JP3722126B2 - Reluctance motor - Google Patents

Reluctance motor Download PDF

Info

Publication number
JP3722126B2
JP3722126B2 JP2003023787A JP2003023787A JP3722126B2 JP 3722126 B2 JP3722126 B2 JP 3722126B2 JP 2003023787 A JP2003023787 A JP 2003023787A JP 2003023787 A JP2003023787 A JP 2003023787A JP 3722126 B2 JP3722126 B2 JP 3722126B2
Authority
JP
Japan
Prior art keywords
rotor
rotor core
core finished
finished product
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003023787A
Other languages
Japanese (ja)
Other versions
JP2003204640A (en
Inventor
幸夫 本田
能成 浅野
正行 神藤
浩 伊藤
浩 村上
直之 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003023787A priority Critical patent/JP3722126B2/en
Publication of JP2003204640A publication Critical patent/JP2003204640A/en
Application granted granted Critical
Publication of JP3722126B2 publication Critical patent/JP3722126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リラクタンスモータに関する。
【0002】
【従来の技術】
従来から鉄など高透磁率材からなるロータ本体に永久磁石を埋設したロータ本体が知られている。
【0003】
図6は、リラクタンストルクを有効に利用するため、本発明者らが開発した2層構造の永久磁石付ロータを示している。(特開平8−331783号公報)
この先行発明に係わるロータ1は中心にロータ軸2を有し、鉄製ロータコア3にロータ半径方向に1極当たり2層に間隔を置いて配置された4組の永久磁石4a,4bを埋設してなり、各組の永久磁石4a,4bはS極,N極が交互となるように隣接して配置され、いずれもロータの求心方向へ凸形をなす円弧形状に形成されている。この鉄製ロータコア3は多数の有穴のコアシートを積層して構成されるが、穴の位置を合わせて積層し、上述の円弧状の永久磁石を挿入埋め込むことになる。
【0004】
【特許文献1】
特開平8−331783号公報
【0005】
【発明が解決しようとする課題】
上記先行発明の構成においては、ロータ組み付け工数としては最も少なく、低コストで製作可能であるが、ロータに設けたスリット部分がロータ軸と平行に真っ直ぐに構成されているため、ステータとの位置関係でロータが回転中のコギングトルク変動が大きくなってしまう不具合点があった。
【0006】
一例として、当先行発明の構成における磁界解析によるトルクリップルの変動結果を図7に示す。このデータより明らかなように約80%という大きいトルク変動を示している。
【0007】
【課題を解決するための手段】
本件出願に係る発明は上記先行発明の問題点を解決するため、ロータコア内部に永久磁石を軸方向に埋設してなる永久磁石埋め込み型リラクタンスモータにおいて、軸方向に複数に分割した永久磁石を、同様に軸方向に複数に分割したロータコアに埋設し、これら複数個のロータコア完成品をロータ回転方向にずらして軸方向に一体に構成する。詳細に説明すると、リラクタンスモータのロータ内部に永久磁石が軸方向に埋設されるリラクタンスモータにおいて、
前記ロータは、軸方向に分割された複数のロータコア完成品と、複数の前記ロータコア完成品を一体として挿入されるロータ軸とからなり、
前記永久磁石は、前記ロータコア完成品の極毎にこのロータコア完成品の半径方向に間隔を置いて複数層に埋設され、かつ前記永久磁石の形状は前記ロータの求心方向へ凸形をなす円弧形状であり、さらに前記永久磁石の磁極は前記極毎にS極,N極が交互となるように配置されており、
前記リラクタンスモータのステータの歯と、前記ロータの永久磁石との回転位置の位置関係により、
前記ロータコア完成品各々のうち、一のロータコア完成品の永久磁石と前記ステータの歯とが相対して、前記一のロータコア完成品にての前記ステータ側から前記ロータ側に流れる磁束量が小さいときには、他のロータコア完成品のスロットと前記ステータの歯との位置関係が、他のロータコア完成品の永久磁石とステータの歯とが相対する位置よりもずれており、他のロータコア完成品にての前記ステータ側から前記ロータ側に流れる磁束量が大きく、
次の時点においては、前記一のロータコア完成品の永久磁石と前記ステータの歯とが相対する位置よりもずれており、前記一のロータコア完成品にての前記ステータ側から前記ロータ側に流れる磁束量が大きく、このときには前記他のロータコア完成品の永久磁石と前記ステータの歯とが相対しており、前記他のロータコア完成品にての前記ステータ側から前記ロータ側に流れる磁束量が小さく、
このように、前記ステータ側から前記ロータ側全体に流れる磁束量が平均化されるように前記ロータコア完成品各々が回転方向にてずらされて軸方向に一体に構成されるリラクタンスモータであるさらに、上記のリラクタンスモータにおいて、4極のロータコアであり、1極当たり2層に間隔を置いて円弧形状の永久磁石複数個が埋設されるリラクタンスモータである。
さらに、上記のいずれかのリラクタンスモータにおいて、ロータが2個のロータコア完成品を有するリラクタンスモータである。
さらに、上記のいずれかのリラクタンスモータにおいて、ロータが3個のロータコア完成品を有するリラクタンスモータである。
【0008】
この発明によれば、ロータに設けたスリット部分の位置とステータの歯の位置が同時に同一位置に来ることがなくなるため、コギングが減少し、トルクリップルの少ない良好な特性のリラクタンスモータが得られる。
【0009】
また、本件出願に係る発明は、複数個のスリットを設けてなるロータを有するリラクタンス型同期モータにおいて、前記ロータは複数個のロータコア完成品よりなり、各ロータコア完成品は前記スリット位置を回転方向にずらして軸方向に一体に構成する。
【0010】
この発明によれば、ロータに設けたスリット部分の位置とステータの歯の位置が同時に同一位置に来ることがなくなるため、コギングが減少し、トルクリップルの少ない良好な特性のリラクタンスモータが得られる。
【0011】
【発明の実施の形態】
上記の課題を解決するために本発明は、複数個のロータコア完成品を回転方向にずらして構成するロータを有するリラクタンスモータである。
【0012】
永久磁石を有するリラクタンスモータにおいては、永久磁石をロータ軸方向に複数個に分割して、各永久磁石の軸方向長さに合わせてロータコアシートを積層したものに永久磁石を埋設して得られた複数個のロータコア完成品を回転方向にずらして一体に構成してロータを得る。また、永久磁石を有しないリラクタンスモータにおいても、永久磁石を有しないだけで上述と全く同様の構成となる。
【0013】
【実施例】
以下本発明の実施例について、図面を参照して説明する。
【0014】
(実施例1)
図1に示すように、ロータ1の内部に埋め込まれた永久磁石4a,4bは軸方向に2分割されており、分割された永久磁石4a,4bの軸方向の長さに合わせて、ロータコアシートを積層しロータコア3を得る。その積層されたロータコア3に分割された永久磁石4a,4bをそれぞれ埋め込み一体として構成したロータコア完成品3a,3bを得る。
【0015】
この2個のロータコア完成品3a,3bを回転方向にずらして接合しロータ軸2を圧入等の手段で挿入してロータ1を得る。
【0016】
図3にロータコア完成品3a部でのロータ,ステータの回転方向位置関係の説明図を示す。また図4にロータコア完成品3b部でのロータ,ステータの回転方向位置関係の説明図を示す。この図3と図4は、ロータコア完成品3a及び3bが一体に構成されたロータ1がある回転位置において、ステータ側の歯やスロットとの位置関係を示している。
【0017】
ロータコア完成品3a側が図3に示すように、ステータの歯6の位置に永久磁石4a及び/または4bが合致した場合、磁気抵抗は大きくなり磁束8は小さくなる。この時一方、ロータコア完成品3b側は図4に示すようにステータの歯6の位置と永久磁石4a及び/または4bとがずれているので、磁気抵抗は小さくなり磁束8は大きくなる。
【0018】
このように図3及び図4の位置関係にある時点では、ステータ側からロータ側に流れる磁束量はロータコア完成品3a側は小さく、ロータコア完成品3b側は大きくなり、ロータ1全体としては平均化されることになる。また、図示していないが、次の時点においてはステータ側からロータ側に流れる磁束量は、ロータコア完成品3a側は大きくロータコア完成品3b側は小さくなり、ロータ1全体としては、やはり平均化される。
【0019】
この磁束量の変化がコギングトルクとなるので、本発明の構成によりコギングトルクが小さいリラクタンスモータが得られることになる。
【0020】
図5に本発明の構成における磁界解析によるトルクリップルの変動結果を示す。このデータにより明らかなように、トルク変動は約35%となっており、図7に示す従来例より大幅に改善されている。
【0021】
なお上記実施形態では、2個のロータコア完成品を一体に構成したロータとして説明したが、3個以上のロータコア完成品を一体に構成したロータとしてもよい。3個以上のロータコア完成品を同一回転方向にずらした構成やロータ中心に向かう半数を同一回転方向にずらし、残り半数は逆方向にずらした構成にすれば、さらにコギングトルクは減少し、トルク変動も小さくなる。
【0022】
(実施例2)
図2に示すように、複数個の円弧状のスリットを設けたコアシートを積層して得られたロータコア完成品3aと、同様にして得られたロータコア完成品3bとを回転方向にずらして接合し、ロータ軸2を圧入等の手段で挿入してロータ1を得る。
【0023】
この構成により実施例1における永久磁石4a,4bがスリット5に代わっただけなので実施例1と同様にコギングトルクが小さいリラクタンスモータが得られる。
【0024】
なお上記実施例では、2個のロータコア完成品を一体に構成したロータとして説明したが、3個以上のロータコア完成品を一体に構成したロータとしてもよい。3個以上のロータコア完成品を同一回転方向にずらした構成やロータ中心に向かう半数を同一回転方向にずらし、残り半数は逆方向にずらした構成にすれば、さらにコギングトルクは減少し、トルク変動も小さくなる。
【0025】
【発明の効果】
本発明によれば、複数個のロータコア完成品をそれぞれ回転方向にずらして一体に構成したロータを有するリラクタンスモータとすることにより、コギングトルクが小さく、また回転中のトルクリップルが小さいリラクタンスモータとなり、モータ回転中の騒音や振動を抑えた良好な特性が得られる。
【図面の簡単な説明】
【図1】本発明の実施例を示すロータの斜視図
【図2】本発明の他の実施例を示すロータの斜視図
【図3】本発明の実施例の作用を説明する図
【図4】本発明の実施例の作用を説明する図
【図5】本発明の実施例の磁界解析による特性図
【図6】従来のロータの斜視図
【図7】従来例の磁界解析による特性図
【符号の説明】
1 ロータ
2 ロータ軸
3 ロータコア
3a、3b ロータコア完成品
4 永久磁石
5 スリット
6 ステータの歯
7 スロット
8 磁束
β ロータコアの回転方向のずれ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reluctance motor.
[0002]
[Prior art]
Conventionally, a rotor body in which a permanent magnet is embedded in a rotor body made of a high permeability material such as iron is known.
[0003]
FIG. 6 shows a rotor with a permanent magnet having a two-layer structure developed by the present inventors in order to effectively use the reluctance torque. (JP-A-8-331783)
The rotor 1 according to the prior invention has a rotor shaft 2 at the center, and an iron rotor core 3 is embedded with four sets of permanent magnets 4a and 4b arranged at intervals of two layers per pole in the radial direction of the rotor. Thus, each set of permanent magnets 4a and 4b is arranged adjacent to each other so that the S poles and the N poles are alternately arranged, and both are formed in a circular arc shape convex in the centripetal direction of the rotor. The iron rotor core 3 is configured by laminating a large number of perforated core sheets. The iron rotor core 3 is laminated by aligning the positions of the holes, and the above-described arc-shaped permanent magnet is inserted and embedded.
[0004]
[Patent Document 1]
JP-A-8-331783
[Problems to be solved by the invention]
In the configuration of the above prior invention, the number of man-hours for assembling the rotor is the smallest and can be manufactured at low cost, but the slit portion provided in the rotor is configured straight and parallel to the rotor shaft, so the positional relationship with the stator However, the cogging torque fluctuation during the rotation of the rotor is large.
[0006]
As an example, FIG. 7 shows the fluctuation result of torque ripple by magnetic field analysis in the configuration of the prior invention. As is clear from this data, a large torque fluctuation of about 80% is shown.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems of the prior invention, the invention according to the present application is the same for a permanent magnet embedded type reluctance motor in which a permanent magnet is embedded in the rotor core in the axial direction. The rotor cores are embedded in a plurality of rotor cores divided in the axial direction, and the plurality of rotor core finished products are shifted in the rotor rotation direction and integrally formed in the axial direction. More specifically, in a reluctance motor in which a permanent magnet is embedded in the axial direction inside a rotor of a reluctance motor,
The rotor is composed of a plurality of rotor core finished products divided in the axial direction, and a rotor shaft into which the plurality of rotor core finished products are inserted as a unit,
The permanent magnet is embedded in a plurality of layers at intervals in the radial direction of the rotor core finished product for each pole of the rotor core finished product, and the shape of the permanent magnet is an arc shape convex in the centripetal direction of the rotor Further, the magnetic poles of the permanent magnets are arranged so that the S poles and the N poles alternate for each pole,
Due to the positional relationship of the rotational position of the stator teeth of the reluctance motor and the permanent magnet of the rotor,
Of each of the rotor core finished products, when the permanent magnet of one rotor core finished product and the teeth of the stator face each other and the amount of magnetic flux flowing from the stator side to the rotor side in the one rotor core finished product is small The positional relationship between the slot of the other rotor core finished product and the teeth of the stator is shifted from the position where the permanent magnet of the other rotor core finished product and the teeth of the stator are opposed to each other. The amount of magnetic flux flowing from the stator side to the rotor side is large,
At the next time point, the magnetic flux flowing from the stator side to the rotor side in the one rotor core finished product is shifted from the position where the permanent magnet of the one rotor core finished product and the teeth of the stator face each other. The amount of magnetic flux flowing from the stator side to the rotor side in the other rotor core finished product is small, and the permanent magnet of the other rotor core finished product is opposed to the stator teeth at this time,
In this way, each of the rotor core finished products is a reluctance motor configured integrally in the axial direction by shifting in the rotational direction so that the amount of magnetic flux flowing from the stator side to the entire rotor side is averaged . Furthermore, in the above-described reluctance motor, the reluctance motor is a reluctance motor having a four-pole rotor core in which a plurality of arc-shaped permanent magnets are embedded with two layers per pole.
Further, in any one of the above reluctance motors, the rotor is a reluctance motor having two rotor core finished products.
Furthermore, in any one of the above-described reluctance motors, the rotor is a reluctance motor having three rotor core finished products.
[0008]
According to this invention, the position of the slit portion provided in the rotor and the position of the teeth of the stator do not coincide with each other at the same time, so that cogging is reduced and a reluctance motor having good characteristics with less torque ripple can be obtained.
[0009]
The invention according to the present application is a reluctance type synchronous motor having a rotor provided with a plurality of slits, wherein the rotor includes a plurality of rotor core finished products, and each rotor core finished product has the slit position in the rotation direction. They are shifted and configured integrally in the axial direction.
[0010]
According to this invention, the position of the slit portion provided in the rotor and the position of the teeth of the stator do not coincide with each other at the same time, so that cogging is reduced and a reluctance motor having good characteristics with less torque ripple can be obtained.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above-mentioned problems, the present invention is a reluctance motor having a rotor configured by shifting a plurality of rotor core finished products in the rotational direction.
[0012]
In the reluctance motor having permanent magnets, the permanent magnets were obtained by dividing the permanent magnets into a plurality of pieces in the rotor axial direction and embedding the permanent magnets in the rotor core sheet laminated according to the axial length of each permanent magnet. A plurality of finished rotor cores are shifted in the rotational direction to form a single body to obtain a rotor. In addition, a reluctance motor that does not have a permanent magnet has the same configuration as that described above just by having no permanent magnet.
[0013]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0014]
(Example 1)
As shown in FIG. 1, the permanent magnets 4 a and 4 b embedded in the rotor 1 are divided into two in the axial direction, and the rotor core sheet is matched to the axial length of the divided permanent magnets 4 a and 4 b. To obtain the rotor core 3. Completed rotor cores 3a and 3b are obtained in which the permanent magnets 4a and 4b divided into the laminated rotor core 3 are respectively embedded and integrated.
[0015]
The two rotor core finished products 3a and 3b are joined while being shifted in the rotational direction, and the rotor shaft 2 is inserted by means such as press fitting to obtain the rotor 1.
[0016]
FIG. 3 shows an explanatory diagram of the positional relationship between the rotor and stator in the rotor core finished product 3a. FIG. 4 is an explanatory view of the positional relationship of the rotor and the stator in the rotational direction in the rotor core finished product 3b. 3 and 4 show the positional relationship with the teeth and slots on the stator side at a rotational position where the rotor 1 in which the rotor core finished products 3a and 3b are integrally formed is located.
[0017]
As shown in FIG. 3 on the rotor core finished product 3a side, when the permanent magnets 4a and / or 4b match the position of the stator teeth 6, the magnetic resistance increases and the magnetic flux 8 decreases. On the other hand, since the position of the stator teeth 6 and the permanent magnets 4a and / or 4b are shifted from each other on the rotor core finished product 3b side as shown in FIG. 4, the magnetic resistance decreases and the magnetic flux 8 increases.
[0018]
3 and FIG. 4, the amount of magnetic flux flowing from the stator side to the rotor side is small on the rotor core finished product 3a side and large on the rotor core finished product 3b side, and the rotor 1 as a whole is averaged. Will be. Although not shown, the amount of magnetic flux flowing from the stator side to the rotor side at the next time point is large on the rotor core finished product 3a side and small on the rotor core finished product 3b side, and the rotor 1 as a whole is still averaged. The
[0019]
Since the change in the amount of magnetic flux becomes cogging torque, a reluctance motor with small cogging torque can be obtained by the configuration of the present invention.
[0020]
FIG. 5 shows a result of torque ripple variation by magnetic field analysis in the configuration of the present invention. As is apparent from this data, the torque fluctuation is about 35%, which is a significant improvement over the conventional example shown in FIG.
[0021]
In the above-described embodiment, the rotor has been described as integrally configured with two rotor core finished products. However, the rotor may be configured with three or more rotor core completed products integrated. If three or more rotor core finished products are shifted in the same rotation direction, or half of the rotor core toward the rotor center is shifted in the same rotation direction and the other half is shifted in the opposite direction, the cogging torque is further reduced and the torque fluctuation Becomes smaller.
[0022]
(Example 2)
As shown in FIG. 2, a rotor core finished product 3a obtained by laminating a core sheet provided with a plurality of arc-shaped slits and a rotor core finished product 3b obtained in the same manner are joined while being shifted in the rotational direction. Then, the rotor shaft 2 is inserted by means such as press fitting to obtain the rotor 1.
[0023]
With this configuration, since the permanent magnets 4a and 4b in the first embodiment are merely replaced with the slit 5, a reluctance motor having a small cogging torque can be obtained as in the first embodiment.
[0024]
In the above-described embodiment, the rotor has been described in which two rotor core finished products are integrally configured. However, a rotor in which three or more rotor core finished products are integrally configured may be used. If three or more rotor core finished products are shifted in the same rotation direction, or half of the rotor core toward the rotor center is shifted in the same rotation direction and the other half is shifted in the opposite direction, the cogging torque is further reduced and the torque fluctuation Becomes smaller.
[0025]
【The invention's effect】
According to the present invention, by making a reluctance motor having a rotor integrally configured by shifting a plurality of rotor core finished products respectively in the rotation direction, a reluctance motor having a small cogging torque and a small torque ripple during rotation is obtained. Good characteristics with reduced noise and vibration during motor rotation can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view of a rotor according to an embodiment of the present invention. FIG. 2 is a perspective view of a rotor according to another embodiment of the present invention. FIG. 5 is a diagram for explaining the operation of the embodiment of the present invention. FIG. 5 is a characteristic diagram by magnetic field analysis of the embodiment of the present invention. FIG. 6 is a perspective view of a conventional rotor. Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotor 2 Rotor shaft 3 Rotor core 3a, 3b Completed rotor core 4 Permanent magnet 5 Slit 6 Stator tooth 7 Slot 8 Magnetic flux β Deviation in rotation direction of rotor core

Claims (4)

リラクタンスモータのロータ内部に永久磁石が軸方向に埋設されるリラクタンスモータにおいて、
前記ロータは、軸方向に分割された複数のロータコア完成品と、複数の前記ロータコア完成品を一体として挿入されるロータ軸とからなり、
前記永久磁石は、前記ロータコア完成品の極毎にこのロータコア完成品の半径方向に間隔を置いて複数層に埋設され、かつ前記永久磁石の形状は前記ロータの求心方向へ凸形をなす円弧形状であり、さらに前記永久磁石の磁極は前記極毎にS極,N極が交互となるように配置されており、
前記リラクタンスモータのステータの歯と、前記ロータの永久磁石との回転位置の位置関係により、
前記ロータコア完成品各々のうち、一のロータコア完成品の永久磁石と前記ステータの歯とが相対して、前記一のロータコア完成品にての前記ステータ側から前記ロータ側に流れる磁束量が小さいときには、他のロータコア完成品のスロットと前記ステータの歯との位置関係が、他のロータコア完成品の永久磁石とステータの歯とが相対する位置よりもずれており、他のロータコア完成品にての前記ステータ側から前記ロータ側に流れる磁束量が大きく、
次の時点においては、前記一のロータコア完成品の永久磁石と前記ステータの歯とが相対する位置よりもずれており、前記一のロータコア完成品にての前記ステータ側から前記ロータ側に流れる磁束量が大きく、このときには前記他のロータコア完成品の永久磁石と前記ステータの歯とが相対しており、前記他のロータコア完成品にての前記ステータ側から前記ロータ側に流れる磁束量が小さく、
このように、前記ステータ側から前記ロータ側全体に流れる磁束量が平均化されるように前記ロータコア完成品各々が回転方向にてずらされて軸方向に一体に構成されるリラクタンスモータであり、さらに前記ロータコアが4極のロータコアであり、1極当たり2層に間隔を置いて円弧形状の永久磁石複数個が埋設されるリラクタンスモータ。
In the reluctance motor in which the permanent magnet is embedded in the axial direction inside the rotor of the reluctance motor,
The rotor is composed of a plurality of rotor core finished products divided in the axial direction, and a rotor shaft into which the plurality of rotor core finished products are inserted as a unit,
The permanent magnet is embedded in a plurality of layers at intervals in the radial direction of the rotor core finished product for each pole of the rotor core finished product, and the shape of the permanent magnet is an arc shape convex in the centripetal direction of the rotor Further, the magnetic poles of the permanent magnets are arranged so that the S poles and the N poles alternate for each pole,
Due to the positional relationship of the rotational position of the stator teeth of the reluctance motor and the permanent magnet of the rotor,
Of each of the rotor core finished products, when the permanent magnet of one rotor core finished product and the teeth of the stator face each other and the amount of magnetic flux flowing from the stator side to the rotor side in the one rotor core finished product is small The positional relationship between the slot of the other rotor core finished product and the teeth of the stator is shifted from the position where the permanent magnet of the other rotor core finished product and the teeth of the stator are opposed to each other. The amount of magnetic flux flowing from the stator side to the rotor side is large,
At the next time point, the magnetic flux flowing from the stator side to the rotor side in the one rotor core finished product is shifted from the position where the permanent magnet of the one rotor core finished product and the teeth of the stator face each other. The amount of magnetic flux flowing from the stator side to the rotor side in the other rotor core finished product is small, and the permanent magnet of the other rotor core finished product is opposed to the stator teeth at this time,
Thus, a reluctance motor configured integrally the rotor core finished products each being offset in rotational direction in the axial direction so that the amount of magnetic flux flowing across the rotor side from the stator side are averaged, further A reluctance motor in which the rotor core is a four-pole rotor core, and a plurality of arc-shaped permanent magnets are embedded at intervals in two layers per pole.
請求項1又は請求項2のいずれかに記載のリラクタンスモータにおいて、ロータが2個のロータコア完成品を有するリラクタンスモータ。  The reluctance motor according to claim 1 or 2, wherein the rotor has two rotor core finished products. 請求項1又は請求項2のいずれかに記載のリラクタンスモータにおいて、ロータが3個のロータコア完成品を有するリラクタンスモータ。  The reluctance motor according to claim 1, wherein the rotor has three rotor core finished products. 請求項1記載のリラクタンスモータにおいて、複数層の永久磁石が複数層のスリットに置換されるリラクタンスモータ。  The reluctance motor according to claim 1, wherein the plurality of layers of permanent magnets are replaced with a plurality of layers of slits.
JP2003023787A 2003-01-31 2003-01-31 Reluctance motor Expired - Fee Related JP3722126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003023787A JP3722126B2 (en) 2003-01-31 2003-01-31 Reluctance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003023787A JP3722126B2 (en) 2003-01-31 2003-01-31 Reluctance motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8231574A Division JPH1080079A (en) 1996-09-02 1996-09-02 Reluctance motor

Publications (2)

Publication Number Publication Date
JP2003204640A JP2003204640A (en) 2003-07-18
JP3722126B2 true JP3722126B2 (en) 2005-11-30

Family

ID=27656156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003023787A Expired - Fee Related JP3722126B2 (en) 2003-01-31 2003-01-31 Reluctance motor

Country Status (1)

Country Link
JP (1) JP3722126B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483815B2 (en) 2015-07-15 2019-11-19 Mitsubishi Electric Corporation Rotor, electric motor, compressor, and refrigeration air conditioner
US10581286B2 (en) 2015-06-15 2020-03-03 Mitsubishi Electric Corporation Permanent-magnet-embedded electric motor and compressor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834386B2 (en) * 2005-11-24 2011-12-14 株式会社東芝 Permanent magnet type motor and electric power steering device using the same
KR101206259B1 (en) 2008-06-02 2012-11-28 전자부품연구원 Rotor of a pole change type synchronous motor and manufacturing method thereof
JP2010263725A (en) * 2009-05-08 2010-11-18 Minebea Co Ltd Motor
WO2015037127A1 (en) * 2013-09-13 2015-03-19 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
WO2020021788A1 (en) 2018-07-25 2020-01-30 三菱電機株式会社 Rotating electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581286B2 (en) 2015-06-15 2020-03-03 Mitsubishi Electric Corporation Permanent-magnet-embedded electric motor and compressor
US10483815B2 (en) 2015-07-15 2019-11-19 Mitsubishi Electric Corporation Rotor, electric motor, compressor, and refrigeration air conditioner

Also Published As

Publication number Publication date
JP2003204640A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
JP3906882B2 (en) Permanent magnet motor
US7923881B2 (en) Interior permanent magnet motor and rotor
JP5589345B2 (en) Permanent magnet rotating electric machine
JP3906883B2 (en) Permanent magnet motor
JP2003264947A (en) Permanent magnet motor
JP2001157396A (en) Manufacturing method of rotor of rotary electric machine and rotor core
KR20080077128A (en) Arrangement of rotor laminates of a permanently excited electrical machine
JP2000308287A (en) Permanent magnet embedded reluctance motor
JP3885732B2 (en) Permanent magnet embedded synchronous motor
JP2014161180A (en) Multiple gap type rotary electric machine
JP5491298B2 (en) Rotor, motor, and method of manufacturing rotor
JP5067365B2 (en) motor
JP3722126B2 (en) Reluctance motor
JPH1080079A (en) Reluctance motor
JP2006020406A (en) Rotor for motor
JP5039482B2 (en) Rotor laminated core for reluctance motor
JP2002058184A (en) Rotor construction and motor
JP3485887B2 (en) Brushless motor
JP4290998B2 (en) Manufacturing method of rotating electrical machine
JP3289596B2 (en) Radial gap type motor with core
JP2010081676A (en) Rotor of rotating electrical machine, and rotating electrical machine
JP3598804B2 (en) Motor rotor
JP3914293B2 (en) Permanent magnet motor
JP3871006B2 (en) Permanent magnet motor
JP5981365B2 (en) Rotor and motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

LAPS Cancellation because of no payment of annual fees