JP3721204B2 - Rice husk ash manufacturing method and manufacturing apparatus - Google Patents

Rice husk ash manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP3721204B2
JP3721204B2 JP06378894A JP6378894A JP3721204B2 JP 3721204 B2 JP3721204 B2 JP 3721204B2 JP 06378894 A JP06378894 A JP 06378894A JP 6378894 A JP6378894 A JP 6378894A JP 3721204 B2 JP3721204 B2 JP 3721204B2
Authority
JP
Japan
Prior art keywords
rice husk
fluidized bed
bed furnace
furnace
husk ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06378894A
Other languages
Japanese (ja)
Other versions
JPH07269805A (en
Inventor
一雅 栄
泰史 山本
幸人 金納
一朗 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP06378894A priority Critical patent/JP3721204B2/en
Publication of JPH07269805A publication Critical patent/JPH07269805A/en
Application granted granted Critical
Publication of JP3721204B2 publication Critical patent/JP3721204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combustion Of Fluid Fuel (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、流動床炉を用いる籾殻灰の製造方法およびその装置に関するものである。
【0002】
【従来の技術】
籾殻を600〜900℃の適温で燃焼させると、酸化ケイ素(SiO2)が80%以上含まれポゾラン活性が高い非晶質灰が得られる。この非晶質灰を混和材として、或はセメント代替としてコンクリートやモルタルに使用すると、強度増進等の数々の利点が有ることは、例えば、コンクリート工学年次論文報告集、1993年、第15巻、1号の杉田等の「高活性もみがら灰製造法とそれを用いたコンクリートの性質」、原田等の「籾殻灰を混和したモルタルの基礎性状」等の論文によって既に知られている。
【0003】
籾殻灰の品質は主にポゾラン活性度と未燃カーボン量によって左右される。すなわち、燃焼温度が高すぎた場合には、クリストバライト等の鉱物が生成してポゾラン活性が低下する。また、燃焼温度が低すぎた場合、或は炉内滞留時間が短すぎた場合には、未燃カーボン量が増加する。
【0004】
籾殻灰をコンクリートやモルタルに使用した時に、籾殻灰のポゾラン活性が低いと、例えば強度増進が低下する。また、未燃カーボン量が多いと、空気連行性を悪化させて減水剤等のコンクリート混和剤の効果を減じさせるために大量の混和剤を使用する必要性が生じる。混和剤を大量に使用することは、コンクリートの物性面、コスト面で好ましくない上、コンクリート表面の着色の問題も発生する。
【0005】
そこで、籾殻灰をコンクリートやモルタルに使用する場合には、高いポゾラン活性を維持したまゝ、籾殻灰中の未燃カーボン量を極力少なくすることが必要となる。従来、籾殻灰の製造方法の1つとして流動床方式のものが、例えば特開昭60ー36360号として公開されている。
【0006】
【発明が解決しようとする課題】
この様な従来の方法において、籾殻を直接に流動床に投入して燃焼させると、籾殻の可燃揮発成分の着火、燃焼が急激に生じるために炉内の籾殻投入口側が局部的に高温に成る。この局部高温が大体900℃を越えると、本来非晶質であるべき灰が結晶化し、灰のポゾラン活性が低下してしまう。そこで、局部高温を許容範囲内に収めるためには、籾殻投入量は制約を受け、処理量の増加は容易ではない。逆に、籾殻投入口の反対側では比較的低温となり、籾殻の燃焼が十分に行われず、未燃カーボンの多い灰となり、品質的に問題と成る。
【0007】
また、高温でも高活性の籾殻灰を得る方法として「2段階焼却法」が、例えば先の杉田等の文献で知られている。この方法を流動床炉に適用した場合には、籾殻灰の品質は向上すると考えられるが、熱的損失が大きくなり、更に、籾殻の炭化過程では大量の可燃性ガスが発生するために温度制御が難しくなる等の問題が発生する。
【0008】
従って、この発明の目的は、上記の事情に鑑み、この様な従来における問題点を解決するために、未燃カーボンの少ないポゾラン活性の高い非晶質籾殻灰を効率よく大量に処理できる籾殻灰の製造方法および装置を提供することにある。
【0009】
【課題を解決するための手段】
上述の目的を達成するために、この発明に依れば、籾殻灰の製造方法は、流動床炉の前段流動床炉の燃焼排ガスを熱源として燃焼排ガスを籾殻に直接接触させることなく籾殻を予熱し、籾殻を予熱した際に発生する可燃性ガスを流動床炉内の流動媒体の上方に複数箇所導入して燃焼させることにより炉内温度を均一にすることを特徴としている。
【0010】
また、この発明に依れば、籾殻灰の製造装置は、流動床炉の前段に流動床炉の燃焼排ガスを熱源として燃焼排ガスを籾殻に直接接触させることなく籾殻予熱する予熱装置を設けると共に、予熱装置によって籾殻を予熱した際に発生する可燃性ガスを流動床炉内の流動媒体の上方に複数箇所導入して燃焼させることにより炉内温度を均一にする可燃性ガス燃焼手段を設けたことを特徴としている。
【0011】
【作用】
この発明に依れば、籾殻を予め予熱によって炭化させ、その可燃性ガスを除去するために、流動床炉内において籾殻の急激な燃焼が生じることが無く、このために、炉内に局部的高温部が発生することが無く、籾殻灰の結晶化を回避することが出来るので、高活性の灰を得ることが出来るし、また、可燃性ガスを除去した籾殻の発熱量が低いために、流動床炉への投入量を増加させても炉内が過剰な高温に成ることがない。すなわち、籾殻灰の処理量を増加することが出来る。更に、最大の特徴として、籾殻の予熱で発生した可燃性ガスの適量を流動床炉内の適所に導入して燃焼することによって炉内の広範囲に亙ってカーボンの燃焼に好適な温度領域を維持することが出来、その結果、未燃カーボン量を低減することが出来る。また、予熱で発生する可燃性ガスおよび流動床炉の燃焼排ガスを熱源として有効に再利用するために熱効率が向上する等の効果が得られる。
【0012】
この発明の他の目的と特長および利点は以下の添付図面に沿ってのこの発明の詳細な説明から明らかになろう。
【0013】
【実施例】
図面の図1および図2には、この発明の籾殻灰の製造方法を実施するための製造装置の一実施例が示されている。図示される様に、籾殻灰の製造装置は熱源20により加熱される流動媒体16を有する流動床炉1と、ホッパー3からの籾殻を予熱するよう流動床炉1の前段に設けられた排ガスを熱源とする予熱装置2と、燃焼された籾殻灰と排ガスとを分離するよう流動床炉1に連接されたサイクロン5と、余剰の可燃性ガスを燃焼する燃焼箱6と、この燃焼箱6に連接された集塵装置7とから主に構成されている。
【0014】
この様なこの発明の籾殻灰の製造装置において、流動床炉1内の流動媒体16は、石炭、重油、灯油、ガス等を燃焼手段とする熱源20によって籾殻が自燃可能な温度に迄、予め昇温される。熱源20はこれら石炭、重油、灯油、ガス等の外に、電気ヒーター等を用いることが出来る。また、熱源20の燃焼手段である石炭、重油、灯油、ガス等の燃料は、ポンプの様な適宜な手段によって熱源20に供給されると共に、送風機21によって流動床炉1内に流動化空気が供給される。
【0015】
ホッパー3には籾殻が投入されており、回転スクリューの様なコンベヤ、或は他の同様な供給装置によって所定量ずつ予熱装置2に供給されて所要温度に予熱される。この予熱装置2内にはヒートパイプ22が設けられていて、流動床炉1からの排ガスがサイクロン5で籾殻灰と排ガスとに分離されて分離された排ガスがバルブ9を経て供給されて、予熱装置2内の籾殻を所要温度、例えば300〜500℃に予熱する。籾殻のこの予熱温度は温度計18によって測定される。この予熱装置2で予熱された籾殻はスクリューコンベヤ等の供給装置によって所定量ずつ流動床炉1内に投入される。
【0016】
予熱された籾殻の流動床炉1の投入量は、熱電対等の様な流動床炉1内の炉内温度を測定する温度計17の値が適温、例えば600〜900℃と成る様に決めるのが好適である。この流動床炉1内で、籾殻は熱源20によって予め昇温された流動媒体16によって自燃して籾殻灰と成り、この炉内で燃焼によって生じた籾殻灰は排ガスと一緒に炉頂から飛散してサイクロン5に送られ、このサイクロン5において籾殻灰と排ガスとに分離されて籾殻灰が回収される。籾殻灰と分離された排ガスは排ガス導入用バルブ9を介して予熱装置2のヒートパイプ22に送られて、予熱装置2内の籾殻を予熱する。尚、排ガスの一部は余剰排ガス排出用バルブ10から燃焼箱6に送られる。
【0017】
この様に、予熱装置2における籾殻の予熱は、図示実施例では間接加熱法が用いられているが、この間接加熱法の外にも排ガスと直接接触させる直接加熱法によって行うことも出来るが、発生する可燃性ガスと排ガスが混合してしまうために可燃性ガスの利用が難しく、また予熱温度の制御性という面からも間接加熱法の方が有利である。
【0018】
また、予熱装置2において発生した可燃性ガスは、ポンプ19により可燃性ガス導入用バルブ4を介して、流動床炉1の外側周囲に設けられた複数個の可燃性ガス導入用ジャケット14に導かれ、更に、可燃性ガス導入用バルブ13(図2)において流量が制御され乍ら炉内に導入されて燃焼される。この可燃性ガス導入用バルブ13は炉内の数箇所に設けられた炉内温度を測定する炉内温度計17の値が均一に成る様に個々に開度が制御される。可燃性ガス導入用バルブ13の制御は手動で行っても良いが、望ましくは炉内温度計17と連動された自動制御が好適である。
【0019】
予熱装置2における可燃性ガスの余剰分は余剰可燃性ガス排出用バルブ12および輸送管11を経て燃焼箱6に送られ、この燃焼箱6で燃焼された後に冷却空気8と混合されて冷却され、バグフィルター等の集塵装置7を経て排出される。
【0020】
また、予熱装置2内の温度が過剰に上昇して籾殻が自燃をする様な場合、または可燃性ガスの濃度が爆発等の危険が起こり得る様な領域に入る場合には、不活性ガス供給用バルブ15からCO2、N2の様な不活性ガスを導入して温度またはガス濃度制御を行うのが好適である。
【0021】
図3には、この発明の図示実施例から得られた流動床炉内温度分布の一例が示されている。また、比較のために、図4には、従来技術に依る流動床炉の一例が示され、図5には従来技術に依る流動床炉内温度分布の一例が示されている。図中、▲1▼、▲2▼、▲3▼・・等は温度測定位置を示す。図3および図5から、従来技術では炉内の垂直方向の温度差が最大280℃、同一水平面では最大150℃程度存在しており、炉内の各所で籾殻の燃焼温度が異なるために、高活性で低未燃カーボンの籾殻灰を得ることは難しい。
【0022】
これに対して、この発明においては、炉内の垂直方向の温度差が最大60℃、同一水平面では最大20℃程度であり、高活性で低未燃カーボンの籾殻灰を得る条件としては理想的である。しかも、この発明では従来技術におけるよりも30%の処理量増加が得られると共に、更に、得られた籾殻灰の未燃カーボン量は従来技術が2.5〜3.5%であったのに対して、この発明においては2.0%以下であり、明らかな未燃カーボン量の減少が見られた。
【0023】
【発明の効果】
上述した様に、この発明は、簡単な製造方法および製造装置によって炉内の温度分布を一様にすることが出来、高ポゾラン活性で低未燃カーボンの籾殻灰を大量に且つ極めて効率的に製造することが出来ると共に、熱効率、籾殻灰の品質、処理量等において従来技術を一層上回り且つ優越していることが明らかであり、この様に製造された高品質の籾殻灰を適当な粒度に粉砕して高性能コンクリート混和材等として使用できる他、高いポゾラン活性を利用して水硬性セメント、硬化材、成型材等として有効に活用出来る等の効果を奏するものである。
【図面の簡単な説明】
【図1】この発明の籾殻灰の製造方法を実施するための製造装置の一実施例を示す概要図である。
【図2】図1の流動床炉部分の横断面部分図である。
【図3】図1の製造装置を用いて籾殻灰を製造した時の流動床炉内温度分布の一例を示す図である。
【図4】従来技術による製造装置を示す概要図である。
【図5】従来技術による製造装置を用いて籾殻灰を製造時の流動床炉内温度分布の一例を示す図である。
【符号の説明】
1 流動床炉
2 予熱装置
3 ホッパー
4 可燃性ガス導入用バルブ
5 サイクロン
6 燃焼箱
7 集塵器
9 排ガス導入用バルブ
10 余剰排ガス排出用バルブ
12 余剰可燃性ガス排出用バルブ
13 可燃性ガス導入用バルブ
14 可燃性ガス導入用ジャケット
15 不活性ガス供給用バルブ
16 流動媒体
17 炉内温度計
18 予熱装置内温度計
19 ポンプ
20 熱源
21 送風機
22 ヒートパイプ
[0001]
[Industrial application fields]
The present invention relates to a method and apparatus for producing rice husk ash using a fluidized bed furnace.
[0002]
[Prior art]
When the rice husk is burned at an appropriate temperature of 600 to 900 ° C., amorphous ash containing 80% or more of silicon oxide (SiO 2 ) and having high pozzolanic activity is obtained. When this amorphous ash is used as an admixture or as a substitute for cement in concrete and mortar, there are many advantages such as strength enhancement. For example, the Concrete Engineering Annual Report, 1993, Vol. It is already known by papers such as “Highly active rice husk ash manufacturing method and properties of concrete using the same” by No. 1 Sugita et al. And “Basic properties of mortar mixed with rice husk ash” by Harada et al.
[0003]
The quality of rice husk ash depends mainly on the pozzolanic activity and the amount of unburned carbon. That is, when the combustion temperature is too high, minerals such as cristobalite are generated and the pozzolanic activity decreases. If the combustion temperature is too low, or if the residence time in the furnace is too short, the amount of unburned carbon increases.
[0004]
When rice husk ash is used in concrete or mortar, if the pozzolanic activity of rice husk ash is low, for example, strength enhancement decreases. Moreover, when there is much amount of unburned carbon, it will be necessary to use a large amount of admixture in order to deteriorate the air entrainment property and reduce the effect of concrete admixtures, such as a water reducing agent. Use of a large amount of an admixture is not preferable in terms of physical properties and cost of the concrete, and also causes a problem of coloring the concrete surface.
[0005]
Therefore, when rice husk ash is used for concrete or mortar, it is necessary to minimize the amount of unburned carbon in rice husk ash while maintaining high pozzolanic activity. Conventionally, a fluidized bed type as one of the methods for producing rice husk ash has been disclosed, for example, as JP-A-60-36360.
[0006]
[Problems to be solved by the invention]
In such a conventional method, when the rice husk is directly charged into the fluidized bed and combusted, the flammable volatile components of the rice husk are ignited and burnt rapidly, so the rice husk inlet side in the furnace becomes locally hot. . When this local high temperature exceeds about 900 ° C., the ash that should be amorphous is crystallized, and the pozzolanic activity of the ash is lowered. Therefore, in order to keep the local high temperature within the allowable range, the amount of rice husk input is restricted, and the increase in the processing amount is not easy. On the other hand, the temperature is relatively low on the opposite side of the rice husk inlet, and the rice husk is not sufficiently burned, resulting in ash with a lot of unburned carbon, which is a quality problem.
[0007]
As a method for obtaining rice husk ash having high activity even at a high temperature, the “two-stage incineration method” is known, for example, from the literature such as Sugita. When this method is applied to a fluidized bed furnace, the quality of rice husk ash is thought to improve, but thermal loss increases, and a large amount of combustible gas is generated in the carbonization process of rice husk. The problem that it becomes difficult occurs.
[0008]
Accordingly, an object of the present invention is to solve the problems in the prior art in view of the above-described circumstances, and to efficiently treat large amounts of amorphous rice husk ash with low unburned carbon and high pozzolanic activity. It is in providing the manufacturing method and apparatus of this.
[0009]
[Means for Solving the Problems]
In order to achieve the above-described object, according to the present invention, a method for producing rice husk ash uses rice husks in a fluidized bed furnace as a heat source in a preceding stage of the fluidized bed furnace without directly contacting the combustion husks with the rice husks. Preheating is performed, and a combustible gas generated when the rice husk is preheated is introduced at a plurality of locations above the fluid medium in the fluidized bed furnace and burned to make the furnace temperature uniform .
[0010]
Further, according to the present invention, apparatus for producing chaff ash provided a preheating device for preheating the chaff without contacting the flue gas of the fluidized bed furnace in front of the fluidized bed furnace as a heat source directly to the combustion exhaust gas chaff In addition, a combustible gas combustion means for making the furnace temperature uniform by introducing a plurality of combustible gases generated when the rice husk is preheated by a preheating device into a fluidized bed furnace and burning them at a plurality of locations. It is characterized by providing .
[0011]
[Action]
According to the present invention, since the rice husk is pre-carbonized by preheating and the combustible gas is removed, rapid combustion of the rice husk does not occur in the fluidized bed furnace, and for this reason, localized in the furnace. Since high temperature part does not occur and crystallization of rice husk ash can be avoided, highly active ash can be obtained, and because the calorific value of rice husk from which combustible gas has been removed is low, Even if the input amount to the fluidized bed furnace is increased, the inside of the furnace does not become excessively hot. That is, the processing amount of rice husk ash can be increased. Furthermore, the most important feature is that an appropriate amount of the combustible gas generated by the preheating of the rice husk is introduced into an appropriate place in the fluidized bed furnace and burned, thereby providing a temperature range suitable for carbon combustion over a wide range in the furnace. As a result, the amount of unburned carbon can be reduced. Moreover, in order to effectively reuse the combustible gas generated by preheating and the combustion exhaust gas of the fluidized bed furnace as a heat source, effects such as improvement in thermal efficiency can be obtained.
[0012]
Other objects, features and advantages of the present invention will become apparent from the following detailed description of the present invention, taken in conjunction with the accompanying drawings.
[0013]
【Example】
1 and 2 of the drawings show an embodiment of a production apparatus for carrying out the rice husk ash production method of the present invention. As shown in the figure, the rice husk ash production apparatus uses a fluidized bed furnace 1 having a fluidized medium 16 heated by a heat source 20 and an exhaust gas provided in a preceding stage of the fluidized bed furnace 1 to preheat the rice husk from the hopper 3. A preheating device 2 as a heat source, a cyclone 5 connected to the fluidized bed furnace 1 so as to separate the burned rice husk ash and the exhaust gas, a combustion box 6 for burning excess combustible gas, and a combustion box 6 It is mainly comprised from the dust collector 7 connected.
[0014]
In such a rice husk ash production apparatus of the present invention, the fluid medium 16 in the fluidized bed furnace 1 is preliminarily brought up to a temperature at which the rice husks can self-combust by a heat source 20 using coal, heavy oil, kerosene, gas or the like as combustion means. The temperature is raised. As the heat source 20, an electric heater or the like can be used in addition to the coal, heavy oil, kerosene, gas and the like. In addition, fuel such as coal, heavy oil, kerosene, and gas, which are combustion means of the heat source 20, is supplied to the heat source 20 by an appropriate means such as a pump, and fluidized air is introduced into the fluidized bed furnace 1 by the blower 21. Supplied.
[0015]
The hopper 3 is filled with rice husk and is supplied to the preheating device 2 by a predetermined amount by a conveyor such as a rotating screw or other similar supply device and preheated to a required temperature. A heat pipe 22 is provided in the preheating device 2, and the exhaust gas separated from the husk ash and the exhaust gas is separated by the cyclone 5 in the cyclone 5 and supplied through the valve 9 to preheat. The rice husk in the apparatus 2 is preheated to a required temperature, for example, 300 to 500 ° C. This preheat temperature of the rice husk is measured by a thermometer 18. The rice husk preheated by the preheating device 2 is put into the fluidized bed furnace 1 by a predetermined amount by a supply device such as a screw conveyor.
[0016]
The input amount of the preheated rice husk fluidized bed furnace 1 is determined so that the value of the thermometer 17 for measuring the temperature in the fluidized bed furnace 1 such as a thermocouple is an appropriate temperature, for example, 600 to 900 ° C. Is preferred. In the fluidized bed furnace 1, the rice husk is burned by the fluid medium 16 heated in advance by the heat source 20 to become rice husk ash, and the rice husk ash generated by the combustion in the furnace is scattered from the top of the furnace together with the exhaust gas. The cyclone 5 is then separated into rice husk ash and exhaust gas, and the rice husk ash is recovered. The exhaust gas separated from the rice husk ash is sent to the heat pipe 22 of the preheating device 2 through the exhaust gas introduction valve 9 to preheat the rice husk in the preheating device 2. A part of the exhaust gas is sent from the surplus exhaust gas discharge valve 10 to the combustion box 6.
[0017]
Thus, the preheating of the rice husk in the preheating device 2 is performed by the indirect heating method in the illustrated embodiment, but can also be performed by the direct heating method in direct contact with the exhaust gas in addition to the indirect heating method. Since the generated combustible gas and the exhaust gas are mixed, it is difficult to use the combustible gas, and the indirect heating method is more advantageous from the viewpoint of controllability of the preheating temperature.
[0018]
Further, the combustible gas generated in the preheating device 2 is guided to a plurality of combustible gas introduction jackets 14 provided around the outside of the fluidized bed furnace 1 by the pump 19 through the combustible gas introduction valve 4. In addition, the flow rate is controlled by the combustible gas introduction valve 13 (FIG. 2), and it is introduced into the furnace and burned. The opening degree of the combustible gas introduction valve 13 is individually controlled so that the values of the in-furnace thermometers 17 for measuring the in-furnace temperature provided at several places in the furnace are uniform. Although the control of the combustible gas introduction valve 13 may be performed manually, it is preferable to perform automatic control in conjunction with the in-furnace thermometer 17.
[0019]
The surplus combustible gas in the preheating device 2 is sent to the combustion box 6 through the surplus combustible gas discharge valve 12 and the transport pipe 11, and after being combusted in the combustion box 6, it is mixed with the cooling air 8 and cooled. Then, it is discharged through a dust collector 7 such as a bag filter.
[0020]
In addition, when the temperature in the preheating device 2 rises excessively and the rice husk self-combusts, or when the concentration of the combustible gas enters an area where danger such as an explosion may occur, an inert gas is supplied. It is preferable to control the temperature or gas concentration by introducing an inert gas such as CO 2 or N 2 from the valve 15 for use.
[0021]
FIG. 3 shows an example of the temperature distribution in the fluidized bed furnace obtained from the illustrated embodiment of the present invention. For comparison, FIG. 4 shows an example of a fluidized bed furnace according to the prior art, and FIG. 5 shows an example of a temperature distribution in the fluidized bed furnace according to the prior art. In the figure, (1), (2), (3), etc. indicate temperature measurement positions. From FIG. 3 and FIG. 5, the conventional technology has a maximum temperature difference of 280 ° C. in the vertical direction and a maximum temperature of about 150 ° C. in the same horizontal plane. It is difficult to obtain active and low unburned carbon rice husk ash.
[0022]
On the other hand, in the present invention, the temperature difference in the vertical direction in the furnace is 60 ° C. at the maximum and about 20 ° C. in the same horizontal plane, which is an ideal condition for obtaining highly active and low unburned carbon rice husk ash. It is. In addition, the present invention provides a 30% increase in throughput compared to the prior art, and furthermore, the amount of unburned carbon in the obtained rice husk ash was 2.5 to 3.5% in the prior art. On the other hand, in the present invention, it was 2.0% or less, and a clear decrease in the amount of unburned carbon was observed.
[0023]
【The invention's effect】
As described above, according to the present invention, the temperature distribution in the furnace can be made uniform by a simple manufacturing method and manufacturing apparatus, and a high pozzolanic activity and low unburned carbon rice husk ash is produced in large quantities and extremely efficiently. It is clear that it can be manufactured and is superior and superior to the conventional technology in terms of thermal efficiency, quality of rice husk ash, throughput, etc. The high quality rice husk ash produced in this way has an appropriate particle size. In addition to being pulverized and used as a high-performance concrete admixture, etc., it can be used effectively as a hydraulic cement, a hardener, a molding material, etc. by utilizing its high pozzolanic activity.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a production apparatus for carrying out the method for producing rice husk ash according to the present invention.
FIG. 2 is a partial cross-sectional view of the fluidized bed furnace portion of FIG.
FIG. 3 is a diagram showing an example of temperature distribution in the fluidized bed furnace when rice husk ash is produced using the production apparatus of FIG. 1;
FIG. 4 is a schematic diagram showing a manufacturing apparatus according to the prior art.
FIG. 5 is a diagram showing an example of temperature distribution in a fluidized bed furnace when rice husk ash is produced using a production apparatus according to the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fluidized bed furnace 2 Preheating apparatus 3 Hopper 4 Flammable gas introduction valve 5 Cyclone 6 Combustion box 7 Dust collector 9 Exhaust gas introduction valve 10 Excess exhaust gas discharge valve 12 Surplus combustible gas discharge valve 13 For introducing combustible gas Valve 14 Flammable gas introduction jacket 15 Inert gas supply valve 16 Fluid medium 17 Furnace thermometer 18 Preheating device thermometer 19 Pump 20 Heat source 21 Blower 22 Heat pipe

Claims (2)

流動床炉を用いた籾殻灰の製造方法において、
流動床炉の前段流動床炉の燃焼排ガスを熱源として燃焼排ガスを籾殻に直接接触させることなく籾殻を予熱し、
籾殻を予熱した際に発生する可燃性ガスを流動床炉内の流動媒体の上方に複数箇所導入して燃焼させることにより炉内温度を均一にする
ことを特徴とする籾殻灰の製造方法。
In the method for producing rice husk ash using a fluidized bed furnace,
Preheating the rice husk in the first stage of the fluidized bed furnace using the flue gas from the fluidized bed furnace as a heat source without bringing the flue gas into direct contact with the rice husk ,
A method for producing rice husk ash, characterized in that a combustible gas generated when the rice husk is preheated is introduced at a plurality of locations above the fluid medium in the fluidized bed furnace and burned to make the furnace temperature uniform .
流動床炉を用いた籾殻灰の製造装置において、
流動床炉の前段に流動床炉の燃焼排ガスを熱源として燃焼排ガスを籾殻に直接接触させることなく籾殻予熱する予熱装置を設けると共に、前記予熱装置によって籾殻を予熱した際に発生する可燃性ガスを流動床炉内の流動媒体の上方に複数箇所導入して燃焼させることにより炉内温度を均一にする可燃性ガス燃焼手段を設けたことを特徴とする籾殻灰の製造装置。
In rice husk ash production equipment using a fluidized bed furnace,
Combustible for generating a pre-stage in the flue gas as a heat source a combustion gas of the fluidized bed furnace of the fluidized bed furnace Rutotomoni provided preheating device for preheating the chaff without direct contact with the chaff, when the preheated chaff by the preheating device An apparatus for producing rice husk ash, comprising combustible gas combustion means for uniformizing the temperature in the furnace by introducing a plurality of gasses above the fluid medium in the fluidized bed furnace and burning them.
JP06378894A 1994-03-31 1994-03-31 Rice husk ash manufacturing method and manufacturing apparatus Expired - Fee Related JP3721204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06378894A JP3721204B2 (en) 1994-03-31 1994-03-31 Rice husk ash manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06378894A JP3721204B2 (en) 1994-03-31 1994-03-31 Rice husk ash manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH07269805A JPH07269805A (en) 1995-10-20
JP3721204B2 true JP3721204B2 (en) 2005-11-30

Family

ID=13239472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06378894A Expired - Fee Related JP3721204B2 (en) 1994-03-31 1994-03-31 Rice husk ash manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3721204B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972614B2 (en) * 2008-07-04 2012-07-11 孝敏 有本 Combustion device

Also Published As

Publication number Publication date
JPH07269805A (en) 1995-10-20

Similar Documents

Publication Publication Date Title
CA2222819C (en) Method and device for producing and utilizing gas from waste materials
JP3721204B2 (en) Rice husk ash manufacturing method and manufacturing apparatus
JPS5864252A (en) Method of calcining powdery mineral material, particularly in manufacture of cement
JP2660184B2 (en) Method for producing thermal energy from waste, especially garbage
US3022057A (en) Direct-heating oven
JPH07116528B2 (en) Combustion method of iron ore pellet process
JP3929371B2 (en) Wood-derived fuel and method for producing the same
JP3294418B2 (en) Fly ash processing method and apparatus
US3830618A (en) Apparatus and method for increasing the temperature of an effluent burner
SU827931A1 (en) Furnace for heating metals
JPS59215242A (en) Reconditioning method of molding sand
JPS5521576A (en) Energy saving type heating furnace for forging
JPH01184221A (en) Control device for atmosphere in fluidized bed furnace
SU1626044A1 (en) Lighting-up of a fluid-bed furnace
SU681310A1 (en) Method of heating products in a furnace with a finely dispersed bed
JPH02282416A (en) Method for heating fluidized bed and heating furnace
SU966062A1 (en) Method for roasting cement clinker in rotary kiln
JPS58102008A (en) Starting of fluidized bed boiler
CA1274085A (en) Method and device for pre-heating waste metal for furnaces
SU1339153A1 (en) Firing conveyer machine
JPS6252152A (en) Facilities for manufacturing aggregate for concrete
JPS5662877A (en) Feeding method of raw material in pyrolysis plant and its device
JPS5613440A (en) Continuous heating furnace with preheating throat
JPS5565307A (en) Recovering method for waste heat of hot blast stove
JPS56169733A (en) Method of recovering sensible heat of sintering exhaust gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees