JP3720743B2 - Oxide superconductor and manufacturing method thereof - Google Patents

Oxide superconductor and manufacturing method thereof Download PDF

Info

Publication number
JP3720743B2
JP3720743B2 JP2001281904A JP2001281904A JP3720743B2 JP 3720743 B2 JP3720743 B2 JP 3720743B2 JP 2001281904 A JP2001281904 A JP 2001281904A JP 2001281904 A JP2001281904 A JP 2001281904A JP 3720743 B2 JP3720743 B2 JP 3720743B2
Authority
JP
Japan
Prior art keywords
phase
temperature
oxide superconductor
superconductor
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001281904A
Other languages
Japanese (ja)
Other versions
JP2002160921A (en
Inventor
秀一 小早志
秀二 吉澤
重夫 長屋
直樹 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Dowa Holdings Co Ltd
Chubu Electric Power Co Inc
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Chubu Electric Power Co Inc, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2001281904A priority Critical patent/JP3720743B2/en
Publication of JP2002160921A publication Critical patent/JP2002160921A/en
Application granted granted Critical
Publication of JP3720743B2 publication Critical patent/JP3720743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、特に磁気反発力特性の優れた酸化物超電導体及びその製造方法に関する。
【0002】
【従来の技術】
RE1 Ba2 Cu3 7-X(ただし、REはYを含む希土類元素とする)系酸化物超電導体は、約1010℃付近でRE2 Ba1 Cu15 相(以下、211相と略称する場合がある)と液相とに分解する分解溶液化合物であるということができる。それゆえ、従来は、RE化合物、Ba化合物及びCu化合物を含む原料混合体を分解溶液温度以下で数十時間焼成し、固相反応によって焼結させる、いわゆる焼結法によって製造するのが一般的であった。
【0003】
しかし、この焼結法で製造されたRE1 Ba2 Cu3 7-X 系酸化物超電導体は、粒径数十μm程度の多結晶が弱い結合で固まったものとなりがちであり、実用上において極めて重要な超電導特性である臨界電流密度(以下、Jcと略称する場合がある)特性や磁気反発力特性の十分なものが得られにくいものであった。
【0004】
そこで、上記弱結合を少なくして超電導特性を向上させることができる方法として溶融法が考案された(例えば、特開平2-153803号公報参照)。この溶融法は、RE化合物、Ba化合物、Cu化合物を含む出発原料を所定の割合に秤量混合して作製した原料混合体を、211相と液相とが分解溶融する温度まで昇温した後、そこから徐冷することによって、211相と液相との包晶反応によってRE1 Ba2 Cu3 7-X 相(以下、123相と略称する場合がある)の大きな結晶を得るという方法である。この方法で製造された超電導体は、概ね123相中に211相が微細に分散された構造を有しているものであり、上記焼結法に比較すると、臨界電流密度特性や磁気反発力特性のよいものが得られやすいものであった。
【0005】
【発明が解決しようとする課題】
しかしながら、上述の溶融法を用いても、いまだ、実用上において要請される臨界電流密度特性や磁気反発力特性を十分に満たす超電導体を得ることは困難であることがわかってきた。
【0006】
本発明者等の研究によると、上記溶融法で製造した超電導体は、123相中に分散される211相の平均粒径が2〜5μmであり、しかも、その粒径にかなりのばらつきがあるものであって、Jc等の超電導特性が211相の粒径に強く依存することからすると、211相の平均粒径がいまだ十分に小さく且つ均一であるとはいえないものであると推定された。
【0007】
本発明は、上述の背景のもとでなされたものであり、高い臨界電流密度特性を有し、磁気反発力特性に優れた酸化物超電導体及びその製造方法を提供することを目的としたものである。
【0008】
【課題を解決するための手段】
上述の課題を解決するための第1の発明は、RE1 Ba2 Cu3 7-X (ただし、REは、Yを含む希土類元素)相中に、RE2 Ba1 Cu15 相が微細に分散してなる酸化物超電導体であって、
凝固起点から育成方向に向かってRE2 Ba1 Cu15 相の平均粒径が小さくなっていることを特徴とする酸化物超電導体である。
【0009】
第2の発明は、第1の発明に記載の酸化物超電導体であって、
この酸化物超電導体を凝固起点から育成方向に向かって3mm間隔で切断し各切断面におけるRE2 Ba1 Cu15 相の平均粒径をもとめたとき、
この平均粒径の最大値と最小値の差が1μm以上であることを特徴とする酸化物超電導体である。
【0010】
第3の発明は、第1または第2の発明のいずれかに記載の酸化物超電導体であって、
隣り合う結晶粒の配向のずれ角度が5°以下に揃っていることを特徴とする酸化物超電導体である。
【0011】
第4の発明は、RE化合物(ただし、REは、Yを含む希土類元素)、Ba化合物、Cu化合物を含む原料混合体を、RE2 Ba1 Cu15 相と液相とが存在するようになる温度まで昇温し、次に、この混合相に5〜50℃/cmの温度勾配を形成させつつその低温側にRE1 Ba2 Cu3 7-X相が晶出するようになる温度より5〜40℃高い温度になるまで該混合相を5〜30℃/minの速度で降温し、そこから0.1〜2℃/hの速度で徐冷して、RE1 Ba2 Cu3 7-X相中にRE2 Ba1 Cu15 相が微細に分散してなる酸化物超電導体を得ることを特徴とする酸化物超電導体の製造方法である。
【0012】
さらに本発明にかかる酸化物超電導体は、以下に記載の態様を有する。
(構成1)RE1 Ba2 Cu3 7-X (ただし、REは、Yを含む希土類元素)相中に、RE2 Ba1 Cu15 相が微細に分散してなる酸化物超電導体において、前記RE2 Ba1 Cu15 相の平均粒径が0.1〜2.0μmであることを特徴とする構成とし、この構成1の態様として、(構成2) 構成1の酸化物超電導体において、この酸化物超電導体をある平面で切断したときに、この切断面に表れるRE2 Ba1 Cu15 相の平均粒径が0.1〜2.0μmであることを特徴とする構成とし、構成1又は2の態様として、(構成3) 構成1又は2の酸化物超電導体において、この酸化物超電導体の表面に表れるRE2 Ba1 Cu15 相の平均粒径が0.1〜2.0μmであることを特徴とする構成とし、構成1ないし3のいずれかの態様として、(構成4) 構成1ないし3のいずれかの酸化物超電導体において、前記RE1 Ba2 Cu3 7-X 相とRE2 Ba1 Cu15 相との体積比が1:0.6ないし1:1.2であることを特徴とする構成とし、構成1ないし4の態様として、(構成5) 構成1ないし4のいずれかの酸化物超電導体において、隣り合う結晶粒の配向のずれ角度が5°以下に揃っていることを特徴とする構成とした。
【0013】
また、本発明にかかる酸化物超電導体の製造方法は、(構成6) RE化合物(ただし、REは、Yを含む希土類元素)、Ba化合物、Cu化合物を含む原料混合体を、RE2 Ba1 Cu15 相と液相とが存在するようになる温度まで昇温し、次に、この混合相に5〜50℃/cmの温度勾配を形成させつつその低温側にRE1 Ba2 Cu3 7-X 相が晶出するようになる温度より5〜40℃高い温度になるまで該混合相を5〜30℃/minの速度で降温し、そこから0.1〜2℃/hの速度で徐冷して、RE1 Ba2 Cu3 7-X 相中にRE2 Ba1 Cu15 相が微細に分散してなる酸化物超電導体を得ることを特徴とする構成とした。
【0014】
【作用】
構成1ないし5の酸化物超電導体は、従来の溶融法等で製造された従来の酸化物超電導体に比較して、高い臨界電流密度特性を有し、磁気反発力特性に優れたものである。すなわち、従来の溶融法で得られている酸化物超電導体のJcは、1〜2×104 A/cm2 程度が限度であるが、上記構成の酸化物超電導体では3〜5×104 A/cm2 という優れたものでであり、これに対応して磁気反発力も極めて優れたものである。
【0015】
ここで、構成1ないし3において、211相の平均粒径を0.1〜2μmとしたのは、この範囲であれば、実用に十分なJc特性が得られ、かつ、比較的容易に製造することが可能であることがわかったからである。
【0016】
また、隣り合う結晶粒の配向のずれ角度が5°以下に揃えるようにしたのは、このずれ角度が5°を越えると、粒界間の結晶的つながりが弱くなって、上記Jc特性等が得られなくなるからである。
【0017】
また、構成6の製造方法によれば、原料混合体を、211相と液相とが存在するようになる温度まで昇温し、次に、この211相と液相との混合相に5〜50℃/cmの温度勾配を形成させつつその低温側に123相が晶出するようになる温度より5〜40℃高い温度になるまで該混合相を5〜30℃/minの速度で降温し、そこから0.1〜2℃/hの速度で徐冷するようにしたことにより、構成1ないし5の酸化物超電導体を得ることができる。
【0018】
この場合、上記混合相に形成する温度勾配を5〜50℃/cmとしたのは、5℃/cm未満にすると、無秩序な核発生が生じてしまって温度勾配を設ける効果が得られないと共に、50℃/cmを越えるようにすると、高温側で液相の流れ出しが多くなって製造が困難になるからである。
【0019】
また、低温側を123相が晶出するようになる温度より5〜40℃高い温度にするのは、5℃未満では無秩序な123相の核発生が起こり、40℃を越えると、溶融時間が長くなるために211相の粗大化が起こってしまうためである。このとき、降温速度を5〜30℃/minとしたのは、5℃/min未満では溶融時間が長くなって211相の粗大化が起こり、30℃/minを越えると過冷却状態になって211相の粒成長が早くなり、やはり211相の粗大化が起こるためである。
【0020】
さらに、上記徐冷速度を0.1〜2℃/h(時間)にしたのは、0.1℃/h未満では、生産性の上で実用性に乏しくなり、また、2℃/hを越える速度にすると、結晶成長が追いつかず、不純物の析出が生じてくるからである。
【0021】
これに対して、原料混合体を211相と液相とを呈する温度まで昇温した後、そこから徐冷することによって123相を晶出させる211相との包晶反応による従来の溶融法では、図1に示したように、液相中に分散した211相から固液界面に反応に必要なREの供給が行われて123相の結晶成長が進むものであって、結晶化の進行によって211相の粒径が小さくなっていく。よって結晶の起点付近では、包晶反応の固液界面にREをほとんど供給できずに結晶化が行われ、これがため、211相の粒径は大きいものになってしまう。それゆえ、原料を溶融した後に全体を均一温度にして徐冷結晶化を行うと、結晶の核発生が無秩序に多数行われて、211相の平均粒径が大きくなってしまうものと考えられる。
【0022】
その点、上記本願発明の構成によると、5〜50℃/cmの温度勾配を形成させつつ、結晶化が行われる温度より5〜40℃高い温度まで、5〜30℃/minの急降温を行うようにしたことにより、凝固起点から育成方向に向かって211相の粒径が小さくなり、従来の溶融法による場合の211相の平均粒径が2〜5μm程度であるのに対し、本願発明の上記構成では、凝固起点部から育成方向に向かって粒径が小さくなり、約1μm前後の平均粒径のものが容易に得られるようになる。また、その0磁場におけるJcも従来1〜2×104 A/cm2 程度であったものが、3〜5×104 A/cm2 と飛躍的に向上する。
【0023】
【実施例】
(実地例1)
23 、BaCO3 、CuOの各原料粉末をY:Ba:Cu=18:24:34になるように秤量した後、BaCO3 、CuOのみをPtるつぼ中で、950℃で2時間焼成してBaCuO3 とCuOの仮焼粉を得た(モル比でBaCuO2 :CuO=2:4:10)。この仮焼粉と予め秤量しておいたY23 とを混合して外径50mm厚さ25mmのディスク状にプレス成形して成形体を作製した。次に、この成形体をアルミナ基板上にのせて、1150℃で半溶融状態にした後、上部が低温側となるように15℃/cmの温度勾配を加えて、成形体上部が1030℃となるまで10℃/minで降温し、そこから、1℃/hrの速度で室温まで徐冷することによって結晶化を行った。作製した試料は焼き縮みのために外径45mm厚さ20mmのディスク状となっていた。また配向に関しては、育成方向が結晶のc軸方向に揃った試料が得られた。
【0024】
この試料中の211相の平均粒径分布を凝固起点より3mm間隔で切断して測定した。図3にこの測定結果をグラフにして示した。なお、図3において、縦軸が211相の粒径(単位;μm)、横軸が試料位置(単位;mm)であり、白丸印のプロット点が実施例の測定結果である。
【0025】
また、この試料の123相と211相との体積比は1:0.7であった。
【0026】
さらに、Jcの分布は凝固起点より3mm間隔で切断して測定した。図4にこの測定結果をグラフにして示した。なお、図4において、縦軸がJc(単位;A/cm2 )の粒径、横軸が試料位置(単位;mm)であり、白丸印のプロット点が実施例の測定結果である。
【0027】
また、この試料の上部0、3、6、9、12、15、18mmの各部分を切断して取り除いたものを、それぞれロードセルの先端に取り付けた外径25mm、厚さ50mmのNd−FeーB系磁石(表面最大磁束密度0.53T)を用いてそれぞれの超電導体との反発力を各々測定した。この場合、磁石と超電導体との間隔が0.1mmとした。図5にこの測定結果をグラフにして示した。なお、図5において、縦軸が反発力(単位;Kg・f)、横軸が切断厚さ(単位;mm)であり、白丸印のプロット点が実施例の測定結果である。
【0028】
以上の結果から明らかなように、211相の粒径が小さくなるにしたがってJcは大きくなり、Jcの大きな面を最表面にすることによって最大の反発力が得られる。
【0029】
(実施例2)
この実施例は、上述の実施例1におけるY、Ba、Cuの組成比を変えた例である。
【0030】
23 、BaCO3 、CuOの各原料粉末を、Y:Ba:Cu=22:26:36になるように秤量した後、BaCO3 、CuOのみをPtるつぼ中で、950℃で2時間焼成してBaCuO2 とCuOの仮焼粉を得た(モル比でBaCuO2 :CuO=26:10)。この仮焼粉と予め秤量しておいたY23 とを混合して外径50mm厚さ25mmのディスク状にプレス成形して成形体を作製した。次に、この成形体をアルミナ基板上にのせて、1150℃で半溶融状態にした後、上部が低温側となるように15℃/cmの温度勾配を加えて、成形体上部が1030℃となるまで10℃/minで降温し、そこから、1℃/hrの速度で室温まで徐冷することによって結晶化を行った。作製した試料は焼き縮みのために外径45mm厚さ20mmのディスク状となっていた。
【0031】
この試料中の211相の粒径は凝固起点から育成方向に小さくなり、全体の平均粒径は0.98μmであった。またJcも同様に育成方向に増加し、最大0磁場において4.8×104 A/cm2 が得られた。
【0032】
また、この試料の123相と211相との体積比は1:1であった。
【0033】
さらに、ロードセルの先端に取り付けた外径25mm、厚さ50mmのNd−FeーB系磁石(表面最大磁束密度0.53T)を用いて、実施例1と同様にそれぞれの超電導体との反発力を各々測定した。この場合の磁石と超電導体との間隔が0.1mmとした。その結果、最大の反発力が14Kg・fという高い値がえられた。
【0034】
この様に、Y、Ba、Cuの組成を変えた場合でもほぼ同様の特性を有する超電導体を得ることができた。
【0035】
(実施例3)
この実施例は、RE元素として、実施例1,2で用いたのYの代りにHoまたはSmを用いた場合の例である。なお、以下の説明では、REをHoまたはSmとする。
【0036】
RE23 、BaCO3 、CuOの各原料粉末を、RE:Ba:Cu=18:24:34になるように秤量した後、BaCO3 、CuOのみをPtるつぼ中で、950℃で2時間焼成してBaCuO2 とCuOの仮焼粉を得た(モル比でBaCuO2 :CuO=24:10)。この仮焼粉と予め秤量しておいたRE23とを混合して外径50mm厚さ25mmのディスク状にプレス成形して成形体を作製した。次に、この成形体をアルミナ基板上にのせて、REとして、Hoを用いた場合は1150℃で、Smを用いた場合は1180℃で、それぞれ半溶融状態にした後、上部が低温側となるように15℃/cmの温度勾配を加えて、成形体上部がHoを用いた場合は1020℃になるまで、Smを用いた場合は1085℃になるまでそれぞれ10℃/minで降温し、そこから、1℃/hrの速度で室温まで徐冷することによって結晶化を行った。作製した試料は焼き縮みのために外径45mm厚さ20mmのディスク状となっていた。
【0037】
この試料中の211相の平均粒径、最大、最大反発力は次に示す通りであった。
【0038】

Figure 0003720743
また、この試料の123相と211相との体積比は1:0.7であった。
【0039】
(比較例)
この比較例は、実施例1の工程において、半溶融状態にした成形体に温度勾配を形成する工程、並びに、この半溶融状態の成形体を急速降温する工程を省いて半溶融状態にした成形体をただちに徐冷して結晶化を行なう従来の溶融法で製造した場合の例である。
【0040】
23 、BaCO3 、CuOの各原料粉末をY:Ba:Cu=18:24:34になるように秤量した後、BaCO3 、CuOのみをPtるつぼ中で、950℃で2時間焼成してBaCuO3 とCuOの仮焼粉を得た(モル比でBaCuO2 :CuO=2:4:10)。この仮焼粉と予め秤量しておいたY23 とを混合して外径50mm厚さ25mmのディスク状にプレス成形して成形体を作製した。次に、この成形体をアルミナ基板上にのせて、1100℃で半溶融状態にした後、そこから、1℃/hrの速度で室温まで徐冷することによって結晶化を行った。作製した試料は焼き縮みのために外径43mm厚さ19mmのディスク状となっていた。また配向に関しては、数mm角の結晶がむ秩序に並んだものであった。
【0041】
この試料中の211相の平均粒径分布を凝固起点より3mm間隔で切断して測定した。図3にこの測定結果をグラフにして示した。なお、図3において、縦軸が211相の粒径(単位;μm)、横軸が試料位置(単位;mm)であり、白三角印のプロット点が比較例の測定結果である。図3から試料全体の平均粒径が約2.3μmであることがわかる。
【0042】
また、この試料の123相と211相との体積比は1:0.4であった。
【0043】
図1は比較例の方法で製造した超電導体及び実施例1の方法で製造した超電導体のそれぞれの切断面の光学顕微鏡写真(倍率;1000倍)に基づいて作成した123相の結晶粒中に微細に分散する粒状の211相を示す図である。図1(A)が比較例の方法で製造した超電導体であり、図1(B)が実施例1の方法で製造した超電導体である。図において粒状に分散しているのが211相である。図1から明らかなように、比較例の方法で製造した超電導体に比較して、実施例1の方法で製造した超電導体の211相がはるかに微細に分散されていることがわかる。
【0044】
さらに、Jcの分布は凝固起点より3mm間隔で切断して測定した。図4にこの測定結果をグラフにして示した。なお、図4において、縦軸がJc(単位;A/cm2 )の粒径、横軸が試料位置(単位;mm)であり、三角印のプロット点が比較例の測定結果である。
【0045】
また、この試料の上部0、3、6、9、12、15、18mmの各部分を切断して取り除いたものを、それぞれロードセルの先端に取り付けた外径25mm、厚さ50mmのNd−FeーB系磁石(表面最大磁束密度0.53T)を用いてそれぞれの超電導体との反発力を各々測定した。この場合、磁石と超電導体との間隔が0.1mmとした。図5にこの測定結果をグラフにして示した。なお、図5において、縦軸が反発力(単位;Kg・f)、横軸が切断厚さ(単位;mm)であり、三角印のプロット点が比較例の測定結果である。
【0046】
以上の結果から明らかなように、比較例として示した従来の溶融法では、半溶融後、原料全体を均一温度に維持しつつ徐冷しているために123相中に分散する211相の粒径がばらついて、平均粒径としては約2.3μm程度と大きくなっており、この粒径に依存するJcも0磁場下において、1〜2×104 A/cm程度と低く、したがってまた、磁気反発力も小さいものであった。
【0047】
【発明の効果】
以上詳述したように、本発明にかかる酸化物超電導体は、要するに、123相中に分散する211相の平均粒径を0.1〜2.0μmとしたことにより、高い臨界電流密度特性と優れた磁気反発力特性を得ている。
【0048】
また、本発明にかかる酸化物超電導体の製造方法は、原料混合体を、211相と液相とが存在するようになる温度まで昇温し、次に、この混合相に5〜50℃/cmの温度勾配を形成させつつその低温側に123相が晶出するようになる温度より5〜40℃高い温度になるまで該混合相を5〜30℃/minの速度で降温し、そこから0.1〜2℃/hの速度で徐冷することによって、123相中に211相が微細に分散してなる酸化物超電導体であって、123相中に分散する211相の平均粒径が0.1〜2.0μmであって、高い臨界電流密度特性と優れた磁気反発力特性を備えた超電導体を得ることを可能にしたものである。
【図面の簡単な説明】
【図1】実施例1及び比較例の酸化物超電導体の切断面に表れる211相の分散状態の顕微鏡写真に基づいて作成した図である。
【図2】従来の酸化物超電導体の製造方法における包晶反応による結晶成長の説明図である。
【図3】実施例1及び比較例の211相の平均粒径分布を凝固起点より3mm間隔で切断して測定した結果をグラフである。
【図4】実施例1及び比較例のJcの分布を凝固起点より3mm間隔で切断して測定した結果を示すグラフである。
【図5】実施例1及び比較例の磁気反発力特性の測定結果を示すグラフである。[0001]
[Industrial application fields]
The present invention particularly relates to an oxide superconductor having excellent magnetic repulsion characteristics and a method for producing the same.
[0002]
[Prior art]
RE 1 Ba 2 Cu 3 O 7-X (RE is a rare earth element including Y) type oxide superconductor is a RE 2 Ba 1 Cu 1 O 5 phase (hereinafter referred to as 211 phase) at about 1010 ° C. It may be said that it is a decomposition solution compound that decomposes into a liquid phase. Therefore, conventionally, a raw material mixture containing an RE compound, a Ba compound, and a Cu compound is generally manufactured by a so-called sintering method in which a raw material mixture is baked for several tens of hours below the decomposition solution temperature and sintered by a solid phase reaction. Met.
[0003]
However, the RE 1 Ba 2 Cu 3 O 7-X- based oxide superconductor manufactured by this sintering method tends to be a solid of a polycrystal having a grain size of several tens of μm due to a weak bond. However, it is difficult to obtain sufficient critical current density (hereinafter sometimes abbreviated as Jc) characteristics and magnetic repulsion characteristics which are extremely important superconducting characteristics.
[0004]
Accordingly, a melting method has been devised as a method capable of improving the superconducting characteristics by reducing the weak coupling (see, for example, Japanese Patent Laid-Open No. 2-153803). In this melting method, after a raw material mixture prepared by weighing and mixing a starting raw material containing a RE compound, a Ba compound, and a Cu compound at a predetermined ratio is heated to a temperature at which the 211 phase and the liquid phase are decomposed and melted, By slowly cooling from there, a large crystal of the RE 1 Ba 2 Cu 3 O 7-X phase (hereinafter sometimes abbreviated as 123 phase) is obtained by a peritectic reaction between the 211 phase and the liquid phase. is there. The superconductor manufactured by this method has a structure in which 211 phases are finely dispersed in approximately 123 phases. Compared with the above sintering method, critical current density characteristics and magnetic repulsion characteristics It was easy to obtain a good product.
[0005]
[Problems to be solved by the invention]
However, it has been found that it is still difficult to obtain a superconductor that sufficiently satisfies the critical current density characteristics and the magnetic repulsion characteristics that are practically required even if the above-described melting method is used.
[0006]
According to the study by the present inventors, the superconductor manufactured by the above melting method has an average particle diameter of 211 phase dispersed in the 123 phase of 2 to 5 μm, and the particle diameter varies considerably. In view of the fact that the superconducting properties such as Jc strongly depend on the particle size of the 211 phase, it was estimated that the average particle size of the 211 phase is still not sufficiently small and uniform. .
[0007]
The present invention has been made under the background described above, and aims to provide an oxide superconductor having high critical current density characteristics and excellent magnetic repulsion characteristics, and a method for producing the same. It is.
[0008]
[Means for Solving the Problems]
The first invention for solving the above-mentioned problem is that the RE 1 Ba 2 Cu 3 O 7-X (where RE is a rare earth element including Y) phase contains the RE 2 Ba 1 Cu 1 O 5 phase. An oxide superconductor that is finely dispersed,
The oxide superconductor is characterized in that the average particle size of the RE 2 Ba 1 Cu 1 O 5 phase decreases from the solidification start point toward the growth direction.
[0009]
A second invention is the oxide superconductor according to the first invention,
When this oxide superconductor was cut at an interval of 3 mm from the solidification origin toward the growth direction, and the average particle size of the RE 2 Ba 1 Cu 1 O 5 phase at each cut surface was determined,
The oxide superconductor is characterized in that the difference between the maximum value and the minimum value of the average particle diameter is 1 μm or more.
[0010]
A third invention is the oxide superconductor according to any one of the first and second inventions,
The oxide superconductor is characterized in that the misalignment angles of adjacent crystal grains are 5 ° or less.
[0011]
According to a fourth aspect of the present invention, an RE 2 Ba 1 Cu 1 O 5 phase and a liquid phase are present in a raw material mixture containing an RE compound (where RE is a rare earth element including Y), a Ba compound, and a Cu compound. Then, the RE 1 Ba 2 Cu 3 O 7-X phase crystallizes on the low temperature side while forming a temperature gradient of 5 to 50 ° C./cm in the mixed phase. The mixed phase is cooled at a rate of 5 to 30 ° C./min until the temperature becomes 5 to 40 ° C. higher than the temperature, and then gradually cooled at a rate of 0.1 to 2 ° C./h, and RE 1 Ba 2 Cu An oxide superconductor manufacturing method characterized by obtaining an oxide superconductor in which a RE 2 Ba 1 Cu 1 O 5 phase is finely dispersed in a 3 O 7-X phase.
[0012]
Furthermore, the oxide superconductor according to the present invention has the following aspects.
(Configuration 1) Oxide superconductor in which the RE 2 Ba 1 Cu 1 O 5 phase is finely dispersed in the RE 1 Ba 2 Cu 3 O 7-X (where RE is a rare earth element including Y) phase In the present invention, the RE 2 Ba 1 Cu 1 O 5 phase has an average particle diameter of 0.1 to 2.0 μm, and as an aspect of this configuration 1, (configuration 2) oxide of configuration 1 In the superconductor, when the oxide superconductor is cut along a plane, the average particle size of the RE 2 Ba 1 Cu 1 O 5 phase appearing on the cut surface is 0.1 to 2.0 μm. As an aspect of Configuration 1 or 2, (Configuration 3) In the oxide superconductor of Configuration 1 or 2, the average particle diameter of the RE 2 Ba 1 Cu 1 O 5 phase appearing on the surface of the oxide superconductor is Any one of configurations 1 to 3 is used, which is characterized by being 0.1 to 2.0 μm As embodiments, the volume ratio of (Configuration 4) In any one of the oxide superconductor constituting 1 to 3, wherein the RE 1 Ba 2 Cu 3 O 7 -X phase and RE 2 Ba 1 Cu 1 O 5 phase 1: 0.6 to 1: 1.2, and as an aspect of configurations 1 to 4, (configuration 5) In any of the oxide superconductors of configurations 1 to 4, adjacent crystal grains The configuration is characterized in that the misalignment angles are aligned at 5 ° or less.
[0013]
In addition, the method for producing an oxide superconductor according to the present invention includes: (Configuration 6) A raw material mixture containing an RE compound (wherein RE is a rare earth element including Y), a Ba compound, and a Cu compound, and RE 2 Ba 1 The temperature is raised to a temperature at which the Cu 1 O 5 phase and the liquid phase are present, and then a RE 1 Ba 2 Cu is formed on the low temperature side while forming a temperature gradient of 5 to 50 ° C./cm in the mixed phase. The mixed phase is cooled at a rate of 5 to 30 ° C./min until the temperature reaches 5 to 40 ° C. higher than the temperature at which the 3 O 7-X phase becomes crystallized, and then 0.1 to 2 ° C./h. And an oxide superconductor in which the RE 2 Ba 1 Cu 1 O 5 phase is finely dispersed in the RE 1 Ba 2 Cu 3 O 7-X phase. did.
[0014]
[Action]
The oxide superconductors of configurations 1 to 5 have high critical current density characteristics and excellent magnetic repulsion characteristics as compared with conventional oxide superconductors manufactured by a conventional melting method or the like. . That is, Jc of the oxide superconductor obtained by the conventional melting method is limited to about 1 to 2 × 10 4 A / cm 2, but 3 to 5 × 10 4 for the oxide superconductor having the above configuration. A / cm 2 is excellent, and the magnetic repulsive force is extremely excellent corresponding to this.
[0015]
Here, in the configurations 1 to 3, the average particle diameter of the 211 phase is set to 0.1 to 2 μm, and within this range, Jc characteristics sufficient for practical use can be obtained, and manufacturing is relatively easy. Because it was found that it was possible.
[0016]
In addition, the misalignment angle between adjacent crystal grains is set to 5 ° or less. If the misalignment angle exceeds 5 °, the crystal connection between the grain boundaries becomes weak, and the above Jc characteristics and the like are improved. This is because it cannot be obtained.
[0017]
Further, according to the manufacturing method of Configuration 6, the raw material mixture is heated to a temperature at which the 211 phase and the liquid phase are present, and then the mixed phase of the 211 phase and the liquid phase is increased to 5 to 5. While the temperature gradient of 50 ° C./cm is formed, the mixed phase is cooled at a rate of 5 to 30 ° C./min until the temperature reaches 5 to 40 ° C. higher than the temperature at which the 123 phase crystallizes on the low temperature side. From there, the oxide superconductors having constitutions 1 to 5 can be obtained by slow cooling at a rate of 0.1 to 2 ° C./h.
[0018]
In this case, the temperature gradient formed in the mixed phase is set to 5 to 50 ° C./cm. When the temperature gradient is less than 5 ° C./cm, disordered nucleation occurs and the effect of providing the temperature gradient cannot be obtained. If the temperature exceeds 50 ° C./cm, the liquid phase will flow out more on the high temperature side, making the production difficult.
[0019]
Also, the temperature on the low temperature side is 5 to 40 ° C. higher than the temperature at which the 123 phase crystallizes. If the temperature is less than 5 ° C., disordered 123 phase nucleation occurs. This is because the 211 phase becomes coarse due to the increase in length. At this time, the temperature decreasing rate was set to 5 to 30 ° C./min. If the temperature was less than 5 ° C./min, the melting time became long and the 211 phase was coarsened. This is because the 211 phase grains grow faster and the 211 phase becomes coarser.
[0020]
Furthermore, the slow cooling rate is set to 0.1 to 2 ° C./h (hours). When the cooling rate is less than 0.1 ° C./h, practicality is poor in terms of productivity. This is because if the speed is exceeded, crystal growth cannot catch up and precipitation of impurities occurs.
[0021]
On the other hand, in the conventional melting method by the peritectic reaction with the 211 phase that crystallizes the 123 phase by raising the temperature of the raw material mixture to a temperature exhibiting the 211 phase and the liquid phase, and then gradually cooling from there. As shown in FIG. 1, the RE required for the reaction is supplied from the 211 phase dispersed in the liquid phase to the solid-liquid interface, and the 123-phase crystal growth proceeds. As the crystallization progresses, The particle size of the 211 phase becomes smaller. Therefore, in the vicinity of the starting point of the crystal, RE is hardly supplied to the solid-liquid interface of the peritectic reaction, and crystallization is performed, which causes the particle size of the 211 phase to be large. Therefore, it is considered that when the raw material is melted and then gradually cooled and crystallized at a uniform temperature, a large number of crystal nuclei are generated randomly and the average particle size of the 211 phase increases.
[0022]
In that respect, according to the configuration of the invention of the present application, while the temperature gradient of 5 to 50 ° C./cm is formed, the rapid decrease in temperature of 5 to 30 ° C./min is performed to the temperature 5 to 40 ° C. higher than the temperature at which crystallization is performed. By doing so, the particle size of the 211 phase decreases from the solidification start point toward the growth direction, whereas the average particle size of the 211 phase in the case of the conventional melting method is about 2 to 5 μm, whereas the present invention In the above configuration, the particle size decreases from the solidification starting point toward the growth direction, and an average particle size of about 1 μm can be easily obtained. Further, the Jc in the zero magnetic field is dramatically improved to 3 to 5 × 10 4 A / cm 2 from the conventional value of about 1 to 2 × 10 4 A / cm 2 .
[0023]
【Example】
(Practical example 1)
After weighing each raw material powder of Y 2 O 3 , BaCO 3 , and CuO so that Y: Ba: Cu = 18: 24: 34, only BaCO 3 and CuO were fired at 950 ° C. for 2 hours in a Pt crucible. Thus, calcined powders of BaCuO 3 and CuO were obtained (BaCuO 2 : CuO = 2: 4: 10 in molar ratio). The calcined powder and Y 2 O 3 weighed in advance were mixed and press-molded into a disk shape having an outer diameter of 50 mm and a thickness of 25 mm to produce a molded body. Next, this molded body is placed on an alumina substrate and made into a semi-molten state at 1150 ° C., and then a temperature gradient of 15 ° C./cm is applied so that the upper portion is on the low temperature side, and the upper portion of the molded body is 1030 ° C. The temperature was lowered at a rate of 10 ° C./min until crystallization was performed by gradually cooling to room temperature at a rate of 1 ° C./hr. The produced sample was disk-shaped with an outer diameter of 45 mm and a thickness of 20 mm due to shrinkage. Regarding the orientation, a sample in which the growth direction was aligned with the c-axis direction of the crystal was obtained.
[0024]
The average particle size distribution of the 211 phase in this sample was measured by cutting at an interval of 3 mm from the solidification starting point. FIG. 3 is a graph showing the measurement results. In FIG. 3, the vertical axis is the particle size (unit: μm) of the 211 phase, the horizontal axis is the sample position (unit: mm), and the plotted points with white circles are the measurement results of the examples.
[0025]
Further, the volume ratio of the 123 phase and the 211 phase of this sample was 1: 0.7.
[0026]
Further, the distribution of Jc was measured by cutting at intervals of 3 mm from the solidification starting point. FIG. 4 is a graph showing the measurement results. In FIG. 4, the vertical axis represents the particle size of Jc (unit: A / cm 2 ), the horizontal axis represents the sample position (unit: mm), and the plotted points with white circles are the measurement results of the examples.
[0027]
In addition, Nd-Fe— having an outer diameter of 25 mm and a thickness of 50 mm attached to the tip of the load cell was obtained by cutting and removing the upper 0, 3, 6, 9, 12, 15, and 18 mm portions of the sample. The repulsive force with each superconductor was measured using a B magnet (maximum surface magnetic flux density of 0.53 T). In this case, the gap between the magnet and the superconductor was 0.1 mm. FIG. 5 is a graph showing the measurement results. In FIG. 5, the vertical axis represents the repulsive force (unit; Kg · f), the horizontal axis represents the cutting thickness (unit: mm), and the white dots indicate the measurement results of the examples.
[0028]
As is apparent from the above results, Jc increases as the particle size of the 211 phase decreases, and the maximum repulsive force can be obtained by making the surface with the large Jc the outermost surface.
[0029]
(Example 2)
This example is an example in which the composition ratio of Y, Ba, and Cu in Example 1 described above was changed.
[0030]
Each raw material powder of Y 2 O 3 , BaCO 3 and CuO was weighed so that Y: Ba: Cu = 22: 26: 36, and then only BaCO 3 and CuO were placed in a Pt crucible at 950 ° C. for 2 hours. The calcined powder of BaCuO 2 and CuO was obtained by firing (BaCuO 2 : CuO = 26: 10 in molar ratio). The calcined powder and Y 2 O 3 weighed in advance were mixed and press-molded into a disk shape having an outer diameter of 50 mm and a thickness of 25 mm to produce a molded body. Next, this molded body is placed on an alumina substrate and made into a semi-molten state at 1150 ° C., and then a temperature gradient of 15 ° C./cm is applied so that the upper portion is on the low temperature side, and the upper portion of the molded body is 1030 ° C. The temperature was lowered at a rate of 10 ° C./min until crystallization was performed by gradually cooling to room temperature at a rate of 1 ° C./hr. The produced sample was disk-shaped with an outer diameter of 45 mm and a thickness of 20 mm due to shrinkage.
[0031]
The particle size of the 211 phase in this sample was reduced in the growth direction from the solidification starting point, and the overall average particle size was 0.98 μm. Similarly, Jc increased in the growth direction, and 4.8 × 10 4 A / cm 2 was obtained at the maximum zero magnetic field.
[0032]
Moreover, the volume ratio of the 123 phase and the 211 phase of this sample was 1: 1.
[0033]
Furthermore, using an Nd-Fe-B magnet (maximum surface magnetic flux density of 0.53 T) having an outer diameter of 25 mm and a thickness of 50 mm attached to the tip of the load cell, the repulsive force with each superconductor in the same manner as in Example 1. Was measured respectively. In this case, the distance between the magnet and the superconductor was 0.1 mm. As a result, the maximum repulsive force was as high as 14 kg · f.
[0034]
Thus, even when the composition of Y, Ba, and Cu was changed, a superconductor having substantially the same characteristics could be obtained.
[0035]
(Example 3)
In this embodiment, Ho or Sm is used as the RE element in place of Y used in Embodiments 1 and 2. In the following description, RE is assumed to be Ho or Sm.
[0036]
Each raw material powder of RE 2 O 3 , BaCO 3 , and CuO is weighed so that RE: Ba: Cu = 18: 24: 34, and then only BaCO 3 and CuO are placed in a Pt crucible at 950 ° C. for 2 hours. The calcined powder of BaCuO 2 and CuO was obtained by firing (BaCuO 2 : CuO = 24: 10 in molar ratio). This calcined powder and RE 2 O 3 weighed in advance were mixed and press-molded into a disk shape having an outer diameter of 50 mm and a thickness of 25 mm to produce a molded body. Next, this molded body is placed on an alumina substrate, and when RE is used, it is 1150 ° C. when Ho is used, and 1180 ° C. when Sm is used. A temperature gradient of 15 ° C./cm was applied so that the temperature was lowered at 10 ° C./min until 1020 ° C. when Sm was used when the upper portion of the molded body was Ho, and 1085 ° C. when Sm was used. From there, crystallization was performed by slowly cooling to room temperature at a rate of 1 ° C./hr. The produced sample was disk-shaped with an outer diameter of 45 mm and a thickness of 20 mm due to shrinkage.
[0037]
The average particle diameter, maximum, and maximum repulsive force of the 211 phase in this sample were as follows.
[0038]
Figure 0003720743
Further, the volume ratio of the 123 phase and the 211 phase of this sample was 1: 0.7.
[0039]
(Comparative example)
In this comparative example, in the process of Example 1, the step of forming a temperature gradient in the semi-molten molded body and the step of rapidly cooling the semi-molten molded body to a semi-molten state are omitted. This is an example in which the body is manufactured by a conventional melting method in which the body is immediately cooled and crystallized.
[0040]
After weighing each raw material powder of Y 2 O 3 , BaCO 3 , and CuO so that Y: Ba: Cu = 18: 24: 34, only BaCO 3 and CuO were fired at 950 ° C. for 2 hours in a Pt crucible. Thus, calcined powders of BaCuO 3 and CuO were obtained (BaCuO 2 : CuO = 2: 4: 10 in molar ratio). The calcined powder and Y 2 O 3 weighed in advance were mixed and press-molded into a disk shape having an outer diameter of 50 mm and a thickness of 25 mm to produce a molded body. Next, the molded body was placed on an alumina substrate to be in a semi-molten state at 1100 ° C., and thereafter, crystallization was performed by gradually cooling to room temperature at a rate of 1 ° C./hr. The produced sample was disc-shaped with an outer diameter of 43 mm and a thickness of 19 mm due to shrinkage by baking. Regarding the orientation, the crystals were arranged in order of several mm square crystals.
[0041]
The average particle size distribution of the 211 phase in this sample was measured by cutting at an interval of 3 mm from the solidification starting point. FIG. 3 is a graph showing the measurement results. In FIG. 3, the vertical axis represents the particle size (unit: μm) of the 211 phase, the horizontal axis represents the sample position (unit: mm), and the plot points indicated by white triangles are the measurement results of the comparative example. FIG. 3 shows that the average particle diameter of the entire sample is about 2.3 μm.
[0042]
Moreover, the volume ratio of the 123 phase to the 211 phase of this sample was 1: 0.4.
[0043]
FIG. 1 shows 123 phase crystal grains prepared based on optical micrographs (magnification: 1000 times) of the cut surfaces of the superconductor manufactured by the method of the comparative example and the superconductor manufactured by the method of Example 1. It is a figure which shows the granular 211 phase disperse | distributed finely. FIG. 1A shows a superconductor manufactured by the method of the comparative example, and FIG. 1B shows a superconductor manufactured by the method of Example 1. In the figure, the 211 phase is dispersed in a granular form. As is clear from FIG. 1, it can be seen that the 211 phase of the superconductor manufactured by the method of Example 1 is far finer than the superconductor manufactured by the method of the comparative example.
[0044]
Further, the distribution of Jc was measured by cutting at intervals of 3 mm from the solidification starting point. FIG. 4 is a graph showing the measurement results. In FIG. 4, the vertical axis is the particle size of Jc (unit: A / cm 2 ), the horizontal axis is the sample position (unit: mm), and the plotted points with triangles are the measurement results of the comparative example.
[0045]
In addition, Nd-Fe— having an outer diameter of 25 mm and a thickness of 50 mm attached to the tip of the load cell was obtained by cutting and removing the upper 0, 3, 6, 9, 12, 15, and 18 mm portions of the sample. The repulsive force with each superconductor was measured using a B magnet (maximum surface magnetic flux density of 0.53 T). In this case, the gap between the magnet and the superconductor was 0.1 mm. FIG. 5 is a graph showing the measurement results. In FIG. 5, the vertical axis represents the repulsive force (unit: Kg · f), the horizontal axis represents the cutting thickness (unit: mm), and the plotted points indicated by triangles are the measurement results of the comparative example.
[0046]
As is clear from the above results, in the conventional melting method shown as a comparative example, the particles of 211 phase dispersed in the 123 phase after the semi-melting are gradually cooled while maintaining the entire raw material at a uniform temperature. The diameter varies and the average particle size is as large as about 2.3 μm, and Jc depending on this particle size is as low as about 1-2 × 10 4 A / cm in a zero magnetic field. Magnetic repulsion was also small.
[0047]
【The invention's effect】
As described above in detail, the oxide superconductor according to the present invention has high critical current density characteristics because the average particle size of the 211 phase dispersed in the 123 phase is 0.1 to 2.0 μm. Excellent magnetic repulsion characteristics are obtained.
[0048]
In the method for producing an oxide superconductor according to the present invention, the temperature of the raw material mixture is raised to a temperature at which the 211 phase and the liquid phase are present, and then the mixed phase is heated to 5 to 50 ° C. / The mixed phase is cooled at a rate of 5 to 30 ° C./min until the temperature becomes 5 to 40 ° C. higher than the temperature at which the 123 phase crystallizes on the low temperature side while forming a temperature gradient of cm. An oxide superconductor in which 211 phase is finely dispersed in 123 phase by slow cooling at a rate of 0.1 to 2 ° C./h, and the average particle diameter of 211 phase dispersed in 123 phase Is 0.1 to 2.0 μm, and it is possible to obtain a superconductor having high critical current density characteristics and excellent magnetic repulsion characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram created based on micrographs of a dispersed state of 211 phases appearing on cut surfaces of oxide superconductors of Example 1 and Comparative Example.
FIG. 2 is an explanatory diagram of crystal growth by a peritectic reaction in a conventional method for producing an oxide superconductor.
FIG. 3 is a graph showing the measurement results obtained by cutting the average particle size distribution of the 211 phase of Example 1 and Comparative Example at intervals of 3 mm from the solidification start point.
FIG. 4 is a graph showing the results of measuring the distribution of Jc of Example 1 and Comparative Example by cutting them at intervals of 3 mm from the solidification start point.
FIG. 5 is a graph showing measurement results of magnetic repulsion characteristics of Example 1 and Comparative Example.

Claims (1)

RE化合物(ただし、REは、Yを含む希土類元素)、Ba化合物、Cu化合物を含む原料混合体を、RE2 Ba1 Cu1 5 相と液相とが存在するようになる温度まで昇温し、次に、この混合相に5〜50℃/cmの温度勾配を形成させつつその低温側にRE1 Ba2 Cu3 7-X 相が晶出するようになる温度より5〜40℃高い温度になるまで該混合相を5〜30℃/minの速度で降温し、そこから0.1〜2℃/hの速度で徐冷して、RE1 Ba2 Cu3 7-X 相中にRE2 Ba1 Cu1 5 相が微細に分散してなる酸化物超電導体を得ることを特徴とする酸化物超電導体の製造方法。The raw material mixture containing the RE compound (where RE is a rare earth element including Y), Ba compound, and Cu compound is heated to a temperature at which the RE 2 Ba 1 Cu 1 O 5 phase and liquid phase are present. Then, a temperature gradient of 5 to 50 ° C./cm is formed in the mixed phase, and 5 to 40 ° C. from the temperature at which the RE 1 Ba 2 Cu 3 O 7-X phase crystallizes on the low temperature side. The mixed phase is cooled at a rate of 5 to 30 ° C./min until a high temperature is reached, and then gradually cooled at a rate of 0.1 to 2 ° C./h, thereby producing a RE 1 Ba 2 Cu 3 O 7-X phase. A method for producing an oxide superconductor, comprising obtaining an oxide superconductor in which a RE 2 Ba 1 Cu 1 O 5 phase is finely dispersed.
JP2001281904A 2001-09-17 2001-09-17 Oxide superconductor and manufacturing method thereof Expired - Fee Related JP3720743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001281904A JP3720743B2 (en) 2001-09-17 2001-09-17 Oxide superconductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001281904A JP3720743B2 (en) 2001-09-17 2001-09-17 Oxide superconductor and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6266905A Division JPH08133725A (en) 1994-10-31 1994-10-31 Oxide superconductor and its production

Publications (2)

Publication Number Publication Date
JP2002160921A JP2002160921A (en) 2002-06-04
JP3720743B2 true JP3720743B2 (en) 2005-11-30

Family

ID=19105638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001281904A Expired - Fee Related JP3720743B2 (en) 2001-09-17 2001-09-17 Oxide superconductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3720743B2 (en)

Also Published As

Publication number Publication date
JP2002160921A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP3720743B2 (en) Oxide superconductor and manufacturing method thereof
JP2967154B2 (en) Oxide superconductor containing Ag and having uniform crystal orientation and method for producing the same
JP2002265221A (en) Oxide superconductor single crystal grain aggregate, target material and production process of the same target material
JP3290191B2 (en) Method for preparing textured polycrystalline material
JP6217842B2 (en) Bulk oxide superconductor and method for producing bulk oxide superconductor
JPH0791057B2 (en) Rare earth oxide superconductor
JPH08133725A (en) Oxide superconductor and its production
JP4951790B2 (en) Manufacturing method of oxide superconductivity
JP4669998B2 (en) Oxide superconductor and manufacturing method thereof
JP3623829B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JP4967173B2 (en) Hollow oxide superconductor and method for producing the same
JPH0416511A (en) Oxide superconductor and its production
JP5114642B2 (en) Oxide superconductor and manufacturing method thereof
JP2518043B2 (en) Method for producing ceramics by melt solidification method
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JP4071860B2 (en) Superconducting bulk material and manufacturing method thereof
JP3912890B2 (en) Oxide superconductor laminate and method for producing the same
JP2692614B2 (en) Oxide superconductor with new structure
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JPH0791056B2 (en) Method for producing oxide superconductor having new structure
JP4660326B2 (en) Manufacturing method of oxide superconducting material and substrate for supporting precursor thereof
JPH08217440A (en) Production of rare earth-barium-copper-oxygen type oxide superconductor
JP2004269309A (en) Oxide superconductor and its manufacturing method
JPH0524825A (en) Production of rare earth-based oxide us superconductor and raw material powder therefor
JP2001180932A (en) Oxide superconductor and its production method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees