に加熱し、前記被密着部材温度制御手段である前記恒温槽で前記被密着部材を前記所定温度に加熱し、前記プレス手段により前記プレス部材を介して前記樹脂成形体温度制御手段である前記恒温槽内の前記樹脂成形体を前記被密着部材方向に移動させて、前記被密着部材温度制御手段である前記恒温槽内の前記被密着部材に押圧させるものであってもよい。
【0028】
上記構成によれば、樹脂成形体温度制御手段と被密着部材温度制御手段を、それぞれ所定の低温から高温までの広範囲で温度制御する恒温槽で構成するとともに、プレス部材の移動方向に並んで配設し、測定に際して、樹脂成形体温度制御手段である恒温槽で樹脂成形体を所定温度に加熱し、被密着部材温度制御手段である恒温槽で被密着部材を所定温度に加熱し、プレス手段によりプレス部材を介して樹脂成形体温度制御手段である恒温槽内の樹脂成形体を被密着部材方向に移動させて、被密着部材温度制御手段である恒温槽内の被密着部材に押圧させているので、シリンダとキャビティを想定した温度の異なる2つの恒温槽の間を樹脂成形体を連続的に移動させて、樹脂成形体の密着力を測定することができ、実際の射出成形の形態により一層近似した形態で、樹脂成形体の密着力をより一層高精度に測定することができる。
【0029】
さらに、例えば、請求項8に記載するように、前記圧縮力検出手段及び前記引張力検出手段は、前記樹脂成形体温度制御手段及び前記被密着部材温度制御手段から所定距離離れて配設されているとともに、前記樹脂成形体温度制御手段及び前記被密着部材温度制御手段との間に所定の断熱層が配設されていてもよい。
【0030】
上記構成によれば、請求項8記載の発明は、圧縮力検出手段及び引張力検出手段を、樹脂成形体温度制御手段及び被密着部材温度制御手段から所定距離離れて配設するとともに、樹脂成形体温度制御手段及び被密着部材温度制御手段との間に所定の断熱層を配設しているので、樹脂成形体温度制御手段及び被密着部材温度制御手段の温度を高くした場合にも、圧縮力検出手段及び引張力検出手段が測定許容温度を超えることを防止することができ、樹脂成形体の密着力をより一層高精度に測定することができる。
【0031】
【発明の実施の形態】
以下、本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。なお、以下に述べる実施の形態は、本発明の好適な実施の形態であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
【0032】
図1〜図6は、本発明の樹脂成形体の密着力測定装置の第1の実施の形態を示す図である。
【0033】
図1は、本発明の樹脂成形体の密着力測定装置の第1の実施の形態を適用した密着力測定装置1の概略正面断面図である。図1において、密着力測定装置1は、平板状の固定ダイプレート(プレス部材)2に垂直に複数本のガイドポール3が配設されており、ガイドポール3には可動ダイプレート(プレス部材)4が当該ガイドポール3に沿って図1中上下方向に移動可能に配設されている。この可動ダイプレート4は、図示しないダイプレート駆動機構により上下方向に移動される。なお、本実施の形態では、可動ダイプレート4を移動させているが、固定ダイプレート2を移動させるものであってもよいし、可動ダイプレート4と可動ダイプレート2の双方を移動させるようにしてもよい。上記固定ダイプレート2、ガイドポール3、可動ダイプレート4及びダイプレート駆動機構は、全体としてプレス手段として機能する。
【0034】
可動ダイプレート4には、その中央部分に圧縮力検出部(圧縮力検出手段)5が固定的に取り付けられており、圧縮力検出部5の下端部には、中空の箱形等に形成された圧縮ロッド(圧縮部材)6が固定されている。
【0035】
圧縮ロッド6内には、引張力検出部(引張力検出手段)7が固定的に配設されており、引張力検出部7の下端には、上下が閉止された中空の箱形(ロ型)あるいは円筒形に形成された引張ロッド(引張部材)8が固定されている。引張ロッド8は、図2に示すように、その下板部分の中央部に挿入穴8aが形成されており、挿入穴8aには、略T字型に形成されアーム部9aと平板部9bを備えた接続治具(接続部材)9のアーム部9aが摺動自在に挿入される。接続治具9のアーム部9aは、上記圧縮ロッド6の下板部分の中央部に形成された挿入穴6aをも摺動自在に貫通し、引張ロッド8の挿入穴8aと圧縮ロッド6の挿入穴6aは、同一直線上に形成されている。
【0036】
接続治具9のアーム部9aの圧縮ロッド6外の先端には、上記平板部9bが形成されており、接続治具9の平板部9bの下面には、測定対象の樹脂成形体10が形成されている。これら接続治具9と樹脂成形体10とは、一体成形されており、接続治具9の引張ロッド8内の先端には、引張ロッド8の下板に当接可能なストッパー11が固定されている。ストッパー11は、引張ロッド8の下板に形成された挿入穴8aを通過不可能な大きさに形成されており、引張ロッド8が上方に移動されるとき、引張ロッド8の下板に当接して引張ロッド8により上方に引き上げられる。
【0037】
再び図1において、上記接続治具9の下端面に形成された樹脂成形体10の下方の固定ダイプレート2上には、被密着部材12が交換可能に固定され、被密着部材12としては、測定対象の樹脂成形体10の測定に応じて、表面粗さや表面処理等を変化させたものが固定される。
【0038】
上記圧縮ロッド6と引張ロッド8、圧縮力検出部5と引張力検出部7及び接続治具9は、同一直線上に配設されており、可動ダイプレート4をガイドポール3に沿って上下方向に移動させた際、同一直線上を接続治具9のアーム部9aに沿って移動する。
【0039】
上記引張力検出部7を収納する圧縮ロッド6、引張ロッド8、接続治具9、樹脂成形体10、ストッパー11及び被密着部材12は、固定ダイプレート2上に設置された箱形状の恒温槽(温度制御手段)13内に収納されており、恒温槽13は、図示しない温度制御装置により加熱・冷却を行って、恒温槽13内の雰囲気温度を所定の低温から所定の高温まで広範囲で温度制御可能となっている。恒温槽13は、その上板部分が圧縮力検出部5の外周面に摺接した状態で形成されており、可動ダイプレート4の移動により圧縮力検出部5が上下方向に移動する際、圧縮力検出部5の外周面が恒温槽13の上板部分に摺接しつつ移動する。また、恒温槽13は、図示しないが、一体成形された樹脂成形体10と接続治具9を恒温槽13内に挿入して、アーム部9aを圧縮ロッド6の挿入穴6aと引張ロッド8の挿入穴8aに挿入して、アーム部9aの先端にストッパー11を取り付け、また、被密着部材12を固定ダイプレート2に設置するための窓部等が設けられており、この窓部は、開閉可能な扉部材で閉止可能となっている。なお、恒温槽13に窓部を設けずに、恒温槽13を上下方向に移動可能としてもよい。
【0040】
なお、上記圧縮力検出部5及び引張力検出部7は、図示しないアンプ及びA/D変換部等を介して図示しないコンピュータ等の処理制御部に接続されており、処理制御部は、アンプ及びA/D変換部等を介して圧縮力検出部5及び引張力検出部7から出力される検出信号を解析して、圧縮力データ及び引張力データを、図示しない表示部に表示出力し、また、図示しない記録部で記録紙に記録出力する。
【0041】
次に、本実施の形態の作用を説明する。密着力測定装置1は、樹脂成形体10の密着力の測定に際して、測定対象の樹脂成形体10と一体成形された接続治具9のアーム部9aが圧縮ロッド6の挿入穴6aと引張ロッド8の挿入穴8aに挿入され、アーム部9aの先端にストッパー11が取り付けられることにより、樹脂成形体10と接続治具9が密着力測定装置1に装着され、また、被密着部材12が固定ダイプレート2に設置される。
【0042】
このようにして、一体成形された樹脂成形体10と接続治具9及び被密着部材12が装着されると、図3に示すように、ダイプレート駆動機構により可動ダイプレート4を、図3中矢印で示す下方向に移動し、可動ダイプレート4が下方に移動されると、可動ダイプレート4に固定されている圧縮力検出部5、圧縮力検出部5に固定されている圧縮ロッド6、圧縮ロッド6に固定されている引張力検出部7及び引張力検出部7に固定されている引張ロッド8が一緒に下方に移動される。このようにして可動ダイプレート4を下方に移動させて、樹脂成形体10と被密着部材12とを密着させる。
【0043】
ダイプレート駆動機構により可動ダイプレート4を、図4に示すように、さらに下方に移動させて、圧縮ロッド6の下板により接続治具9の平板部9bを下方に押し、樹脂成形体10を被密着部材12に押圧して、樹脂成形体10に所定の押圧力を付与する。このときの圧縮圧力を圧縮力検出部5で検出する。
【0044】
このとき、接続部材9のアーム部9aが、図2に示したように、圧縮ロッド6の挿入穴6a及び引張ロッド8の挿入穴8aに摺動自在に挿入されているため、引張力検出部7には、負荷がかからない。その結果、引張力検出部7の許容荷重に制限されることなく、樹脂成形体10に必要な圧縮荷重をかけることができる。また、引張力検出部7は、樹脂成形体10と被密着部材12との密着力の大きさに合わせた高分解能な引張力検出部7を使用することができ、高精度な密着力の測定を行うことができる。さらに、可動ダイプレート4を下降させて圧縮ロッド6により樹脂成形体10に付与する初期圧力は、任意に設定することができ、かつ、このときの圧縮圧力を、上述のように、圧縮力検出部5で検出することにより、密着力と押圧力の関係を測定することができる。
【0045】
上述のようにして、可動ダイプレート4を下降させて圧縮ロッド6により樹脂成形体10を被密着部材12に押圧し、このときの圧縮圧力を圧縮力検出部5で検出すると、恒温槽13内の雰囲気温度を所定の温度まで昇温させて、樹脂成形体10に圧力を発生させ、このときの圧力を圧縮力検出部5で検出して、再度、所定の温度まで冷却する。
【0046】
このように、恒温槽13内の雰囲気温度を制御して、樹脂成形体10と被密着部材12の加熱と冷却を行うので、樹脂成形体10と被密着部材12の温度分布が生じることを防止することができ、密着力の測定精度を向上させることができる。
【0047】
上記恒温槽13内を所定温度に冷却すると、ダイプレート駆動機構により可動ダイプレート4を、図5に示すように、上方に移動させる。可動ダイプレート4が上方に移動されると、圧縮力検出部5とともに圧縮ロッド6、引張力検出部7及び引張ロッド8が上方に移動して、圧縮ロッド6の下板が接続治具9の平板部9bから離れる。このとき、圧縮ロッド6と引張ロッド8は、その挿入穴6a、7aにより接続治具9のアーム部9aに摺動して上方に移動し、密着力測定に影響を与えることがない。
【0048】
さらに可動ダイプレート4を上方に移動させると、図6に示すように、引張ロッド8の下板が接続治具9の上端に固定されたストッパー11に当接し、接続治具9と一体成形された樹脂成形体10を上方に引き上げようとする。
【0049】
この状態でさらに可動ダイプレート4を上方に移動させると、樹脂成形体10と被密着部材12との剥離が開始され、そのときに発生する密着力を引張力検出部7により検出する。その後、樹脂成形体10と被密着部材12とが完全に剥離されると、密着力の測定を終了する。
【0050】
そして、この密着力の測定において、上述のように、圧縮ロッド6と引張ロッド8、圧縮力検出部5と引張力検出部7及び接続治具9が、同一直線上に配設されているため、可動ダイプレート4をガイドポール3に沿って上下方向に移動させた際、樹脂成形体10が斜め方向に押圧されたり、引っ張られたりせず、同一直線上を移動し、密着力を正確に測定することができる。
【0051】
また、被密着部材12は、恒温槽13内の平坦な固定ダイプレート2上に設置するだけでよいため、形状の制約がほとんどなく、表面粗さや表面処理等の異なる被密着部材12と容易に交換することができ、各種条件の被密着部材12を使用した比較測定を容易に行うことができる。
【0052】
さらに、樹脂成形体10と接続治具9を一体成形により作製しているため、測定サンプルの作製が容易であるとともに、樹脂成形体10と接続治具9を接続する手間を省くことができ、密着力測定の操作性・利用性を向上させることができる。
【0053】
このように、本実施の形態の密着力測定装置1によれば、樹脂成形体10と被密着部材12の密着力を容易に、かつ、高精度に測定することができるとともに、温度、圧力及び被密着部材12等の因子を適宜変更して、これらの因子と密着力との関係を正確に測定することができる。
【0054】
図7〜図12は、本発明の樹脂成形体の密着力測定装置の第2の実施の形態を示す図である。
【0055】
図7は、本発明の樹脂成形体の密着力測定装置の第2の実施の形態を適用した密着力測定装置20の概略正面断面図である。図7において、密着力測定装置20は、平板状の固定ダイプレート(プレス部材)21に垂直に複数本のガイドポール22が配設されており、ガイドポール22には可動ダイプレート(プレス部材)23が当該ガイドポール22に沿って図7において上下方向に移動可能に配設されている。この可動ダイプレート23は、図示しないダイプレート駆動機構により上下方向に移動される。なお、本実施の形態では、可動ダイプレート23を移動させているが、固定ダイプレート21を移動させるものであってもよいし、可動ダイプレート23と可動ダイプレート23の双方を移動させるようにしてもよい。上記固定ダイプレート21、ガイドポール22、可動ダイプレート23及びダイプレート駆動機構は、全体としてプレス手段として機能する。
【0056】
可動ダイプレート23には、その中央部分に圧縮力検出部(圧縮力検出手段)24が固定的に取り付けられており、圧縮力検出部24の下端部には、中空の箱形等に形成された圧縮ロッド25が固定されている。
【0057】
圧縮ロッド25内には、引張力検出部(引張力検出手段)26が固定的に配設されており、引張力検出部26の下端には、上下が閉止された中空の箱形(ロ型)あるいは円筒形に形成された引張ロッド27が固定されている。引張ロッド27は、図8に示すように、その下板部分の中央部に挿入穴27aが形成されており、挿入穴27aには、略T字型に形成されアーム部28aと平板部28bを備えた接続治具28のアーム部28aが摺動自在に挿入される。接続治具28のアーム部28aは、上記圧縮ロッド25の下板部分の中央部に形成された挿入穴25aをも摺動自在に貫通し、引張ロッド27の挿入穴27aと圧縮ロッド25の挿入穴25aは、同一直線上に形成されている。
【0058】
接続治具28のアーム部28aの圧縮ロッド25外の先端には、上記平板部28bが形成されており、接続治具28の平板部28bの下面には、測定対象の樹脂成形体29が形成されている。これら接続治具28と樹脂成形体29とは、一体成形されており、接続治具28の引張ロッド27内の先端には、引張ロッド27の下板に当接可能なストッパー30が固定されている。ストッパー30は、引張ロッド27の下板に形成された挿入穴27aを通過不可能な大きさに形成されており、引張ロッド27が上方に移動されるとき、引張ロッド27の下板に当接して引張ロッド27により上方に引き上げられる。
【0059】
圧縮ロッド25の下端には、所定長さの延長ロッド31が固定されており、延長ロッド31は、円筒状に形成されているとともに、当該円筒状の中空部分31aが圧縮ロッド25の挿入穴25aと一致する状態で固定されている。上記接続治具28のアーム部28aは、上記引張ロッド27の挿入穴27a、圧縮ロッド25の挿入穴25a及び延長ロッド31の中空部分31aを貫通している。
【0060】
再び図1において、上記接続治具28の下端面に形成された樹脂成形体29の下方の固定ダイプレート21上には、加熱プレート32が配設されており、加熱プレート32上には、被密着部材33が交換可能に固定されている。加熱プレート32には、ヒーター32aが設けられており、ヒーター32aは、加熱プレート32上の被密着部材33を任意の温度に加熱する。加熱プレート32を加熱する手段としては、ヒーター32aに限るものではなく、例えば、水、あるいは、油等の熱媒体をヒーター管等に通して加熱するものであってもよい。被密着部材33としては、測定対象の樹脂成形体29の測定に応じて、表面粗さや表面処理等を変化させたものが固定される。上記加熱プレート32及びヒーター32aは、全体として被密着部材温度制御手段として機能している。
【0061】
この被密着部材33の載置された加熱プレート32の上方には、恒温槽34が配設されており、恒温槽34は、少なくとも当該平板部28bと樹脂成形体29を収納可能な箱形状に形成されている。恒温槽34は、上記接続治具28の待機時に、接続治具28の平板部28bと樹脂成形体29が位置するときに、当該平板部28bと樹脂成形体29を収納する位置でガイドポール22に固定されることにより、配設されている。恒温槽34は、図示しない温度制御装置により加熱・冷却を行って、恒温槽34内の雰囲気温度を所定の低温から少なくとも樹脂成形体29の溶融温度以上までの広範囲で温度制御可能となっている。上記恒温槽34及び温度制御装置は、全体として樹脂成形体温度制御手段として機能している。
【0062】
恒温槽34の上壁には、上記接続治具28のアーム部28aの挿入された上記延長ロッド31の侵入する挿入穴34aが形成されており、アーム部28aの挿入された延長ロッド31が当該挿入穴34aを通して上下方向に移動可能となっている。恒温槽34の下壁には、例えば、スライド式に開閉可能な開閉扉35が配設されており、開閉扉35は、開いた状態で樹脂成形体29の取り付けられた平板部28bが通過可能な大きさに形成されている。
【0063】
上記延長ロッド31は、少なくとも上記恒温槽34内に位置する部分は、例えば、セラミックス等の断熱材(断熱層)36が設けられている。
【0064】
上記圧縮ロッド25と引張ロッド27と延長ロッド31、圧縮力検出部24と引張力検出部26及び接続治具28は、同一直線上に配設されており、可動ダイプレート23をガイドポール22に沿って上下方向に移動させた際、同一直線上を接続治具28のアーム部28aに沿って移動する。
【0065】
なお、上記圧縮力検出部24及び引張力検出部26は、図示しないアンプ及びA/D変換部等を介して図示しないコンピュータ等の処理制御部に接続されており、処理制御部は、アンプ及びA/D変換部等を介して圧縮力検出部24及び引張力検出部26から出力される検出信号を解析して、圧縮力データ及び引張力データを、図示しない表示部に表示出力し、また、図示しない記録部で記録紙に記録出力する。
【0066】
次に、本実施の形態の作用を説明する。密着力測定装置20は、樹脂成形体29の密着力の測定に際して、測定対象の樹脂成形体29と一体成形された接続治具28のアーム部28aが圧縮ロッド25の挿入穴25aと引張ロッド27の挿入穴27a及び延長ロッド31の中空部分31aに挿入され、アーム部28aの先端にストッパー30が取り付けられることにより、樹脂成形体29と接続治具28が密着力測定装置20に装着され、また、被密着部材33が固定ダイプレート21に固定された加熱プレート32上に設置される。
【0067】
このようにして、一体成形された樹脂成形体29と接続治具28及び被密着部材33が装着されると、接続治具28の平板部28bに取り付けられた樹脂成形体29が収納されている恒温槽34の雰囲気温度を当該樹脂成形体29の溶融温度以上の温度に加熱し、加熱プレート32により被密着部材33を当該被密着部材33の熱変形温度以下の所定温度に加熱する。すなわち、樹脂成形体29と被密着部材33をそれぞれ別の恒温槽34と加熱プレート32により樹脂成形体29の溶融温度以上の温度と被密着部材33の熱変形温度以下の温度に別々に加熱する。
【0068】
このとき、延長ロッド31の少なくとも恒温槽34内に位置する部分に断熱材36が設けられているので、恒温槽34内の温度が延長ロッド31を介して圧縮力検出部24及び引張力検出部26に伝達されて圧縮力検出部24及び引張力検出部26の温度が測定許容温度を超えることを防止することができる。
【0069】
この状態で、図9に示すように、ダイプレート駆動機構により可動ダイプレート23を、図9中矢印で示す下方向に移動し、可動ダイプレート23が下方に移動されると、可動ダイプレート23に固定されている圧縮力検出部24、圧縮力検出部24に固定されている圧縮ロッド25、圧縮ロッド25の下端に固定されている延長ロッド31、圧縮ロッド25に固定されている引張力検出部26及び引張力検出部26に固定されている引張ロッド27が一緒に下方に移動される。この可動ダイプレート23の下方への移動に際して、開閉扉35を開いて、恒温槽34内に位置していた樹脂成形体29を、当該開閉扉35部分を通過させて、下方に移動させ、加熱プレート32上の被密着部材33に密着させる。
【0070】
ダイプレート駆動機構により可動ダイプレート23を、図10に示すように、さらに下方に移動させて、圧縮ロッド25の下板に固定された延長ロッド31により接続治具28の平板部28bを下方に押し、樹脂成形体29を被密着部材33に押圧して、樹脂成形体29に所定の押圧力を付与する。このときの圧縮圧力を圧縮力検出部24で検出する。
【0071】
このとき、接続治具28のアーム部28aが、図8に示したように、圧縮ロッド25の挿入穴25a、引張ロッド27の挿入穴27a及び延長ロッド31の中空部分31aに摺動自在に挿入されているため、引張力検出部26には、負荷がかからない。その結果、引張力検出部26の許容荷重に制限されることなく、樹脂成形体29に必要な圧縮荷重をかけることができる。また、引張力検出部26は、樹脂成形体29と被密着部材33との密着力の大きさに合わせた高分解能な引張力検出部26を使用することができ、高精度な密着力の測定を行うことができる。さらに、可動ダイプレート23を下降させて圧縮ロッド25により延長ロッド31を介して樹脂成形体29に付与する初期圧力は、任意に設定することができ、かつ、このときの圧縮圧力を、上述のように、圧縮力検出部24で検出することにより、密着力と押圧力の関係を測定することができる。
【0072】
上述のようにして、可動ダイプレート23を下降させて圧縮ロッド25により延長ロッド31を介して樹脂成形体29を被密着部材33に押圧し、このときの圧縮圧力を圧縮力検出部24で検出する。
【0073】
次に、ダイプレート駆動機構により可動ダイプレート23を、図11に示すように、上方に移動させる。可動ダイプレート23が上方に移動されると、圧縮力検出部24とともに圧縮ロッド25、延長ロッド31、引張力検出部26及び引張ロッド27が上方に移動して、圧縮ロッド25に固定された延長ロッド31の下板が接続治具28の平板部28bから離れる。このとき、圧縮ロッド25、延長ロッド31及び引張ロッド27は、その挿入穴25a、7a及び中空部分31aにより接続治具28のアーム部28aに摺動して上方に移動し、密着力測定に影響を与えることがない。
【0074】
さらに可動ダイプレート23を上方に移動させると、図12に示すように、引張ロッド27の下板が接続治具28の上端に固定されたストッパー30に当接し、接続治具28と一体成形された樹脂成形体29を上方に引き上げようとする。
【0075】
この状態でさらに可動ダイプレート23を上方に移動させると、樹脂成形体29と被密着部材33との剥離が開始され、そのときに発生する密着力を引張力検出部26により検出する。その後、樹脂成形体29と被密着部材33とが完全に剥離されると、密着力の測定を終了する。
【0076】
そして、この密着力の測定において、上述のように、圧縮ロッド25と引張ロッド27と延長ロッド31、圧縮力検出部24と引張力検出部26及び接続治具28が、同一直線上に配設されているため、可動ダイプレート23をガイドポール22に沿って上下方向に移動させた際、樹脂成形体29が斜め方向に押圧されたり、引っ張られたりせず、同一直線上を移動し、密着力を正確に測定することができる。
【0077】
また、被密着部材33は、固定ダイプレート21上に固定された加熱プレート32上に設置するだけでよいため、形状の制約がほとんどなく、表面粗さや表面処理等の異なる被密着部材33と容易に交換することができ、各種条件の被密着部材33を使用した比較測定を容易に行うことができる。
【0078】
さらに、樹脂成形体29と接続治具28を一体成形により作製しているため、測定サンプルの作製が容易であるとともに、樹脂成形体29と接続治具28を接続する手間を省くことができ、密着力測定の操作性・利用性を向上させることができる。
【0079】
また、本実施の形態では、特に、樹脂成形体29と被密着部材33をそれぞれ別の恒温槽34と加熱プレート32により樹脂成形体29の溶融温度以上の温度と被密着部材33の熱変形温度以下の温度に別々に加熱しているため、樹脂成形体29を溶融温度以上に加熱した後、熱変形温度以下の被密着部材33に高温で密着させるという、実際の射出成形の形態とほぼ同様の形態で密着力の測定を行うことができ、より一層正確に密着力を測定することができる。
【0080】
さらに、延長ロッド31の少なくとも恒温槽34内に位置する部分に断熱材36が設けられているので、恒温槽34内の温度が延長ロッド31を介して圧縮力検出部24及び引張力検出部26に伝達されて圧縮力検出部24及び引張力検出部26の温度が測定許容温度を超えることを防止することができ、正確に密着力を測定することができる。
【0081】
このように、本実施の形態の密着力測定装置20によれば、樹脂成形体29と被密着部材33の密着力を容易に、かつ、より一層高精度に測定することができるとともに、温度、圧力及び被密着部材33等の因子を適宜変更して、これらの因子と密着力との関係をより一層正確に測定することができる。
【0082】
なお、本実施の形態では、恒温槽34を樹脂成形体29の溶融温度以上の温度に加熱し、加熱プレート32により被密着部材33を当該被密着部材33の熱変形温度以下の所定温度に加熱しているが、密着力測定に際して制御する温度は、上記温度に限るものではなく、例えば、樹脂成形体29と被密着部材33を同一温度に加熱して、密着力を測定してもよい。
【0083】
図13は、本発明の本発明の樹脂成形体の密着力測定装置の第3の実施の形態を示す図であり、本実施の形態は、待機位置に位置するときの樹脂成形体と被密着部材を別々の恒温槽内に位置させて、それぞれの恒温槽内で加熱するものである。
【0084】
なお、本実施の形態は、上記第2の実施の形態と同様の密着力測定装置に適用したものであり、本実施の形態の説明においては、上記第2の実施の形態と同様の構成部分には、同一の符号を付して、その詳細な説明を省略する。
【0085】
図13において、密着力測定装置40は、固定ダイプレート23上に第1恒温槽41と第2恒温槽42が可動ダイプレート23の移動方向、すなわち、上下方向に重なって配設されており、第1恒温槽41と第2恒温槽42は、仕切り部材43で仕切られている。少なくとも上側の第1恒温槽41は、図示しない温度制御装置により所定の広範囲で温度制御可能となっている。
【0086】
第1恒温槽41と第2恒温槽42を仕切る仕切り部材43には、スライド式の開閉扉44が配設されており、開閉扉44が開かれることにより、樹脂成形体29の取り付けられた接続治具28の平板部28bが通過可能となっている。
【0087】
上側の第1恒温槽41内には、待機時に樹脂成形体29の取り付けられた接続治具28の平板部28bが位置し、下側の第2恒温槽42内には、第2恒温槽42の下壁上に加熱プレート32が配設されている。第1恒温槽41の上壁には、接続治具28のアーム部28aの挿入された上記延長ロッド31の侵入する挿入穴41aが形成されており、アーム部28aの挿入された延長ロッド31が当該挿入穴41aを通して上下方向に移動可能となっている。加熱プレート32上には、被密着部材33が交換可能に固定される。
【0088】
本実施の形態の密着力測定装置40では、樹脂成形体29の密着力の測定に際して、接続治具28の平板部28bに形成された樹脂成形体29を上側の第1恒温槽41内に位置させ、開閉扉44を閉じた状態で、第1恒温槽41で樹脂成形体29を樹脂成形体29の溶融温度以上に加熱するとともに、第2恒温槽42内の加熱プレート32上の被密着部材33を加熱プレート32により被密着部材33の熱変形温度以下の温度に加熱する。
【0089】
このとき、第1恒温槽41と第2恒温槽は、仕切り部材43により仕切られているとともに、開閉扉44が閉じられているため、樹脂成形体29を均一に溶融温度以上に加熱することができ、また、第2恒温槽42内の被密着部材33を均一に熱変形温度以下の温度に加熱することができる。
【0090】
次に、開閉扉44をスライドさせて開き、ダイプレート駆動機構により可動ダイプレート23を下方に移動させて、接続治具28の平板部28bに形成された樹脂成形体29を接続治具28とともに下方に移動させ、樹脂成形体29開閉扉44を通過させて第2恒温槽42内に侵入させて、第2恒温槽42内の加熱プレート32上に固定され熱変形温度以下の温度に加熱されている被密着部材33上に密着させる。
【0091】
ダイプレート駆動機構により可動ダイプレート23を、さらに下方に移動させて、圧縮ロッド25の下板に固定された延長ロッド31により接続治具28の平板部28bを下方に押し、樹脂成形体29を被密着部材33に押圧して、樹脂成形体29に所定の押圧力を付与する。このときの圧縮圧力を圧縮力検出部24で検出する。
【0092】
次に、ダイプレート駆動機構により可動ダイプレート23を、上方に移動させる。可動ダイプレート23が上方に移動されると、圧縮力検出部24とともに圧縮ロッド25、延長ロッド31、引張力検出部26及び引張ロッド27が上方に移動して、圧縮ロッド25に固定された延長ロッド31の下板が接続治具28の平板部28bから離れる。
【0093】
さらに可動ダイプレート23を上方に移動させると、引張ロッド27の下板が接続治具28の上端に固定されたストッパー30に当接し、接続治具28と一体成形された樹脂成形体29を上方に引き上げようとする。
【0094】
この状態でさらに可動ダイプレート23を上方に移動させると、樹脂成形体29と被密着部材33との剥離が開始され、そのときに発生する密着力を引張力検出部26により検出する。その後、樹脂成形体29と被密着部材33とが完全に剥離されると、密着力の測定を終了する。
【0095】
このように、樹脂成形体29は、開かれた開閉扉44部分を通って、樹脂成形体29の溶融温度以上の温度に温度制御された第1恒温槽41から加熱プレート32により被密着部材33の熱変形温度以下の所定温度に加熱された第2恒温槽42へと連続的に移動され、通常の射出成形で樹脂が溶融温度以上に加熱されたシリンダーから熱変形温度以下に加熱された金型キャビティ内へ連続的に移動する状態と同様の状態を、第1恒温槽41と第2恒温槽42という2つの恒温槽41、42で再現した状態で移動されることとなる。その結果、実際の射出成形と同様の形態をより一層再現した状態で、樹脂成形体29と被密着部材33との密着力を検出することができ、より一層簡単に、かつ、より一層高精度に樹脂成形体29と被密着力33の密着力を測定することができる。
【0096】
以上、本発明者によってなされた発明を好適な実施の形態に基づき具体的に説明したが、本発明は上記のものに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
【0097】
例えば、上記第2及び第3の実施の形態においては、恒温槽34、第1恒温槽41及び第2恒温槽42に内部の空気を対流させるファンを取り付けてもよい。このようにすると、恒温槽34、第1恒温槽41及び第2恒温槽42の内部の温度を均一にすることができ、密着力測定力の測定精度をより一層向上させることができる。
【0098】
また、上記各実施の形態において、樹脂成形体10、29と被密着部材12、33との接触時及び剥離時の状態を、例えば、CCD(Charge Coupled Device )カメラ等でモニタしてもよい。このようにすると、場所による剥離挙動の相違等を樹脂の成形にフィードバックすることができる。
【0099】
【発明の効果】
請求項1記載の発明の樹脂成形体の密着力測定装置によれば、相互に接近する方向及び離隔する方向に移動される一対のプレス部材のうち、一方側に所定の接続部材を介して樹脂成形体を取り付け、他方のプレス部材に樹脂成形体と対向する状態で被密着部材を交換可能に取り付け、プレス手段によりプレス部材を近接する方向に移動させて樹脂成形体と被密着部材とを所定圧力で押圧させて、当該押圧力を圧縮力検出手段で検出し、温度制御手段により所定温度に加熱した後、所定温度に冷却して、プレス手段によりプレス部材を離隔する方向に移動して、樹脂成形体と被密着部材とを剥離させ、当該剥離時の樹脂成形体と被密着部材との密着力を引張力検出手段で測定しているので、被密着部材の密着面にエジェクタピンの挿入穴を形成することなく、樹脂成形体の密着力を精度良く、かつ、容易に測定することができ、密着力の要因(因子)を精度良く把握することができる。
【0100】
請求項2記載の発明の樹脂成形体の密着力測定装置によれば、圧縮力検出手段を、一方のプレス部材に固定し、当該圧縮力検出手段に、樹脂成形体を被密着部材方向に押圧する圧縮部材を固定し、引張力検出手段を、当該圧縮部材に固定し、当該引張力検出手段に、樹脂成形体を被密着部材から離隔する方向に移動させる引張部材を固定し、当該引張部材に接続部材を介して樹脂成形体を取り付け、これら圧縮力検出手段、圧縮部材、引張力検出手段、引張部材及び接続部材を、少なくともプレス手段によりプレス部材が近接する方向に移動される際、引張力検出手段に荷重がかからない状態で、同一直線上に配設しているので、引張力検出手段の許容荷重に関わらず、密着力測定時に任意の大きさの圧縮力を負荷することができるとともに、樹脂成形体の押圧力に関わらず、適宜密着力に合わせた最適な分解能を備えた引張力検出手段を使用することができ、樹脂成形体の密着力をより一層高精度に測定することができる。
【0101】
請求項3記載の発明の樹脂成形体の密着力測定装置によれば、温度制御手段として、少なくとも樹脂成形体と被密着部材とを覆い、所定の低温から高温までの広範囲で温度制御する恒温槽を用いているので、樹脂成形体と被密着部材の加熱・冷却時に、密着面と樹脂成形体の温度分布が生じるのを防止することができ、樹脂成形体の密着力をより一層高精度に測定することができる。
【0102】
請求項4記載の発明の樹脂成形体の密着力測定装置によれば、樹脂成形体を、接続部材と一体成形しているので、密着力測定用サンプルの作製を容易なものとすることができるとともに、接続部材と樹脂成形体との接続の手間を省くことができ、樹脂成形体の密着力測定装置の利用性を向上させることができるとともに、樹脂成形体の密着力を高精度に測定することができる。
【0103】
請求項5記載の発明の樹脂成形体の密着力測定装置によれば、相互に接近する方向及び離隔する方向に移動される一対のプレス部材のうち、一方側に所定の接続部材を介して樹脂成形体を取り付け、他方のプレス部材に樹脂成形体と対向する状態で被密着部材を交換可能に取り付け、樹脂成形体を樹脂成形体温度制御手段で所定温度に加熱し、被密着部材を被密着部材温度制御手段で所定温度に加熱した状態で、プレス手段によりプレス部材を近接する方向に移動させて樹脂成形体と被密着部材とを所定圧力で押圧させて、当該押圧力を圧縮力検出手段で検出した後、プレス手段によりプレス部材を離隔する方向に移動して、樹脂成形体と被密着部材とを剥離させ、当該剥離時の樹脂成形体と被密着部材との密着力を引張力検出手段で測定しているので、被密着部材の密着面にエジェクタピンの挿入穴を形成することなく、樹脂成形体と被密着部材を独立に温度制御して、実際の樹脂の射出成形と略同様の状態で樹脂成形体の密着力を測定することができ、樹脂成形体の密着力をより一層精度良く、かつ、容易に測定して、密着力の要因をより一層精度良く把握することができる。
【0104】
請求項6記載の発明の樹脂成形体の密着力測定装置によれば、樹脂成形体温度制御手段を、樹脂成形体を覆うとともに、所定の低温から高温までの広範囲で温度制御する恒温槽で構成し、被密着部材温度制御手段を、恒温槽外に配設し、測定に際して、樹脂成形体温度制御手段である恒温槽内で樹脂成形体を所定温度に加熱し、恒温槽外の被密着部材温度制御手段で被密着部材を所定温度に加熱し、プレス手段によりプレス部材を介して恒温槽内の樹脂成形体を被密着部材方向に移動させて、恒温槽外の被密着部材に押圧させるので、樹脂成形体を短時間で均一に加熱することができ、樹脂成形体と被密着部材をより一層正確に密着させて、樹脂成形体の密着力をより一層精度良く、かつ、容易に測定して、樹脂成形体の密着力をより一層高精度に測定することができる。
【0105】
請求項7記載の発明の樹脂成形体の密着力測定装置によれば、樹脂成形体温度制御手段と被密着部材温度制御手段を、それぞれ所定の低温から高温までの広範囲で温度制御する恒温槽で構成するとともに、プレス部材の移動方向に並んで配設し、測定に際して、樹脂成形体温度制御手段である恒温槽で樹脂成形体を所定温度に加熱し、被密着部材温度制御手段である恒温槽で被密着部材を所定温度に加熱し、プレス手段によりプレス部材を介して樹脂成形体温度制御手段である恒温槽内の樹脂成形体を被密着部材方向に移動させて、被密着部材温度制御手段である恒温槽内の被密着部材に押圧させているので、シリンダとキャビティを想定した温度の異なる2つの恒温槽の間を樹脂成形体を連続的に移動させて、樹脂成形体の密着力を測定することができ、実際の射出成形の形態により一層近似した形態で、樹脂成形体の密着力をより一層高精度に測定することができる。
【0106】
請求項8記載の発明の樹脂成形体の密着力測定装置によれば、請求項8記載の発明は、圧縮力検出手段及び引張力検出手段を、樹脂成形体温度制御手段及び被密着部材温度制御手段から所定距離離れて配設するとともに、樹脂成形体温度制御手段及び被密着部材温度制御手段との間に所定の断熱層を配設しているので、樹脂成形体温度制御手段及び被密着部材温度制御手段の温度を高くした場合にも、圧縮力検出手段及び引張力検出手段が測定許容温度を超えることを防止することができ、樹脂成形体の密着力をより一層高精度に測定することができる。
【図面の簡単な説明】
【図1】本発明の樹脂成形体の密着力測定装置の第1の実施の形態を適用した密着力測定装置の概略正面断面図。
【図2】図1の接続治具部分の拡大正面断面図。
【図3】図1の密着力測定装置の可動ダイプレートの下降を開始した状態の正面断面図。
【図4】図1の密着力測定装置の可動ダイプレートを下降させて樹脂成形体を圧縮している状態の正面断面図。
【図5】図1の密着力測定装置の可動ダイプレートの上昇を開始した状態の正面断面図。
【図6】図1の密着力測定装置の可動ダイプレートを上昇させて樹脂成形体と被密着部材を剥離させている状態の正面断面図。
【図7】本発明の樹脂成形体の密着力測定装置の第2の実施の形態を適用した密着力測定装置の概略正面断面図。
【図8】図7の接続治具部分の拡大正面断面図。
【図9】図7の密着力測定装置の可動ダイプレートの下降を開始した状態の正面断面図。
【図10】図7の密着力測定装置の可動ダイプレートを下降させて樹脂成形体を圧縮している状態の正面断面図。
【図11】図7の密着力測定装置の可動ダイプレートの上昇を開始した状態の正面断面図。
【図12】図7の密着力測定装置の可動ダイプレートを上昇させて樹脂成形体と被密着部材を剥離させている状態の正面断面図。
【図13】本発明の樹脂成形体の密着力測定装置の第3の実施の形態を適用した密着力測定装置の概略正面断面図。
【符号の説明】
1 密着力測定装置
2 固定ダイプレート
3 ガイドポール
4 可動ダイプレート
5 圧縮力検出部
6 圧縮ロッド
7 引張力検出部
8 引張ロッド
8a 挿入穴
9 接続治具
9a アーム部
9b 平板部
10 樹脂成形体
11 ストッパー
12 被密着部材
13 恒温槽
20 密着力測定装置
21 固定ダイプレート
22 ガイドポール
23 可動ダイプレート
24 圧縮力検出部
25 圧縮ロッド
26 引張力検出部
27 引張ロッド
27a 挿入穴
28 接続治具
28a アーム部
28b 平板部
29 樹脂成形体
30 ストッパー
31 延長ロッド
31a 中空部分
32 加熱プレート
32a ヒーター
33 被密着部材
34 恒温槽
34a 挿入穴
35 開閉扉
36 断熱材
40 密着力測定装置
41 第1恒温槽
41a 挿入穴
42 第2恒温槽
43 仕切り部材
44 開閉扉
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring the adhesion force of a resin molded body, and more particularly to an apparatus for measuring the adhesion force of a resin molded body that measures the adhesion force of the resin molded body with high accuracy.
[0002]
[Prior art]
Conventionally, when producing a high-precision plastic molded product, slight deformation at the time of releasing the molded product affects the quality of the molded product. On the other hand, the adhesion between the resin and the cavity wall surface greatly affects the transferability of the molded product.
[0003]
Therefore, in order to grasp the releasability or transferability between the resin molded body and the cavity wall surface, the adhesion force between the resin molded body and the cavity wall surface is accurately measured, and the factors that influence the adhesion force are clarified. Equipment is required.
[0004]
Conventionally, a method for measuring the contact angle of the cavity member has been used as a method for evaluating the adhesion force, but this method cannot be used to examine the difference in adhesion force due to the difference in the resin used, but also molding. It is not possible to examine changes in adhesion strength with respect to temperature and pressure.
[0005]
Conventionally, methods for measuring the release resistance of a resin molded body have been proposed in JP-A-63-144026, JP-A-9-123231, JP-A-5-149869, and the like. In either case, after molding the resin molded body, the resistance force at that time is measured by a load detector through an ejector pin for releasing the resin.
[0006]
[Problems to be solved by the invention]
However, in the measurement of the release resistance of such a conventional resin molding, since the release resistance of the resin depends on the position and size of the ejector pin, evaluation in the case of a specific molded product Although it is possible, it is not possible to obtain versatile data for grasping the factors that influence the adhesion. In the measurement of the mold release resistance of the resin molded product, if any air is present between the resin molded product and the contact surface, the separation from the air-interposed part preferentially proceeds, and the adhesion force The measured value varies and the adhesion force cannot be measured with high accuracy. However, in the conventional measurement method described above, air is interposed in the slight clearance between the ejector pin and the insertion hole processed in the adhesion surface, and the clearance There was a problem that the peeling progressed preferentially from the portion, and the adhesion force could not be measured with high accuracy.
[0007]
Accordingly, the invention according to claim 1 is the one in which the resin molded body is attached to one side through a predetermined connecting member among the pair of press members moved in the direction approaching and separating from each other, and the other side press The member to be adhered is replaceably attached to the member so as to face the resin molded body, and the pressing member is moved by the pressing means in the direction in which the member is brought closer to press the resin molded body and the member to be adhered with a predetermined pressure. The pressure is detected by the compression force detection means, heated to a predetermined temperature by the temperature control means, cooled to the predetermined temperature, and moved by the pressing means in the direction of separating the press member, By measuring the adhesion force between the resin molded body and the adherent member at the time of peeling with a tensile force detecting means, the resin molding can be performed without forming an ejector pin insertion hole on the adherent surface of the adherend member. A device for measuring the adhesive strength of resin moldings that can accurately and easily measure the adhesive strength of the resin, and accurately determine the factors of the adhesive strength (surface roughness, surface treatment, temperature, pressure) It is intended to provide.
[0008]
According to the second aspect of the present invention, the compressive force detecting means is fixed to one pressing member, and the compressive force detecting means is fixed with a compressing member that presses the resin molded body in the direction of the adhered member, and the tensile force detecting means. Is fixed to the compression member, a tensile member for moving the resin molded body in a direction away from the contacted member is fixed to the tensile force detecting means, and the resin molded body is attached to the tensile member via a connecting member. The compression force detection means, the compression member, the tensile force detection means, the tension member, and the connection member are the same in a state in which no load is applied to the tension force detection means when the press member is moved at least by the pressing means. By arranging on a straight line, regardless of the allowable load of the tensile force detection means, it is possible to apply a compressive force of any size when measuring the adhesion force, and regardless of the pressing force of the resin molded body, Providing an apparatus for measuring the adhesion of resin moldings, which can use tensile force detection means with optimal resolution matched to the best adhesion, and can measure the adhesion of resin moldings with higher accuracy. The purpose is to do.
[0009]
In the invention according to claim 3, the temperature control means covers at least the resin molded body and the adherend member, and uses a thermostatic chamber that controls the temperature in a wide range from a predetermined low temperature to a high temperature, thereby providing the resin molded body and the adherend. Providing a resin molding adhesion force measuring device that prevents the temperature distribution between the adhesion surface and the resin molding from occurring during heating / cooling of the member and can measure the adhesion of the resin molding with higher accuracy. The purpose is to do.
[0010]
In the invention according to claim 4, the resin molded body is integrally formed with the connection member, thereby facilitating the preparation of the sample for measuring the adhesion force and saving the labor of connection between the connection member and the resin molded body. In addition, an object of the present invention is to provide an apparatus for measuring the adhesive strength of a resin molded body that has good usability and can measure the adhesive strength of the resin molded body with high accuracy.
[0011]
According to a fifth aspect of the present invention, a resin molded body is attached to one side of a pair of press members that are moved in a direction approaching and separating from each other via a predetermined connection member, and the resin is attached to the other press member. A state in which the adherend member is replaceably attached in a state of facing the molded body, the resin molded body is heated to a predetermined temperature by the resin molded body temperature control means, and the adherend member is heated to a predetermined temperature by the adherend member temperature control means Then, the pressing member is moved in the direction in which the pressing member approaches, the resin molded body and the contacted member are pressed at a predetermined pressure, and the pressing force is detected by the compressing force detecting unit, and then the pressing member is pressed by the pressing unit. By moving in a separating direction, the resin molded body and the adherend member are peeled off, and the adhesion force between the resin molded body and the adherend member at the time of peeling is measured by a tensile force detecting means, On close contact Without forming the insertion hole of the jector pin, the temperature of the resin molded body and the contacted member is independently controlled, and the adhesion force of the resin molded body is measured in a state substantially similar to the actual resin injection molding. It is an object of the present invention to provide an apparatus for measuring the adhesion force of a resin molded body that can more easily and more accurately measure the adhesion force of the resin and can grasp the cause of the adhesion force more accurately.
[0012]
The invention according to claim 6 is configured such that the resin molded body temperature control means covers the resin molded body and is controlled in a wide range from a predetermined low temperature to a high temperature. When the measurement is performed outside the bath, the resin molded body is heated to a predetermined temperature in a thermostatic chamber that is a resin molded body temperature control means, and the adherend member temperature control means outside the thermostat bath is used to bring the adherend member to a predetermined temperature. Heating and moving the resin molded body in the thermostat bath in the direction of the adherend member through the press member by the pressing means and pressing the adherend member outside the thermostat bath makes the resin molded body uniform in a short time Heat the resin molded body and the contacted member more closely, more accurately and easily measure the adhesive strength of the resin molded body, and the adhesive strength of the resin molded body with higher accuracy The density of the molded resin that can be measured And its object is to provide a force measuring device.
[0013]
According to the seventh aspect of the present invention, the resin molded body temperature control means and the adherend member temperature control means are each constituted by a constant temperature bath that controls the temperature in a wide range from a predetermined low temperature to a high temperature, and aligned in the moving direction of the press member. In the measurement, the resin molded body is heated to a predetermined temperature in a constant temperature bath that is a resin molded body temperature control means, and the adherend member is heated to a predetermined temperature in a constant temperature bath that is a contact member temperature control means, The pressing means moves the resin molded body in the thermostatic chamber, which is the resin molded body temperature control means, through the pressing member in the direction of the adherent member, and presses the adherent member in the thermostatic tank, which is the adherent member temperature control means. By doing so, the resin molded body is continuously moved between two constant temperature baths assuming different cylinders and cavities, and the adhesion force of the resin molded body is measured. In similar form, and its object is to provide a contact force measuring device of a resin molded article capable of measuring the adhesion of the resin molded body more accurately.
[0014]
According to the eighth aspect of the present invention, the compressive force detecting means and the tensile force detecting means are disposed at a predetermined distance from the resin molded body temperature control means and the adherend member temperature control means, and the resin molded body temperature control means and Even if the temperature of the resin molded body temperature control means and the adherend member temperature control means is increased by disposing a predetermined heat insulating layer between the contact member temperature control means, the compression force detection means and the tensile force detection are detected. It is an object of the present invention to provide an apparatus for measuring the adhesive strength of a resin molded body, which can prevent the means from exceeding the measurement allowable temperature and can measure the adhesive strength of the resin molded body with higher accuracy.
[0015]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an apparatus for measuring the adhesion force of a resin molded body, comprising: a pressing means that moves a pair of pressing members in a direction approaching and separating from each other; and a predetermined connecting member on one side of the pressing member. A press-attached resin molded body attached to the other side of the press member so as to be exchangeable while facing the resin molded body, and the pressing means moves in a direction in which the press member approaches And a compression force detecting means for measuring the pressing force when the resin molded body and the contacted member are pressed, and the pressing means is moved in a direction in which the press member is separated from the resin molded body. Tensile force detection means for measuring the adhesion force between the resin molded body and the adherend member when the adherend member is peeled, and at least the resin molded body and the adherend member are predetermined. Temperature control means for controlling the temperature from a high temperature to a predetermined low temperature, and by moving the press member in the direction of approach by the pressing means to press the resin molded body and the contacted member with a predetermined pressure, The pressing force is detected by the compression force detection means, heated to a predetermined temperature by the temperature control means, cooled to a predetermined temperature, and moved by the pressing means in a direction to separate the pressing member, and the resin The object is achieved by peeling the molded body and the adherend member and measuring the adhesion force between the resin molded body and the adherent member at the time of peeling by the tensile force detecting means.
[0016]
According to the above configuration, the resin molded body is attached to one side of the pair of press members that are moved in the direction approaching and separating from each other via the predetermined connection member, and the other side press member is resin molded. The member to be adhered is replaceably attached while facing the body, and the pressing member is moved by the pressing means in the direction of approaching to press the resin molded body and the member to be adhered with a predetermined pressure, and the pressing force is compressed. Detected by the detection means, heated to a predetermined temperature by the temperature control means, cooled to a predetermined temperature, moved in the direction of separating the press member by the press means, the resin molded body and the adherend member are peeled, Since the adhesive force between the resin molded body and the adherend member at the time of peeling is measured by the tensile force detecting means, the resin molded article can be adhered without forming an ejector pin insertion hole on the contact surface of the adherend member. Power Well, and it can be easily measured, adhesion factors (contact surface of surface roughness, surface treatment, temperature, pressure) can be grasped accurately.
[0017]
In this case, for example, as described in claim 2, the compression force detection means is fixed to the one press member, and the compression force detection means presses the resin molded body toward the contacted member. A compression member is fixed, the tensile force detecting means is fixed to the compression member, and a tensile member for moving the resin molded body in a direction away from the contacted member is fixed to the tensile force detecting means. The resin molded body is attached to the tension member via the connection member, and the compression force detection means, the compression member, the tension force detection means, the tension member, and the connection member are connected to the press member by the press means. May be arranged on the same straight line in a state in which no load is applied to the tensile force detecting means when moving in the direction in which they approach each other.
[0018]
According to the above configuration, the compressive force detecting means is fixed to one of the press members, and the compressive force detecting means is fixed to the compressing member that presses the resin molded body in the direction of the adhered member, and the tensile force detecting means is A tension member that is fixed to the compression member and that moves the resin molded body in a direction away from the contacted member is fixed to the tensile force detecting means, and the resin molded body is attached to the tension member via a connecting member. When the compression force detection means, the compression member, the tensile force detection means, the tension member, and the connection member are moved at least by the pressing means in the direction in which the press member approaches, the tensile force detection means is not applied with a load and is collinear. Therefore, regardless of the allowable load of the tensile force detection means, it is possible to apply an arbitrary amount of compressive force during the measurement of the adhesion force, and an appropriate density regardless of the pressing force of the resin molding. Can use a tensile force detecting means having an optimum resolution tailored to the force, it is possible to measure the adhesion of the resin molded body more accurately.
[0019]
Further, for example, as described in claim 3, the temperature control means covers at least the resin molded body and the adherend member, and is formed of a thermostatic chamber that controls the temperature in a wide range from the predetermined low temperature to a high temperature. May be.
[0020]
According to the above configuration, since the temperature control means uses a thermostatic chamber that covers at least the resin molded body and the adherend member and performs temperature control over a wide range from a predetermined low temperature to a high temperature, the resin molded body and the adherend member During heating / cooling, it is possible to prevent the temperature distribution between the adhesion surface and the resin molded body from occurring, and the adhesion force of the resin molded body can be measured with higher accuracy.
[0021]
Furthermore, for example, as described in claim 4, the resin molded body may be integrally formed with the connection member.
[0022]
According to the above configuration, since the resin molded body is integrally formed with the connection member, it is possible to easily prepare the sample for measuring the adhesion force, and it is possible to connect the connection member and the resin molded body. Can be omitted, the usability of the apparatus for measuring the adhesion of a resin molded body can be improved, and the adhesion of the resin molded body can be measured with high accuracy.
[0023]
According to a fifth aspect of the present invention, there is provided an apparatus for measuring an adhesion force of a resin molded body, comprising: a pressing means that moves a pair of pressing members in directions toward and away from each other; and a predetermined connecting member on one side of the pressing members. A press-attached resin molded body attached to the other side of the press member so as to be exchangeable while facing the resin molded body, and the pressing means moves in a direction in which the press member approaches And a compression force detecting means for measuring the pressing force when the resin molded body and the contacted member are pressed, and the pressing means is moved in a direction in which the press member is separated from the resin molded body. Tensile force detecting means for measuring the adhesion force between the resin molded body and the adherend member when the adherend member is peeled, and the resin molded body is heated from a predetermined high temperature to a predetermined low temperature. A temperature control means for controlling the temperature of the molded product to be controlled, and temperature control means for the temperature of the contacted member from a predetermined high temperature to a predetermined low temperature. In a state where the contact member is heated to a predetermined temperature by the contact member temperature control means, the press member is moved in the direction of approaching by the press means, and the resin molded body and the adherence are heated. A member is pressed at a predetermined pressure, the pressing force is detected by the compression force detecting means, and then the pressing member is moved in a direction in which the pressing member is separated, and the resin molded body and the contacted member are moved. And the adhesion force between the resin molded body and the adherend member at the time of peeling is measured by the tensile force detecting means to achieve the above object.
[0024]
According to the above configuration, the resin molded body is attached to the other press member by attaching the resin molded body to the other press member through the predetermined connecting member among the pair of press members moved in the direction approaching and separating from each other. In a state where the member to be adhered is replaceably attached in a state of facing, the resin molded body is heated to a predetermined temperature by the resin molded body temperature control means, and the member to be adhered is heated to a predetermined temperature by the member adhesion temperature control means, The pressing member is moved in the direction in which the pressing member approaches, the resin molded body and the adherend member are pressed at a predetermined pressure, the pressing force is detected by the compressive force detecting unit, and then the pressing member is separated by the pressing unit. Direction, the resin molded body and the adherend member are peeled off, and the adhesion force between the resin molded body and the adherent member at the time of peeling is measured by the tensile force detection means. Eje on the face Without forming an insertion hole for the tapin, the temperature of the resin molded body and the contacted member can be independently controlled, and the adhesive force of the resin molded body can be measured in a state substantially similar to the actual resin injection molding, It is possible to measure the adhesion force of the resin molding more accurately and easily, and to grasp the cause of the adhesion force more accurately.
[0025]
In this case, for example, as described in claim 6, in the apparatus for measuring the adhesion strength of the resin molded body, the resin molded body temperature control means covers the resin molded body and the predetermined low temperature to high temperature. It is composed of a thermostatic chamber that controls the temperature in a wide range, the contacted member temperature control means is disposed outside the thermostatic bath, and the resin molding is performed in the thermostatic chamber that is the resin molded body temperature control means during the measurement. The body is heated to the predetermined temperature, the adherend member temperature control means outside the thermostat bath is used to heat the adherend member to the predetermined temperature, and the press means is used to pass the press member through the press member in the thermostat bath. The resin molded body may be moved in the direction of the adherend member and pressed against the adherend member outside the thermostatic bath.
[0026]
According to the above configuration, the resin molded body temperature control means covers the resin molded body and is constituted by a constant temperature bath that controls the temperature in a wide range from a predetermined low temperature to a high temperature. In the measurement, the resin molded body is heated to a predetermined temperature in a thermostatic chamber which is a resin molded body temperature control means, and the adherend member is heated to a predetermined temperature by the adherent member temperature control means outside the thermostatic bath. The pressing means moves the resin molded body in the thermostatic chamber in the direction of the adherend member through the pressing member and presses the adherend member outside the thermostatic bath, so that the resin molded body is heated uniformly in a short time. It is possible to make the resin molded body and the contacted member more closely contact each other, more accurately and easily measure the adhesion force of the resin molded body, and the resin molded body contact force can be made more accurate. Can be measured.
[0027]
For example, as described in claim 7, the resin-molded body adhesion force measuring device includes the resin-molded body temperature control unit and the contacted member temperature control unit, each of which has a predetermined low temperature to a high temperature. The thermostatic chamber is configured to control the temperature in a wide range, and is arranged side by side in the moving direction of the press member, and in the measurement, the resin molded body is placed in the thermostatic chamber that is the resin molded body temperature control means. Heating to a predetermined temperature, heating the adherend member to the predetermined temperature in the thermostatic chamber which is the adherent member temperature control means, and pressing the press member to the resin molded body temperature control means via the press member Even if the resin molded body in the thermostatic chamber is moved in the direction of the adherend member and pressed against the adherend member in the thermostatic chamber which is the adherent member temperature control means. There.
[0028]
According to the above configuration, the resin molded body temperature control means and the adherend member temperature control means are each constituted by a thermostatic chamber that controls the temperature in a wide range from a predetermined low temperature to a high temperature, and is arranged side by side in the moving direction of the press member. In the measurement, the resin molded body is heated to a predetermined temperature in a thermostatic chamber that is a resin molded body temperature control means, and the adherend member is heated to a predetermined temperature in a thermostatic bath that is an adherent member temperature control means, and press means By moving the resin molded body in the thermostatic chamber, which is a resin molded body temperature control means, in the direction of the adherend member via the press member, the pressed member in the thermostatic tank, which is the adherent member temperature control means, is pressed. Therefore, it is possible to measure the adhesion of the resin molded body by continuously moving the resin molded body between two thermostats with different temperatures assuming the cylinder and the cavity. Yo In such a form that it further approximation, it is possible to measure the adhesion strength of the resin molded body more accurately.
[0029]
Further, for example, as set forth in claim 8, the compressive force detecting means and the tensile force detecting means are disposed at a predetermined distance from the resin molded body temperature control means and the contacted member temperature control means. In addition, a predetermined heat insulating layer may be disposed between the resin molded body temperature control means and the adherend member temperature control means.
[0030]
According to the above configuration, in the invention described in claim 8, the compressive force detecting means and the tensile force detecting means are disposed at a predetermined distance from the resin molded body temperature control means and the adherend member temperature control means, and the resin molding is performed. Since a predetermined heat insulating layer is disposed between the body temperature control means and the adherend member temperature control means, even when the temperature of the resin molded body temperature control means and the adherend member temperature control means is increased, the compression is performed. It is possible to prevent the force detection means and the tensile force detection means from exceeding the measurement allowable temperature, and it is possible to measure the adhesion force of the resin molded body with higher accuracy.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. The embodiments described below are preferred embodiments of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. As long as there is no description which limits, it is not restricted to these aspects.
[0032]
1-6 is a figure which shows 1st Embodiment of the adhesive force measuring apparatus of the resin molding of this invention.
[0033]
FIG. 1 is a schematic front cross-sectional view of an adhesion measuring apparatus 1 to which a first embodiment of an adhesion measuring apparatus for a resin molded body according to the present invention is applied. In FIG. 1, the adhesion measuring apparatus 1 has a plurality of guide poles 3 arranged perpendicular to a flat plate-shaped fixed die plate (press member) 2, and a movable die plate (press member) is provided on the guide pole 3. 4 is arranged so as to be movable in the vertical direction in FIG. The movable die plate 4 is moved in the vertical direction by a die plate driving mechanism (not shown). In the present embodiment, the movable die plate 4 is moved, but the fixed die plate 2 may be moved, or both the movable die plate 4 and the movable die plate 2 are moved. May be. The fixed die plate 2, the guide pole 3, the movable die plate 4, and the die plate driving mechanism function as a press unit as a whole.
[0034]
The movable die plate 4 has a compressive force detecting portion (compressing force detecting means) 5 fixedly attached to the central portion thereof, and formed at the lower end of the compressive force detecting portion 5 in a hollow box shape or the like. A compression rod (compression member) 6 is fixed.
[0035]
A tensile force detector (tensile force detector) 7 is fixedly disposed in the compression rod 6, and a hollow box shape (b-shaped) whose top and bottom are closed at the lower end of the tensile force detector 7. ) Or a cylindrically formed tension rod (tensile member) 8 is fixed. As shown in FIG. 2, the tension rod 8 has an insertion hole 8a formed at the center of the lower plate portion. The insertion hole 8a is formed in a substantially T shape, and has an arm portion 9a and a flat plate portion 9b. The arm portion 9a of the provided connecting jig (connecting member) 9 is slidably inserted. The arm portion 9a of the connecting jig 9 also slidably penetrates the insertion hole 6a formed in the central portion of the lower plate portion of the compression rod 6, and the insertion hole 8a of the tension rod 8 and the insertion of the compression rod 6 are inserted. The holes 6a are formed on the same straight line.
[0036]
The flat plate portion 9b is formed at the tip of the arm portion 9a of the connecting jig 9 outside the compression rod 6, and the measurement target resin molded body 10 is formed on the lower surface of the flat plate portion 9b of the connecting jig 9. Has been. The connecting jig 9 and the resin molded body 10 are integrally formed, and a stopper 11 capable of contacting the lower plate of the tension rod 8 is fixed to the tip of the connection jig 9 in the tension rod 8. Yes. The stopper 11 is formed in such a size that it cannot pass through the insertion hole 8a formed in the lower plate of the tension rod 8, and contacts the lower plate of the tension rod 8 when the tension rod 8 is moved upward. Then, it is pulled upward by the tension rod 8.
[0037]
Referring again to FIG. 1, a contact member 12 is replaceably fixed on the fixed die plate 2 below the resin molded body 10 formed on the lower end surface of the connection jig 9. Depending on the measurement of the resin molding 10 to be measured, the one whose surface roughness or surface treatment is changed is fixed.
[0038]
The compression rod 6 and the tension rod 8, the compression force detector 5, the tensile force detector 7, and the connecting jig 9 are arranged on the same straight line, and the movable die plate 4 is moved in the vertical direction along the guide pole 3. When it is moved to, it moves along the arm portion 9a of the connection jig 9 on the same straight line.
[0039]
The compression rod 6, the tension rod 8, the connecting jig 9, the resin molded body 10, the stopper 11, and the contacted member 12 that house the tensile force detection unit 7 are box-shaped thermostats installed on the fixed die plate 2. (Temperature control means) The thermostat 13 is accommodated in the thermostat 13 and is heated and cooled by a temperature control device (not shown), and the ambient temperature in the thermostat 13 is varied over a wide range from a predetermined low temperature to a predetermined high temperature. Control is possible. The constant temperature bath 13 is formed in a state where the upper plate portion is in sliding contact with the outer peripheral surface of the compressive force detecting unit 5, and when the compressive force detecting unit 5 moves in the vertical direction by the movement of the movable die plate 4, the constant temperature bath 13 is compressed. The outer peripheral surface of the force detection unit 5 moves while being in sliding contact with the upper plate portion of the thermostatic chamber 13. Although the thermostat 13 is not shown, the integrally molded resin molded body 10 and the connecting jig 9 are inserted into the thermostat 13, and the arm portion 9 a is inserted into the insertion hole 6 a of the compression rod 6 and the tension rod 8. Inserted into the insertion hole 8a, the stopper 11 is attached to the tip of the arm portion 9a, and a window portion for installing the contacted member 12 on the fixed die plate 2 is provided. It can be closed with a possible door member. The constant temperature bath 13 may be movable in the vertical direction without providing a window in the constant temperature bath 13.
[0040]
The compressive force detection unit 5 and the tensile force detection unit 7 are connected to a processing control unit such as a computer (not shown) via an amplifier and an A / D conversion unit (not shown). Analyze detection signals output from the compression force detection unit 5 and the tensile force detection unit 7 via the A / D conversion unit, etc., and display and output the compression force data and the tensile force data on a display unit (not shown). Then, it is recorded on a recording sheet by a recording unit (not shown).
[0041]
Next, the operation of the present embodiment will be described. In the measurement of the adhesion force of the resin molded body 10, the adhesion force measuring device 1 includes an arm 9 a of a connecting jig 9 integrally formed with the measurement target resin molded body 10 and an insertion hole 6 a of the compression rod 6 and a tension rod 8. Is inserted into the insertion hole 8a and the stopper 11 is attached to the tip of the arm portion 9a, so that the resin molded body 10 and the connecting jig 9 are attached to the adhesion force measuring apparatus 1, and the adherend member 12 is fixed die. Installed on the plate 2.
[0042]
When the integrally molded resin molded body 10, the connecting jig 9, and the contacted member 12 are mounted in this way, the movable die plate 4 is moved by the die plate driving mechanism as shown in FIG. When the movable die plate 4 is moved downward as indicated by the arrow and the movable die plate 4 is moved downward, the compression force detection unit 5 fixed to the movable die plate 4, the compression rod 6 fixed to the compression force detection unit 5, The tensile force detector 7 fixed to the compression rod 6 and the tensile rod 8 fixed to the tensile force detector 7 are moved downward together. In this way, the movable die plate 4 is moved downward to bring the resin molded body 10 and the contacted member 12 into close contact.
[0043]
As shown in FIG. 4, the movable die plate 4 is further moved downward by the die plate driving mechanism, and the flat plate portion 9 b of the connecting jig 9 is pushed downward by the lower plate of the compression rod 6, and the resin molded body 10 is moved. A predetermined pressing force is applied to the resin molded body 10 by pressing against the adherend member 12. The compression pressure at this time is detected by the compression force detector 5.
[0044]
At this time, the arm portion 9a of the connecting member 9 is slidably inserted into the insertion hole 6a of the compression rod 6 and the insertion hole 8a of the tension rod 8 as shown in FIG. 7 is not loaded. As a result, a necessary compressive load can be applied to the resin molded body 10 without being limited by the allowable load of the tensile force detection unit 7. In addition, the tensile force detection unit 7 can use a high-resolution tensile force detection unit 7 that matches the magnitude of the adhesion force between the resin molded body 10 and the contacted member 12, and can measure the adhesion force with high accuracy. It can be performed. Furthermore, the initial pressure applied to the resin molded body 10 by lowering the movable die plate 4 by the compression rod 6 can be arbitrarily set, and the compression pressure at this time can be detected as described above. By detecting by the unit 5, the relationship between the adhesion force and the pressing force can be measured.
[0045]
As described above, when the movable die plate 4 is lowered and the resin molded body 10 is pressed against the contacted member 12 by the compression rod 6, and the compression pressure at this time is detected by the compression force detection unit 5, The atmospheric temperature is raised to a predetermined temperature to generate a pressure in the resin molded body 10, the pressure at this time is detected by the compressive force detection unit 5, and then cooled to the predetermined temperature again.
[0046]
As described above, since the temperature of the atmosphere in the thermostatic chamber 13 is controlled to heat and cool the resin molded body 10 and the adherend member 12, temperature distribution between the resin molded body 10 and the adherend member 12 is prevented. It is possible to improve the measurement accuracy of the adhesion force.
[0047]
When the inside of the thermostatic chamber 13 is cooled to a predetermined temperature, the movable die plate 4 is moved upward as shown in FIG. 5 by the die plate driving mechanism. When the movable die plate 4 is moved upward, the compression rod 6, the tensile force detection unit 7, and the tension rod 8 are moved upward together with the compression force detection unit 5, and the lower plate of the compression rod 6 is connected to the connection jig 9. It leaves | separates from the flat plate part 9b. At this time, the compression rod 6 and the tension rod 8 slide upward on the arm portion 9a of the connecting jig 9 through the insertion holes 6a and 7a, and do not affect the adhesion force measurement.
[0048]
When the movable die plate 4 is further moved upward, as shown in FIG. 6, the lower plate of the tension rod 8 comes into contact with a stopper 11 fixed to the upper end of the connection jig 9 and is integrally formed with the connection jig 9. An attempt is made to pull the resin molded body 10 upward.
[0049]
When the movable die plate 4 is further moved upward in this state, peeling between the resin molded body 10 and the contacted member 12 is started, and the contact force generated at that time is detected by the tensile force detection unit 7. Then, when the resin molding 10 and the to-be-adhered member 12 are peeled completely, the measurement of contact | adhesion power is complete | finished.
[0050]
In the measurement of the adhesion force, as described above, the compression rod 6 and the tension rod 8, the compression force detector 5, the tensile force detector 7, and the connecting jig 9 are arranged on the same straight line. When the movable die plate 4 is moved up and down along the guide pole 3, the resin molded body 10 moves on the same straight line without being pressed or pulled in an oblique direction, and the adhesion force is accurately determined. Can be measured.
[0051]
Further, since the adherend member 12 only needs to be installed on the flat fixed die plate 2 in the thermostatic bath 13, there is almost no restriction on the shape, and the adherend member 12 is easily different from the adherend member 12 having different surface roughness, surface treatment, and the like. They can be exchanged, and comparative measurement using the adherend member 12 under various conditions can be easily performed.
[0052]
Furthermore, since the resin molded body 10 and the connection jig 9 are produced by integral molding, it is easy to produce a measurement sample, and the labor for connecting the resin molded body 10 and the connection jig 9 can be saved. It is possible to improve the operability and usability of the adhesion measurement.
[0053]
As described above, according to the adhesion measuring apparatus 1 of the present embodiment, the adhesion between the resin molded body 10 and the adherend member 12 can be easily and highly accurately measured, and the temperature, pressure, and By appropriately changing factors such as the contacted member 12, the relationship between these factors and the adhesion force can be accurately measured.
[0054]
7-12 is a figure which shows 2nd Embodiment of the adhesive force measuring apparatus of the resin molding of this invention.
[0055]
FIG. 7 is a schematic front cross-sectional view of an adhesion force measuring device 20 to which the second embodiment of the resin-molded adhesion strength measuring device of the present invention is applied. In FIG. 7, the adhesion measuring apparatus 20 is provided with a plurality of guide poles 22 perpendicular to a flat plate-shaped fixed die plate (press member) 21, and the guide pole 22 has a movable die plate (press member). 23 is arranged along the guide pole 22 so as to be movable in the vertical direction in FIG. The movable die plate 23 is moved in the vertical direction by a die plate driving mechanism (not shown). In the present embodiment, the movable die plate 23 is moved, but the fixed die plate 21 may be moved, or both the movable die plate 23 and the movable die plate 23 are moved. May be. The fixed die plate 21, the guide pole 22, the movable die plate 23, and the die plate driving mechanism function as press means as a whole.
[0056]
A compressive force detector (compressive force detector) 24 is fixedly attached to the central portion of the movable die plate 23. The lower end of the compressive force detector 24 is formed in a hollow box shape or the like. The compression rod 25 is fixed.
[0057]
A tensile force detection unit (tensile force detection means) 26 is fixedly disposed in the compression rod 25. A hollow box shape (b-shaped) whose top and bottom are closed at the lower end of the tensile force detection unit 26. Or a tension rod 27 formed in a cylindrical shape is fixed. As shown in FIG. 8, the tension rod 27 has an insertion hole 27a formed at the center of the lower plate portion. The insertion hole 27a is formed in a substantially T-shape, and has an arm portion 28a and a flat plate portion 28b. The arm portion 28a of the connecting jig 28 provided is slidably inserted. The arm portion 28a of the connecting jig 28 also slidably penetrates the insertion hole 25a formed in the center portion of the lower plate portion of the compression rod 25, and the insertion hole 27a of the tension rod 27 and the insertion of the compression rod 25 are inserted. The holes 25a are formed on the same straight line.
[0058]
The flat plate portion 28b is formed at the tip of the arm portion 28a of the connection jig 28 outside the compression rod 25, and the resin molded body 29 to be measured is formed on the lower surface of the flat plate portion 28b of the connection jig 28. Has been. The connecting jig 28 and the resin molded body 29 are integrally formed, and a stopper 30 capable of contacting the lower plate of the tension rod 27 is fixed to the tip of the connection jig 28 in the tension rod 27. Yes. The stopper 30 is formed in such a size that it cannot pass through the insertion hole 27a formed in the lower plate of the tension rod 27, and contacts the lower plate of the tension rod 27 when the tension rod 27 is moved upward. Then, it is pulled upward by the tension rod 27.
[0059]
An extension rod 31 having a predetermined length is fixed to the lower end of the compression rod 25. The extension rod 31 is formed in a cylindrical shape, and the cylindrical hollow portion 31a is inserted into the insertion hole 25a of the compression rod 25. It is fixed in a state that matches. The arm portion 28 a of the connection jig 28 passes through the insertion hole 27 a of the tension rod 27, the insertion hole 25 a of the compression rod 25, and the hollow portion 31 a of the extension rod 31.
[0060]
In FIG. 1 again, a heating plate 32 is disposed on the fixed die plate 21 below the resin molded body 29 formed on the lower end surface of the connection jig 28. The contact member 33 is fixed so as to be replaceable. The heating plate 32 is provided with a heater 32a, and the heater 32a heats the adherend member 33 on the heating plate 32 to an arbitrary temperature. The means for heating the heating plate 32 is not limited to the heater 32a, and for example, a heating medium such as water or oil may be heated through a heater tube or the like. As the contacted member 33, a member whose surface roughness, surface treatment, or the like is changed according to the measurement of the resin molding 29 to be measured is fixed. The heating plate 32 and the heater 32a function as a contact member temperature control unit as a whole.
[0061]
A constant temperature bath 34 is disposed above the heating plate 32 on which the contacted member 33 is placed, and the constant temperature bath 34 has a box shape capable of accommodating at least the flat plate portion 28b and the resin molded body 29. Is formed. The constant temperature bath 34 is configured such that when the flat plate portion 28b of the connection jig 28 and the resin molded body 29 are positioned during the standby of the connection jig 28, the guide pole 22 is located at a position where the flat plate portion 28b and the resin molded body 29 are accommodated. It is arrange | positioned by being fixed to. The thermostat 34 is heated and cooled by a temperature control device (not shown), and the temperature of the atmosphere in the thermostat 34 can be controlled over a wide range from a predetermined low temperature to at least the melting temperature of the resin molded body 29. . The thermostat 34 and the temperature control device function as a resin molded body temperature control means as a whole.
[0062]
An insertion hole 34a into which the extension rod 31 into which the arm portion 28a of the connection jig 28 is inserted is formed on the upper wall of the thermostatic chamber 34, and the extension rod 31 into which the arm portion 28a is inserted It can move up and down through the insertion hole 34a. On the lower wall of the constant temperature bath 34, for example, an openable / closable door 35 that can be opened and closed in a sliding manner is provided. The open / close door 35 can pass through a flat plate portion 28b to which a resin molded body 29 is attached. It is formed in a large size.
[0063]
The extension rod 31 is provided with a heat insulating material (heat insulating layer) 36 such as ceramics at least at a portion located in the thermostatic chamber 34.
[0064]
The compression rod 25, the tension rod 27, the extension rod 31, the compression force detection unit 24, the tension force detection unit 26, and the connection jig 28 are arranged on the same straight line, and the movable die plate 23 is used as the guide pole 22. When moving along the vertical direction, the arm moves along the arm portion 28a of the connecting jig 28 on the same straight line.
[0065]
The compressive force detection unit 24 and the tensile force detection unit 26 are connected to a processing control unit such as a computer (not shown) via an amplifier and an A / D conversion unit (not shown). Analyze detection signals output from the compression force detection unit 24 and the tensile force detection unit 26 via the A / D conversion unit, etc., and display and output the compression force data and the tensile force data on a display unit (not shown). Then, it is recorded on a recording sheet by a recording unit (not shown).
[0066]
Next, the operation of the present embodiment will be described. In the measurement of the adhesion force of the resin molded body 29, the adhesion force measuring apparatus 20 includes an insertion hole 25 a of the compression rod 25 and an extension rod 27 formed by connecting the arm 28 a of the connection jig 28 integrally molded with the measurement target resin molded body 29. Are inserted into the insertion hole 27a and the hollow portion 31a of the extension rod 31, and the stopper 30 is attached to the tip of the arm portion 28a, so that the resin molded body 29 and the connecting jig 28 are attached to the adhesion measuring device 20, and The contacted member 33 is installed on the heating plate 32 fixed to the fixed die plate 21.
[0067]
In this way, when the integrally molded resin molded body 29, the connection jig 28, and the contacted member 33 are mounted, the resin molded body 29 attached to the flat plate portion 28b of the connection jig 28 is stored. The atmospheric temperature of the thermostatic chamber 34 is heated to a temperature equal to or higher than the melting temperature of the resin molded body 29, and the contacted member 33 is heated to a predetermined temperature equal to or lower than the thermal deformation temperature of the contacted member 33 by the heating plate 32. That is, the resin molded body 29 and the adherend member 33 are separately heated to a temperature equal to or higher than the melting temperature of the resin molded body 29 and a temperature equal to or lower than the thermal deformation temperature of the adherend member 33 by separate thermostats 34 and heating plates 32. .
[0068]
At this time, since the heat insulating material 36 is provided at least in the portion of the extension rod 31 located in the thermostat 34, the temperature in the thermostat 34 passes through the extension rod 31 and the compressive force detector 24 and the tensile force detector. 26, the temperature of the compressive force detector 24 and the tensile force detector 26 can be prevented from exceeding the allowable measurement temperature.
[0069]
In this state, as shown in FIG. 9, the movable die plate 23 is moved downward by the die plate driving mechanism as indicated by the arrow in FIG. 9, and when the movable die plate 23 is moved downward, the movable die plate 23. The compression force detector 24 fixed to the compression rod 25, the compression rod 25 fixed to the compression force detector 24, the extension rod 31 fixed to the lower end of the compression rod 25, and the tensile force detection fixed to the compression rod 25 The tension rod 27 fixed to the part 26 and the tensile force detection part 26 is moved downward together. When the movable die plate 23 moves downward, the open / close door 35 is opened, and the resin molded body 29 located in the thermostatic chamber 34 is moved downward through the open / close door 35 portion, and heated. The contacted member 33 on the plate 32 is brought into close contact.
[0070]
As shown in FIG. 10, the movable die plate 23 is further moved downward by the die plate driving mechanism, and the flat plate portion 28b of the connecting jig 28 is moved downward by the extension rod 31 fixed to the lower plate of the compression rod 25. The resin molded body 29 is pressed against the adherend member 33 to apply a predetermined pressing force to the resin molded body 29. The compression pressure at this time is detected by the compression force detector 24.
[0071]
At this time, the arm portion 28a of the connecting jig 28 is slidably inserted into the insertion hole 25a of the compression rod 25, the insertion hole 27a of the tension rod 27, and the hollow portion 31a of the extension rod 31, as shown in FIG. Therefore, the tensile force detector 26 is not loaded. As a result, a necessary compressive load can be applied to the resin molded body 29 without being limited by the allowable load of the tensile force detection unit 26. In addition, the tensile force detection unit 26 can use a high-resolution tensile force detection unit 26 that matches the magnitude of the adhesion force between the resin molded body 29 and the contacted member 33, and can measure the adhesion force with high accuracy. It can be performed. Further, the initial pressure applied to the resin molded body 29 by lowering the movable die plate 23 via the extension rod 31 by the compression rod 25 can be arbitrarily set, and the compression pressure at this time can be set as described above. As described above, the relationship between the adhesion force and the pressing force can be measured by detecting the compression force detection unit 24.
[0072]
As described above, the movable die plate 23 is lowered and the resin molded body 29 is pressed against the contacted member 33 by the compression rod 25 via the extension rod 31, and the compression pressure at this time is detected by the compression force detector 24. To do.
[0073]
Next, as shown in FIG. 11, the movable die plate 23 is moved upward by the die plate driving mechanism. When the movable die plate 23 is moved upward, the compression rod 25, the extension rod 31, the tensile force detection unit 26, and the tension rod 27 are moved upward together with the compression force detection unit 24, and the extension fixed to the compression rod 25 is performed. The lower plate of the rod 31 is separated from the flat plate portion 28 b of the connection jig 28. At this time, the compression rod 25, the extension rod 31 and the tension rod 27 slide on the arm portion 28a of the connecting jig 28 through the insertion holes 25a and 7a and the hollow portion 31a and move upward, thereby affecting the adhesion measurement. Never give.
[0074]
When the movable die plate 23 is further moved upward, as shown in FIG. 12, the lower plate of the tension rod 27 comes into contact with a stopper 30 fixed to the upper end of the connection jig 28 and is integrally formed with the connection jig 28. The resin molded body 29 is to be pulled upward.
[0075]
When the movable die plate 23 is further moved upward in this state, the resin molded body 29 and the contacted member 33 are separated from each other, and the contact force generated at that time is detected by the tensile force detection unit 26. Then, when the resin molding 29 and the to-be-adhered member 33 are completely peeled off, the measurement of the adhesion force is finished.
[0076]
In the measurement of the adhesion force, as described above, the compression rod 25, the tension rod 27, the extension rod 31, the compression force detection unit 24, the tensile force detection unit 26, and the connection jig 28 are arranged on the same straight line. Therefore, when the movable die plate 23 is moved in the vertical direction along the guide pole 22, the resin molded body 29 is moved in the same straight line without being pressed or pulled in an oblique direction. Force can be measured accurately.
[0077]
Further, since the contacted member 33 only needs to be installed on the heating plate 32 fixed on the fixed die plate 21, there is almost no restriction on the shape, and the contacted member 33 is easily different from the contacted member 33 having different surface roughness, surface treatment, and the like. Comparison measurement using the adherend member 33 under various conditions can be easily performed.
[0078]
Furthermore, since the resin molded body 29 and the connection jig 28 are manufactured by integral molding, it is easy to manufacture a measurement sample, and the labor for connecting the resin molded body 29 and the connection jig 28 can be saved. It is possible to improve the operability and usability of the adhesion measurement.
[0079]
In the present embodiment, in particular, the resin molded body 29 and the contacted member 33 are separately heated to a temperature equal to or higher than the melting temperature of the resin molded body 29 by the separate thermostatic chamber 34 and the heating plate 32, and the heat deformation temperature of the contacted member 33. Since it is heated separately at the following temperatures, the resin molded body 29 is heated to a temperature equal to or higher than the melting temperature, and is then brought into close contact with the adherend member 33 having a temperature equal to or lower than the heat deformation temperature at substantially the same as the actual injection molding. It is possible to measure the adhesion force in the form of, and it is possible to measure the adhesion force more accurately.
[0080]
Furthermore, since the heat insulating material 36 is provided at least in the portion of the extension rod 31 located in the thermostatic chamber 34, the temperature in the thermostatic chamber 34 is compressed via the extension rod 31 and the tensile force detector 24 and the tensile force detector 26. It is possible to prevent the temperature of the compressive force detection unit 24 and the tensile force detection unit 26 from exceeding the allowable measurement temperature, and to accurately measure the adhesion force.
[0081]
As described above, according to the adhesion force measuring apparatus 20 of the present embodiment, the adhesion force between the resin molded body 29 and the adherend member 33 can be easily and more accurately measured, and the temperature, By appropriately changing factors such as the pressure and the contacted member 33, the relationship between these factors and the adhesive force can be measured more accurately.
[0082]
In the present embodiment, the thermostatic chamber 34 is heated to a temperature equal to or higher than the melting temperature of the resin molded body 29, and the adherend member 33 is heated to a predetermined temperature below the heat deformation temperature of the adherend member 33 by the heating plate 32. However, the temperature controlled when measuring the adhesion force is not limited to the above temperature, and for example, the adhesion force may be measured by heating the resin molded body 29 and the adherend member 33 to the same temperature.
[0083]
FIG. 13 is a diagram showing a third embodiment of the apparatus for measuring the adhesion force of a resin molded body according to the present invention, and this embodiment is for the resin molded body and the intimate contact when positioned at the standby position. A member is positioned in a separate thermostat and heated in each thermostat.
[0084]
The present embodiment is applied to the same adhesion measuring apparatus as that of the second embodiment, and in the description of the present embodiment, the same components as those of the second embodiment. Are denoted by the same reference numerals, and detailed description thereof is omitted.
[0085]
In FIG. 13, in the adhesion measuring device 40, a first thermostatic chamber 41 and a second thermostatic chamber 42 are arranged on the fixed die plate 23 so as to overlap in the moving direction of the movable die plate 23, that is, in the vertical direction. The first constant temperature bath 41 and the second constant temperature bath 42 are partitioned by a partition member 43. At least the upper first thermostat 41 can be controlled in a predetermined wide range by a temperature control device (not shown).
[0086]
The partition member 43 that partitions the first thermostat 41 and the second thermostat 42 is provided with a slide-type open / close door 44, and the connection to which the resin molded body 29 is attached by opening the open / close door 44. The flat plate portion 28b of the jig 28 can pass therethrough.
[0087]
The flat plate portion 28b of the connecting jig 28 to which the resin molded body 29 is attached during standby is positioned in the upper first constant temperature bath 41, and in the lower second constant temperature bath 42, the second constant temperature bath 42 is provided. A heating plate 32 is disposed on the lower wall. An insertion hole 41a into which the extension rod 31 into which the arm portion 28a of the connection jig 28 is inserted is formed in the upper wall of the first thermostat 41, and the extension rod 31 into which the arm portion 28a is inserted is formed. It can move up and down through the insertion hole 41a. On the heating plate 32, the contacted member 33 is fixed in a replaceable manner.
[0088]
In the adhesion measuring apparatus 40 of the present embodiment, when measuring the adhesion of the resin molded body 29, the resin molded body 29 formed on the flat plate portion 28b of the connecting jig 28 is positioned in the upper first thermostat 41. In the state where the door 44 is closed, the first thermostat 41 heats the resin molded body 29 to a temperature equal to or higher than the melting temperature of the resin molded body 29, and the adherend member on the heating plate 32 in the second thermostat 42. 33 is heated by the heating plate 32 to a temperature equal to or lower than the heat deformation temperature of the contacted member 33.
[0089]
At this time, since the first thermostat 41 and the second thermostat are partitioned by the partition member 43 and the open / close door 44 is closed, the resin molded body 29 can be uniformly heated to the melting temperature or higher. Moreover, the to-be-adhered member 33 in the 2nd thermostat 42 can be heated uniformly to the temperature below a heat-deformation temperature.
[0090]
Next, the open / close door 44 is slid and opened, the movable die plate 23 is moved downward by the die plate driving mechanism, and the resin molded body 29 formed on the flat plate portion 28b of the connection jig 28 together with the connection jig 28. It moves downward, passes through the resin molded body 29 opening / closing door 44 and enters the second thermostat 42, is fixed on the heating plate 32 in the second thermostat 42, and is heated to a temperature equal to or lower than the thermal deformation temperature. The contacted member 33 is closely attached.
[0091]
The movable die plate 23 is further moved downward by the die plate driving mechanism, and the flat plate portion 28b of the connecting jig 28 is pushed downward by the extension rod 31 fixed to the lower plate of the compression rod 25, whereby the resin molded body 29 is pushed. A predetermined pressing force is applied to the resin molded body 29 by pressing against the adherend member 33. The compression pressure at this time is detected by the compression force detector 24.
[0092]
Next, the movable die plate 23 is moved upward by the die plate driving mechanism. When the movable die plate 23 is moved upward, the compression rod 25, the extension rod 31, the tensile force detection unit 26, and the tension rod 27 are moved upward together with the compression force detection unit 24, and the extension fixed to the compression rod 25 is performed. The lower plate of the rod 31 is separated from the flat plate portion 28 b of the connection jig 28.
[0093]
When the movable die plate 23 is further moved upward, the lower plate of the tension rod 27 comes into contact with the stopper 30 fixed to the upper end of the connection jig 28, and the resin molded body 29 integrally formed with the connection jig 28 is moved upward. Try to raise.
[0094]
When the movable die plate 23 is further moved upward in this state, the resin molded body 29 and the contacted member 33 are separated from each other, and the contact force generated at that time is detected by the tensile force detection unit 26. Then, when the resin molding 29 and the to-be-adhered member 33 are completely peeled off, the measurement of the adhesion force is finished.
[0095]
In this way, the resin molded body 29 passes through the opened opening / closing door 44, and the contacted member 33 is moved by the heating plate 32 from the first thermostat 41 controlled to a temperature equal to or higher than the melting temperature of the resin molded body 29. Is continuously moved to a second constant temperature bath 42 heated to a predetermined temperature not higher than the heat deformation temperature, and heated from the cylinder in which the resin is heated to the melting temperature or higher by normal injection molding to the heat deformation temperature or lower. The same state as the state of moving continuously into the mold cavity is moved in a state reproduced by the two thermostats 41 and 42, the first thermostat 41 and the second thermostat 42. As a result, it is possible to detect the adhesion force between the resin molded body 29 and the adherend member 33 in a state where the same form as that of actual injection molding is further reproduced, and it is easier and more accurate. In addition, the adhesion force between the resin molded body 29 and the adhesion force 33 can be measured.
[0096]
The invention made by the present inventor has been specifically described based on the preferred embodiments. However, the present invention is not limited to the above, and various modifications can be made without departing from the scope of the invention. Needless to say.
[0097]
For example, in the second and third embodiments, a fan that convects the internal air may be attached to the thermostatic chamber 34, the first thermostatic chamber 41, and the second thermostatic chamber 42. If it does in this way, the temperature inside the thermostat 34, the 1st thermostat 41, and the 2nd thermostat 42 can be made uniform, and the measurement precision of adhesive force measurement force can be improved further.
[0098]
In each of the above embodiments, the state of contact and separation between the resin molded bodies 10 and 29 and the adherend members 12 and 33 may be monitored by, for example, a CCD (Charge Coupled Device) camera. If it does in this way, the difference of the peeling behavior by a place, etc. can be fed back to resin molding.
[0099]
【The invention's effect】
According to the apparatus for measuring the adhesion force of a resin molded body according to claim 1, the resin is provided on one side of the pair of press members moved in a direction approaching and separating from each other via a predetermined connection member. A molded body is attached, and the contacted member is attached to the other press member in a state of facing the resin molded body in a replaceable manner, and the press member is moved in the direction of approaching by the pressing means so that the resin molded body and the adhered member are predetermined. After pressing with pressure, the pressing force is detected by the compressive force detection means, heated to a predetermined temperature by the temperature control means, cooled to a predetermined temperature, and moved to a direction in which the pressing member is separated by the pressing means, The resin molded body and the adherend member are peeled off, and the adhesion force between the resin molded body and the adherend member at the time of peeling is measured by the tensile force detection means, so the ejector pin is inserted into the contact surface of the adherend member. Forming a hole Without Rukoto, accurately adhesion of the resin molded body, and, can easily be measured, causes of adhesion force (factor) can be accurately grasped.
[0100]
According to the apparatus for measuring the adhesion force of a resin molded body according to claim 2, the compressive force detecting means is fixed to one of the press members, and the resin molded body is pressed toward the pressed member against the compression force detecting means. The compression member to be fixed is fixed, the tensile force detecting means is fixed to the compression member, and the tensile member for moving the resin molded body in the direction away from the contacted member is fixed to the tensile force detection means. The resin molded body is attached to the connecting member via the connecting member, and when the compressing force detecting means, the compressing member, the pulling force detecting means, the pulling member and the connecting member are moved at least by the pressing means in the direction in which the pressing member approaches, the tensile force is detected. Since it is arranged on the same straight line with no load applied to the force detection means, it can load an arbitrary amount of compressive force when measuring the adhesion force regardless of the allowable load of the tensile force detection means. Regardless of the pressing force of the resin molded body, it is possible to use a tensile force detection means having an optimal resolution appropriately matched to the adhesion force, and to measure the adhesion force of the resin molded body with higher accuracy. .
[0101]
According to the apparatus for measuring the adhesion force of the resin molded body according to claim 3, the temperature control means covers at least the resin molded body and the adherend member, and performs temperature control over a wide range from a predetermined low temperature to a high temperature. Therefore, it is possible to prevent the temperature distribution between the contact surface and the resin molded body from occurring during heating / cooling of the resin molded body and the member to be adhered, and the adhesive force of the resin molded body can be made even more accurate. Can be measured.
[0102]
According to the apparatus for measuring the adhesion force of a resin molded body according to the fourth aspect of the present invention, since the resin molded body is integrally formed with the connecting member, it is possible to easily produce a sample for measuring the adhesion force. In addition, it is possible to save the trouble of connecting the connecting member and the resin molded body, improve the usability of the resin molded body adhesion force measuring device, and measure the adhesion force of the resin molded body with high accuracy. be able to.
[0103]
According to the apparatus for measuring an adhesion force of a resin molded body according to claim 5, the resin is provided on one side of the pair of press members moved in a direction approaching and separating from each other via a predetermined connection member. A molded body is attached, and the adherend member is attached to the other press member in a state of facing the resin molded body in a replaceable manner, the resin molded body is heated to a predetermined temperature by the resin molded body temperature control means, and the adherend member is adhered. While the member temperature control means is heated to a predetermined temperature, the pressing means moves the pressing member in the approaching direction to press the resin molded body and the contacted member with a predetermined pressure, and the pressing force is detected as a compression force detecting means. Then, the pressing member is moved in the direction of separating the pressing member, the resin molded body and the adherend member are peeled off, and the adhesion force between the resin molded body and the adherent member at the time of peeling is detected as a tensile force. Measured by means Therefore, without forming the ejector pin insertion hole on the contact surface of the contacted member, the temperature of the resin molded body and the contacted member is controlled independently, and the resin molding is performed in a state almost the same as the actual resin injection molding. The adhesion force of the body can be measured, and the adhesion force of the resin molded body can be measured more accurately and easily, and the cause of the adhesion force can be grasped more accurately.
[0104]
According to the apparatus for measuring the adhesion force of the resin molded body according to claim 6, the resin molded body temperature control means is constituted by a thermostatic chamber that covers the resin molded body and controls the temperature in a wide range from a predetermined low temperature to a high temperature. The contacted member temperature control means is disposed outside the thermostatic chamber, and the measurement is performed by heating the resin molded body to a predetermined temperature in the thermostatic chamber which is the resin molded body temperature control means. The temperature control means heats the adherend member to a predetermined temperature, and the pressing means moves the resin molded body in the thermostatic chamber through the press member toward the adherend member so that the adherend member outside the thermostat bath is pressed. The resin molded body can be heated uniformly in a short time, and the resin molded body and the contacted member can be more closely adhered to each other, and the adhesion force of the resin molded body can be measured more accurately and easily. The adhesion of the molded resin It can be measured every time.
[0105]
According to the apparatus for measuring the adhesion force of the resin molded body according to the seventh aspect, the temperature control means for the resin molded body and the temperature control means for the contacted member are each a thermostatic chamber that controls the temperature in a wide range from a predetermined low temperature to a high temperature. Constituent and arranged side by side in the moving direction of the press member, and at the time of measurement, the resin molded body is heated to a predetermined temperature in a thermostatic chamber which is a resin molded body temperature control means, and a thermostatic chamber which is a contacted member temperature control means The member to be adhered is heated to a predetermined temperature by the pressing member, and the resin molded body in the thermostatic chamber, which is a resin molded body temperature control means, is moved by the pressing means toward the member to be adhered, and the member to be adhered member temperature control means. Since the pressed member is pressed against the member in the thermostatic chamber, the resin molded body is continuously moved between two thermostatic chambers having different temperatures assuming the cylinder and the cavity, so that the adhesive strength of the resin molded body is increased. Measure It can be, in a form more approximated by the form of the actual injection molding, it is possible to measure the adhesion strength of the resin molded body more accurately.
[0106]
According to the apparatus for measuring an adhesion force of a resin molded body according to an eighth aspect of the present invention, the invention according to an eighth aspect includes a compressive force detecting means and a tensile force detecting means, a resin molded body temperature control means and an adherent member temperature control. Since the predetermined heat-insulating layer is disposed between the resin molded body temperature control means and the contacted member temperature control means, the resin molded body temperature control means and the contacted member are disposed. Even when the temperature of the temperature control means is increased, the compression force detection means and the tensile force detection means can be prevented from exceeding the allowable temperature for measurement, and the adhesion force of the resin molded body can be measured with higher accuracy. Can do.
[Brief description of the drawings]
FIG. 1 is a schematic front sectional view of an adhesion measuring apparatus to which a first embodiment of an apparatus for measuring adhesion of a resin molded body according to the present invention is applied.
FIG. 2 is an enlarged front cross-sectional view of a connection jig portion of FIG.
3 is a front cross-sectional view showing a state in which the movable die plate of the adhesion force measuring device of FIG. 1 starts to descend. FIG.
4 is a front cross-sectional view of a state in which a movable die plate of the adhesion force measuring device in FIG. 1 is lowered to compress a resin molded body.
FIG. 5 is a front cross-sectional view showing a state in which the movable die plate of the adhesion measuring apparatus in FIG. 1 starts to rise.
6 is a front cross-sectional view of a state in which the movable die plate of the adhesion force measuring device in FIG. 1 is raised to separate the resin molded body and the adhered member.
FIG. 7 is a schematic front sectional view of an adhesion measuring apparatus to which a second embodiment of the resin molding adhesion measuring apparatus of the present invention is applied.
8 is an enlarged front cross-sectional view of the connection jig portion of FIG.
9 is a front sectional view showing a state in which the lowering of the movable die plate of the adhesion measuring apparatus of FIG. 7 is started.
10 is a front cross-sectional view of a state where the movable die plate of the adhesion measuring apparatus of FIG. 7 is lowered to compress the resin molded body.
11 is a front cross-sectional view showing a state where the movable die plate of the adhesion force measuring device shown in FIG. 7 starts to rise.
12 is a front cross-sectional view showing a state in which the movable die plate of the adhesion force measuring device of FIG.
FIG. 13 is a schematic front sectional view of an adhesion measuring apparatus to which a third embodiment of the adhesion measuring apparatus for a resin molded body according to the present invention is applied.
[Explanation of symbols]
1 Adhesion measuring device
2 Fixed die plate
3 Guide pole
4 Movable die plate
5 Compression force detector
6 Compression rod
7 Tensile force detector
8 Tensile rod
8a Insertion hole
9 Connection jig
9a Arm part
9b Flat part
10 Resin molding
11 Stopper
12 Adhered members
13 Thermostatic bath
20 Adhesion force measuring device
21 Fixed die plate
22 Guide pole
23 Movable die plate
24 Compression force detector
25 Compression rod
26 Tensile force detector
27 Tensile rod
27a Insertion hole
28 Connecting jig
28a Arm part
28b Flat plate part
29 resin moldings
30 stopper
31 Extension rod
31a Hollow part
32 Heating plate
32a heater
33 Adhered members
34 Thermostatic bath
34a Insertion hole
35 Open / close door
36 Insulation
40 Adhesion force measuring device
41 First temperature chamber
41a Insertion hole
42 Second temperature chamber
43 Partition member
44 Opening door

Claims (8)

一対のプレス部材を相互に接近する方向及び離隔する方向に移動するプレス手段と、前記プレス部材の一方側に所定の接続部材を介して取り付けられた樹脂成形体と、前記プレス部材の他方側に前記樹脂成形体と対向する状態で交換可能に取り付けられた被密着部材と、前記プレス手段により前記プレス部材が接近する方向に移動されて前記樹脂成形体と前記被密着部材とが押圧されたときの当該押圧力を測定する圧縮力検出手段と、前記プレス手段により前記プレス部材が離隔する方向に移動されて前記樹脂成形体と前記被密着部材とが剥離されるときの前記樹脂成形体と前記被密着部材との密着力を測定する引張力検出手段と、少なくとも前記樹脂成形体と前記被密着部材とを所定の高温から所定の低温まで温度制御する温度制御手段と、を備え、前記プレス手段により前記プレス部材を近接する方向に移動させて前記樹脂成形体と前記被密着部材とを所定圧力で押圧させて、当該押圧力を前記圧縮力検出手段で検出し、前記温度制御手段により所定温度に加熱した後、所定温度に冷却して、前記プレス手段により前記プレス部材を離隔する方向に移動して、前記樹脂成形体と前記被密着部材とを剥離させ、当該剥離時の前記樹脂成形体と前記被密着部材との密着力を前記引張力検出手段で測定することを特徴とする樹脂成形体の密着力測定装置。A pressing means for moving the pair of pressing members in directions approaching and separating from each other, a resin molded body attached to one side of the pressing member via a predetermined connecting member, and the other side of the pressing member When the pressed member is moved in the direction in which the pressed member approaches by the press means and the pressed member is attached so as to be exchangeable in a state of facing the molded resin, and the pressed molded member and the pressed member are pressed. Compressive force detecting means for measuring the pressing force of the resin, the resin molded body when the pressing member is moved in a direction in which the press member is separated and the resin molded body and the contacted member are separated, and the A tensile force detecting means for measuring the adhesion force with the adherend member, and a temperature control means for controlling the temperature of at least the resin molded body and the adherend member from a predetermined high temperature to a predetermined low temperature. The pressing member is moved in the direction in which the pressing member approaches, the resin molded body and the contacted member are pressed at a predetermined pressure, and the pressing force is detected by the compression force detecting unit, After being heated to a predetermined temperature by the temperature control means, cooled to the predetermined temperature, and moved by the pressing means in a direction in which the pressing member is separated, the resin molded body and the contacted member are peeled off, and the peeling is performed. An adhesive force measuring apparatus for a resin molded body, wherein the adhesive force between the resin molded body and the member to be adhered is measured by the tensile force detecting means. 前記圧縮力検出手段は、前記一方のプレス部材に固定され、当該圧縮力検出手段には、前記樹脂成形体を前記被密着部材方向に押圧する圧縮部材が固定され、前記引張力検出手段は、前記圧縮部材に固定され、当該引張力検出手段には、前記樹脂成形体を前記被密着部材から離隔する方向に移動させる引張部材が固定され、当該引張部材に前記接続部材を介して前記樹脂成形体を取り付け、前記圧縮力検出手段、前記圧縮部材、前記引張力検出手段、前記引張部材及び前記接続部材は、前記プレス手段により前記プレス部材が近接する方向に移動される際、前記引張力検出手段に荷重がかからない状態で、同一直線上に配設されていることを特徴とする請求項1記載の樹脂成形体の密着力測定装置。The compressive force detecting means is fixed to the one press member, and the compressive force detecting means is fixed with a compressing member that presses the resin molded body in the direction of the contacted member. A tension member that is fixed to the compression member and that moves the resin molded body in a direction away from the contacted member is fixed to the tensile force detection unit, and the resin molding is performed on the tension member via the connection member. When the body is attached and the compression force detection means, the compression member, the tensile force detection means, the tension member, and the connection member are moved in the direction in which the press member approaches by the press means, the tensile force detection 2. The apparatus for measuring the adhesion force of a resin molded body according to claim 1, wherein the means is arranged on the same straight line in a state where no load is applied to the means. 前記温度制御手段は、少なくとも前記樹脂成形体と前記被密着部材とを覆い、前記所定の低温から高温までの広範囲で温度制御する恒温槽で形成されていることを特徴とする請求項1または請求項2記載の樹脂成形体の密着力測定装置。The said temperature control means is formed with the thermostat which covers the resin molded object and the said to-be-adhered member at least, and controls temperature in the wide range from the said predetermined | prescribed low temperature to high temperature. Item 3. An apparatus for measuring the adhesion of a resin molded article according to Item 2. 前記樹脂成形体は、前記接続部材と一体成形されていることを特徴とする請求項1から請求項3のいずれかに記載の樹脂成形体の密着力測定装置。The said resin molding is integrally molded with the said connection member, The adhesive force measuring apparatus of the resin molding in any one of Claims 1-3 characterized by the above-mentioned. 一対のプレス部材を相互に接近する方向及び離隔する方向に移動するプレス手段と、前記プレス部材の一方側に所定の接続部材を介して取り付けられた樹脂成形体と、前記プレス部材の他方側に前記樹脂成形体と対向する状態で交換可能に取り付けられた被密着部材と、前記プレス手段により前記プレス部材が接近する方向に移動されて前記樹脂成形体と前記被密着部材とが押圧されたときの当該押圧力を測定する圧縮力検出手段と、前記プレス手段により前記プレス部材が離隔する方向に移動されて前記樹脂成形体と前記被密着部材とが剥離されるときの前記樹脂成形体と前記被密着部材との密着力を測定する引張力検出手段と、前記樹脂成形体を所定の高温から所定の低温まで温度制御する樹脂成形体温度制御手段と、前記被密着部材を所定の高温から所定の低温まで温度制御する被密着部材温度制御手段と、を備え、前記樹脂成形体を前記樹脂成形体温度制御手段で所定温度に加熱し、前記被密着部材を前記被密着部材温度制御手段で所定温度に加熱した状態で、前記プレス手段により前記プレス部材を近接する方向に移動させて前記樹脂成形体と前記被密着部材とを所定圧力で押圧させて、当該押圧力を前記圧縮力検出手段で検出し、その後、前記プレス手段により前記プレス部材を離隔する方向に移動して、前記樹脂成形体と前記被密着部材とを剥離させ、当該剥離時の前記樹脂成形体と前記被密着部材との密着力を前記引張力検出手段で測定することを特徴とする樹脂成形体の密着力測定装置。A pressing means for moving the pair of pressing members in directions approaching and separating from each other, a resin molded body attached to one side of the pressing member via a predetermined connecting member, and the other side of the pressing member When the pressed member is moved in the direction in which the press member approaches by the pressing means and the pressed member is attached so as to be exchangeable in a state of facing the resin molded body, and the pressed body is pressed. A compressive force detecting means for measuring the pressing force, and the resin molded body when the press member is moved in a direction in which the pressing member is separated by the pressing means to separate the contacted member and the resin molded body Tensile force detecting means for measuring the adhesion force with the adherend member, resin molded body temperature control means for controlling the temperature of the resin molded article from a predetermined high temperature to a predetermined low temperature, and the adherent member Contacted member temperature control means for controlling the temperature from a constant high temperature to a predetermined low temperature, the resin molded body is heated to a predetermined temperature by the resin molded body temperature control means, and the contacted member is In the state heated to a predetermined temperature by the temperature control means, the pressing member is moved in the direction approaching by the pressing means to press the resin molded body and the contacted member with a predetermined pressure, and the pressing force is Detected by the compressive force detecting means, and then moved in the direction of separating the press member by the pressing means, the resin molded body and the adherend member are peeled, and the resin molded body at the time of peeling and the An apparatus for measuring an adhesion force of a resin molded article, wherein the adhesion force with a member to be adhered is measured by the tensile force detecting means. 前記樹脂成形体の密着力測定装置は、前記樹脂成形体温度制御手段が、前記樹脂成形体を覆うとともに、前記所定の低温から高温までの広範囲で温度制御する恒温槽で構成され、前記被密着部材温度制御手段が、前記恒温槽外に配設され、前記測定に際して、前記樹脂成形体温度制御手段である前記恒温槽内で前記樹脂成形体を前記所定温度に加熱し、前記恒温槽外の前記被密着部材温度制御手段で前記被密着部材を前記所定温度に加熱し、前記プレス手段により前記プレス部材を介して前記恒温槽内の前記樹脂成形体を前記被密着部材方向に移動させて、前記恒温槽外の前記被密着部材に押圧させることを特徴とする請求項5記載の樹脂成形体の密着力測定装置。The apparatus for measuring the adhesion strength of the resin molded body is composed of a thermostatic chamber in which the resin molded body temperature control means covers the resin molded body and controls the temperature in a wide range from the predetermined low temperature to a high temperature. A member temperature control means is disposed outside the thermostat, and during the measurement, the resin mold is heated to the predetermined temperature in the thermostat as the resin mold temperature control means, and the temperature outside the thermostat is set. The adherent member temperature control means heats the adherent member to the predetermined temperature, and the pressing means moves the resin molded body in the thermostatic chamber through the press member toward the adherent member, 6. The apparatus for measuring an adhesion force of a resin molded body according to claim 5, wherein the contacted member outside the thermostatic chamber is pressed. 前記樹脂成形体の密着力測定装置は、前記樹脂成形体温度制御手段と前記被密着部材温度制御手段が、それぞれ前記所定の低温から高温までの広範囲で温度制御する恒温槽で構成されているとともに、前記プレス部材の移動方向に並んで配設され、前記測定に際して、前記樹脂成形体温度制御手段である前記恒温槽で前記樹脂成形体を前記所定温度に加熱し、前記被密着部材温度制御手段である前記恒温槽で前記被密着部材を前記所定温度に加熱し、前記プレス手段により前記プレス部材を介して前記樹脂成形体温度制御手段である前記恒温槽内の前記樹脂成形体を前記被密着部材方向に移動させて、前記被密着部材温度制御手段である前記恒温槽内の前記被密着部材に押圧させることを特徴とする請求項5または請求項6記載の樹脂成形体の密着力測定装置。The apparatus for measuring the adhesion strength of a resin molded body includes a thermostatic chamber in which the temperature control means of the resin molded body and the temperature control means of the contacted member respectively control the temperature in a wide range from the predetermined low temperature to the high temperature. In the measurement, the resin molded body is heated to the predetermined temperature in the thermostatic chamber that is the resin molded body temperature control means, and the contacted member temperature control means is arranged in the moving direction of the press member. The member to be adhered is heated to the predetermined temperature in the thermostatic chamber, and the resin molded body in the thermostatic chamber which is the resin molded body temperature control means is pressed by the pressing means via the press member. The resin molded body according to claim 5 or 6, wherein the resin molded body is moved in a member direction to be pressed by the adherend member in the thermostatic chamber which is the adherend member temperature control means. Adhesion measuring apparatus. 前記圧縮力検出手段及び前記引張力検出手段は、前記樹脂成形体温度制御手段及び前記被密着部材温度制御手段から所定距離離れて配設されているとともに、前記樹脂成形体温度制御手段及び前記被密着部材温度制御手段との間に所定の断熱層が配設されていることを特徴とする請求項5から請求項7のいずれかに記載の樹脂成形体の密着力測定装置。The compressive force detection means and the tensile force detection means are disposed at a predetermined distance from the resin molded body temperature control means and the contacted member temperature control means, and the resin molded body temperature control means and the target temperature detection means. 8. The apparatus for measuring an adhesion force of a resin molded body according to claim 5, wherein a predetermined heat insulating layer is disposed between the adhesion member temperature control means.
JP03954998A 1997-09-29 1998-02-05 Equipment for measuring adhesion of resin moldings Expired - Fee Related JP3722614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03954998A JP3722614B2 (en) 1997-09-29 1998-02-05 Equipment for measuring adhesion of resin moldings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-281353 1997-09-29
JP28135397 1997-09-29
JP03954998A JP3722614B2 (en) 1997-09-29 1998-02-05 Equipment for measuring adhesion of resin moldings

Publications (2)

Publication Number Publication Date
JPH11160228A JPH11160228A (en) 1999-06-18
JP3722614B2 true JP3722614B2 (en) 2005-11-30

Family

ID=26378958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03954998A Expired - Fee Related JP3722614B2 (en) 1997-09-29 1998-02-05 Equipment for measuring adhesion of resin moldings

Country Status (1)

Country Link
JP (1) JP3722614B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109470631A (en) * 2017-09-08 2019-03-15 东洋橡胶工业株式会社 The adhesive test method of rubber and the adhesive test system of rubber

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236873A (en) * 2008-03-28 2009-10-15 Hiroshima Univ Device and method for manufacturing fusion bonding test piece, and device and method for measuring fusion bonding force
JP2021043028A (en) * 2019-09-10 2021-03-18 多摩川精機株式会社 Load device
CN111948136B (en) * 2020-08-25 2023-07-07 温州大学 Resin drill peeling strength detection method and sample preparation equipment thereof
WO2022189923A1 (en) * 2021-03-08 2022-09-15 Universidade Do Minho Device and method for measuring friction and adhesion forces between two surfaces in contact for polymer replication processes
CN113155728A (en) * 2021-03-11 2021-07-23 深圳先进技术研究院 Interface drawing force test sample of adhesive, preparation device and test method thereof
CN117969276B (en) * 2024-04-01 2024-06-04 四川美矽科技有限公司 Device and method for automatically testing viscosity and tensile strength of epoxy molding compound sample block

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109470631A (en) * 2017-09-08 2019-03-15 东洋橡胶工业株式会社 The adhesive test method of rubber and the adhesive test system of rubber

Also Published As

Publication number Publication date
JPH11160228A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
JP3722614B2 (en) Equipment for measuring adhesion of resin moldings
CN109470400B (en) Method and device for indirectly measuring pressure of injection molding machine cavity by ultrasonic means
CN213813417U (en) Detection apparatus for battery coefficient of heat conductivity
JPH11230895A (en) Apparatus for measuring adhesion of resin-molded body
US20060037406A1 (en) Apparatus to determine ability of plastic material to be shaped by thermoforming process
HUT54315A (en) Casting and measuring system
CN111521298B (en) Batch verification equipment for processing platinum-rhodium thermocouples
JP6717090B2 (en) Test equipment and test method
JP2000121464A (en) Measuring apparatus for adhesive force of resin molding
CN213658629U (en) Heat conduction material performance test equipment
CN211373888U (en) Cold-chain logistics temperature measuring rod
JP3971258B2 (en) Battery test stand
JPH08114401A (en) Method and apparatus for measuring thickness, width and the like of specimen
CN109676865B (en) On-line monitoring method for injection molding solidification process based on capacitive sensor
CN219179126U (en) Emulsified asphalt material drawing force testing device
CN206387641U (en) A kind of universl tester with heater
CN219319969U (en) Asphalt drawing test device
US5326393A (en) Process for determining the actual temperature of a moldable material contained within a mold or passed through a die
JPH10156837A (en) Measuring method of force of release and mold for molding resin
CN220339928U (en) High-temperature detection device for automobile metal material
CN214588761U (en) Temperature measuring device and etching machine
CN217514148U (en) Quick demoulding auxiliary device for concrete test piece
CN221038504U (en) Thermal extension testing device
JP4419113B2 (en) Heating mold for welding plastic molded products
CN219142451U (en) Detect accurate high temperature box of silica gel performance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees