JP3721517B2 - Method for evaluating the effect of degree of work and annealing on mechanical properties in bending of steel sheets - Google Patents

Method for evaluating the effect of degree of work and annealing on mechanical properties in bending of steel sheets Download PDF

Info

Publication number
JP3721517B2
JP3721517B2 JP2002241806A JP2002241806A JP3721517B2 JP 3721517 B2 JP3721517 B2 JP 3721517B2 JP 2002241806 A JP2002241806 A JP 2002241806A JP 2002241806 A JP2002241806 A JP 2002241806A JP 3721517 B2 JP3721517 B2 JP 3721517B2
Authority
JP
Japan
Prior art keywords
treatment
mechanical properties
steel
bending
ceq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002241806A
Other languages
Japanese (ja)
Other versions
JP2004077430A (en
Inventor
貢 倉持
安冨彩子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2002241806A priority Critical patent/JP3721517B2/en
Publication of JP2004077430A publication Critical patent/JP2004077430A/en
Application granted granted Critical
Publication of JP3721517B2 publication Critical patent/JP3721517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、プレスベンド鋼管やハンチ梁等、鋼板の曲げ加工における機械的性質に及ぼす加工度と焼き鈍し処理の影響評価法に関する。
【0002】
【従来の技術】
建築鉄骨造の柱材およびトラス材として、プレスベンド鋼管が使用される機会が増加している。プレスベンド鋼管は、素材鋼板を横長型のプレス機により、常温でU字形、O形の順で丸く成形した後、素材鋼板の端部を溶接接合して製作される。このため、造管直後の鋼管は、加工硬化により素材鋼板の機械的性質
(0.2%耐力Yp、引張強さTs、降伏比YR=Yp/Ts)が変化する。これらは素材鋼板の強度が高く、かつ加工度(t/D=板厚/直径)が大きい程、大きく変化し、過大に機械的性質が変化したものは規格値を越脱することがあり、この場合には、焼き鈍し処理(SR処理)され、規格値を満足するように処理されている。
【0003】
【発明が解決しようとする課題】
しかしながら、これら一連の工程管理は、これまで鋼板メーカーおよび鋼板加工業者に一任され、ブラックボックス化されている。そのため、建物の重要度に応じて設計要求性能値を決める性能設計法に移行しつつある鉄骨造の品質を十分に確保することが困難であるという問題を有している。
また、SR処理はコストが高く、そのうえSR処理後の強度試験が必要であるが、従来は規格値を超えたものを全てSR処理しているため、その分だけコストが増大するという問題を有している。
上記の問題は、プレスベンド鋼管のみならず、ハンチ梁等、鋼板の曲げ加工における共通の問題である。
本発明は、上記従来の問題を解決するものであって、曲げ加工鋼板の材料特性を明確にすることにより、鉄骨造の品質、安全性および信頼性をより向上させるとともに、コストを低減させることができる鋼板の曲げ加工における機械的性質に及ぼす加工度と焼き鈍し処理の影響評価法を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するために、本発明の鋼板の曲げ加工における機械的性質に及ぼす加工度と焼き鈍し処理の影響評価法は、以下の順序で行う。
▲1▼素材鋼板の機械的性質(0.2%耐力Yp-p1、引張強さTs-p1、降伏比YR-p1)と炭素当量(Ceq)、加工度(t/D)、SR処理温度(T℃)を、鋼板の曲げ加工後およびSR処理後の鋼板の機械的性質(Yp-sr、Ts-sr、YR-sr)に及ぼす影響因子と位置付けて、重回帰分析を行う。
▲2▼重回帰分析の結果から、
下式で示されるSR処理後の鋼板の機械的性質(Yp-sr、Ts-sr、YR-sr)に関する推定式を構築する。
Yp-sr=a・Yp-p1+b・Ceq+c・(t/D)+d・T℃+e
Ts-sr=a・Ts-p1+b・Ceq+c・(t/D)+d・T℃+e
YR-sr=a・YR-p1+b・Ceq+c・(t/D)+d・T℃+e
▲3▼各鋼材メーカー毎の鋼種別の品質特性分布を考慮して、上記推定式を用いて曲げ加工後およびSR処理後の鋼板の機械的性質(Yp-sr、Ts-sr、YR-sr)を試算する。
▲4▼試算結果が当該建物の設計要求性能値を満たすか否かを判定し、SR処理の必要性およびSR処理温度を明示する。
【0005】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1〜図6は、本発明をプレスベンド鋼管に適用した実施形態を説明するための図である。
図1は、各種素材鋼板から製造されたプレスベンド鋼管の試験データの一部を示している。素材鋼板の、メーカー名、鋼種、炭素当量(Ceq)、機械的性質(0.2%耐力Yp-sr、引張強さTs-sr、降伏比YR-sr)が示され、これを用いたプレスベンド鋼管の加工度(t/D)、SR処理温度(T℃)ごとに、プレスベンド加工後およびSR処理後の鋼管の機械的性質(0.2%耐力Yp-sr、引張強さTs-sr、降伏比YR-sr)が示されている。
【0006】
図1の試験データに基づいて、素材鋼板の機械的性質(Yp-p1、Ts-p1、R-p1)と炭素当量(Ceq)、加工度(t/D)、SR処理温度(T℃)を、プレスベンド加工後およびSR処理後の鋼管の機械的性質(Yp-sr、Ts-sr、YR-sr)に及ぼす影響因子と位置づけて重回帰分析を行った。
【0007】
図2は重回帰分析の結果を示す推定式である。プレスベンド加工後およびSR処理後の鋼管の機械的性質(0.2%耐力Yp-sr、引張強さTs-sr、降伏比YR-sr)は、素材鋼板の機械的性質(Yp-p1、Ts-p1、R-p1)と炭素当量(Ceq)、加工度(t/D)、SR処理温度(T℃)で表すことができ、図2に示す推定式の推定精度は図3に示す通りである。
図2に示す推定式を用いて、プレスベンド加工後およびSR処理後の鋼管の機械的性質(Yp-sr、Ts-sr、YR-sr)は、図4に示すように、試算することができる。
【0008】
図4の試算結果から、プレスベンド加工後およびSR処理後の鋼管の機械的性質(Yp-sr、Ts-sr、YR-sr)と、SR処理温度(T℃)、炭素当量(Ceq)および加工度(t/D)の関係は、それぞれ図5(A)〜図5(C)で表される。図5において、Yp=325(N/mm2)以上、Ts=490(N/mm2)以上、YR=80(%)以下が設計要求性能値である。
【0009】
図4の試算結果から、図6に示すように、素材鋼板の機械的性質(Yp-p1、Ts-p1、R-p1)と炭素当量(Ceq)および加工度(t/D)によって、プレスベンド鋼管のSR処理方策をSR処理が不必要なもの(○)と必要なもの(550:処理温度)および選択不可(×:SR処理をしても設計要求性能値が満たされないもの)に判定、評価することができる。
【0010】
例えば、図4のXで示した素材鋼板を、加工度5.1%、SR処理温度20℃でプレスベンド鋼管を製作した場合に、SR処理後の鋼管の機械的性質は、Yp=444、Ts=597、YR=74となり、上記の設計要求性能値を満たすことになり、SR処理が不必要なものと判定される。なお、SR処理温度は、実際には550℃程度にしないと機械的性質が変化せず、20℃はSR処理が不必要なものと判定される。
【0011】
また、図4のYで示した素材鋼板を、加工度8.3%、SR処理温度500℃でプレスベンド鋼管を製作した場合に、SR処理後の鋼管の機械的性質は、Yp=396、Ts=499、YR=79となり、上記の設計要求性能値を満たすことになり、SR処理が必要なものと判定される。
また、図4のZで示した素材鋼板を、加工度9%、SR処理温度20℃でプレスベンド鋼管を製作した場合に、SR処理後の鋼管の機械的性質は、Yp=481、Ts=565、YR=85となり、このときSR処理温度をいくら上げても、YR=80(%)以下にはならないので、選択不可(×:SR処理をしても設計要求性能値が満たされないもの)と判定する。
【0012】
以上の判定結果に基づいて、建設会社は鋼材メーカーに対して、SR処理が不必要で且つ設計要求性能値を満たす素材鋼板を選択して発注することができ、その結果、建設コストを低減することができる。
【0013】
図7は、本発明をハンチ梁に適用した実施形態を説明するための図である。ハンチ梁は、梁の下部鋼板をP点で曲げ加工している。従って、素材鋼板の機械的性質(0.2%耐力Yp-p1、引張強さTs-p1、降伏比YR-p1)と炭素当量(Ceq)、加工度(t/D)、SR処理温度(T℃)を、鋼板の曲げ加工後およびSR処理後の鋼板の機械的性質(Yp-sr、Ts-sr、YR-sr)に及ぼす影響因子と位置付けて、重回帰分析を行い、上記と同様にして評価することができる。
【0014】
【発明の効果】
以上の説明から明らかなように、本発明によれば、性能設計法に基づく曲げ加工鋼板に対する設計要求性能値の作り込みが確実かつ定量的に可能となる。また、曲げ加工鋼板の材料特性を明確にすることにより、鉄骨造の品質、安全性および信頼性をより向上させるとともに、コストを低減させることができる。
【図面の簡単な説明】
【図1】図1〜図6は、本発明をプレスベンド鋼管に適用した実施形態を説明するための図であり、図1は、各種素材鋼板から製造されたプレスベンド鋼管の試験データの一部を示す図である。
【図2】プレスベンド加工後およびSR処理後の鋼管の機械的性質の推定式を示す図である。
【図3】図2の推定式の推定精度を示す図である。
【図4】図2の推定式を用いてプレスベンド加工後およびSR処理後の鋼管の機械的性質の試算結果の一部を示す図である。
【図5】プレスベンド加工後およびSR処理後の鋼管の機械的性質)と、SR処理温度、炭素当量および加工度の関係を示す図である。
【図6】図4の試算結果に基づいたプレスベンド鋼管の評価結果の一部を示す図である。
【図7】本発明をハンチ梁に適用した実施形態を説明するための図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating the influence of workability and annealing treatment on mechanical properties in bending of steel plates such as press-bend steel pipes and hunched beams.
[0002]
[Prior art]
Opportunities for using press-bend steel pipes as building steel columns and truss materials are increasing. A press-bend steel pipe is manufactured by forming a raw steel plate into a round shape in the order of a U shape and an O shape at room temperature using a horizontally long press, and then welding and joining the end portions of the raw steel plate. For this reason, the mechanical properties (0.2% proof stress Yp, tensile strength Ts, yield ratio YR = Yp / Ts) of the raw steel plate change due to work hardening in the steel pipe immediately after pipe forming. These materials change greatly as the strength of the steel plate is high and the degree of processing (t / D = plate thickness / diameter) is large, and those whose mechanical properties change excessively may exceed the standard value. In this case, the annealing process (SR process) is performed so as to satisfy the standard value.
[0003]
[Problems to be solved by the invention]
However, these series of process managements have been left up to the steel plate manufacturers and steel plate processors so far as black boxes. Therefore, there is a problem that it is difficult to sufficiently secure the quality of the steel structure that is shifting to the performance design method that determines the design required performance value according to the importance of the building.
In addition, SR processing is costly and requires a strength test after SR processing. Conventionally, all of the components exceeding the standard value are SR processed, which increases the cost accordingly. are doing.
The above-mentioned problem is a common problem in bending of not only press bend steel pipes but also steel plates such as hunched beams.
The present invention solves the above-mentioned conventional problems, and by clarifying the material characteristics of the bent steel sheet, the quality, safety and reliability of the steel structure are further improved and the cost is reduced. It is an object to provide a method for evaluating the influence of the degree of work and the annealing treatment on the mechanical properties in bending of a steel sheet that can be deformed.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the degree of work and the effect of annealing treatment on the mechanical properties in bending of the steel sheet of the present invention are evaluated in the following order.
(1) Mechanical properties (0.2% proof stress Yp-p1, tensile strength Ts-p1, yield ratio YR-p1), carbon equivalent (Ceq), degree of work (t / D), SR treatment temperature (T C) is positioned as an influential factor on the mechanical properties (Yp-sr, Ts-sr, YR-sr) of the steel sheet after bending and SR treatment of the steel sheet, and a multiple regression analysis is performed.
(2) From the results of multiple regression analysis,
An estimation formula for the mechanical properties (Yp-sr, Ts-sr, YR-sr) of the steel sheet after SR treatment represented by the following formula is constructed.
Yp-sr = a · Yp-p1 + b · Ceq + c · (t / D) + d · T ° C + e
Ts-sr = a.Ts-p1 + b.Ceq + c. (T / D) + d.T.degree. C. + e
YR-sr = a ・ YR-p1 + b ・ Ceq + c ・ (t / D) + d ・ T ℃ + e
(3) Taking into account the quality characteristic distribution of each steel manufacturer by each steel manufacturer, the mechanical properties (Yp-sr, Ts-sr, YR-sr) of the steel sheet after bending and SR treatment using the above estimation formula ).
{Circle around (4)} Determine whether the trial calculation result satisfies the design required performance value of the building, and clearly indicate the necessity of SR processing and the SR processing temperature.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIGS. 1-6 is a figure for demonstrating embodiment which applied this invention to the press bend steel pipe.
FIG. 1 shows a part of test data of a press bend steel pipe manufactured from various raw steel plates. The manufacturer's name, steel type, carbon equivalent (Ceq), and mechanical properties (0.2% proof stress Yp-sr, tensile strength Ts-sr, yield ratio YR-sr) of the steel plate are shown. The mechanical properties (0.2% proof stress Yp-sr, tensile strength Ts-sr, yield ratio) of steel pipes after press bend processing and SR treatment at each degree of work (t / D) and SR treatment temperature (T ° C) YR-sr) is shown.
[0006]
Based on the test data in Fig. 1, the mechanical properties (Yp-p1, Ts-p1, R-p1), carbon equivalent (Ceq), degree of processing (t / D), and SR treatment temperature (T ° C) Was positioned as an influencing factor on the mechanical properties (Yp-sr, Ts-sr, YR-sr) of the steel pipe after press bend processing and SR treatment, and multiple regression analysis was performed.
[0007]
FIG. 2 is an estimation formula showing the result of multiple regression analysis. The mechanical properties (0.2% proof stress Yp-sr, tensile strength Ts-sr, yield ratio YR-sr) of the steel pipe after press bend processing and SR treatment are the mechanical properties of the steel plate (Yp-p1, Ts- p1, R-p1), carbon equivalent (Ceq), degree of processing (t / D), SR treatment temperature (T ° C), and the estimation accuracy of the estimation equation shown in FIG. 2 is as shown in FIG. is there.
Using the estimation formula shown in FIG. 2, the mechanical properties (Yp-sr, Ts-sr, YR-sr) of the steel pipe after press bend processing and SR treatment can be estimated as shown in FIG. it can.
[0008]
From the calculation results in FIG. 4, the mechanical properties (Yp-sr, Ts-sr, YR-sr) of the steel pipe after press bend processing and SR treatment, SR treatment temperature (T ° C), carbon equivalent (Ceq) and The relationship of the degree of processing (t / D) is represented by FIG. 5 (A) to FIG. 5 (C), respectively. In FIG. 5, Yp = 325 (N / mm 2 ) or more, Ts = 490 (N / mm 2 ) or more, and YR = 80 (%) or less are design required performance values.
[0009]
From the estimation results in Fig. 4, as shown in Fig. 6, depending on the mechanical properties (Yp-p1, Ts-p1, R-p1), carbon equivalent (Ceq), and workability (t / D) of the steel plate, Decide SR treatment policy for bend steel pipes that SR treatment is not necessary (○), what is necessary (550: treatment temperature) and unselectable (×: design performance value not satisfied even after SR treatment) Can be evaluated.
[0010]
For example, when a press bend steel pipe is manufactured from a raw steel plate indicated by X in FIG. 4 at a working degree of 5.1% and an SR treatment temperature of 20 ° C., the mechanical properties of the steel pipe after SR treatment are Yp = 444, Ts = 597 and YR = 74, which satisfy the above-mentioned required design performance value, and it is determined that the SR process is unnecessary. It should be noted that the mechanical property does not change unless the SR treatment temperature is actually about 550 ° C., and it is determined that the SR treatment is unnecessary at 20 ° C.
[0011]
Further, when a press bend steel pipe is manufactured from the raw steel plate indicated by Y in FIG. 4 at a working degree of 8.3% and an SR treatment temperature of 500 ° C., the mechanical properties of the steel pipe after SR treatment are Yp = 396, Ts = 499 and YR = 79, which satisfy the above-mentioned required design performance value, and it is determined that SR processing is necessary.
Further, when a press-bend steel pipe is manufactured from the raw steel sheet indicated by Z in FIG. 4 at a workability of 9% and an SR treatment temperature of 20 ° C., the mechanical properties of the steel pipe after SR treatment are Yp = 481, Ts = 565, YR = 85. At this time, no matter how much the SR processing temperature is raised, YR = 80 (%) or less cannot be selected. Therefore, selection is not possible (×: design required performance value is not satisfied even after SR processing) Is determined.
[0012]
Based on the above determination results, the construction company can select and order a material steel plate that does not require SR processing and satisfies the design required performance value from the steel material manufacturer, thereby reducing the construction cost. be able to.
[0013]
FIG. 7 is a view for explaining an embodiment in which the present invention is applied to a haunch beam. In the haunch beam, the lower steel plate of the beam is bent at the point P. Therefore, mechanical properties (0.2% proof stress Yp-p1, tensile strength Ts-p1, yield ratio YR-p1), carbon equivalent (Ceq), workability (t / D), SR treatment temperature (T ℃) ) Is a factor affecting the mechanical properties (Yp-sr, Ts-sr, YR-sr) of steel plates after bending and SR treatment, and multiple regression analysis was conducted. Can be evaluated.
[0014]
【The invention's effect】
As is clear from the above description, according to the present invention, it is possible to reliably and quantitatively create a design required performance value for a bent steel sheet based on the performance design method. Moreover, by clarifying the material characteristics of the bent steel sheet, the quality, safety and reliability of the steel structure can be further improved, and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 to FIG. 6 are diagrams for explaining an embodiment in which the present invention is applied to a press bend steel pipe, and FIG. FIG.
FIG. 2 is a diagram showing an estimation formula for mechanical properties of a steel pipe after press bend processing and after SR treatment.
FIG. 3 is a diagram showing the estimation accuracy of the estimation formula of FIG. 2;
FIG. 4 is a diagram showing a part of a trial calculation result of mechanical properties of a steel pipe after press bend processing and SR processing using the estimation formula of FIG. 2;
FIG. 5 is a diagram showing the relationship between the mechanical properties of a steel pipe after press bend processing and after SR treatment, the SR treatment temperature, the carbon equivalent, and the working degree.
6 is a diagram showing a part of the evaluation result of a press bend steel pipe based on the trial calculation result of FIG.
FIG. 7 is a diagram for explaining an embodiment in which the present invention is applied to a haunch beam.

Claims (1)

素材鋼板の機械的性質(0.2%耐力Yp-p1、引張強さTs-p1、降伏比YR-p1)と炭素当量(Ceq)、加工度(t/D=板厚/曲げ直径)、SR処理温度(T℃)を、鋼板の曲げ加工後およびSR処理後の鋼板の機械的性質(Yp-sr、Ts-sr、YR-sr)に及ぼす影響因子と位置付けて、重回帰分析を行う行程と、
前記重回帰分析の結果から、下式で示されるSR処理後の鋼板の機械的性質(Yp-sr、Ts-sr、YR-sr)に関する推定式を構築する行程と、
Yp-sr=a・Yp-p1+b・Ceq+c・(t/D)+d・T℃+e
Ts-sr=a・Ts-p1+b・Ceq+c・(t/D)+d・T℃+e
YR-sr=a・YR-p1+b・Ceq+c・(t/D)+d・T℃+e
各鋼材メーカー毎の鋼種別の品質特性分布を考慮して、上記推定式を用いて曲げ加工後およびSR処理後の鋼板の機械的性質(Yp-sr、Ts-sr、YR-sr)を試算する行程とを備え、
前記試算結果が当該建物の設計要求性能値を満たすか否かを判定し、SR処理の必要性およびSR処理温度を明示することを特徴とする鋼板の曲げ加工における機械的性質に及ぼす加工度と焼き鈍し処理の影響評価法。
Mechanical properties (0.2% proof stress Yp-p1, tensile strength Ts-p1, yield ratio YR-p1) and carbon equivalent (Ceq), degree of work (t / D = plate thickness / bending diameter), SR treatment Positioning temperature (T ° C) as an influencing factor on the mechanical properties (Yp-sr, Ts-sr, YR-sr) of steel plates after bending and SR treatment, ,
From the result of the multiple regression analysis, a process of constructing an estimation formula for the mechanical properties (Yp-sr, Ts-sr, YR-sr) of the steel sheet after SR treatment represented by the following formula;
Yp-sr = a · Yp-p1 + b · Ceq + c · (t / D) + d · T ° C + e
Ts-sr = a.Ts-p1 + b.Ceq + c. (T / D) + d.T.degree. C. + e
YR-sr = a ・ YR-p1 + b ・ Ceq + c ・ (t / D) + d ・ T ℃ + e
Taking into account the quality characteristics distribution of each steel manufacturer, the mechanical properties (Yp-sr, Ts-sr, YR-sr) of the steel sheet after bending and SR treatment are estimated using the above estimation formula. With a process to
Determining whether the trial calculation result satisfies the design required performance value of the building, and clearly indicating the necessity of SR treatment and the SR treatment temperature; Method for evaluating the effect of annealing treatment.
JP2002241806A 2002-08-22 2002-08-22 Method for evaluating the effect of degree of work and annealing on mechanical properties in bending of steel sheets Expired - Fee Related JP3721517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241806A JP3721517B2 (en) 2002-08-22 2002-08-22 Method for evaluating the effect of degree of work and annealing on mechanical properties in bending of steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241806A JP3721517B2 (en) 2002-08-22 2002-08-22 Method for evaluating the effect of degree of work and annealing on mechanical properties in bending of steel sheets

Publications (2)

Publication Number Publication Date
JP2004077430A JP2004077430A (en) 2004-03-11
JP3721517B2 true JP3721517B2 (en) 2005-11-30

Family

ID=32024188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241806A Expired - Fee Related JP3721517B2 (en) 2002-08-22 2002-08-22 Method for evaluating the effect of degree of work and annealing on mechanical properties in bending of steel sheets

Country Status (1)

Country Link
JP (1) JP3721517B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100660202B1 (en) * 2005-08-08 2006-12-21 주식회사 포스코 Method for evaluating property of steel material for line pipe with superior low temperature toughness
JP5983527B2 (en) * 2013-05-13 2016-08-31 Jfeスチール株式会社 Method for estimating tensile properties in the direction perpendicular to the working direction after bending a steel plate
CN104198672B (en) * 2014-09-01 2016-03-02 北京科技大学 Based on the bridge cable corrosion monitoring method that plane stress state stress is concentrated
EP3569149A4 (en) * 2017-01-10 2020-11-04 Media Co., Ltd. Bone density measurement device, bone density measurement system, and imaging assisting tool

Also Published As

Publication number Publication date
JP2004077430A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
da Silva et al. Statistical evaluation of the lateral–torsional buckling resistance of steel I-beams, Part 2: Variability of steel properties
JP2006315063A (en) Pressing die design support program, and its method
JP6179356B2 (en) Method for predicting fracture strain of welded portion, prediction system, and method for manufacturing member having welded portion
JP3721517B2 (en) Method for evaluating the effect of degree of work and annealing on mechanical properties in bending of steel sheets
JP6597901B2 (en) ERW steel pipe for boiler excellent in stress corrosion cracking resistance and its manufacturing method
JP2013186102A (en) Prediction method and prediction system of fracture strain of welding part, and method for manufacturing member including welding part
JP4105962B2 (en) Sulfuric acid dew-point corrosion steel cold-rolled steel sheet for air preheater heat transfer element and manufacturing method thereof
CN108520167B (en) Method and system for rapidly evaluating high-temperature life of G102 steel heating surface
JPH07124639A (en) Manufacture of hot-rolled large diameter square steel tube where material of corner radiused part is not deteriorated
JP7369088B2 (en) Evaluation method of crack resistance properties of plate materials
CN114386234B (en) Novel method for calculating reduction of thick plate JCO forming process
KR100523430B1 (en) MILD STEEL STEM AND Fe-Ni ALLOY BASED STEM FOR SHADOW MASK HAVING GOOD SHAPE AFTER ETCHING
Saravanan et al. Experimental prediction and investigation of spring back in u bending profile process using RSM and ANOVA
JP7213681B2 (en) Steel pipe manufacturing method for steel pipe fittings
JP3194262B2 (en) Tube making method of rolled sheet material
CN114378422B (en) Comprehensive adjusting method for assembling quality of friction stir welding joint
CN110076221B (en) U-shaped plate forming method and U-shaped plate mounting method
CN117268950A (en) Prediction method for shearing and stretching fatigue limit of spot-welded joint of automobile sheet
Lee et al. Evaluation of Force-Based Spot Weld Modeling in Quasi-Static Finite Element Analysis
James et al. Thermal Zinc Diffusion Galvanising Rebar Bending Test
JPH08240516A (en) Test piece with uniform residual stress and its manufacture
SU1077737A1 (en) Method of manufacturing welded constructions (its versions)
KR20010061645A (en) Prediction of forming limit diagram for hot rolled formable high strength auto steels
JP2003183774A (en) Strip for shadow mask having satisfactory shape after being etched
JPH07314048A (en) Production of square steel tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees