JP3720456B2 - Photovoltaic element - Google Patents

Photovoltaic element Download PDF

Info

Publication number
JP3720456B2
JP3720456B2 JP14654196A JP14654196A JP3720456B2 JP 3720456 B2 JP3720456 B2 JP 3720456B2 JP 14654196 A JP14654196 A JP 14654196A JP 14654196 A JP14654196 A JP 14654196A JP 3720456 B2 JP3720456 B2 JP 3720456B2
Authority
JP
Japan
Prior art keywords
layer
substrate
reflectance
transparent
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14654196A
Other languages
Japanese (ja)
Other versions
JPH09307129A (en
Inventor
由希子 岩▲崎▼
浩三 荒尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14654196A priority Critical patent/JP3720456B2/en
Priority to US08/857,907 priority patent/US6172296B1/en
Publication of JPH09307129A publication Critical patent/JPH09307129A/en
Application granted granted Critical
Publication of JP3720456B2 publication Critical patent/JP3720456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、アルミニウム特有の800nm近傍での反射率の落ち込みを改善した反射層を用い、変換効率が高く、かつ信頼性の高い光起電力素子に関する。
【0002】
【従来の技術】
エネルギー源として、その使用の結果発生する二酸化炭素のために地球の温暖化をもたらすといわれる石油や石炭、不測の事故により、あるいは正常な運転時においてすら放射線の危険が皆無とはいえない原子力に全面的に依存していくことは問題が多い。
【0003】
ところで太陽電池は太陽光をエネルギー源としており地球環境に対する影響が極めて少ないので、一層の普及が期待されている。しかし現状においては、本格的な普及を妨げているいくつかの問題点がある。
従来太陽光発電用としては、単結晶または多結晶のシリコンが多く用いられてきた。しかしこれらの太陽電池では結晶の成長に多くのエネルギーと時間を要し、またその後も複雑な工程が必要となるため量産効果を上げることは難しく、したがって低価格での提供が困難であった。一方アモルファスシリコン(以下a−Siと記載する)や、CdS・CuInSe2などの化合物半導体を用いた、いわゆる薄膜半導体太陽電池が盛んに研究、開発されている。これらの太陽電池では、ガラスやステンレススティールなどの安価な基板上に必要なだけの半導体層を形成すればよく、その製造工程も比較的簡単であり、低価格化できる可能性をもっている。しかし薄膜太陽電池は、その変換効率が結晶シリコン太陽電池に比べて低く、しかも長期の使用に対する信頼性に不安があるため現在のところ本格的に使用されていない。こうしたことから、薄膜太陽電池の性能を改善するため、様々な工夫がなされている。
【0004】
その一つが基板表面の光の反射率を高めることにより、薄膜半導体層で吸収されなかった太陽光を、再び薄膜半導体層に戻し入射光を有効に利用するための裏面反射層についてのものである。太陽光のスペクトルの内の短波長の成分は、すでに薄膜半導体に吸収されているので、それより長波長の光に対して反射率が高ければ十分である。どの波長以上で反射率が高ければよいかは、用いる薄膜半導体の光吸収係数、膜厚に依存する。透明な基板の基板側から太陽光を入射させる場合には、薄膜半導体の表面に形成する電極を銀(Ag)、銅(Cu)など反射率の高い金属で形成するとよい。ここで種々の金属の反射率比較のため、2000Å成膜したAg,Al,Cu,Ni膜の反射率を図2に示しておく。薄膜半導体層の表面から太陽光を入射させる場合には、同様の金属の層を基板上に形成した後半導体層を形成するとよい。また金属層と薄膜半導体層の間に適当な光学的性質をもった透明層を介在させると、多重干渉効果によりさらに反射率を高めることができる。このような透明層を用いることは薄膜太陽電池の信頼性を高める上でも効果がある。特公昭60−41878号公報には透明層を用いることにより半導体と金属層が合金化することを防止できるとの記載がある。また米国特許第4,532,372号明細書および同第4,598,306号明細書には、適度な抵抗をもった透明層を用いることにより万が一半導体層に短絡箇所が発生しても電極間に過剰な電流が流れるのを防止できるとの記載がある。
【0005】
また薄膜太陽電池の変換効率を高めるための別の工夫として、太陽電池の表面又は/及び裏面反射層との界面を微細な凸凹構造(テクスチャー構造)とする方法がある。このような構成とすることにより、太陽電池の表面又は/及び裏面反射層との界面で太陽光が散乱され、さらに半導体の内部に閉じ込められ(光トラップ効果)、半導体中で有効に吸収できるようになる。基板が透明な場合には、基板上の酸化錫(SnO2)などの透明電極の表面をテクスチャー構造にするとよい。また薄膜半導体の表面から太陽光を入射する場合には、裏面反射層に用いる金属層の表面をテクスチャー構造とすればよい。M.HirasakaらはAlを基板温度や堆積速度を調整して堆積することにより裏面反射層用のテクスチャー構造が得られることを報告している(Solar Energy Materials 20(1990)pp99−110)。このようなテクスチャー構造の裏面反射層を用いたことによる入射光の吸収の増加の例を図3に示す。ここで曲線(a)は、金属層として平滑な銀を用いたa−SiGe太陽電池の分光感度、曲線(b)は、テクスチャー構造の銀を用いた場合の分光感度を示す。図3より、波長800nm近傍の光がa−SiGe半導体層で有効に利用されていないことから、変換効率をより高めるには800nm近傍の光に対して高い反射率をもつ裏面反射層を用いればよいことが理解される。ここでもう一度図2をみると、銀、銅は薄膜半導体で必要とする700〜1000nmの全波長域で高い反射率を示すのに対し、アルミニウムは波長800nm近傍で極小値をもつ。したがって800nmで高い反射率を示す銀、銅は金属層に最も適した反射率をもつ金属であるといえる。
さらに金属層と透明層の2層からなる裏面反射層の考え方と、テクスチャー構造の考え方を組み合わせることもできる。米国特許4,419,533には金属層の表面がテクスチャー構造をもち、かつその上に透明層が形成された裏面反射層の考え方が開示されている。また、平滑な金属層の上にテクスチャー構造の透明層を形成するのもよい。このような組み合わせにより太陽電池の変換効率は著しく向上することが期待される。
【0006】
【発明が解決しようとする課題】
裏面反射層の金属として、とりわけ優れた反射率をもつ銀や銅を用いることは変換効率の高い太陽電池を得る上で極めて有利である。ところがこれらの金属、特に銀は電気化学的マイグレーションを起こす金属として知られている。
電気化学的マイグレーション(以下マイグレーションと呼ぶ)とは、箔・メッキ・ペースト状などの金属が直流電圧の印加された条件下において、吸湿性の大きいまたは親水性の強い絶縁物と接触した状態、かつ高湿度の環境下で使用されると、電気分解作用により絶縁物の表面や内部を樹枝状あるいは染み状に成長し電導経路をつくる現象のことである。金属によっては上記以外の条件を要する。例えば実験的にマイグレーションを発生させる場合、銀(Ag),銅(Cu),鉛(Pb)などは蒸留水と電界の条件下で発生し(Agは樹枝状結晶の成長速度が特に速い)、金(Au),パラジウム(Pd),インジウム(In)などは更にハロゲンイオンの存在が必要となり、アルミニウム(Al),ニッケル(Ni),鉄(Fe)などはこれら以外の特殊な条件下でないと発生しないことが知られている。
【0007】
様々な環境での使用が考えられる太陽電池についても、長期使用の際、マイグレーションによる電極間の短絡が問題となる。例えば屋外で実使用されている太陽電池が高温多湿の環境下にさらされた場合を考える。一般に太陽電池単体では出力電圧が低いため、複数のサブモジュール(上述した薄膜半導体太陽電池をモジュール化したもの)を直列接続して使用する。このような太陽電池が落葉などにより部分被覆された場合、被覆部分のサブモジュールの出力電流が他のサブモジュールに比べ極端に小さくなり、実質的に内部インピーダンスが大きくなる。その結果他のサブモジュールの出力電圧が逆にかかる。すなわち高温高湿でかつ逆バイアスの印加というマイグレーションの発生条件が実現され、電極間の短絡が起こりサブモジュールの破壊に至るのである。裏面反射層に反射率の高いAg,Cuを用いた場合はなおさらである。一方、耐マイグレーションに優れているAlは830nm近傍に反射率の低い波長領域があるため、反射層として代用するとAgやCuと同等の高変換効率は望めない。
【0008】
【課題を解決するための手段】
本発明はこうした現状に鑑みなされたものであって、Alの800nm近傍の波長に対する反射率の低下を改善することにより、変換効率の高い光起電力素子を低価格にて提供することを目的とする。
本発明の目的は、基板上に少なくとも反射層、透明層、半導体層、及び透明電極を形成してなる光起電力素子において、該反射層がTi濃度5原子%以下のAl−Ti合金またはMg濃度5原子%以下のAl−Mg合金からなり、そのX線回折図の(111)ピーク強度が(200)ピークの2.1倍、(220)の4.4倍、(311)ピークの4.1倍を越えて強く現れるものにすることにより達成される。
【0009】
【作用及び実施態様例】
以下に、本発明を完成するに至る過程で本発明者らが行った実験を説明しながら、本発明の内容を詳細に説明する。
本発明の光起電力素子の構成の一例を図1に示す。図1において、101は基板であり、該基板101は導電性のある金属基板が好ましく、導電性のない基板を用いる場合には真空蒸着法やスパッタリング法などで金属層を堆積するとよい。102はAlを主成分とする金属層、103は透明層で、これらを合わせて裏面反射層とよぶ。透明層103は、半導体層を透過してきた太陽光に対しては透明である。また適度な電気抵抗をもち、その表面はテクスチャー構造をもっている。104は薄膜半導体接合である。図1では薄膜半導体接合としてpin型のa−Si系光起電力素子を用いた例を示しているが、pin型のa−Si系光半導体素子を複数積層したタンデムセルやトリプルセル構造にしてもよい。ここで105はn型a−Si、106はi型a−Si、107はp型a−Siである。薄膜半導体接合が薄い場合には、図1に示すように薄膜半導体全体が透明層103と同様のテクスチャー構造を示すことが多い。その上に透明電極108、集電電極109が設けられている。
【0010】
本発明の光起電力素子における金属層102はアルミニウムを主成分とする金属からなり、そのX線回折図の(111)ピーク強度が(200)ピークの2.1倍、(220)の4.4倍、(311)ピークの4.1倍を越えて強く現れるものであることを特徴とする。このような金属層を用いることにより次のような効果がもたらされる。
(1)膜に(111)面優位配向をもたせることにより、Al特有の波長800nmでの反射率の落ち込みが改善され、入射した太陽光を有効に利用することができ太陽電池の変換効率が向上する。
(2)マイグレーションを起こさないAlを主成分とするため、耐マイグレーションに優れ、過酷な環境下で使用される太陽電池内部に発生する短絡を防止することができ、信頼性が高められる。
(3)安価な金属であるアルミニウムが主材料であるため、低コストでの量産が可能となる。
【0011】
以下本発明者らが行った実験について説明する。
以下の実験においては、金属層の形成には図4に示すDCマグネトロンスパッタ装置を用いた。図4において、401は堆積室であり不図示の排気ポンプで真空排気できる。この内部に、不図示のガスボンベに接続されたガス導入管402により、アルゴン(Ar)などの不活性ガスが所定の流量導入され、排気弁403の開度を調節し堆積室401内は所定の圧力となる。また基板404は内部にヒーター405が設けられたアノード406の表面に固定されている。アノード306に対向してその表面にターゲット407が固定されたカソード電極408が設けられている。ターゲット407は通常は純度99.9乃至99.999%程度の堆積されるべき金属のブロックである。カソード電極408はDC電源409に接続されており、電源409により直流高電圧を加え、アノード・カソード間にプラズマ410を生起する。このプラズマの作用によりターゲット407の金属原子が基板404上に堆積される。またカソード408の内部に磁石を設けプラズマの強度を高めたマグネトロンスパッタリング装置を用いることにより、堆積速度をより高めることができる。
【0012】
【実験1】
鏡面研磨をした5cm×5cmのコーニング社製7059ガラス板上にDCマグネトロンスパッタ法にてTi濃度が0.5,2,3,4,10原子%のAl−Ti合金を7500Åの膜厚に堆積し、それぞれを試料1a,1b,1c,1d,1eとした。また比較のため純Al膜も同様に作製し試料1fとした。これらの試料は室温において40Å/secで平滑基板上に堆積したため、その表面は平滑であった。試料1fの作製には99.999%のAlのターゲッを用いた。合金試料1a〜1eは99.999%、5mm×5mm×1mmのサイズのTiチップを所望の組成が得られるようAlターゲット上に配して作製した。試料1fを除いた他の全ての試料についてX線エネルギー分散型分析装置(XMA)にて分析を行い組成の確認を行った。
これら6種類の試料について波長400〜1200nmの光に対する反射率を測定した。Alの反射率が830nmで極小値をもつことから、各組成において得られた反射率の代表値として、830nmでの値を図5に示す。Alの830nmでの反射率は微量のTiを添加することによって改善され、Ti濃度2原子%で極大値をもつことがわかる。これは微量の添加物の存在により、結晶構造または結晶配向が変化したためと考え、純Al試料1fと最も反射率が改善されたTi濃度2原子%の試料1b膜についてX線回折測定をした。ここで粉末Al試料によるX線回折図を図6に示す。面心立方の結晶構造をもつアルミニウム膜中に、全ての結晶面が均一に存在する場合、図中の角度2θの位置に、図に示した強度比つまり、(111)ピーク強度が(200)ピークの約2.1倍、(220)の約4.4倍、(311)ピークの約4.1倍である回折図が得られる。つまり、ある面のピークが前述の強度比より強く現れた時は、その面の配向が支配的であるといえる。試料1fの回折図の場合、(111)が(200)の約0.9倍、(220)の約0.86倍の強度で観察され、(111)面が支配的に配列しているとはいえない。一方試料1bについては(111)のピークが(200)ピークの約4倍と強く現れ、(220),(311)ピークは観察されなかった。また、試料1bの回折図に現れるピーク位置は図6と一致していたため、結晶構造に変化はないと判断できる。つまり試料1bは(111)面が支配的に配向していると考えられる。
【0013】
【実験2】
Tiの代わりにMgを用いた他は実験1と同様にして、Mg濃度が0.5,1,5,8,10原子%のAl−Mg合金を7500Åの膜厚に堆積し、それぞれを試料2a,2b,2c,2d,2eとした。これらの試料について波長400〜1200nmの光に対する反射率を測定し、各組成において得られた反射率の代表値として、830nmでの値を図8に示す。AlにTiを添加した時と同様、Mgを5原子%以下の範囲で添加することにより800nm近傍の反射率は改善されることがわかる。また試料2bについてX線回折を測定したところ、結晶構造に変化はみられず、(111)ピークは(200)ピークの約3.6倍の強度で現れ、(220),(311)のピークはほとんど現れず、(111)面の優位配向が観察された。
【0014】
【実験3】
Tiの代わりにAgを用いた他は実験1と同様にして、Ag濃度が0,3,8,12,20,28原子%のAl−Ag合金を7500Åの膜厚に堆積し、それぞれを試料3a,3b,3c,3d,3eとした。また比較のため純Ag膜も同様に作製し、試料3fとした。これら6種類の試料について波長400〜1200nmの光に対する反射率を測定し、各組成において得られた反射率の代表値として、830nmでの値を図7に示す。Al−Ag膜もAl−Ti膜と同様、830nmでの反射率は微量のAgを添加することによって改善され、Ag濃度10原子%近傍で極大値をもつことがわかる。Alの添加量は25原子%以下が適量である。Ag濃度12原子%の試料3d膜についてもX線回折図を測定した。試料1bの(111)ピークと同じ2θの位置に、同様の強い(111)ピークがただ一本現れ、(111)面が支配的に配向していることがわかる。
【0015】
【実験4】
Tiの代わりにAuを用いた他は実験1と同様にして、Au濃度が1,2,4,7原子%のAl−Au合金を7500Åの膜厚に堆積し、それぞれを試料4a,4b,4c,4dとした。これら4種類の試料の波長400〜1200nmの光に対する反射率を測定し、各組成において得られた反射率の代表値として、830nmでの値を図9に示す。Al−Au膜の場合、830nmでの反射率はAuを添加してもあまり改善されなかった。またAu濃度4原子%の試料4c膜についてX線回折図を測定したところ、(111)ピークは(220)ピークの2倍の強度で現れ、(111)面の配向は確認できなかった。
以上の実験から、Alを主成分とする金属が(111)面優位配向した場合、800nm近傍の反射率が改善されると考えられる。Alの(111)面配向膜は、Alのみの時よりもTi,Ag,Mgなどの適当な物質を適量添加してやると実現し易くなると考えられる。
【0016】
【実験5】
実験1と同様にAl−Ti2原子%、Al−Ag12原子%、Al−Mg1原子%の金属層を5cm×5cmのサイズのステンレス板上に成膜した後、透明層としてZnOを10000Åの膜厚に形成した。さらにグロー放電分解法にて、SiH4,PH3を原料ガスとしてn型a−Si層を200Å、SiH4を原料ガスとしてi型a−Si層を4000Å、SiH4,BF3,H2を原料ガスとしてp型微結晶(μc)Si層を100Å堆積し薄膜半導体接合とした。その上に透明電極として抵抗加熱蒸着法により酸化インジウム錫膜(ITO膜)を650Å堆積し、さらにAgペーストで幅300ミクロンの集電電極を形成して太陽電池セル化した。このようにして得られた試料を試料5a,5b,5cとした。また同様にして比較のため金属層に純Al、純Agを用いた試料5d,5eを得た。これらの試料についてAM−1.5のソーラーシミュレーターの下で光電流Jscを測定した。試料5dが16.7mA/cm2、試料5eが17.8mA/cm2であったのに対し、試料5aは17.2mA/cm2、試料5bは17.4mA/cm2、試料5cは17.1mA/cm2とAg製金属層の太陽電池セルに迫る高い電流値が得られた。
【0017】
【実験6】
信頼性試験のため、実験5で得た5種の試料について、光の当たらない状態で湿度85%、雰囲気温度85℃中で逆電圧0.85Vを印加(高湿逆バイアス試験)し、時間に伴うRshDk(光の当たらない状態でのRsh)の変化を測定し、比較評価した。結果を図10に示す。RshDkが10Ωcm2以下に低下すると、低照度光の下で開放電圧が出なくなり、太陽電池としての特性、信頼性に問題がでてくる。従って高湿逆バイアス試験ではRshDk≧10kΩcm2を高湿逆バイアス試験合格基準とした。試料5eは測定を始めると同時にRshDkが急激に低下し、10kΩcm2を割ってしまった。試料5dは31kΩcm2より低下することはなかった。試料5a,5b,5cも同様に、RshDkの低下はみられなかった。
【0018】
以下に本発明の薄膜半導体太陽電池において用いられる裏面反射層について詳しく説明する。
【0019】
【基板及び金属層】
基板としては各種の金属を用いることができる。なかでもステンレススチール板、亜鉛鋼板、アルミニウム板、銅板などは、価格が比較的低く好適である。これらの金属板は、一定の形状に切断して用いてもよいし、板厚によっては長尺のシート状の形態で用いてもよい。後者の場合にはコイル状に巻くことができるので連続生産に適合性がよく、保管や輸送も容易になる。また用途によってはシリコンなどの結晶基板、ガラスやセラミックスの板を用いることもできる。基板の表面は研磨してもよいが、例えばブライトアニール処理されたステンレス基板のように仕上がりのよい場合にはそのまま用いてもよい。
本発明の金属層の堆積には上述したように、成膜法の一例であるスパッタリング法を用いることができる。この他、金属層の堆積には、抵抗加熱や電子ビームによる真空蒸着法、スパッタリング法、イオンプレーティング法、CVD法などを用いることができる。
【0020】
【透明層及びそのテクスチャー構造】
透明層としては、ZnOをはじめIn23,SnO2,CdO,CdSnO4,TiOなどの酸化物がしばしば用いられる(ただしここで示した化合物の組成比は実態と必ずしも一致していない。)。透明層の光の透過率は一般的には高いほどよいが、薄膜半導体に吸収される波長域の光に対しては、透明である必要はない。透明層はピンホールなどによる電流を抑制するためにはむしろ抵抗があったほうがよい。一方この抵抗による直列抵抗損失が太陽電池の変換効率に与える影響が無視できる範囲でなくてはならない。このような観点から単位面積(1cm2)あたりの抵抗の範囲は好ましくは10-6〜10Ω、更に好ましくは10-5〜3Ω、最も好ましくは10-4〜1Ωである。また透明層の膜厚は透明性の点からは薄いほどよいが、表面のテクスチャー構造をとるためには平均的な膜厚として1000オングストローム以上必要である。また信頼性の点からこれ以上の膜厚が必要な場合もある。
透明層の堆積には、抵抗加熱や電子ビームによる真空蒸着法、スパッタリング法、イオンプレーティング法、CVD法、スプレーコート法などを用いることができる。この場合も図4に示したスパッタリング装置が使用できる。ただし酸化物ではターゲットとして酸化物そのものを用いる場合と、金属(Zn,Sn等)のターゲットを用いる場合がある。後者の場合では、堆積室にArと同時に酸素を流す必要がある(反応性スパッタリング法と呼ばれる。)。
【0021】
光閉じ込めが起こる理由としては、金属層がテクスチャー構造をとっていることにより金属層での光の散乱が考えられる。また薄膜半導体の表面が透明層と同様なテクスチャー構造になると光の位相差による光の散乱が起こり易く光トラップの効果が高い。
また透明層の比抵抗を制御するためには適当な不純物を添加するとよい。本発明の透明層としては、前述したような導電性酸化物では比抵抗が低すぎる傾向がある。そこで不純物としては、その添加により抵抗を適度に高めるものが好ましい。例えばn型の半導体である透明層にアクセプター型の不純物(例えばZnOにCu、SnO2にAl等)を適当量加えて真性化し抵抗を高めることができる。また不純物の添加が耐薬品性を高める場合が多い。透明膜へ不純物を添加するには蒸発源やターゲットに所望の不純物を添加してもよいし、特にスパッタリング法ではターゲットの上に不純物を含む材料の小片を置いてもよい。
【0022】
【実施例】
以下、実施例を示して本発明を更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
【0023】
【実施例1】
図1の断面模式図に示す構成のpin型a−Si光起電力素子を作製した。ターゲットにAl−Ti合金を用いた他は実験1と同様にして、Al−Ti1原子%の金属層をステンレス板上に700Å形成した。その上にZnOターゲットを用いて基板温度350℃にて10000ÅのZnO層103を堆積した。ZnO層の表面はテクスチャー構造になっている。続いて、裏面反射層の形成された基板1001を図11に示した市販の容量結合型高周波CVD装置(アルバック社製CHJ−3030)にセットした。排気ポンプ1009にて、反応容器1004の排気管を介して荒引きし、ついで高真空引き操作を行った。この時、基板の表面温度が350℃になるように温度制御機構で制御した。十分に排気が行われた時点で、ガス導入管よりSiH4300sccm、SiF44sccm、PH3/H2(1%H2希釈)55sccm、H240sccmを導入し、スロットルバルブの開度を調整して、反応容器の内圧を1Torrに保持し、圧力が安定したところで、直ちに高周波電源より200Wの電力を投入した。プラズマは5分間持続させた。これにより、n型a−Si層107が透明層104上に形成された。再び排気をした後に、今度はガス導入管よりSiH4300sccm、SiF44sccm、H240sccmを導入し、スロットルバルブの開度を調整して、反応容器の内圧を1Torrに保持し、圧力が安定したところで、直ちに高周波電源より150Wの電力を投入し、プラズマは60分間持続させた。これにより、i型a−Si層がn型a−Si層106上に形成された。
【0024】
再び排気をした後に、今度はガス導入管よりSiH450sccm、BF3/H2(1%H2希釈)50sccm、H2500sccmを導入し、スロットルバルブの開度を調整して、反応容器の内圧を1Torrに保持し、圧力が安定したところで、直ちに高周波電源より300Wの電力を投入した。プラズマは2分間持続させた。これによりp型μc−Si層108がi型a−Si層107上に形成された。次に得られたものを高周波CVD装置より取り出し、抵抗加熱真空蒸着装置にてITOを堆積した後、塩化鉄水溶液を含むペーストを印刷し、所望の透明電極109のパターンを形成した。更にAgペーストをスクリーン印刷して集電電極110を形成し薄膜半導体太陽電池を完成した。この方法で10個の試料を作製し、AM−1.5の光の下でJscの測定を行ったところ、純Al金属層の太陽電池より平均で6.1%高い電流値が得られた。
また、これらの10個の太陽電池を実験5で行った高湿逆バイアス試験にかけたところ、RshDkは低下は観察されなかった。
【0025】
【実施例2】
図12に示す装置を用いて連続的に裏面反射層の形成を行った。ここで基板送り出し室1103には洗浄済みの幅350mm、厚さ0.2mm、長さ500mのステンレスシートロール1101がセットされている。ここからステンレスシート1102は金属層堆積室1104,1107、透明層堆積室1111を経て基板巻き取り室1113に送られて行く。シート1102は各々の堆積室にて基板ヒーター1105,1108,1110にて所望の温度に加熱できるようになっている。ステンレスシート1102は、純度99.99%のAlターゲット1006の設置してある堆積室1004で、基板温度400℃にてテクスチャー構造のAl層をマグネトロンスパッタリング法により堆積する。その後、堆積室1007の純度99.99%のAl−Ag合金ターゲット1109で、DCマグネトロンスパッタによりAl−Ag15原子%合金層を基板昇温なしで1000Å堆積する。堆積室1111のターゲット1112は純度99.99%のZnOで、DCマグネトロンスパッタにより引き続きZnO層を10000Å堆積する。
【0026】
以上の手法で作製したものの上に図14に示す構造のa−Si/a−SiGeタンデム太陽電池を形成した。ここで1201は基板、1202はAl金属層、1203はAl−Ag合金層、1204はZnO層、1205はボトムセル、1209はトップセルである。さらに1206,1210はn型a−Si層、1208,1212はp型μc−Si層、1207はi型a−SiGe層、1211はi型a−Si層である。これらの薄膜半導体層は、米国特許4,492,181に記載されているようなロール・ツー・ロール型成膜装置を用いて連続的に形成した。また1213は透明電極であり図12の装置に類似のスパッタリング装置で堆積した。1214は集電電極である。透明電極のパターンニング及び集電電極の形成を行った後シート1102を切断した。こうして全工程を連続的に処理し、量産効果を上げることができた。
以上のようにして100個の試料を作製しAM−1.5の光の下でJscの測定を行ったところ、平均で純Al金属層の太陽電池の6%高い電流値が得られた。また高湿逆バイアス試験においても、RshDkは低下することはなかった。
【0027】
【実施例3】
表面がテクスチャー処理された他は実施例2と同じ形態のステンレス・スティールを用い、図12の装置を用いてAl−Mg0.5原子%の合金金属層および透明層を堆積した。金属層の堆積に堆積室1104を用いず、1107堆積室に設置するターゲット1109にAl−Mg合金を用いた他は、実施例2と同様にして各層の堆積を行った。その後、図13に示すロール・ツー・ロール方式の光起電力素子形成装置を用い表1に示す光起電力素子形成条件で光起電力素子を形成した。
シート状基板(シート幅35cm)をシート状基板導入用のロード室5010にセットした。シート状基板を全堆積室内と全ガスゲートを通してアンロード室5050のシート巻き取り治具に接続した。各堆積室を不図示の排気装置で10-3Torr以下に排気した。各堆積膜形成用のミキシング装置5024,5034,5044,5054,5064,5074,,5084,5094,5104,5114,5124,5134,5144から水素ガスを各堆積室に供給した。各ガスゲート5201,5202,5203,5204,5205,5206,5207,5208,5209,5210,5211,5212,5213,5214に各ゲートガス供給装置から水素ガスを各ガスゲートに供給した。本実施例では、ガスゲートのシート状基板を通過する間隔が1mmとしたので、水素ガス(H2)は1000sccmで流した。各堆積装置の基板加熱用ヒーターで基板を表1に示す基板温度に加熱した。基板温度が安定したところで各堆積室に供給している水素ガスを、各堆積室で堆積する表1に示す原料ガスに切り替えた。原料ガスの切替が終了したら、各排気装置の排気バルブの開閉度を調節して各堆積室を表1に示す真空度に調節した。シート状基板の搬送を始めた。真空度が安定したら、各堆積室にプラズマ発生用の表1に示すRF電力やMW電力を供給した。以上のようにしてシート状基板100m上にpin構造を3つ積層した光起電力素子を形成した。
このようにして100個の試料を作製し、AM−1.5のソーラーシミュレーターにてJscの測定を行った。純Al金属層を用いた太陽電池で得られる電流値より平均で5.8%高い値が得られ高湿逆バイアス試験においても問題はなかった。
【0028】
【表1】
支持体:ステンレスSUS430(JIS規格)厚さ0.125mm
基板 :SUS430/Ag4500Å/ZnO1μm(テクスチャー構造)
【ボトムセル】

Figure 0003720456
【ミドルセル】
Figure 0003720456
【トップセル】
Figure 0003720456
【0029】
【発明の効果】
本発明によりアルミニウム特有の830nm近傍の反射率の低下が改善され、また耐マイグレーションに優れた特性を失わない裏面反射層が得られる。その結果高信頼性かつ高変換効率の光起電力素子を得ることができる。また、本発明の裏面反射層の主材料となるアルミニウムは安価であるため、低コストでの量産も可能となる。
【図面の簡単な説明】
【図1】本発明の光起電力素子の構成の一例の略断面図である。
【図2】Ag,Al,Cu,Ni膜の反射率を示す。
【図3】テクスチャー構造の裏面反射層を用いたことによる入射光の吸収の増加の例を示す。
【図4】DCマグネトロンスパッタ装置の構成を示す。
【図5】実験1において得られた反射率の測定結果を示す図である。
【図6】実験1において得られたX線回折測定の結果を示す図である。
【図7】実験3において得られた反射率の測定結果を示す図である。
【図8】実験2において得られた反射率の測定結果を示す図である。
【図9】実験4において得られた反射率の測定結果を示す図である。
【図10】実験6において得られたRshDkの変化の測定結果を示す図である。
【図11】容量結合型高周波CVD装置の構成を示す図である。
【図12】連続成膜装置の構成を示す図である。
【図13】ロール・ツー・ロール方式の光起電力素子形成装置の構成を示す図である。
【図14】本発明のタンデム太陽電池の構成の一例の略断面図である。
【符号の説明】
101,1201 基板
102,1202 金属層
103 透明層
104 半導体層
105,1206,1210 n型a−Si層
106,1211 i型a−Si層
107 p型a−Si層
108,1213 透明電極
109,1214 集電電極
1203 Al−Ag合金層
1204 ZnO層
1205 ボトムセル
1207 i型a−SiGe層
1208,1212 p型μc−Si層
1209 トップセル[0001]
[Industrial application fields]
The present invention relates to a photovoltaic element having a high conversion efficiency and high reliability, using a reflective layer in which a drop in reflectance near 800 nm, which is peculiar to aluminum, is improved.
[0002]
[Prior art]
As an energy source, oil and coal, which are said to cause global warming due to carbon dioxide generated as a result of their use, nuclear power that is not at risk of radiation even in unexpected operation or even during normal operation There are many problems with being totally dependent.
[0003]
By the way, since the solar cell uses sunlight as an energy source and has very little influence on the global environment, further spread is expected. At present, however, there are several problems that prevent full-scale penetration.
Conventionally, monocrystalline or polycrystalline silicon has been often used for photovoltaic power generation. However, these solar cells require a lot of energy and time for crystal growth, and since complicated processes are required thereafter, it is difficult to increase the mass production effect, and it is therefore difficult to provide them at a low price. On the other hand, amorphous silicon (hereinafter referred to as a-Si), CdS · CuInSe 2 So-called thin film semiconductor solar cells using compound semiconductors such as these have been actively researched and developed. In these solar cells, it is only necessary to form as many semiconductor layers as necessary on an inexpensive substrate such as glass or stainless steel, the manufacturing process is relatively simple, and the cost can be reduced. However, thin-film solar cells are not used in earnest at present because their conversion efficiency is lower than that of crystalline silicon solar cells and there is concern about reliability for long-term use. For these reasons, various attempts have been made to improve the performance of thin film solar cells.
[0004]
One of them is a back reflection layer for increasing the reflectance of light on the surface of the substrate, so that sunlight that has not been absorbed by the thin film semiconductor layer is returned to the thin film semiconductor layer and the incident light is effectively used. . Since the short wavelength component in the sunlight spectrum is already absorbed by the thin film semiconductor, it is sufficient that the reflectance is higher for light having a longer wavelength. The wavelength above which the reflectance should be high depends on the light absorption coefficient and film thickness of the thin film semiconductor to be used. When sunlight is incident from the substrate side of a transparent substrate, an electrode formed on the surface of the thin film semiconductor is preferably formed using a metal having high reflectance such as silver (Ag) or copper (Cu). Here, in order to compare the reflectivity of various metals, the reflectivity of an Ag, Al, Cu, Ni film deposited in 2000 mm is shown in FIG. When sunlight is incident from the surface of the thin film semiconductor layer, a semiconductor layer is preferably formed after a similar metal layer is formed over the substrate. Further, when a transparent layer having appropriate optical properties is interposed between the metal layer and the thin film semiconductor layer, the reflectance can be further increased by the multiple interference effect. The use of such a transparent layer is also effective in increasing the reliability of the thin film solar cell. Japanese Examined Patent Publication No. 60-41878 discloses that the use of a transparent layer can prevent the semiconductor and metal layers from being alloyed. Further, in US Pat. Nos. 4,532,372 and 4,598,306, an electrode is used even if a short circuit occurs in the semiconductor layer by using a transparent layer having an appropriate resistance. There is a description that it is possible to prevent an excessive current from flowing between them.
[0005]
Further, as another device for improving the conversion efficiency of the thin film solar cell, there is a method in which the surface of the solar cell or / and the interface with the back surface reflection layer is made into a fine uneven structure (texture structure). By adopting such a configuration, sunlight is scattered at the front surface of the solar cell or / and the interface with the back surface reflection layer, and further confined inside the semiconductor (light trap effect) so that it can be effectively absorbed in the semiconductor. become. If the substrate is transparent, tin oxide (SnO) on the substrate 2 The surface of the transparent electrode such as) should have a textured structure. In addition, when sunlight is incident from the surface of the thin film semiconductor, the surface of the metal layer used for the back reflective layer may have a texture structure. M.M. Have reported that a texture structure for the back reflective layer can be obtained by depositing Al by adjusting the substrate temperature and deposition rate (Solar Energy Materials 20 (1990) pp99-110). FIG. 3 shows an example of the increase in absorption of incident light due to the use of the back surface reflection layer having such a texture structure. Here, curve (a) shows the spectral sensitivity of an a-SiGe solar cell using smooth silver as the metal layer, and curve (b) shows the spectral sensitivity when textured silver is used. From FIG. 3, light in the vicinity of the wavelength of 800 nm is not effectively used in the a-SiGe semiconductor layer. Therefore, in order to further increase the conversion efficiency, a back reflection layer having a high reflectance with respect to light in the vicinity of 800 nm is used. It is understood that it is good. Here, looking again at FIG. 2, silver and copper show high reflectivity in the entire wavelength region of 700 to 1000 nm required for a thin film semiconductor, whereas aluminum has a minimum value in the vicinity of a wavelength of 800 nm. Therefore, it can be said that silver and copper exhibiting a high reflectance at 800 nm are metals having a reflectance most suitable for the metal layer.
Furthermore, it is possible to combine the concept of a back surface reflection layer composed of two layers of a metal layer and a transparent layer with the concept of a texture structure. U.S. Pat. No. 4,419,533 discloses the concept of a back reflecting layer in which the surface of a metal layer has a texture structure and a transparent layer is formed thereon. It is also possible to form a transparent layer having a texture structure on a smooth metal layer. Such a combination is expected to significantly improve the conversion efficiency of the solar cell.
[0006]
[Problems to be solved by the invention]
The use of silver or copper having excellent reflectance as the metal for the back reflective layer is extremely advantageous for obtaining a solar cell with high conversion efficiency. However, these metals, particularly silver, are known as metals that cause electrochemical migration.
Electrochemical migration (hereinafter referred to as migration) is a state in which a metal such as foil, plating or paste is in contact with a highly hygroscopic or highly hydrophilic insulator under a condition where a DC voltage is applied, and When used in a high-humidity environment, it is a phenomenon in which the surface or interior of an insulator grows in a dendritic or stain-like manner by electrolysis and creates a conductive path. Depending on the metal, other conditions are required. For example, when migration is experimentally generated, silver (Ag), copper (Cu), lead (Pb), etc. are generated under conditions of distilled water and an electric field (Ag has a particularly fast growth rate of dendritic crystals) Gold (Au), palladium (Pd), indium (In), etc. need to further have halogen ions, and aluminum (Al), nickel (Ni), iron (Fe), etc. must be under special conditions other than these. It is known not to occur.
[0007]
For solar cells that can be used in various environments, short-circuiting between electrodes due to migration becomes a problem during long-term use. For example, consider a case where a solar cell actually used outdoors is exposed to a hot and humid environment. In general, since a single solar cell has a low output voltage, a plurality of submodules (a module obtained by modularizing the above-described thin film semiconductor solar cells) are connected in series. When such a solar cell is partially covered by fallen leaves or the like, the output current of the submodule in the covered portion becomes extremely smaller than other submodules, and the internal impedance is substantially increased. As a result, the output voltage of the other submodule is reversed. That is, the migration occurrence condition of applying high temperature and high humidity and reverse bias is realized, and a short circuit between the electrodes occurs, resulting in destruction of the submodule. This is especially true when Ag or Cu having a high reflectance is used for the back surface reflection layer. On the other hand, Al, which is excellent in migration resistance, has a wavelength region with low reflectivity in the vicinity of 830 nm. Therefore, if it is used as a reflective layer, high conversion efficiency equivalent to Ag or Cu cannot be expected.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of the current situation, and aims to provide a photovoltaic device with high conversion efficiency at a low price by improving the decrease in reflectance of Al with respect to wavelengths near 800 nm. To do.
An object of the present invention is to provide a photovoltaic element in which at least a reflective layer, a transparent layer, a semiconductor layer, and a transparent electrode are formed on a substrate. Al-Ti alloy with Ti concentration of 5 atomic% or less or Al-Mg alloy with Mg concentration of 5 atomic% or less The (111) peak intensity in the X-ray diffraction pattern appears strongly over 2.1 times the (200) peak, 4.4 times the (220), and 4.1 times the (311) peak. Is achieved.
[0009]
[Operation and embodiment examples]
Hereinafter, the contents of the present invention will be described in detail while explaining experiments conducted by the present inventors in the process of completing the present invention.
An example of the configuration of the photovoltaic element of the present invention is shown in FIG. In FIG. 1, reference numeral 101 denotes a substrate, and the substrate 101 is preferably a conductive metal substrate. When a non-conductive substrate is used, a metal layer may be deposited by vacuum evaporation or sputtering. 102 is a metal layer mainly composed of Al, 103 is a transparent layer, and these are collectively referred to as a back reflecting layer. The transparent layer 103 is transparent to sunlight that has passed through the semiconductor layer. It has moderate electrical resistance and its surface has a textured structure. Reference numeral 104 denotes a thin film semiconductor junction. Although FIG. 1 shows an example in which a pin-type a-Si photovoltaic device is used as a thin film semiconductor junction, a tandem cell or triple cell structure in which a plurality of pin-type a-Si-based semiconductor devices are stacked is shown. Also good. Here, 105 is n-type a-Si, 106 is i-type a-Si, and 107 is p-type a-Si. When the thin film semiconductor junction is thin, the entire thin film semiconductor often exhibits a texture structure similar to that of the transparent layer 103 as shown in FIG. A transparent electrode 108 and a current collecting electrode 109 are provided thereon.
[0010]
The metal layer 102 in the photovoltaic device of the present invention is made of a metal containing aluminum as a main component, and the (111) peak intensity of the X-ray diffraction pattern is 2.1 times the (200) peak and 4. (220). It is characterized in that it appears strongly four times and 4.1 times the (311) peak. By using such a metal layer, the following effects are brought about.
(1) By giving the film a (111) plane dominant orientation, the drop in reflectance at a wavelength of 800 nm, which is peculiar to Al, is improved, and the incident sunlight can be used effectively, and the conversion efficiency of the solar cell is improved. To do.
(2) Since the main component is Al which does not cause migration, it is excellent in migration resistance, can prevent a short circuit occurring inside a solar cell used in a harsh environment, and improves reliability.
(3) Since aluminum, which is an inexpensive metal, is the main material, mass production at low cost is possible.
[0011]
Hereinafter, experiments conducted by the present inventors will be described.
In the following experiments, a DC magnetron sputtering apparatus shown in FIG. 4 was used for forming the metal layer. In FIG. 4, 401 is a deposition chamber and can be evacuated by an unillustrated exhaust pump. A predetermined flow rate of an inert gas such as argon (Ar) is introduced into this by a gas introduction pipe 402 connected to a gas cylinder (not shown), the opening degree of the exhaust valve 403 is adjusted, and the inside of the deposition chamber 401 is predetermined. It becomes pressure. The substrate 404 is fixed to the surface of an anode 406 provided with a heater 405 therein. Opposite to the anode 306, a cathode electrode 408 having a target 407 fixed thereon is provided. The target 407 is usually a block of metal to be deposited having a purity of about 99.9 to 99.999%. The cathode electrode 408 is connected to a DC power source 409, and a DC high voltage is applied by the power source 409 to generate a plasma 410 between the anode and the cathode. The metal atoms of the target 407 are deposited on the substrate 404 by the action of the plasma. Further, the deposition rate can be further increased by using a magnetron sputtering apparatus in which a magnet is provided inside the cathode 408 and the intensity of plasma is increased.
[0012]
[Experiment 1]
On a 5cm x 5cm mirror-polished 7059 glass plate made by Corning, an Al-Ti alloy with a Ti concentration of 0.5, 2, 3, 4, 10 atomic% was deposited to a thickness of 7500 mm by DC magnetron sputtering. Samples 1a, 1b, 1c, 1d, and 1e were used. For comparison, a pure Al film was prepared in the same manner as sample 1f. Since these samples were deposited on a smooth substrate at 40 Å / sec at room temperature, the surface was smooth. The sample 1f was produced using a 99.999% Al target. Alloy samples 1a to 1e were prepared by arranging 99.999% Ti chips having a size of 5 mm × 5 mm × 1 mm on an Al target so as to obtain a desired composition. All other samples except Sample 1f were analyzed with an X-ray energy dispersive analyzer (XMA) to confirm the composition.
The reflectance with respect to light with a wavelength of 400 to 1200 nm was measured for these six types of samples. Since the reflectance of Al has a minimum value at 830 nm, the value at 830 nm is shown in FIG. 5 as a representative value of the reflectance obtained in each composition. It can be seen that the reflectance of Al at 830 nm is improved by adding a small amount of Ti, and has a maximum value at a Ti concentration of 2 atomic%. This is considered to be because the crystal structure or crystal orientation was changed due to the presence of a small amount of additive, and X-ray diffraction measurement was performed on the pure Al sample 1f and the sample 1b film having a Ti concentration of 2 atomic% with the most improved reflectance. Here, an X-ray diffraction diagram of the powder Al sample is shown in FIG. When all crystal planes exist uniformly in an aluminum film having a face-centered cubic crystal structure, the intensity ratio shown in the figure, that is, the (111) peak intensity is (200) at the angle 2θ in the figure. A diffractogram which is about 2.1 times the peak, about 4.4 times (220) and about 4.1 times the (311) peak is obtained. That is, when the peak of a certain surface appears stronger than the above-mentioned intensity ratio, it can be said that the orientation of the surface is dominant. In the case of the diffraction pattern of the sample 1f, when (111) is observed with an intensity of about 0.9 times (200) and about 0.86 times (220), the (111) plane is predominantly arranged. I can't say that. On the other hand, in the sample 1b, the (111) peak appeared as strong as about 4 times the (200) peak, and the (220) and (311) peaks were not observed. Moreover, since the peak position appearing in the diffraction diagram of the sample 1b coincided with FIG. 6, it can be determined that there is no change in the crystal structure. That is, the sample 1b is considered to have a predominantly (111) plane orientation.
[0013]
[Experiment 2]
Except for using Mg instead of Ti, the same procedure as in Experiment 1 was carried out, and an Al—Mg alloy with an Mg concentration of 0.5, 1, 5, 8, and 10 atomic% was deposited to a thickness of 7500 mm, and each was sampled. 2a, 2b, 2c, 2d, 2e. With respect to these samples, the reflectance with respect to light having a wavelength of 400 to 1200 nm was measured, and a value at 830 nm is shown in FIG. 8 as a representative value of the reflectance obtained in each composition. As in the case of adding Ti to Al, it is understood that the reflectance in the vicinity of 800 nm is improved by adding Mg in the range of 5 atomic% or less. Further, when X-ray diffraction was measured for the sample 2b, no change was observed in the crystal structure, and the (111) peak appeared at an intensity about 3.6 times the (200) peak, and the (220) and (311) peaks. Hardly appeared, and a dominant orientation of the (111) plane was observed.
[0014]
[Experiment 3]
Except that Ag was used in place of Ti, an Al—Ag alloy with an Ag concentration of 0, 3, 8, 12, 20, and 28 atomic% was deposited to a thickness of 7500 mm in the same manner as in Experiment 1, and each sample was It was set as 3a, 3b, 3c, 3d, 3e. For comparison, a pure Ag film was prepared in the same manner as sample 3f. With respect to these six types of samples, the reflectance with respect to light having a wavelength of 400 to 1200 nm was measured, and values at 830 nm are shown in FIG. 7 as representative values of the reflectance obtained in the respective compositions. Similar to the Al-Ti film, the reflectance at 830 nm is improved by adding a trace amount of Ag, and the Al-Ag film has a maximum value near the Ag concentration of 10 atomic%. The appropriate amount of Al added is 25 atomic% or less. X-ray diffraction patterns were also measured for the sample 3d film having an Ag concentration of 12 atomic%. It can be seen that only one similar strong (111) peak appears at the same 2θ position as the (111) peak of sample 1b, and the (111) plane is predominantly oriented.
[0015]
[Experiment 4]
In the same manner as in Experiment 1 except that Au was used instead of Ti, an Al—Au alloy with an Au concentration of 1, 2, 4, and 7 atomic% was deposited to a thickness of 7500 mm, and each of the samples 4a, 4b, 4c and 4d. The reflectivities of these four types of samples with respect to light having a wavelength of 400 to 1200 nm are measured, and the values at 830 nm are shown in FIG. 9 as representative values of the reflectivities obtained in the respective compositions. In the case of an Al—Au film, the reflectance at 830 nm was not improved much even when Au was added. Further, when an X-ray diffraction pattern was measured for the sample 4c film having an Au concentration of 4 atomic%, the (111) peak appeared at twice the intensity of the (220) peak, and the orientation of the (111) plane could not be confirmed.
From the above experiment, it is considered that the reflectance near 800 nm is improved when the metal containing Al as a main component is predominately oriented in the (111) plane. It is considered that an Al (111) -oriented film can be easily realized by adding an appropriate amount of an appropriate material such as Ti, Ag, Mg, etc., compared to the case of Al alone.
[0016]
[Experiment 5]
As in Experiment 1, after depositing a metal layer of Al-Ti 2 atomic%, Al-Ag 12 atomic%, and Al-Mg 1 atomic% on a 5 cm x 5 cm size stainless steel plate, ZnO was formed as a transparent layer with a film thickness of 10,000 mm. Formed. Furthermore, by glow discharge decomposition method, SiH Four , PH Three As a source gas, an n-type a-Si layer is 200 liters, SiH Four I-type a-Si layer is 4000Å, SiH Four , BF Three , H 2 A p-type microcrystalline (μc) Si layer was deposited as a raw material gas to form a thin film semiconductor junction. A 650 mm indium tin oxide film (ITO film) was deposited thereon as a transparent electrode by resistance heating vapor deposition, and a current collecting electrode having a width of 300 microns was formed with Ag paste to form a solar battery cell. The samples thus obtained were designated as samples 5a, 5b and 5c. Similarly, samples 5d and 5e using pure Al and pure Ag as metal layers were obtained for comparison. For these samples, the photocurrent Jsc was measured under an AM-1.5 solar simulator. Sample 5d is 16.7 mA / cm 2 Sample 5e was 17.8 mA / cm 2 Sample 5a was 17.2 mA / cm 2 Sample 5b is 17.4 mA / cm 2 Sample 5c is 17.1 mA / cm 2 As a result, a high current value approaching that of a solar battery cell made of an Ag metal layer was obtained.
[0017]
[Experiment 6]
For the reliability test, the five samples obtained in Experiment 5 were applied with a reverse voltage of 0.85 V (high humidity reverse bias test) at 85% humidity and an ambient temperature of 85 ° C. in the absence of light. A change in RshDk (Rsh in a state where no light was applied) was measured for comparative evaluation. The results are shown in FIG. RshDk is 10 Ωcm 2 If it falls below, an open circuit voltage will not come out under low illumination light, and the characteristic and reliability as a solar cell will appear. Therefore, in the high humidity reverse bias test, RshDk ≧ 10 kΩcm. 2 Was a criterion for passing the high humidity reverse bias test. As for the sample 5e, RshDk sharply decreased at the same time as the measurement was started, and 10 kΩcm 2 Has broken. Sample 5d is 31 kΩcm 2 There was no further decline. Similarly, no decrease in RshDk was observed in Samples 5a, 5b, and 5c.
[0018]
Below, the back surface reflection layer used in the thin film semiconductor solar cell of this invention is demonstrated in detail.
[0019]
[Substrate and metal layer]
Various metals can be used as the substrate. Of these, stainless steel plates, galvanized steel plates, aluminum plates, copper plates and the like are suitable because of their relatively low prices. These metal plates may be used after being cut into a fixed shape, or may be used in the form of a long sheet depending on the plate thickness. In the latter case, since it can be wound in a coil shape, it is suitable for continuous production and can be easily stored and transported. Depending on the application, a crystal substrate such as silicon, a plate of glass or ceramics may be used. The surface of the substrate may be polished, but may be used as it is when the finish is good, for example, a bright annealed stainless steel substrate.
As described above, a sputtering method, which is an example of a film forming method, can be used for depositing the metal layer of the present invention. In addition, the metal layer can be deposited by resistance heating, vacuum evaporation using an electron beam, sputtering, ion plating, CVD, or the like.
[0020]
[Transparent layer and its texture structure]
Transparent layers include ZnO and In 2 O Three , SnO 2 , CdO, CdSnO Four , TiO and other oxides are often used (however, the composition ratios of the compounds shown here do not necessarily match the actual conditions). In general, the higher the light transmittance of the transparent layer, the better. However, the light does not need to be transparent to light in the wavelength region absorbed by the thin film semiconductor. The transparent layer should preferably have resistance in order to suppress the current due to pinholes and the like. On the other hand, the influence of the series resistance loss due to this resistance on the conversion efficiency of the solar cell must be within a negligible range. From this point of view, the unit area (1 cm 2 ) Resistance range is preferably 10 -6 -10Ω, more preferably 10 -Five ~ 3Ω, most preferably 10 -Four ~ 1Ω. The transparent layer is preferably as thin as possible from the viewpoint of transparency, but an average film thickness of 1000 angstroms or more is necessary to obtain a surface texture structure. In addition, a film thickness larger than this may be necessary from the viewpoint of reliability.
For the deposition of the transparent layer, resistance heating, electron beam vacuum deposition, sputtering, ion plating, CVD, spray coating, or the like can be used. Also in this case, the sputtering apparatus shown in FIG. 4 can be used. However, in the oxide, there are a case where the oxide itself is used as a target and a case where a metal (Zn, Sn, etc.) target is used. In the latter case, oxygen needs to flow simultaneously with Ar in the deposition chamber (referred to as a reactive sputtering method).
[0021]
The reason why the light confinement occurs is that the metal layer has a texture structure, and thus the light is scattered by the metal layer. In addition, when the surface of the thin film semiconductor has a texture structure similar to that of the transparent layer, light is easily scattered due to the phase difference of light, and the light trapping effect is high.
In order to control the specific resistance of the transparent layer, an appropriate impurity may be added. As the transparent layer of the present invention, the resistivity as described above tends to be too low. Therefore, as the impurities, those that moderately increase the resistance by addition thereof are preferable. For example, an acceptor-type impurity (for example, Cu, SnO in ZnO) is added to a transparent layer that is an n-type semiconductor. 2 In addition, an appropriate amount of Al, etc.) can be added to make it intrinsic and increase the resistance. Moreover, the addition of impurities often increases chemical resistance. In order to add impurities to the transparent film, desired impurities may be added to the evaporation source or the target. In particular, in the sputtering method, a small piece of material containing impurities may be placed on the target.
[0022]
【Example】
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated in more detail, this invention is not limited to these Examples.
[0023]
[Example 1]
A pin-type a-Si photovoltaic device having the configuration shown in the schematic cross-sectional view of FIG. 1 was produced. In the same manner as in Experiment 1 except that an Al—Ti alloy was used as a target, a metal layer of 1 atomic% of Al—Ti was formed on a stainless steel plate at 700 mm. A ZnO layer 103 having a thickness of 10,000 mm was deposited on the substrate at a substrate temperature of 350 ° C. using a ZnO target. The surface of the ZnO layer has a texture structure. Then, the board | substrate 1001 in which the back surface reflection layer was formed was set to the commercially available capacitive coupling type | mold high frequency CVD apparatus (CHJ-3030 by ULVAC, Inc.) shown in FIG. The exhaust pump 1009 was used for roughing through the exhaust pipe of the reaction vessel 1004, and then a high vacuuming operation was performed. At this time, it was controlled by a temperature control mechanism so that the surface temperature of the substrate was 350 ° C. When exhaust is sufficiently performed, SiH is introduced from the gas introduction pipe. Four 300 sccm, SiF Four 4sccm, PH Three / H 2 (1% H 2 Dilution) 55sccm, H 2 40 sccm was introduced, the opening degree of the throttle valve was adjusted, the internal pressure of the reaction vessel was maintained at 1 Torr, and 200 W of power was immediately supplied from the high frequency power source when the pressure was stabilized. The plasma was sustained for 5 minutes. Thereby, the n-type a-Si layer 107 was formed on the transparent layer 104. After exhausting again, this time SiH from the gas introduction pipe Four 300 sccm, SiF Four 4 sccm, H 2 40 sccm was introduced, the opening of the throttle valve was adjusted, the internal pressure of the reaction vessel was maintained at 1 Torr, and when the pressure stabilized, 150 W of electric power was immediately applied from the high frequency power source, and the plasma was maintained for 60 minutes. Thereby, the i-type a-Si layer was formed on the n-type a-Si layer 106.
[0024]
After exhausting again, this time SiH from the gas introduction pipe Four 50sccm, BF Three / H 2 (1% H 2 Dilution) 50sccm, H 2 500 sccm was introduced, the opening degree of the throttle valve was adjusted, the internal pressure of the reaction vessel was maintained at 1 Torr, and when the pressure was stabilized, 300 W of electric power was immediately supplied from the high frequency power source. The plasma was sustained for 2 minutes. Thereby, the p-type μc-Si layer 108 was formed on the i-type a-Si layer 107. Next, the obtained product was taken out from a high-frequency CVD apparatus, ITO was deposited by a resistance heating vacuum deposition apparatus, and then a paste containing an aqueous iron chloride solution was printed to form a desired pattern of the transparent electrode 109. Furthermore, Ag paste was screen-printed to form a collecting electrode 110 to complete a thin film semiconductor solar cell. Ten samples were prepared by this method, and Jsc measurement was performed under AM-1.5 light. As a result, a current value 6.1% higher than that of a pure Al metal layer solar cell was obtained on average. .
Further, when these 10 solar cells were subjected to the high humidity reverse bias test conducted in Experiment 5, no decrease in RshDk was observed.
[0025]
[Example 2]
The back surface reflection layer was continuously formed using the apparatus shown in FIG. Here, a stainless sheet roll 1101 having a width of 350 mm, a thickness of 0.2 mm, and a length of 500 m is set in the substrate delivery chamber 1103. From here, the stainless steel sheet 1102 is sent to the substrate winding chamber 1113 through the metal layer deposition chambers 1104 and 1107 and the transparent layer deposition chamber 1111. The sheet 1102 can be heated to a desired temperature by the substrate heaters 1105, 1108, and 1110 in the respective deposition chambers. The stainless steel sheet 1102 deposits a textured Al layer by magnetron sputtering at a substrate temperature of 400 ° C. in a deposition chamber 1004 in which an Al target 1006 having a purity of 99.99% is installed. Thereafter, an Al—Ag 15 atomic% alloy layer is deposited in an amount of 1000 μm by DC magnetron sputtering without raising the substrate temperature using an Al—Ag alloy target 1109 having a purity of 99.99% in the deposition chamber 1007. The target 1112 in the deposition chamber 1111 is ZnO with a purity of 99.99%, and a ZnO layer is continuously deposited by 10000 soot by DC magnetron sputtering.
[0026]
An a-Si / a-SiGe tandem solar cell having the structure shown in FIG. 14 was formed on the one produced by the above method. Here, 1201 is a substrate, 1202 is an Al metal layer, 1203 is an Al—Ag alloy layer, 1204 is a ZnO layer, 1205 is a bottom cell, and 1209 is a top cell. Further, 1206 and 1210 are n-type a-Si layers, 1208 and 1212 are p-type μc-Si layers, 1207 is an i-type a-SiGe layer, and 1211 is an i-type a-Si layer. These thin film semiconductor layers were continuously formed using a roll-to-roll type film forming apparatus as described in US Pat. No. 4,492,181. Reference numeral 1213 denotes a transparent electrode, which was deposited by a sputtering apparatus similar to the apparatus of FIG. Reference numeral 1214 denotes a current collecting electrode. After patterning the transparent electrode and forming the collecting electrode, the sheet 1102 was cut. In this way, all the processes were processed continuously, and the mass production effect was improved.
When 100 samples were prepared as described above and Jsc was measured under the light of AM-1.5, a current value 6% higher than that of a pure Al metal layer solar cell was obtained on average. Also in the high humidity reverse bias test, RshDk did not decrease.
[0027]
[Example 3]
A stainless steel in the same form as in Example 2 was used except that the surface was textured, and an Al—Mg 0.5 atomic% alloy metal layer and a transparent layer were deposited using the apparatus of FIG. The layers were deposited in the same manner as in Example 2 except that the deposition chamber 1104 was not used for deposition of the metal layer, and an Al—Mg alloy was used for the target 1109 installed in the 1107 deposition chamber. Then, the photovoltaic element was formed on the photovoltaic element formation conditions shown in Table 1 using the roll-to-roll photovoltaic element forming apparatus shown in FIG.
A sheet-like substrate (sheet width 35 cm) was set in a load chamber 5010 for introducing a sheet-like substrate. The sheet-like substrate was connected to the sheet take-up jig in the unload chamber 5050 through the entire deposition chamber and all the gas gates. Each deposition chamber is set to 10 with an exhaust device (not shown). -3 Exhaust below Torr. Hydrogen gas was supplied to each deposition chamber from the mixing devices 5024, 5034, 5044, 5054, 5064, 5074, 5084, 5094, 5104, 5114, 5124, 5134 and 5144 for forming each deposited film. Hydrogen gas was supplied to each gas gate from each gate gas supply device to each gas gate 5201, 5202, 5203, 5204, 5205, 5206, 5207, 5208, 5209, 5210, 5211, 5212, 5213, 5214. In this embodiment, the interval through which the gas gate passes through the sheet-like substrate is 1 mm, so that hydrogen gas (H 2 ) Was flowed at 1000 sccm. The substrate was heated to the substrate temperature shown in Table 1 by the substrate heating heater of each deposition apparatus. When the substrate temperature was stabilized, the hydrogen gas supplied to each deposition chamber was switched to the source gas shown in Table 1 deposited in each deposition chamber. When the switching of the source gas was completed, the degree of vacuum of the deposition chambers shown in Table 1 was adjusted by adjusting the degree of opening and closing of the exhaust valve of each exhaust device. The conveyance of the sheet substrate was started. When the degree of vacuum was stabilized, RF power and MW power shown in Table 1 for plasma generation were supplied to each deposition chamber. As described above, a photovoltaic element in which three pin structures were stacked on the sheet-like substrate 100m was formed.
In this way, 100 samples were prepared, and Jsc was measured with an AM-1.5 solar simulator. An average value 5.8% higher than the current value obtained with a solar cell using a pure Al metal layer was obtained, and there was no problem in the high humidity reverse bias test.
[0028]
[Table 1]
Support: Stainless steel SUS430 (JIS standard) thickness 0.125mm
Substrate: SUS430 / Ag4500Å / ZnO 1 μm (texture structure)
[Bottom cell]
Figure 0003720456
[Middle cell]
Figure 0003720456
[Top cell]
Figure 0003720456
[0029]
【The invention's effect】
According to the present invention, the lowering of the reflectance near 830 nm, which is peculiar to aluminum, is improved, and a back reflective layer that does not lose its excellent resistance to migration can be obtained. As a result, a photovoltaic device with high reliability and high conversion efficiency can be obtained. Moreover, since aluminum which is the main material of the back reflective layer of the present invention is inexpensive, mass production at low cost is possible.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an example of the configuration of a photovoltaic device of the present invention.
FIG. 2 shows reflectivity of Ag, Al, Cu, and Ni films.
FIG. 3 shows an example of an increase in absorption of incident light by using a back surface reflective layer having a texture structure.
FIG. 4 shows a configuration of a DC magnetron sputtering apparatus.
FIG. 5 is a diagram showing a measurement result of reflectance obtained in Experiment 1. FIG.
6 is a diagram showing the results of X-ray diffraction measurement obtained in Experiment 1. FIG.
7 is a diagram showing the measurement results of reflectance obtained in Experiment 3. FIG.
FIG. 8 is a diagram showing the measurement results of reflectance obtained in Experiment 2.
9 is a diagram showing the measurement results of reflectance obtained in Experiment 4. FIG.
FIG. 10 is a diagram showing measurement results of changes in RshDk obtained in Experiment 6.
FIG. 11 is a diagram showing a configuration of a capacitively coupled high-frequency CVD apparatus.
FIG. 12 is a diagram showing a configuration of a continuous film forming apparatus.
FIG. 13 is a diagram showing a configuration of a roll-to-roll photovoltaic device forming apparatus.
FIG. 14 is a schematic cross-sectional view of an example of the configuration of the tandem solar cell of the present invention.
[Explanation of symbols]
101,1201 substrate
102,1202 Metal layer
103 transparent layer
104 Semiconductor layer
105, 1206, 1210 n-type a-Si layer
106,1211 i-type a-Si layer
107 p-type a-Si layer
108,1213 Transparent electrode
109,1214 Current collecting electrode
1203 Al-Ag alloy layer
1204 ZnO layer
1205 bottom cell
1207 i-type a-SiGe layer
1208,1212 p-type μc-Si layer
1209 Top cell

Claims (1)

基板上に少なくとも反射層、透明層、半導体層、及び透明電極を形成してなる光起電力素子において、前記反射層がTi濃度5原子%以下のAl−Ti合金またはMg濃度5原子%以下のAl−Mg合金からなり、そのX線回折図の(111)ピーク強度が(200)ピークの2.1倍、(220)の4.4倍、(311)ピークの4.1倍を越えて強く現れるものであることを特徴とする光起電力素子。In a photovoltaic device in which at least a reflective layer, a transparent layer, a semiconductor layer, and a transparent electrode are formed on a substrate, the reflective layer is an Al—Ti alloy having a Ti concentration of 5 atomic% or less or an Mg concentration of 5 atomic% or less. It consists of an Al-Mg alloy , and its (111) peak intensity in the X-ray diffraction pattern exceeds 2.1 times the (200) peak, 4.4 times the (220), and 4.1 times the (311) peak. A photovoltaic device characterized by being strongly manifested.
JP14654196A 1996-05-17 1996-05-17 Photovoltaic element Expired - Fee Related JP3720456B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14654196A JP3720456B2 (en) 1996-05-17 1996-05-17 Photovoltaic element
US08/857,907 US6172296B1 (en) 1996-05-17 1997-05-16 Photovoltaic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14654196A JP3720456B2 (en) 1996-05-17 1996-05-17 Photovoltaic element

Publications (2)

Publication Number Publication Date
JPH09307129A JPH09307129A (en) 1997-11-28
JP3720456B2 true JP3720456B2 (en) 2005-11-30

Family

ID=15409992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14654196A Expired - Fee Related JP3720456B2 (en) 1996-05-17 1996-05-17 Photovoltaic element

Country Status (1)

Country Link
JP (1) JP3720456B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU678503B2 (en) * 1993-09-24 1997-05-29 Takeda Chemical Industries Ltd. Condensed heterocyclic compounds and their use as squalene synthetase inhibitors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157235A (en) * 1983-02-26 1984-09-06 Nippon Light Metal Co Ltd Production of aluminum alloy blank material for laser reflection mirror
JPS6089541A (en) * 1983-10-21 1985-05-20 Showa Alum Corp Aluminum alloy material for reflection mirror and its manufacture
JPS63312975A (en) * 1987-06-17 1988-12-21 Kasei Naoetsu:Kk Aluminum sputtering target
JPH0227302A (en) * 1988-07-16 1990-01-30 Kubota Ltd Stock for reflecting mirror made of aluminum alloy
JPH0623429B2 (en) * 1988-07-28 1994-03-30 日電アネルバ株式会社 Method for producing smooth aluminum thin film on silicon substrate and optical reflector using the same
JPH06196734A (en) * 1992-12-24 1994-07-15 Canon Inc Semiconductor solar battery and manufacture thereof
JP3162261B2 (en) * 1994-04-28 2001-04-25 キヤノン株式会社 Solar cell manufacturing method and manufacturing apparatus

Also Published As

Publication number Publication date
JPH09307129A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
US6172296B1 (en) Photovoltaic cell
US5486238A (en) Photovoltaic device
KR100237661B1 (en) Back reflector layer, method for forming it, and photovoltaic element using it and manufacturing method thereof
US5986204A (en) Photovoltaic cell
US5603778A (en) Method of forming transparent conductive layer, photoelectric conversion device using the transparent conductive layer, and manufacturing method for the photoelectric conversion device
JP2771414B2 (en) Solar cell manufacturing method
US5668050A (en) Solar cell manufacturing method
US20110088762A1 (en) Barrier layer disposed between a substrate and a transparent conductive oxide layer for thin film silicon solar cells
JP2829653B2 (en) Photovoltaic element
JP2004311965A (en) Fabrication method of photovoltaic device
JPH07326783A (en) Formation of photovoltatic element and thin film manufacturing device used therefor
JPH10178193A (en) Manufacture photovoltaic power element
JP2962897B2 (en) Photovoltaic element
JPH10178195A (en) Photovoltaic element
JP3402637B2 (en) Method of manufacturing solar cell, manufacturing apparatus thereof, and method of manufacturing long sheet substrate
EP2402479B1 (en) Method for sputtering a resistive transparent thin film for use in cadmium telluride based photovoltaic devices
JP3162261B2 (en) Solar cell manufacturing method and manufacturing apparatus
JPH11195801A (en) Photovoltaic element
JP3720456B2 (en) Photovoltaic element
JP3006701B2 (en) Thin-film semiconductor solar cells
JPH06338623A (en) Thin-film solar cell
JP3078937B2 (en) Solar cell and manufacturing method thereof
JP2846508B2 (en) Photovoltaic element
JPH09186351A (en) Photovoltaic device and manufacture thereof
JP3270679B2 (en) Photovoltaic element

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees