JPS59215242A - Reconditioning method of molding sand - Google Patents

Reconditioning method of molding sand

Info

Publication number
JPS59215242A
JPS59215242A JP9051983A JP9051983A JPS59215242A JP S59215242 A JPS59215242 A JP S59215242A JP 9051983 A JP9051983 A JP 9051983A JP 9051983 A JP9051983 A JP 9051983A JP S59215242 A JPS59215242 A JP S59215242A
Authority
JP
Japan
Prior art keywords
sand
fluidized
roasting
old sand
foundry sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9051983A
Other languages
Japanese (ja)
Other versions
JPS635174B2 (en
Inventor
Yasutsugu Matsukawa
安次 松川
Akihiro Jinkawa
陣川 章尋
Masayuki Kido
木戸 正行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kokan Keishiyu KK
Original Assignee
Nippon Kokan Keishiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Keishiyu KK filed Critical Nippon Kokan Keishiyu KK
Priority to JP9051983A priority Critical patent/JPS59215242A/en
Publication of JPS59215242A publication Critical patent/JPS59215242A/en
Publication of JPS635174B2 publication Critical patent/JPS635174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/08Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by sprinkling, cooling, or drying

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To recondition old sand to molding sand with high thermal efficiency by treating the old sand used for casting in a fluidized roasting furnace having a specific construction thereby utilizing the combustible component of a binder sticking on the old sand. CONSTITUTION:Old sand (a) on which a binder is stuck after use for casting is charged from a hopper 15 into a fluidized roasting furnace 11 up to a prescribed level. Blasting is started from a blower 19 to form a fluidized layer 21 fo the old sand (a) in the lower part of a roasting part 13 in the furnace and thereafter a burner 16 is ignited to heat and roast the old sand (a) forming the fluidized layer 21. The old sand is taken out as reconditioned sand from a take- out port 17 upon heating of the layer 21 up to the prescribed roasting temp. The old sand (a) is then charged from the hopper 15 and after the sand is preheated by the high temp. waste gas in a preheating part 12, the sand is heated in the layer 21 and heats the air for the fluidized layer in a heat exchanger 20 of a flowing air heating part 14. Since the temp. of the layer 21 rises successively, the burner 16 is throttled and at the same time the combustible components of the binder sticking on the old sand is burned to roast the sand. The old sand is reconditioned to reconditioned sand with less fuel.

Description

【発明の詳細な説明】 この発明は鋳物砂の再生方法に関し、特に古砂の粘結剤
に含まれる可燃物の熱エネルギを利用して、はソ自然伏
態で効率よく焙焼し得るようにした鋳物砂の再生方法に
係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating foundry sand, and in particular to a method for efficiently roasting foundry sand in a natural state by utilizing the thermal energy of combustibles contained in the binder of old sand. This relates to a method for recycling recycled foundry sand.

従来からこの種の鋳物砂1例えば有機自硬性砂の再生に
ついては多くの機械的方法が提案され広く使用されてい
る。しかじ生砂の場合、機械的方法だけでは再生が困難
であるために、一旦、流動焙焼炉などで古砂を焙焼した
上で機械的方法による再生処理がなされており、この方
法によって比較的高品質の再生砂が得られるが、一般的
に流動焙焼炉の熱効率が低いために採算性が悪く、大規
模工場以外ではその実例が少なく、より以上経済的な方
法がないこともあつ゛て、殆んどの工場において、古砂
はそのま\廃却されているのが実情である。
Conventionally, many mechanical methods have been proposed and widely used for regenerating this type of foundry sand 1, such as organic self-hardening sand. In the case of Shikaji green sand, it is difficult to regenerate using only mechanical methods, so the old sand is first roasted in a fluidized roasting furnace and then recycled using mechanical methods. Although relatively high-quality recycled sand can be obtained, it is generally unprofitable due to the low thermal efficiency of fluidized torrefaction furnaces, and there are few examples of this method outside of large-scale factories, and there may be no more economical method. The reality is that in most factories, old sand is simply disposed of.

また前記古砂の再生コストを低減させる目的で、流動焙
焼炉の熱効率を向」ニさせる手段もまた従来から種々の
提案がなされており、次にそのいくつかの実例について
述べる。
Furthermore, for the purpose of reducing the recycling cost of the old sand, various proposals have been made for improving the thermal efficiency of the fluidized torrefaction furnace, and some examples will be described below.

まず基本的な流動焙焼炉の概要構成を第1図に示す。す
なわち、この第1図において、焙焼炉1内にホッパー2
から投入される鋳物砂aは、ブロワ3により送り込まれ
て空気ノズル4から吹き出される流動空気により、炉底
部付近で流動層5を形成する。そしてこの流動層5を形
成している鋳物砂a1は、炉内に向けて炉壁に設けられ
たバーナ6により加熱され、焙焼されたのちに収り出し
ロアから外部に排出される。
First, Figure 1 shows the general configuration of a basic fluidized roasting furnace. That is, in this FIG. 1, there is a hopper 2 in the roasting furnace 1.
The foundry sand a introduced from the furnace is fed by a blower 3 and is blown out from an air nozzle 4 to form a fluidized bed 5 near the bottom of the furnace. The foundry sand a1 forming the fluidized bed 5 is heated into the furnace by a burner 6 provided on the furnace wall, and after being roasted, it is collected and discharged to the outside from the lower.

しかしてこの構成の流動焙焼炉にあっては、流動層の特
性」二、均一化された焙焼か可能であり、しかも流動層
における鋳物砂の滞溜時間を長くできるために、比較的
高品質の再生砂が得られるのである。
However, in a fluidized torrefaction furnace with a lever configuration, the characteristic of the fluidized bed is 2. It is possible to perform homogeneous torrefaction, and the retention time of the foundry sand in the fluidized bed can be extended, so it is relatively expensive. This means that high-quality recycled sand can be obtained.

しかし一方、このような流動焙焼炉においては、流動層
中の鋳物砂に対する燃焼条件が不充分であるために、必
要以上の熱エネルギが消費されることになり、燃焼排ガ
スとして排出される熱量も多く、極めて熱効率の悪いも
のであった。すなわち、鋳物砂は流動層5の上部で、バ
ーナ6の火焔および燃焼ガスにより加熱され、その温度
こそ上昇されはするが、酸素不足のために特に鋳物砂3
1に含まれる炭素系可燃物の燃焼速度が遅く、ついで流
動に伴ないこの鋳物砂a”が流動層5中を下降してゆく
と、空気ノズル4かも吹き出される流動空気によって高
酸素雰囲気にはなるが、反面、吹き出される流動空気に
より温度が低下してその燃焼が抑制されるととになるの
である。つまり流動層5を形成している鋳物砂a′は、
酸素不足下での加熱段階と富酸素下での冷却段階を繰り
返すことになって、これに含まれている炭素系可燃物を
充分に燃焼除去するのに長時面を必要とじ、極めて非能
率的であるほか、前記のように熱エネルギの消費が多い
不利があった。
However, in such a fluidized torrefaction furnace, the combustion conditions for the foundry sand in the fluidized bed are insufficient, so more thermal energy is consumed than necessary, and the amount of heat emitted as combustion exhaust gas is reduced. The thermal efficiency was extremely poor. That is, the foundry sand is heated in the upper part of the fluidized bed 5 by the flame and combustion gas of the burner 6, and the temperature is increased, but due to the lack of oxygen, the foundry sand 3 is heated.
The combustion rate of the carbon-based combustibles contained in 1 is slow, and as this foundry sand a'' descends in the fluidized bed 5 as it flows, the air nozzle 4 is also blown out into a high oxygen atmosphere by the flowing air. However, on the other hand, the fluidized air blown out lowers the temperature and suppresses its combustion.In other words, the foundry sand a' forming the fluidized bed 5 is
The heating stage in an oxygen-deficient environment and the cooling stage in an oxygen-enriched environment are repeated, and it takes a long time to sufficiently burn off the carbon-based combustibles contained therein, making it extremely inefficient. In addition to this, as mentioned above, there was a disadvantage that a large amount of thermal energy was consumed.

従ってこの点を改善するために、従来、排熱回収による
熱効率向上が図られている。その実例としては、例えば
流動層の上方に多段式の火格子を設ける手段(実公昭1
54−28411号公報所載)、排気口に竪型熱交換器
を設ける手段(実公昭54−28412号公報所載)、
焙焼後の鋳物砂を冷却室に導いてその顕熱を熱交換させ
る手段(実公昭54−3126号公報所   ′載)、
流動層上方に円錐および逆円錐形の案内板を交互に数段
に亘り配列して予備燃焼帯を形成させる手段(特公昭5
7−59015号公報所載)、および流動層式の熱交換
器を用いる手段(実開昭58−4249号公報所載)な
どがある。
Therefore, in order to improve this point, conventional efforts have been made to improve thermal efficiency by recovering waste heat. An example of this is, for example, a method of providing a multi-stage grate above the fluidized bed (Jetko Sho 1).
54-28411), means for providing a vertical heat exchanger at the exhaust port (as described in Japanese Utility Model Publication No. 54-28412),
Means for introducing the roasted foundry sand into a cooling chamber and exchanging its sensible heat (published in Publication No. 1983-3126);
A means for forming a preliminary combustion zone by alternately arranging conical and inverted conical guide plates in several stages above the fluidized bed (Japanese Patent Publication No. 5
7-59015), and means using a fluidized bed heat exchanger (published in Japanese Utility Model Application Publication No. 58-4249).

そしてこれらの各手段によって、流動焙焼炉の排熱こそ
比較的効率よく回収されはするが、排熱回収量が多い割
に排熱で予熱される流動空気の温度が上昇しない、すな
わち排熱回収される熱量の熱エネルギ密度が比較的小さ
いために、前記した流動焙焼炉の本質的な欠点であると
ころの、流動層における不完全な燃焼条件を改善できず
、従ってこれらの各実例による省エネルギ対策にも自ず
から限界があった。
Although each of these methods allows the waste heat of the fluidized roasting furnace to be recovered relatively efficiently, the temperature of the fluidized air preheated by the waste heat does not rise despite the large amount of waste heat recovered. Due to the relatively low thermal energy density of the recovered heat, it is not possible to improve the incomplete combustion conditions in the fluidized bed, which are the essential drawbacks of the fluidized torrefaction furnaces described above, and therefore, each of these examples Energy-saving measures naturally had their limits.

発明者らは従来におけるこのような欠点に鑑み、流動焙
焼炉の燃焼作用を充分に究明した結果次のような新規な
技術を見出した。すなわち流動焙焼炉の欠点は、流動層
での比較的低温の流動空気による冷却作用と、バーナ排
ガスによる酸欠伏態との相乗効果によって、鋳物砂に含
まれる炭素系可燃物の燃焼が抑制されることである。そ
して一方では、流動空気温度が例えば650°C以上に
なると、鋳物砂はバーナによる加熱を必要とぜずに自燃
して熱エネルギを発生し、このときの発熱量が全排熱量
と等しいか、あるいはこれよりも太きければ流動層温度
を所期の高温に保持できて、はとんど助燃々料を使用し
ないで焙焼作用を達成できる。
In view of these conventional drawbacks, the inventors thoroughly investigated the combustion action of fluidized roasting furnaces and discovered the following new technology. In other words, the disadvantage of the fluidized torrefaction furnace is that the combustion of carbon-based combustibles contained in the foundry sand is suppressed due to the synergistic effect of the cooling effect of the relatively low-temperature fluidized air in the fluidized bed and the oxygen-deficient state caused by the burner exhaust gas. It is to be done. On the other hand, when the fluidizing air temperature reaches, for example, 650°C or higher, the foundry sand self-combusts and generates thermal energy without the need for heating with a burner, and the amount of heat generated at this time is equal to the total amount of exhaust heat. Alternatively, if it is thicker than this, the temperature of the fluidized bed can be maintained at the desired high temperature, and the roasting action can be achieved without using any auxiliary fuel.

この発明は前記の点に着目したものであり、効果的な排
熱回収を行って可及的に流動空気温度を上昇させること
により、再生鋳物砂に含まれる炭素系可燃物を自燃させ
るようにしたことを特徴としている。
This invention focuses on the above point, and by effectively recovering waste heat and increasing the temperature of the flowing air as much as possible, it is possible to cause carbon-based combustibles contained in recycled foundry sand to self-combust. It is characterized by what it did.

こ5で効果的々排熱回収をなすためには、流動焙焼炉の
最高温度帯から直接熱回収するのがよく、この最高温度
帯としては焙焼直後の鋳物砂が最適であるが、この場合
、鋳物砂の流動層から熱交換部への移動手段、および流
動空気の熱交換部から空気ノズルまでの送風経路は、温
度降下を避けるために最低限度にとソめる必要がある。
In order to effectively recover waste heat in this step, it is best to recover heat directly from the maximum temperature zone of the fluidized torrefaction furnace, and foundry sand immediately after torrefaction is optimal for this maximum temperature zone. In this case, the means for moving the foundry sand from the fluidized bed to the heat exchange section and the passage of fluidized air from the heat exchange section to the air nozzle must be minimized to avoid a drop in temperature.

また一方、流動層直上での排ガスについても最高温度帯
と同程度に高温であるが、熱伝達率が鋳物砂のそれに比
較して%〜%程度に低いために、こ!からの熱回収は不
適当であり、却ってこ\での排ガスのもつ熱量は、投入
される鋳物砂の乾燥、予熱に用いた方が効果的である。
On the other hand, the exhaust gas directly above the fluidized bed is as high as the highest temperature zone, but the heat transfer coefficient is about % to % lower than that of foundry sand. It is inappropriate to recover heat from the exhaust gas, and on the contrary, it is more effective to use the heat of the exhaust gas for drying and preheating the molding sand that is introduced.

なお流動空気温度の必要最低限度は、鋳物砂の発熱量お
よび処理量、それに炉容量などにより決定される。
The minimum necessary temperature of the fluidizing air is determined by the calorific value and processing amount of the foundry sand, the furnace capacity, etc.

次にこの発明方法の一実施例につき、第2図ないし第4
図を参照して詳細に説明する。
Next, FIGS. 2 to 4 show an embodiment of the method of this invention.
This will be explained in detail with reference to the drawings.

第2図はこの実施例方法を適用した流動焙焼炉の概要構
成を示している。この第2図において、焙焼炉]1内に
は上方から、予熱部]−2゜焙焼部13および流動空気
加熱部14が順次に形成されており、予熱部12の」二
部には投入ホッパー15.焙焼部13の炉壁には炉内に
向はバーナ16.および流動空気加熱部14の下部炉底
には取り出し口17がそれぞれに設けられると共に、焙
焼部13とその下方の流動空気加熱部工4との間は、流
動空気ノズル18により部分的に区画され、両部13.
14間にはシュートその他の付加的手段は一切存在せず
、この流動空気ノズル18と炉体下部外方のブロワ19
との間を接続する配管は、前記流動空気加熱部14内に
あって熱交換器20を形成している。
FIG. 2 shows a schematic configuration of a fluidized roasting furnace to which this embodiment method is applied. In FIG. 2, a preheating section]-2° roasting section 13 and a fluidized air heating section 14 are sequentially formed in the roasting furnace 1 from above. Input hopper 15. A burner 16 is installed on the furnace wall of the roasting section 13 toward the inside of the furnace. A take-out port 17 is provided at the bottom of the lower furnace of the fluidized air heating section 14, and the space between the roasting section 13 and the fluidized air heating section 4 below is partially partitioned by a fluidized air nozzle 18. Both parts 13.
There is no chute or other additional means between the fluidizing air nozzle 18 and the blower 19 outside the lower part of the furnace body.
A pipe connecting between the two is located within the fluidized air heating section 14 and forms a heat exchanger 20.

従ってこのIW&成の1易合、まずボンパー15から鋳
物砂3を所定レベルまで投入した上で停止させ、ブロワ
]、9からの送風を開始して、鋳物砂a’fよる流動層
21を空気ノズル]−8上の焙焼部13の下部に形成さ
せたのち、バーナ16に点火して流動層21を形成して
いる鋳物砂aIを加熱、焙焼させ、この流動層2コ−が
焙焼温度捷で」1昇するのを待って、収り出し口17を
開き、同時に鋳物砂aの投入を再開する。
Therefore, in the first case of IW & formation, first, the molding sand 3 is charged from the bomber 15 to a predetermined level and then stopped, and the air blowing from the blower], 9 is started to air the fluidized bed 21 of the molding sand a'f. After forming the molding sand aI in the lower part of the roasting section 13 on the nozzle]-8, the burner 16 is ignited to heat and roast the foundry sand aI forming the fluidized bed 21, and this fluidized bed 2 is roasted. After waiting for the firing temperature to rise by 1", the outlet 17 is opened, and at the same time, the injection of foundry sand a is resumed.

こ\で鋳物砂aは、予熱部12に装入されて排ガスによ
り乾燥および予熱された上で、焙焼部]3内を下降して
流動層21に至り、この流動層21に至った鋳物砂a′
は、バーナ16により焙焼されて炉内最高温度まで加熱
される。ついでこのように焙焼された鋳物砂a+′は、
殆んど温度降下しないま\で流動空気加熱部14内を流
下してゆき熱交換器20を通る流動空気との間でその顕
熱が熱交換され、やがて収り出し口]、7から外部に排
出される。
Here, the foundry sand a is charged into the preheating section 12, dried and preheated by the exhaust gas, and then descends through the roasting section 3 to reach the fluidized bed 21. sand a'
is roasted by the burner 16 and heated to the maximum temperature in the furnace. Then, the foundry sand a+′ roasted in this way is
The sensible heat is exchanged with the flowing air that flows down inside the fluidized air heating section 14 and passes through the heat exchanger 20 with almost no temperature drop, and is eventually discharged from the outlet 7 to the outside. is discharged.

そしてこの過程を繰り返すうちに、流動空気加熱部14
の平均温度が上昇し、同時に熱交換される流動空気温度
も次第に上昇する。のてこの流動空気を吹き出し−Cい
る流動層21の温度も」1昇傾向を示すが、焙焼温度を
一定にするために、バーナ16を逐次に絞ってゆき、や
がてバーナ16を完全に停止させても焙焼温度が維持さ
れる状態となり、自動的に自燃焙焼稼動に移行する。さ
らにとの自燃焙焼を続けると、焙焼温度は徐々に変化す
るが、温度上昇傾向にあるときは鋳物砂aの投入量を増
加させ、反対に温度下降傾向にあるときはバーナ16を
補助的に点火するなどによってとの焙焼温度を制御すれ
ばよいのである。
As this process is repeated, the fluidized air heating section 14
The average temperature of the air increases, and at the same time the temperature of the flowing air that undergoes heat exchange also gradually increases. The temperature of the fluidized bed 21 in which the fluidized air is blown out also shows a tendency to rise by 1, but in order to keep the roasting temperature constant, the burner 16 is gradually throttled down, and eventually the burner 16 is completely stopped. Even if the roasting temperature is maintained, the roasting temperature will be maintained, and the automatic combustion roasting operation will be automatically started. As the self-combustion roasting continues, the roasting temperature gradually changes, but when the temperature tends to rise, the amount of casting sand a is increased, and on the other hand, when the temperature tends to fall, the burner 16 is assisted. All you have to do is to control the roasting temperature by, for example, igniting the roasting material.

ちなみに、この装置構成での試験的な操業例を第3図に
示すが、この場合には操業開始後。
Incidentally, an example of a trial operation with this equipment configuration is shown in Fig. 3, but in this case, after the start of operation.

約3時間で完全な自燃焙焼稼動に移行した。The system transitioned to full self-combustion roasting operation in about 3 hours.

またこの実施例によって得た再生砂は、その捷\で自硬
性鋳型などに使用して竹に問題はないが、シェル砂とし
て使用するときには、従来と同様にさらに再生処理を必
要とする。この実施例によって得た再生鋳物砂を、例え
ば特公昭57−42411号公報所載の機械式再生装置
により再生処理を施したのち、J I S K 691
0によりシェル砂の曲げ強さを測定したところ、第4図
に示すように、この再生砂は符号aiC示すように5回
処理によって新砂以上の曲げ強さを示し、符号すに示す
従来での自燃焙焼によらない再生砂と殆んど変わらない
ものが得られた。
Furthermore, the recycled sand obtained in this example can be used for self-hardening molds and the like by grinding without causing any problems with bamboo, but when used as shell sand, it requires further recycling treatment as in the conventional method. The recycled foundry sand obtained in this example is recycled using, for example, a mechanical recycling device described in Japanese Patent Publication No. 57-42411, and then processed according to JIS K 691.
When the bending strength of the shell sand was measured using 0, as shown in Figure 4, the recycled sand showed a bending strength higher than that of new sand after 5 treatments as shown by the symbol aiC, and compared to the conventional sand shown by the symbol aiC. Sand that was almost the same as recycled sand that was not subjected to self-combustion roasting was obtained.

なお符号Cは機械的再生方法のみによる再生砂の例どあ
る。
Incidentally, code C is an example of recycled sand obtained only by a mechanical regeneration method.

以上詳述したようにこの発明方法によれば、流動焙焼炉
により可燃物粘結剤を含む鋳物砂を焙焼するようにした
鋳物砂の再生方法にあって、流動層で焙焼された鋳物砂
を流動層直下の流動空気加熱部に流下させ、この加熱部
での熱交換により流動空気を焙焼温度付近まで加熱した
のち、この加熱された流動空気を流動層内に吹き出させ
て鋳物砂を自燃焙焼させるようにしたから、例えば土砂
のように発熱量の少ない鋳物砂であっても、自燃焙焼さ
せることができ、これによっ−C流動焙焼炉の熱効率を
向上させ、ひいては鋳物砂の”培焼再主のための燃料消
費量を低減し得る利点があり、このため大規模鋳造工場
はもちろんのこと、従来技術では採算のとれなかった中
、小規模鋳造工場においても低コストの鋳物砂再生を行
ない得て、省資源、省エネルギならびに公害防止に大き
く貢献できる特長がある。
As detailed above, according to the method of the present invention, there is a method for recycling foundry sand in which foundry sand containing a combustible binder is roasted in a fluidized roasting furnace. Foundry sand is allowed to flow down into a fluidized air heating section directly below the fluidized bed, and the fluidized air is heated to around the roasting temperature through heat exchange in this heating section, and then this heated fluidized air is blown out into the fluidized bed to form castings. Since the sand is made to undergo self-combustion roasting, it is possible to perform self-combustion roasting even for foundry sand, which has a low calorific value, such as earth and sand, thereby improving the thermal efficiency of the -C fluidized roasting furnace. Furthermore, it has the advantage of reducing the fuel consumption for re-burning the foundry sand, making it suitable not only for large-scale foundries but also for small-scale foundries where conventional technology was unprofitable. It has the advantage of being able to regenerate foundry sand at low cost and greatly contributing to resource and energy savings and pollution prevention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は基本的な流動焙焼炉の概要構成を示す断面図、
第2図はこの発明方法の一実施例を適用した流動焙焼炉
の概要構成を示す断面図、第3図は同上操業例を示す説
l刀図、第4図はこの発明方法によって得た再生砂の試
験結果を示すグラフである。 11・焙焼炉、12・・予熱部、■3・・・焙焼部、1
4・・流動空気加熱部、16・・ノく−ナ、18・・・
流動空気ノズル、19・・・ブロワ、20・・熱交換器
、21・・流動層。 特許出願人  日本鋼管継手株式会社 代 理 人 弁理士 鈴工孝− 第1図 第3図 第4図 −r−系売ネ市止訪t l  ・1¥件の表ンI< 特願昭58−90519吋 2、 発明の名称 鋳物砂のIIf生方法 3、 補正をする名 ・11件との関係   特許出願人 11木鋼管継f株式会社 4、 代理人 5  補11−命令の11伺 自発的 6、 補正の対象 明細書及び図面 、−−一゛ 、 (1) 明細書の特許請求の範囲の欄の記載を別紙の如
く補iEする。 (2) 明細J)の第6頁第1行目にr650Jとある
のを、r600Jに補正する。 (3) 明細J)の第9頁第20行目と第10頁第1行
1]との間に下記の記載を加入補正する。 記 [尚、第3図中Aは鋳物砂aの投入量を増加させた場合
を示しており、またBはブロワ19による送風を停止1
−シたときを示している。更にCの点線は、流動?:d
気が流動層21へ吹き出す出口付近の温度変化を示して
いるが、これによると、鋳物砂の投入開始と同時に、高
温に焙焼された鋳物砂が流動空気加熱部14に流入して
くるため流動空気の温度は急激に上屏し、温度が約60
.0℃を超えた時点で完全に鋳物砂が自燃焙焼稼動に移
行したことが理解される。しかしながら、鋳物砂を自燃
焙焼させるために可能な流動空気の下限温度は、焙焼炉
の容量や保温状態或いは鋳物砂の投入量等によって変化
することは勿論のことである。」(4) 明細f’−+
 (’) ”fs l O頁第20行1−1 ニr焙焼
温度伺近」とあるのを、「鋳物砂の自燃焙焼可能温度」
と補正する。 (5) 廓占に添伺した図面中、:53図を別紙の〃1
1〈補f卜する。 以ト 特許請求の範囲 旋動焙焼炉により可燃物粘結剤を含む鋳物砂をJiり焼
するようにした鋳物砂の再生方法において、JQ動層で
焙焼された鋳物砂を、流動層直下の流動空気加熱部に流
下させ、この加熱部での熱交換により流動空気を鋳物砂
の自燃  「1 温 まで加熱したのち、この加熱され
た流動空気を前記流動層内に吹き出させて、鋳物砂を自
燃焙焼させるようにしたことを特徴とする鋳物砂の再生
方法。
Figure 1 is a sectional view showing the general configuration of a basic fluidized roasting furnace.
Fig. 2 is a sectional view showing the general configuration of a fluidized roasting furnace to which an embodiment of the method of the present invention is applied, Fig. 3 is an illustration showing an example of the same operation, and Fig. 4 is a cross-sectional view showing the general configuration of a fluidized roasting furnace to which an embodiment of the method of the present invention is applied. It is a graph showing test results of recycled sand. 11. Roasting furnace, 12. Preheating section, ■3. Roasting section, 1
4... Fluid air heating section, 16... Nokuna, 18...
Fluidized air nozzle, 19... Blower, 20... Heat exchanger, 21... Fluidized bed. Patent Applicant Nippon Steel Pipe Fittings Co., Ltd. Agent Patent Attorney Takashi Suzu - Figure 1 Figure 3 Figure 4 - Visit to the R-Series Sales Market Tl ・1 ¥ List I < Patent Application 1982 -90519吋2, Name of the invention IIf production method of foundry sand 3, Name of amendment/Relationship with 11 cases Patent applicant 11 Wood and Steel Pipe Joint Co., Ltd. 4, Agent 5 Supplement 11 - Voluntary request for order 11 6. Specification and drawings to be amended: (1) The statement in the scope of claims column of the specification shall be supplemented as shown in the attached sheet. (2) Correct r650J in the first line of page 6 of Specification J) to r600J. (3) The following statement is added between page 9, line 20 and page 10, line 1 of specification J). [In addition, A in Fig. 3 shows the case where the amount of casting sand a is increased, and B shows the case where the air blowing by the blower 19 is stopped.
- Indicates when the Furthermore, is the dotted line in C fluid? :d
The graph shows the temperature change near the outlet where air is blown into the fluidized bed 21.According to this, the foundry sand that has been roasted to a high temperature flows into the fluidized air heating section 14 at the same time that the casting sand starts to be introduced. The temperature of the flowing air rose rapidly and reached a temperature of about 60℃.
.. It is understood that the foundry sand completely shifted to self-combustion roasting operation when the temperature exceeded 0°C. However, it goes without saying that the lower limit temperature of the fluidized air that is possible for self-combusting roasting of foundry sand varies depending on the capacity of the roasting furnace, the heat retention state, the amount of molding sand input, and the like. ” (4) Details f'-+
(') ``fs l O page 20 line 1-1 ni r roasting temperature near'' is replaced with ``temperature at which self-combustion roasting of foundry sand is possible.''
and correct it. (5) Among the drawings that we visited at the time of inspection, Figure 53 is attached in Appendix 1.
1. Supplement. Claims: A method for regenerating foundry sand in which foundry sand containing a combustible binder is subjected to JI calcining in a rotary torrefaction furnace, wherein the foundry sand roasted in a JQ fluidized bed is heated in a fluidized bed. The fluidized air is allowed to flow down to the fluidized air heating section directly below, and the fluidized air is heated to the self-combustion temperature of the foundry sand by heat exchange in this heating section, and then the heated fluidized air is blown into the fluidized bed to A method for recycling foundry sand, characterized in that the sand is self-combustible and roasted.

Claims (1)

【特許請求の範囲】[Claims] 流動焙焼炉により可燃物粘結剤を含む鋳物砂を焙焼する
ようにした鋳物砂の再生方法において、流動層で焙焼さ
れた鋳物砂を、流動層直下の流動空気加熱部に流下させ
、この加熱部での熱交換により流動空気を焙焼温度付近
まで加熱したのち、この加熱された流動空気を前記流動
層内に吹き出させて、鋳物砂を自然焙焼させるようにし
たことを特徴とする鋳物砂の再生方法。
In a method for regenerating foundry sand in which foundry sand containing a combustible binder is roasted in a fluidized roasting furnace, the foundry sand roasted in a fluidized bed is flowed down to a fluidized air heating section directly below the fluidized bed. , the fluidized air is heated to around the roasting temperature by heat exchange in this heating section, and then the heated fluidized air is blown out into the fluidized bed to naturally roast the foundry sand. A method for recycling foundry sand.
JP9051983A 1983-05-23 1983-05-23 Reconditioning method of molding sand Granted JPS59215242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9051983A JPS59215242A (en) 1983-05-23 1983-05-23 Reconditioning method of molding sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9051983A JPS59215242A (en) 1983-05-23 1983-05-23 Reconditioning method of molding sand

Publications (2)

Publication Number Publication Date
JPS59215242A true JPS59215242A (en) 1984-12-05
JPS635174B2 JPS635174B2 (en) 1988-02-02

Family

ID=14000694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9051983A Granted JPS59215242A (en) 1983-05-23 1983-05-23 Reconditioning method of molding sand

Country Status (1)

Country Link
JP (1) JPS59215242A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180340A (en) * 1987-01-22 1988-07-25 Nippon Kokan Keishiyu Kk Method for regenerating molding sand
US5299618A (en) * 1989-11-28 1994-04-05 Pio Fumagalli Method for recovering foundry sand by roasting
JP2009208081A (en) * 2008-02-29 2009-09-17 Matsui Kogyo:Kk Regeneration apparatus for casting sand
CN104043772A (en) * 2014-06-20 2014-09-17 中机中联工程有限公司 Casting used sand thermal reclamation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543126U (en) * 1977-06-10 1979-01-10
JPS543042A (en) * 1977-06-08 1979-01-11 Coalite Chem Prod Ltd Production of cycloalkanol derivatives
JPS5759015A (en) * 1980-09-26 1982-04-09 Mitsubishi Heavy Ind Ltd Device for moving valve in reciprocating engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543042A (en) * 1977-06-08 1979-01-11 Coalite Chem Prod Ltd Production of cycloalkanol derivatives
JPS543126U (en) * 1977-06-10 1979-01-10
JPS5759015A (en) * 1980-09-26 1982-04-09 Mitsubishi Heavy Ind Ltd Device for moving valve in reciprocating engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180340A (en) * 1987-01-22 1988-07-25 Nippon Kokan Keishiyu Kk Method for regenerating molding sand
US5299618A (en) * 1989-11-28 1994-04-05 Pio Fumagalli Method for recovering foundry sand by roasting
JP2009208081A (en) * 2008-02-29 2009-09-17 Matsui Kogyo:Kk Regeneration apparatus for casting sand
CN104043772A (en) * 2014-06-20 2014-09-17 中机中联工程有限公司 Casting used sand thermal reclamation system

Also Published As

Publication number Publication date
JPS635174B2 (en) 1988-02-02

Similar Documents

Publication Publication Date Title
CN201988675U (en) Full-countercurrent heat exchange two-stage waste sand casting roasting furnace
CN101413041B (en) Coal-based direct reduction iron rotary hearth furnace and combustion method thereof
CN2859431Y (en) Intermittent combustion casting waste sand roasting furnace
US4120644A (en) Apparatus for regeneration of spent active carbon
CN103894538A (en) Precoated sand hot-process regeneration equipment and regeneration method
JPS63180340A (en) Method for regenerating molding sand
JPS59215242A (en) Reconditioning method of molding sand
CN206378010U (en) A kind of aluminium melting furnace afterheat utilizing system
CN108504813A (en) A kind of gas-based shaft kiln directly reduced system of coal gas-and technique
CN205324623U (en) Quick calcination regeneration system of energy -saving tuber pipe cooled casting sand
CN201340180Y (en) Revolving afterheat drying device and well-type closed cell perlite expansion furnace matched therewith
CN102788501A (en) Energy-saving environment-friendly type high-temperature fluidized bed calcinator
CN202792954U (en) Energy-saving and environment-friendly high temperature fluidized bed roasting oven
CN210862259U (en) Energy-saving bottom type roasting furnace
CN205448287U (en) Many fuel heat pipe indirect heating hot -blast furnace
JPS60174234A (en) Regenerating device for molding sand
CN107101219A (en) A kind of circulation air path device of biomass boiler
CN203810911U (en) Aluminum melting furnace using biomass fuel
CN112284147A (en) High-temperature preheating type oxygen-enriched combustion energy-saving emission-reducing system of sand regenerating furnace for casting
CN101362954B (en) Semi-coke gas multifuel combustion furnace
CN217303542U (en) Energy-saving circulating system of vertical roasting furnace
CN109940125A (en) High production capacity sand thermal reclamation roaster
CN114543505B (en) Vertical energy-saving roasting furnace
CN205414305U (en) Quick calcination regeneration system of energy -saving intercooling formula casting sand
JPH11239862A (en) Method for drying and heating ladle and device therefor